From b7990858517223682169491a9277ec4082bf24b5 Mon Sep 17 00:00:00 2001 From: Alexander Hess Date: Tue, 25 May 2021 08:18:04 +0200 Subject: [PATCH] Rename notebook 2 --- 01_pairwise_correlations.ipynb | 2426 ++++++++++++++++++++++++++++++++ 2_pairwise_correlations.ipynb | 2426 -------------------------------- README.md | 2 +- 3 files changed, 2427 insertions(+), 2427 deletions(-) create mode 100644 01_pairwise_correlations.ipynb delete mode 100644 2_pairwise_correlations.ipynb diff --git a/01_pairwise_correlations.ipynb b/01_pairwise_correlations.ipynb new file mode 100644 index 0000000..cb59e95 --- /dev/null +++ b/01_pairwise_correlations.ipynb @@ -0,0 +1,2426 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Pair-wise Correlations\n", + "\n", + "The purpose is to identify predictor variables strongly correlated with the sales price and with each other to get an idea of what variables could be good predictors and potential issues with collinearity.\n", + "\n", + "Furthermore, Box-Cox transformations and linear combinations of variables are added where applicable or useful." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## \"Housekeeping\"" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import warnings\n", + "import json\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "\n", + "from sklearn.preprocessing import PowerTransformer\n", + "from tabulate import tabulate\n", + "\n", + "from utils import (\n", + " ALL_VARIABLES,\n", + " CONTINUOUS_VARIABLES,\n", + " DISCRETE_VARIABLES,\n", + " NUMERIC_VARIABLES,\n", + " ORDINAL_VARIABLES,\n", + " TARGET_VARIABLES,\n", + " encode_ordinals,\n", + " load_clean_data,\n", + " print_column_list,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "pd.set_option(\"display.max_columns\", 100)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "sns.set_style(\"white\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Load the Data\n", + "\n", + "Only a subset of the previously cleaned data is used in this analysis. In particular, it does not make sense to calculate correlations involving nominal variables.\n", + "\n", + "Furthermore, ordinal variables are encoded as integers (with greater values indicating a higher sales price by \"guts feeling\"; refer to the [data documentation](https://www.amstat.org/publications/jse/v19n3/decock/DataDocumentation.txt) to see the un-encoded values) and take part in the analysis.\n", + "\n", + "A `cleaned_df` DataFrame with the original data from the previous notebook is kept so as to restore the encoded ordinal labels again at the end of this notebook for correct storage." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "cleaned_df = load_clean_data()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "df = cleaned_df[NUMERIC_VARIABLES + ORDINAL_VARIABLES + TARGET_VARIABLES]\n", + "df = encode_ordinals(df)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
1st Flr SF2nd Flr SF3Ssn PorchBedroom AbvGrBsmt Full BathBsmt Half BathBsmt Unf SFBsmtFin SF 1BsmtFin SF 2Enclosed PorchFireplacesFull BathGarage AreaGarage CarsGr Liv AreaHalf BathKitchen AbvGrLot AreaLow Qual Fin SFMas Vnr AreaMisc ValMo SoldOpen Porch SFPool AreaScreen PorchTotRms AbvGrdTotal Bsmt SFWood Deck SFYear BuiltYear Remod/AddYr Sold
OrderPID
15263011001656.00.00.0310441.0639.00.00.021528.021656.00131770.00.0112.00.0562.00.00.071080.0210.0196019602010
2526350040896.00.00.0200270.0468.0144.00.001730.01896.00111622.00.00.00.060.00.0120.05882.0140.0196119612010
35263510101329.00.00.0300406.0923.00.00.001312.011329.01114267.00.0108.012500.0636.00.00.061329.0393.0195819582010
45263530302110.00.00.03101045.01065.00.00.022522.022110.01111160.00.00.00.040.00.00.082110.00.0196819682010
5527105010928.0701.00.0300137.0791.00.00.012482.021629.01113830.00.00.00.0334.00.00.06928.0212.0199719982010
\n", + "
" + ], + "text/plain": [ + " 1st Flr SF 2nd Flr SF 3Ssn Porch Bedroom AbvGr \\\n", + "Order PID \n", + "1 526301100 1656.0 0.0 0.0 3 \n", + "2 526350040 896.0 0.0 0.0 2 \n", + "3 526351010 1329.0 0.0 0.0 3 \n", + "4 526353030 2110.0 0.0 0.0 3 \n", + "5 527105010 928.0 701.0 0.0 3 \n", + "\n", + " Bsmt Full Bath Bsmt Half Bath Bsmt Unf SF BsmtFin SF 1 \\\n", + "Order PID \n", + "1 526301100 1 0 441.0 639.0 \n", + "2 526350040 0 0 270.0 468.0 \n", + "3 526351010 0 0 406.0 923.0 \n", + "4 526353030 1 0 1045.0 1065.0 \n", + "5 527105010 0 0 137.0 791.0 \n", + "\n", + " BsmtFin SF 2 Enclosed Porch Fireplaces Full Bath \\\n", + "Order PID \n", + "1 526301100 0.0 0.0 2 1 \n", + "2 526350040 144.0 0.0 0 1 \n", + "3 526351010 0.0 0.0 0 1 \n", + "4 526353030 0.0 0.0 2 2 \n", + "5 527105010 0.0 0.0 1 2 \n", + "\n", + " Garage Area Garage Cars Gr Liv Area Half Bath \\\n", + "Order PID \n", + "1 526301100 528.0 2 1656.0 0 \n", + "2 526350040 730.0 1 896.0 0 \n", + "3 526351010 312.0 1 1329.0 1 \n", + "4 526353030 522.0 2 2110.0 1 \n", + "5 527105010 482.0 2 1629.0 1 \n", + "\n", + " Kitchen AbvGr Lot Area Low Qual Fin SF Mas Vnr Area \\\n", + "Order PID \n", + "1 526301100 1 31770.0 0.0 112.0 \n", + "2 526350040 1 11622.0 0.0 0.0 \n", + "3 526351010 1 14267.0 0.0 108.0 \n", + "4 526353030 1 11160.0 0.0 0.0 \n", + "5 527105010 1 13830.0 0.0 0.0 \n", + "\n", + " Misc Val Mo Sold Open Porch SF Pool Area Screen Porch \\\n", + "Order PID \n", + "1 526301100 0.0 5 62.0 0.0 0.0 \n", + "2 526350040 0.0 6 0.0 0.0 120.0 \n", + "3 526351010 12500.0 6 36.0 0.0 0.0 \n", + "4 526353030 0.0 4 0.0 0.0 0.0 \n", + "5 527105010 0.0 3 34.0 0.0 0.0 \n", + "\n", + " TotRms AbvGrd Total Bsmt SF Wood Deck SF Year Built \\\n", + "Order PID \n", + "1 526301100 7 1080.0 210.0 1960 \n", + "2 526350040 5 882.0 140.0 1961 \n", + "3 526351010 6 1329.0 393.0 1958 \n", + "4 526353030 8 2110.0 0.0 1968 \n", + "5 527105010 6 928.0 212.0 1997 \n", + "\n", + " Year Remod/Add Yr Sold \n", + "Order PID \n", + "1 526301100 1960 2010 \n", + "2 526350040 1961 2010 \n", + "3 526351010 1958 2010 \n", + "4 526353030 1968 2010 \n", + "5 527105010 1998 2010 " + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df[NUMERIC_VARIABLES].head()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Bsmt CondBsmt ExposureBsmt QualBsmtFin Type 1BsmtFin Type 2ElectricalExter CondExter QualFenceFireplace QuFunctionalGarage CondGarage FinishGarage QualHeating QCKitchen QualLand SlopeLot ShapeOverall CondOverall QualPaved DrivePool QCUtilities
OrderPID
152630110044341422047333122245103
252635004031332422307313222354203
352635101031351422007313232255203
452635303031351423037333442346203
552710501031461422337333322244203
\n", + "
" + ], + "text/plain": [ + " Bsmt Cond Bsmt Exposure Bsmt Qual BsmtFin Type 1 \\\n", + "Order PID \n", + "1 526301100 4 4 3 4 \n", + "2 526350040 3 1 3 3 \n", + "3 526351010 3 1 3 5 \n", + "4 526353030 3 1 3 5 \n", + "5 527105010 3 1 4 6 \n", + "\n", + " BsmtFin Type 2 Electrical Exter Cond Exter Qual Fence \\\n", + "Order PID \n", + "1 526301100 1 4 2 2 0 \n", + "2 526350040 2 4 2 2 3 \n", + "3 526351010 1 4 2 2 0 \n", + "4 526353030 1 4 2 3 0 \n", + "5 527105010 1 4 2 2 3 \n", + "\n", + " Fireplace Qu Functional Garage Cond Garage Finish \\\n", + "Order PID \n", + "1 526301100 4 7 3 3 \n", + "2 526350040 0 7 3 1 \n", + "3 526351010 0 7 3 1 \n", + "4 526353030 3 7 3 3 \n", + "5 527105010 3 7 3 3 \n", + "\n", + " Garage Qual Heating QC Kitchen Qual Land Slope Lot Shape \\\n", + "Order PID \n", + "1 526301100 3 1 2 2 2 \n", + "2 526350040 3 2 2 2 3 \n", + "3 526351010 3 2 3 2 2 \n", + "4 526353030 3 4 4 2 3 \n", + "5 527105010 3 3 2 2 2 \n", + "\n", + " Overall Cond Overall Qual Paved Drive Pool QC Utilities \n", + "Order PID \n", + "1 526301100 4 5 1 0 3 \n", + "2 526350040 5 4 2 0 3 \n", + "3 526351010 5 5 2 0 3 \n", + "4 526353030 4 6 2 0 3 \n", + "5 527105010 4 4 2 0 3 " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df[ORDINAL_VARIABLES].head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Linearly \"dependent\" Features" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The \"above grade (ground) living area\" (= *Gr Liv Area*) can be split into 1st and 2nd floor living area plus some undefined rest." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "assert not (\n", + " df[\"Gr Liv Area\"]\n", + " != (df[\"1st Flr SF\"] + df[\"2nd Flr SF\"] + df[\"Low Qual Fin SF\"])\n", + ").any()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The various basement areas also add up." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "assert not (\n", + " df[\"Total Bsmt SF\"]\n", + " != (df[\"BsmtFin SF 1\"] + df[\"BsmtFin SF 2\"] + df[\"Bsmt Unf SF\"])\n", + ").any()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Calculate a variable for the total living area *Total SF* as this is the number communicated most often in housing ads." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "df[\"Total SF\"] = df[\"Gr Liv Area\"] + df[\"Total Bsmt SF\"]\n", + "new_variables = [\"Total SF\"]\n", + "CONTINUOUS_VARIABLES.append(\"Total SF\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The different porch areas are unified into a new variable *Total Porch SF*. This potentially helps making the presence of a porch in general relevant in the prediction." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "df[\"Total Porch SF\"] = (\n", + " df[\"3Ssn Porch\"] + df[\"Enclosed Porch\"] + df[\"Open Porch SF\"]\n", + " + df[\"Screen Porch\"] + df[\"Wood Deck SF\"]\n", + ")\n", + "new_variables.append(\"Total Porch SF\")\n", + "CONTINUOUS_VARIABLES.append(\"Total Porch SF\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The various types of rooms \"above grade\" (i.e., *TotRms AbvGrd*, *Bedroom AbvGr*, *Kitchen AbvGr*, and *Full Bath*) do not add up (only in 29% of the cases they do). Therefore, no single unified variable can be used as a predictor." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "29" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "round(\n", + " 100\n", + " * (\n", + " df[\"TotRms AbvGrd\"]\n", + " == (df[\"Bedroom AbvGr\"] + df[\"Kitchen AbvGr\"] + df[\"Full Bath\"])\n", + " ).sum()\n", + " / df.shape[0]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Unify the number of various types of bathrooms into a single variable. Note that \"half\" bathrooms are counted as such." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "df[\"Total Bath\"] = (\n", + " df[\"Full Bath\"] + 0.5 * df[\"Half Bath\"]\n", + " + df[\"Bsmt Full Bath\"] + 0.5 * df[\"Bsmt Half Bath\"]\n", + ")\n", + "new_variables.append(\"Total Bath\")\n", + "DISCRETE_VARIABLES.append(\"Total Bath\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Box-Cox Transformations\n", + "\n", + "Only numeric columns with non-negative values are eligable for a Box-Cox transformation." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1st Flr SF First Floor square feet\n", + "Gr Liv Area Above grade (ground) living area square feet\n", + "Lot Area Lot size in square feet\n", + "SalePrice\n", + "Total SF\n" + ] + } + ], + "source": [ + "columns = CONTINUOUS_VARIABLES + TARGET_VARIABLES\n", + "transforms = df[columns].describe().T\n", + "transforms = list(transforms[transforms['min'] > 0].index)\n", + "print_column_list(transforms)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A common convention is to use Box-Cox transformations only if the found lambda value (estimated with Maximum Likelyhood Estimation) is in the range from -3 to +3.\n", + "\n", + "Consequently, the only applicable transformation are for *SalePrice* and the new variable *Total SF*." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1st Flr SF: use lambda of -0.0\n", + "Gr Liv Area: use lambda of -0.0\n", + "Lot Area: use lambda of 0.1\n", + "SalePrice: use lambda of 0.0\n", + "Total SF: use lambda of 0.2\n" + ] + } + ], + "source": [ + "# Check the Box-Cox tranformations for each column seperately\n", + "# to decide if the optimal lambda value is in an acceptable range.\n", + "output = []\n", + "transformed_columns = []\n", + "for column in transforms:\n", + " X = df[[column]] # 2D array needed!\n", + " pt = PowerTransformer(method=\"box-cox\", standardize=False)\n", + " # Suppress a weird but harmless warning from scipy\n", + " with warnings.catch_warnings():\n", + " warnings.simplefilter(\"ignore\")\n", + " pt.fit(X)\n", + " # Check if the optimal lambda is ok.\n", + " lambda_ = pt.lambdas_[0].round(1)\n", + " if -3 <= lambda_ <= 3:\n", + " lambda_label = 0 if lambda_ <= 0.01 else lambda_ # to avoid -0.0\n", + " new_column = f\"{column} (box-cox-{lambda_label})\"\n", + " df[new_column] = (\n", + " np.log(X) if lambda_ <= 0.001 else (((X ** lambda_) - 1) / lambda_)\n", + " )\n", + " # Track the new column in the appropiate list.\n", + " new_variables.append(new_column)\n", + " if column in TARGET_VARIABLES:\n", + " TARGET_VARIABLES.append(new_column)\n", + " else:\n", + " CONTINUOUS_VARIABLES.append(new_column)\n", + " # To show only the transformed columns below.\n", + " transformed_columns.append(column)\n", + " transformed_columns.append(new_column)\n", + " output.append((\n", + " f\"{column}:\",\n", + " f\"use lambda of {lambda_}\",\n", + " ))\n", + " else:\n", + " output.append((\n", + " f\"{column}:\",\n", + " f\"lambda of {lambda_} not in realistic range\",\n", + " ))\n", + "print(tabulate(sorted(output), tablefmt=\"plain\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
1st Flr SF1st Flr SF (box-cox-0)Gr Liv AreaGr Liv Area (box-cox-0)Lot AreaLot Area (box-cox-0.1)Total SFTotal SF (box-cox-0.2)SalePriceSalePrice (box-cox-0)
OrderPID
15263011001656.07.4121601656.07.41216031770.018.1969232736.019.344072215000.012.278393
2526350040896.06.797940896.06.79794011622.015.4992901778.017.333478105000.011.561716
35263510101329.07.1921821329.07.19218214267.016.0275492658.019.203658172000.012.055250
45263530302110.07.6544432110.07.65444311160.015.3960644220.021.548042244000.012.404924
5527105010928.06.8330321629.07.39572213830.015.9467052557.019.016856189900.012.154253
\n", + "
" + ], + "text/plain": [ + " 1st Flr SF 1st Flr SF (box-cox-0) Gr Liv Area \\\n", + "Order PID \n", + "1 526301100 1656.0 7.412160 1656.0 \n", + "2 526350040 896.0 6.797940 896.0 \n", + "3 526351010 1329.0 7.192182 1329.0 \n", + "4 526353030 2110.0 7.654443 2110.0 \n", + "5 527105010 928.0 6.833032 1629.0 \n", + "\n", + " Gr Liv Area (box-cox-0) Lot Area Lot Area (box-cox-0.1) \\\n", + "Order PID \n", + "1 526301100 7.412160 31770.0 18.196923 \n", + "2 526350040 6.797940 11622.0 15.499290 \n", + "3 526351010 7.192182 14267.0 16.027549 \n", + "4 526353030 7.654443 11160.0 15.396064 \n", + "5 527105010 7.395722 13830.0 15.946705 \n", + "\n", + " Total SF Total SF (box-cox-0.2) SalePrice \\\n", + "Order PID \n", + "1 526301100 2736.0 19.344072 215000.0 \n", + "2 526350040 1778.0 17.333478 105000.0 \n", + "3 526351010 2658.0 19.203658 172000.0 \n", + "4 526353030 4220.0 21.548042 244000.0 \n", + "5 527105010 2557.0 19.016856 189900.0 \n", + "\n", + " SalePrice (box-cox-0) \n", + "Order PID \n", + "1 526301100 12.278393 \n", + "2 526350040 11.561716 \n", + "3 526351010 12.055250 \n", + "4 526353030 12.404924 \n", + "5 527105010 12.154253 " + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df[transformed_columns].head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Correlations\n", + "\n", + "The pair-wise correlations are calculated based on the type of the variables:\n", + "- **continuous** variables are assumed to be linearly related with the target and each other or not: use **Pearson's correlation coefficient**\n", + "- **discrete** (because of the low number of distinct realizations as seen in the data cleaning notebook) and **ordinal** (low number of distinct realizations as well) variables are assumed to be related in a monotonic way with the target and each other or not: use **Spearman's rank correlation coefficient**\n", + "\n", + "Furthermore, for a **naive feature selection** a \"rule of thumb\" classification in *weak* and *strong* correlation is applied to the predictor variables. The identified variables will be used in the prediction modelling part to speed up the feature selection. A correlation between 0.33 and 0.66 is considered *weak* while a correlation above 0.66 is considered *strong* (these thresholds refer to the absolute value of the correlation). Correlations are calculated for **each** target variable (i.e., raw \"SalePrice\" and Box-Cox transformation thereof). Correlations below 0.1 are considered \"uncorrelated\"." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "strong = 0.66\n", + "weak = 0.33\n", + "uncorrelated = 0.1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Two heatmaps below (implemented in the reusable `plot_correlation` function) help visualize the correlations.\n", + "\n", + "Obviously, many variables are pair-wise correlated. This could yield regression coefficients *inprecise* and not usable / interpretable. At the same time, this does not lower the predictive power of a model as a whole. In contrast to the pair-wise correlations, *multi-collinearity* is not checked here." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_correlation(data, title):\n", + " \"\"\"Visualize a correlation matrix in a nice heatmap.\"\"\"\n", + " fig, ax = plt.subplots(figsize=(12, 12))\n", + " ax.set_title(title, fontsize=24)\n", + " # Blank out the upper triangular part of the matrix.\n", + " mask = np.zeros_like(data, dtype=np.bool)\n", + " mask[np.triu_indices_from(mask)] = True\n", + " # Use a diverging color map.\n", + " cmap = sns.diverging_palette(240, 0, as_cmap=True)\n", + " # Adjust the labels' font size.\n", + " labels = data.columns\n", + " ax.set_xticklabels(labels, fontsize=10)\n", + " ax.set_yticklabels(labels, fontsize=10)\n", + " # Plot it.\n", + " sns.heatmap(\n", + " data, vmin=-1, vmax=1, cmap=cmap, center=0, linewidths=.5,\n", + " cbar_kws={\"shrink\": .5}, square=True, mask=mask, ax=ax\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Pearson\n", + "\n", + "Pearson's correlation coefficient shows a linear relationship between two variables." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "columns = CONTINUOUS_VARIABLES + TARGET_VARIABLES\n", + "pearson = df[columns].corr(method=\"pearson\")" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvcAAAK4CAYAAADwcdICAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdeXxN1/7/8dfJRJDREFMoKqhZYyqlYmwMMesU0nL1apVSNfWKy6VquLRFtb5qqA4oiZRQNRalpmpRMzUkyCCzIeP5/eGXc6UJQrYhJ+/n43EeD3vvtT577Z3TPj5Z+ey1TWaz2YyIiIiIiOR7No97ACIiIiIiYgwl9yIiIiIiVkLJvYiIiIiIlVByLyIiIiJiJZTci4iIiIhYCSX3IiIiIiJWQsm9iIjIPYwePZpq1aoxe/bsR35uf39/qlWrRlBQ0CM/t4jkP3aPewAikn+NHj2a4ODgbPuLFi2Kp6cnzz33HP369aN06dKPYXTWLSgoiDFjxtCtWzc++uijR3beGzduEBwczPbt2zl+/DixsbGYTCbc3d2pVasWrVu3pn379hQuXPiRjSm/CgsLIzg4GCcnJwICAh73cETESii5F5E8s7e3x8XFBQCz2UxMTAzHjx/n+PHjrFy5knnz5uHt7f2YRyl5tWXLFgIDA4mKirLsK1KkCCaTifDwcMLDw9mwYQMzZsxg2rRpNG3a9DGO9skXHh7OnDlzKFeu3F2T+zJlylCpUiWcnJwe3eBEJN9Sci8ieVa/fn2WLl1q2b5x4wYbNmxg8uTJJCQk8O6777Jp0ybN5uZjQUFBfPDBB2RkZFCpUiUGDRpEixYtcHNzAyAxMZFdu3bx9ddfs3fvXvbv36/k3iDTpk173EMQkXxEyb2IGM7R0ZGuXbsCMGrUKKKioti0aROdOnV6vAOTB3L8+HHGjx9PRkYGLVu25NNPP832i5qTkxPt27enffv2rFu3jitXrjym0YqIFGxK7kXkofH19WXMmDFkZGTw559/ZknuMzIy+OGHHwgJCeHYsWMkJSXh6uqKt7c3r7/+OnXr1s0WLz09nZ07d7J582aOHDnClStXSEhIwNXVlbp16/Laa6/dcbbY39+fvXv3MmXKFNq0acMXX3zB5s2buXz5Mvb29uzfvx+AlJQUvvvuO9avX8/p06e5ceMGLi4ulChRgmeffZYuXbpQv379bPGjo6NZsGAB27Zt4/Lly9jZ2VGpUiV8fX157bXXcHBwyNYn85mFwYMH89Zbb7F06VKCgoI4f/48hQoVon79+gwePJjatWvf131PSkpiyZIlbN68mb/++ovU1FRcXV0pVaoUjRs3plu3bnh5eeU63scff0xKSgoeHh7897//vedfYHx9fTGbzdn2p6Sk8M0337Bu3TrOnj1LamoqZcqU4YUXXmDAgAGULFkyW5/MZwsaNWrE0qVL+eGHH1ixYgWnTp0iLi6OuXPn0qZNG3x8fAgPD+err77iqaeeYt68eezYsYOIiAiqVKlCSEiIJea1a9dYunQpGzdu5Ny5c6SkpFCmTBlatGhB//79KVOmTK7vDcBff/1FaGgoe/fuJSwsjKioKAoVKkTlypXp0KEDr7zySrZ7ljleuFWeU61atSzHp0yZQvfu3YGs393MfbdLSkpi0aJFbNy4kYsXLwJQvnx52rZty+uvv55jOc/s2bOZM2eO5ZmN4OBgvv32W06fPo3JZKJmzZr885//pFmzZvd1L0Tk8VNyLyIPjYODA25ubly9epWkpCTL/qSkJN555x127doFgMlkomjRokRFRbF+/Xo2bNjABx98wGuvvZYl3pkzZxg4cKBlu1ixYtjb21v+MrBp0yaGDx/Om2++eccxxcTE0L17dy5evIiDgwP29vaWY2lpafTv35+9e/daxuXk5ERcXBxXr17lxIkTxMXFZUvuDx06xD/+8Q/i4uKAWw8Up6amcvjwYQ4fPkxISAgLFy6kePHiOY4pLS2NgQMHsnPnTuzt7bG3tyc+Pp5t27axe/dulixZkuMvFDlJTEzkpZde4vTp0wDY2Njg5OTE1atXiYqK4s8//8TW1pYRI0bkKl5ERATbtm0DbiWZua37NplMWbZjYmLo378/R48eBbDc+3PnzrF48WKCg4OZP38+9erVu2PMSZMmsXTpUss12dhkX/Dt3LlzDB06lNjYWBwdHbP8fOHWd+gf//iHJbG2s7PDwcGB8+fPW355mDdvHs8++2yurhPgvffe488//wSgUKFCFClShPj4eP744w/++OMPQkNDWbJkCcWKFbP0cXNzIykpifj4eGxsbHB3d88SM7clbOfPn+f111+3XI+joyMAJ0+e5OTJkwQHB7No0SKeeuqpO8b44IMPWLlyJba2tjg6OpKUlGQprfr4449p3759ru+FiDx+Su5F5KG5efMmMTExAFmSwlGjRrFr1y5q1qzJ8OHDadiwIYUKFSI+Pp5vv/2WuXPnMnnyZGrUqJElybK3t6dHjx74+vpSr149S7J09epVli9fzpw5c5g1axZNmjTJceYfYO7cubi4uPB///d/NG/eHBsbG86fPw/A2rVr2bt3L46OjkyYMIEOHTpQqFAh0tPTiYiIYOvWrVl+SQGIj4/nrbfeIi4uDi8vLyZPnkydOnVIT09n48aNBAYGcvz4cUaMGMGiRYtyHNO3336LjY0Ns2bNok2bNjg4OHD8+HHef/99Tp48yeTJk1m5cmWu7vmSJUs4ffo07u7uTJkyhebNm2NnZ0dqairh4eH89NNPuLq65ioWwJ49eyyz8D4+Prnu93cjR47k6NGjuLi4MGHCBNq1a4etrS2HDx9m7NixnDx5krfffps1a9ZkS3QBjhw5wr59+3jnnXfo27cvzs7OJCUlkZycnKXdRx99RPny5fnss89o0KABgOXnm5iYaEnsO3TowKBBg6hatSq2trZcvHiRjz/+mLVr1zJkyBDWr1+Ps7Nzrq6tbt26vPzyyzz33HOUK1cOuPVXip07dzJ16lSOHDnCf//7X8aPH2/ps2rVKvbs2UPfvn0pU6YMW7Zsue97mpKSwjvvvEN4eDhlypRh8uTJPPfccwD8+uuvjB07lkuXLjF48GCCgoJy/OvR5s2bSU5O5t///jddu3bF0dGRixcvMmbMGPbt28d//vMfWrdujZ2d0gWRfMMsIvKARo0aZfby8jK/9tprOR5funSp2cvLy+zl5WX+8ccfzWaz2fzLL7+Yvby8zO3btzcnJCTk2O+LL74we3l5mQcOHHhf45kzZ47Zy8vLPHr06GzHXnvtNbOXl5e5Zs2a5hMnTuTYf/z48WYvLy9zYGDgfZ/T29vbHBkZme34jh07LPdg165dWY5l3j8vLy/zvn37svU9fPiw5Xh4eHiuxjNgwACzl5eX+Ysvvsj1NdzNzJkzzV5eXuZatWqZMzIyHijGvn37LNexffv2bMejoqLMDRs2NHt5eZk//vjjLMdWrVpl6fvf//73judo1aqV5ecQFRV112sZPnz4HeP079/f7OXlZV6wYEGW/Zk/q08//fRul5rNhQsXzM8884y5bt265uvXr2c59uuvv5q9vLzMrVq1umuMzO/uqlWrsuwPDg6+63f65MmT5po1a5q9vLzM33//fZZjn376qeW+hoSEZOt75coVS9+9e/fm9nJF5Amgl1iJiKHMZjNhYWF8+eWXTJ8+HYBy5crRqlUrAMu6+L17975jiUfnzp2BW7PG6enpuT535szyb7/9dsc2zz///B3rzTP/EnD7Uo/3smHDBgB69uyZY8148+bNLSU169evzzGGt7d3jkuF1qpVy/KOgFOnTuVqPA9yDXeTWWrk4uKSrdQmt3788Ufg1vU8//zz2Y6XKFGCl156CbjzPbK1tc3VWvB+fn6UKFEix2OrV68G4PXXX79j/8znQjJLxvLK09OTp59+mhs3bnDs2DFDYmbK/O75+Pjk+J2uWrWqpaTmTve1bNmylv/ebufh4UGdOnWAWyU+IpJ/6O9sIpJne/fuzfZAYKaSJUsyd+5cS0nAwYMHAZg3bx5ffvnlXePeuHGDuLi4LLXqN2/eZNmyZWzevJnTp0+TkJBAWlpaln6RkZF3jHm32vUWLVrwf//3f2zevJl//vOfdO/enYYNG1qWe/y7lJQUS9LdpEmTO8Zt3LgxBw8etNSb/93dHpj18PDgypUrxMfH37HN7Vq2bMm6detYunQpcXFxdOrUiWeffTZLvfejlnndjRs3vmObJk2a8MUXX3Du3DmuX79OkSJFshyvUKFCjuU6f3enn+/ly5ctK/gMHDjwjr+opKamWtrfj19++YVVq1Zx6NAhoqKiuHnzZrY2d/tePojc3te1a9fe8btXq1atO94LDw8PABISEvI4UhF5lJTci0ie3f4SK5PJhKOjo+UNtb169bIcg//NKOc2Ybhx44bl35GRkfj7+3Pu3DnLviJFiuDs7IyNjQ3p6enExsZy/fr1O8a7U6IO0KhRI4YMGcJnn33G1q1b2bp1KwCVK1fmhRdeoE+fPlkeTIyPjycjIwP4XyKUk8zZ98znD/6uaNGid+xbqFAhgGy/wNxJ165d+e2331i+fDk//PADP/zwAzY2NlSrVo1WrVrx8ssvU6pUqVzFAiz1+fHx8ZjN5geavc+87rvdo8xjZrOZ2NjYbMl9bhL7u7W7/S8ZV69evWecnJLzO8l80DeTvb09rq6uljr1+Ph4UlNTs3yXjXA/9zUuLi7Hn5+R3z0ReTIouReRPPv7S6zuJjMZzlzC8H58+OGHnDt3Dk9PT0aOHEnjxo2z/OJw4cIF2rZte9cYtra2dz3+9ttv06VLF9avX8+ePXv4/fffOXv2LGfPnuWrr75i8uTJljX8b/f3Bzsfp4kTJ+Lv78/69evZt28fhw4d4tixYxw7dozFixczZ86cXC9xWKVKFeDWXynOnj1r2X4QeblH9/q5ZcppBR343/cOYN++fbl+WPZefv75Z5YuXYqtrS1vvfUWXbp0wdPTM0sS/corr3DgwIEclwc1QkpKykOJKyL5k2ruReSRyqyHvnTp0n31S0lJYfPmzQDMmDGDdu3aZUns4dZa80bw9PRk4MCBfPnll+zdu5evvvqKhg0bkpaWxoQJEywzvy4uLpZk8m7Xk1kOktvZZyNUrVqVIUOGsHTpUvbt28fnn3+Ol5cX169fZ9SoUZbyk3tp1KiRJVF9kBVd4H/XfbdSl4iICODWX37u9teVB3V7adf9fvfuJvN5gp49ezJ48GAqVKiQbXY8N38peBCZ9/Vu15N5X11dXR/4mQkRyV+U3IvII5W5jvn27dvvq19sbKxlhvKZZ57JsY1RD0HeztbWlsaNG/P5559jb2/P9evXOXLkCHBrrfaqVasCtx7+vZPMY3ca98Pm4OBAq1at+OSTT4BbJSqZy0PeS+nSpWnZsiUAX3/9dbalQO/k9lnqzOvet2/fHWevf/31VwCeeuqpbCU5RvD09LT8Ynm/3727yUye7/SzDQ8Pv+O9zvzF8EFn9DPPebfvXuZ9fVzfPRF59JTci8gj1a1bNwB27tx5zyTr9odIixYtapl5PHHiRLa2kZGRfP3113ka293KGxwcHCzJ2O3tMlcjCQ4OzvGByZ07d1oeIn7xxRfzNL7cuNs13P5ipPsp5Xj33XdxcHDgypUrvPfee/csr1m3bl2WNf07dOgA3FrxJ/OvL7eLjo5m2bJlwMO9R5nfvYULF1qS8pyYzeZcPxOS+aDynVaUmTlz5h2T98y+iYmJuTrX32V+97Zv357jA7OnTp2yrKjzKL57IvJkUHIvIo9UixYtaNeuHWazmcGDB7NgwYIsD5rGxcWxadMm/vnPf/LRRx9Z9hcrVswy6z927FjLsoIZGRns3r0bf3//PNc0jxo1ijFjxrBjx44sM9RhYWGMGjWK5ORkChcunOXFWq+99holS5bk5s2bDBgwgMOHDwOQnp7Ohg0bGD58OADPPfccTZs2zdP4cuP1119n0qRJ7Nu3L8tDoadOnWL06NHArRWM7rQcaE5q1KhBYGAgJpOJbdu20bVrV0JCQizLZMKtBPWnn37C39+fYcOGce3aNcsxb29vyxKYY8eO5ccff7QscXrkyBHeeOMN4uPjKVGiBH379s3L5d/VwIED8fT0JDY2lpdeeol169ZluUeXLl1i+fLldOvWjU2bNuUqZuazC8uXL2flypWWX5ouXbrEqFGjCA0NzVY+lqlixYrY29uTmJhoScLvh6+vr2WVqrfffptdu3ZZ/hvYvXs3AwcOJDU1lapVq9KlS5f7ji8i+ZMeqBWRR27q1KlkZGSwadMmpk+fzowZM3ByciI9PT1LUti9e/cs/caMGUPfvn05efIkXbt2pUiRImRkZHDz5k1cXV2ZPHkyb7/99gOPKzk5mXXr1hEUFITJZMLJySnLKie2trZMmDAhS+28i4sLn332GQMGDODEiRP07NmTokWLkpaWZpnhrlatGjNmzHjgcd2PpKQkli5dytKlS7GxscHJyYmbN29axuLo6Mj06dPv+42jvXr1ws3NjcDAQM6ePcvIkSOBW6sVmUymLD+3cuXKZVsadNq0abzxxhscO3aMoUOHUqhQIezs7Cz9XFxcmDNnzkOpt8/k7OzMl19+yaBBgzhz5gzDhg3D1tbWco9uT/RzW5/erVs3goKC+P333/nggw8IDAykaNGilpn/IUOG8Ouvv7J3795sfYsUKULHjh1ZvXo1Q4YMwcnJyfKg78iRIy1/8bgTBwcHZs+ezeuvv054eDivv/46jo6OwP9WmSpbtiyzZ8/O8e20ImKdlNyLyCNXpEgR5s6dy7Zt21i1ahV//PEHMTEx2NjYULFiRZ555hlatGhhKTvIVLduXZYvX87s2bPZt28f169fp1SpUjRv3pxBgwbd1wuvcvLee+/RoEEDfv31V86fP09UVBTp6elUqFABb29v+vXrR/Xq1bP1q1OnDqGhoSxYsIBt27Zx+fJlbG1tqVWrFr6+vrz22muWZQUftkmTJvHzzz+zd+9ewsLCLA8ZV65cmeeee46AgAA8PT0fKHabNm147rnnCA4O5ueff+bEiRPExsZiMpkoV64ctWrVol27drRr1y5bMunu7s7y5cv55ptvCA0N5a+//iI1NZWnnnqKli1bMmDAgPtaovNBVaxYkdWrV7Ny5Up+/PFHTp48SWJiIoUKFaJatWrUq1eP1q1b07x581zFc3BwYNGiRcybN4/169dz5coVbG1tadasGf7+/rRq1cpS956TCRMm4OHhwcaNGwkPDyc8PBzgrsu5/v16QkJCWLRoERs3buTixYsAeHl50aZNG9544407vixORKyTyfyw1uYSEREREZFHSjX3IiIiIiJWQsm9iIiIiIiVUHIvIiIiImIllNyLiIiIiFgJJfciIiIiIlZCyb2IiIiIiJVQci8iIiIiYiWU3IuIiIiIWAkl9yIiIiIiVkLJvYiIiIiIlVByLyIiIiJiJZTci4iIiIhYCbvHPYD8ZsyYMWzbto3ixYuzdu3au7bds2cP9vb2NGjQINuxoKAgpk2bhoeHBwDVqlVj2rRpjB49mhdeeIEOHTrcNfbZs2cZP348CQkJpKSk4O3tzX/+8x/27NnDW2+9Rfny5QFwc3Nj8eLFD3axIiIiIpKvKLm/T927d+e1115j1KhR92y7d+9eihQpkmNyD+Dr60tgYGCuzpueno6tra1le/LkyfTr1482bdoAcOLECcsxb29vvvjii1zFFRERERHrobKc+9SwYUNcXFyy7f/qq6/w9fWlc+fODBs2jLCwMJYtW8bixYvx8/Nj//79930uHx8fpk+fTrdu3fjxxx+zHIuMjKR06dKW7WrVqt3/xYiIiIiIVdHMvUHmz5/Pli1bcHBwICEhAWdnZ1566SWKFClC//79c+yzbt06Dhw4AEDfvn3p0aNHtjaurq4EBwdn2x8QEEC/fv2oX78+zZs3p3v37jg7OwOwf/9+/Pz8AOjQoQODBg0y6jJFRERE5Amm5N4g1apVY8SIEbRu3dpSKnMvuSnL8fX1zXF/jx49aN68OTt27GDz5s0sW7aMH374AVBZjoiIiEhBpbIcg8yfP59XXnmFo0eP0rNnT9LS0gyJ6+joeMdjHh4e9OzZk3nz5mFnZ8fJkycNOaeIiIiI5E9K7g2QkZHB5cuXadKkCSNGjCAxMZHr169TtGhRrl279lDOuX37dlJTUwGIiooiLi7OsvKOiIiIiBRMKsu5T8OHD2fv3r3ExsbSokUL3nnnHbp27cr7779PUlISZrOZvn374uzsTKtWrRgyZAibN29m3LhxeHt7GzaOX375hcmTJ1OoUCEA3n//fUqWLMnZs2cNO4eIiIiI5C8ms9lsftyDEBERERGRvFNZjoiIiIiIlVByLyIiIiJiJZTci4iIiIhYCSX3IiIiIiJWQsm9iIiIiIiV0FKYAsDuo+cNjdf0mYqGxhMRERGRe9PMvYiIiIiIlVByLyIiIiJiJZTci4iIiIhYCSX3IiIiIiJWQsm9iIiIiIiV0Go593D58mVGjhzJ1atXMZlM9O7dm379+t1XDH9/f0aOHEnt2rWz7Y+MjKRw4cIADBo0iA4dOlC/fn0OHjx4z7grV65kyZIlAJjNZt59913atGnD6NGj2bt3L05OTgD06NGDvn373teYRURERCT/UXJ/D7a2towePZqaNWuSlJREjx49aNasGU8//bQh8WfMmJEt6c9JWloadnb/+3FduXKFzz//nODgYJycnLh27RoxMTGW4yNHjqRDhw6GjFFERERE8gcl9/dQqlQpSpUqBUCxYsWoXLkyERERPP300/j7+1OnTh327NlDYmIikydPxtvbm5s3bzJmzBiOHz9O5cqVuXnz5gOde8+ePXzyySc4Ozvz119/sWHDBsuxq1evUrRoUYoUKQJA0aJFKVq0aN4vWERERETyLSX39yEsLIxjx45Rt25dy7709HRWrlzJzz//zJw5c1i8eDHfffcdhQsXZv369Rw/fpzu3bvfMeaIESMsZTmLFy/Gzc0ty/GjR4+yZs0aPD09s+yvXr06JUqUoHXr1jRt2pS2bdvi4+NjOT5t2jTmzZtn+Xe1atXyfP0iIiIi8mRTcp9L165dY8iQIYwdO5ZixYpZ9rdt2xaAmjVrEh4eDsC+ffvw9/cHbiXhd0us71WWU7t27WyJPdwqF1qwYAGHDx9m9+7dTJkyhT///JN33nkHUFmOiIiISEGk1XJyITU1lSFDhtC5c2fatWuX5ZiDgwMANjY2pKenG37uzLKbnJhMJurUqcObb77JzJkz+emnnww/v4iIiIjkH0ru78FsNvPBBx9QuXJlXn/99Vz1adiwIWvXrgXg5MmTnDhxwvBxRURE8Oeff1q2jx8/TtmyZQ0/j4iIiIjkHyrLuYcDBw4QEhKCl5cXfn5+AAwfPpyWLVvesc/LL7/MmDFjePHFF6lSpQo1a9Y0fFxpaWlMnTqVyMhIChUqhLu7OxMmTDD8PCIiIiKSf5jMZrP5cQ9CHr/dR88bGq/pMxUNjSciIiIi96ayHBERERERK6HkXkRERETESii5FxERERGxEkruRURERESshJJ7ERERERErodVyRERERESshNa5FwASoq4aGs+5ZHGiY+MNi1fCzcWwWCIiIiLWSmU5IiIiIiJWQsm9iIiIiIiVUHIvIiIiImIllNyLiIiIiFgJJfciIiIiIlZCq+XcJjk5mVdffZWUlBTS09Np3749Q4YMAWDr1q188sknZGRkkJaWRt++fXnppZfydD5/f38iIyMpVKgQRYoU4cMPP6Ry5cp5iunj48PKlStxd3fPUxwRERERyX+U3N/GwcGBJUuWULRoUVJTU3nllVdo0aIFNWvWZNy4caxcuZLSpUuTkpJCWFiYIeecMWMGtWvXZvny5UybNo3PP//8nn3S0tKws9OPTkRERESyUoZ4G5PJRNGiRYFbCXRaWhomk4lr166Rnp6Oq6srcOuXgMwZ9vXr1zN37lxsbGxwcnLim2++ISgoiC1btnDjxg0uXrxImzZtGDly5F3P7e3tzZIlSzCbzUybNo0dO3ZgMpkYNGgQvr6+7Nmzh08++QRnZ2f++usv1q1bx4wZMyztevfujb+/PwBff/01W7duJS0tjY8//pgqVao8vJsmIiIiIk8MJfd/k56eTvfu3blw4QKvvPIKdevWBW6Vu7Rq1YqmTZvywgsv0KlTJ2xsbPjss8/48ssv8fDwICEhwRLn2LFjrF69GgcHBzp06IC/vz9lypS543m3bt2Kl5cXP/30E8ePHyckJITY2Fh69uyJt7c3AEePHmXNmjV4enry7bffEh4ezurVq7GzsyMuLs4Sy83NjeDgYL755hsWLlzI5MmTH87NEhEREZEnih6o/RtbW1tCQkL4+eefOXToECdPngRg8uTJLF68mDp16rBw4ULGjh0LQP369Rk9ejQrVqwgPT3dEqdp06Y4OTlRqFAhqlSpQnh4eI7nGzFiBH5+fvz222+MGjWKAwcO0LFjR2xtbSlRogQNGzbk8OHDANSuXRtPT08Adu/eTZ8+fSzlOZl/VQBo164dALVq1brjeUVERETE+mjm/g6cnZ1p3LgxO3bswMvLC4Bq1apRrVo1unTpQuvWrfnoo4+YOHEif/zxB9u2baNHjx6sWrUKuFW6k8nW1jZL4n+7zJr73ChSpEiu2tnb2wNgY2Nzx/OKiIiIiPXRzP1tYmJiLKU1N2/eZNeuXVSuXJlr166xZ88eS7vjx49Trlw5AC5cuEDdunUZOnQobm5uXLlyJU9j8Pb2Zv369aSnpxMTE8P+/fupU6dOtnbPPfccy5cvJy0tDSBLWY6IiIiIFEyaub9NZGQko0ePJj09HbPZTIcOHWjVqhVJSUksWLCAwMBAChcujKOjI1OmTAFg2rRpnD9/HrPZTJMmTahevTrHjh174DG0bduWgwcP4ufnh8lk4v3336dkyZKcPXs2S7tevXpx7tw5unTpgp2dHb179+a1117L0/WLiIiISP5mMpvN5sc9CHn8EqKuGhrPuWRxomPjDYtXws3FsFgiIiIi1kplOSIiIiIiVkLJvYiIiIiIlVByLyIiIiJiJZTci4iIiIhYCT1QKyIiIiJiJbQUpgAQtWmvofFKtmlE4v9/Z4ARnJydSUhINCwegLOzk6HxRERERB43leWIiIiIiFgJJfciIiIiIlZCyb2IiIiIiJVQci8iIiIiYiWU3IuIiIiIWIkCm9zXqFEDPz8/unTpQrdu3fjtt9/yHPPYsWP8/PPPOR4LCgpi4sSJWfb5+/tz+PDhu8aMiYmhV69edO3alf3792c5tnXrVrp27UqXLl3w9fVl2bJlAMyePZvnn38ePz8//Pz8mDFjRh6uSkRERETyiwK7FGbhwoUJCQkBYMeOHcycOZOvv/46TzGPHTvGkSNHaNmypRFDBGD37t14eXkxefLkLPtTU1MZN24cK1eupHTp0qSkpBAWFmY5HhAQQP/+/Q0bh4iIiIg8+QrszP3tkpKScHZ2BiAyMpJXX30VPz8/OnXqZJktr1+/PlOnTqVjx44EBARw6NAh/P39ad26NZs3byYlJYVPP/2UdevW4efnx7p16+5rDPXr12fWrFl06dKF3r17Ex0dzbFjx5g+fTqbN2/Gz8+PmzdvWtpfu3aN9PR0XF1dAXBwcKBy5crG3BARERERyZcKbHJ/8+ZN/Pz86NChA//617946623AFi7di3NmzcnJCSEkJAQqlevDsD169dp0qQJoaGhFC1alI8//piFCxcyd+5cPv30UxwcHBgyZAi+vr6EhITg6+t7X+O5fv06devW5YcffsDb25sVK1ZQo0aNLDELFy5sae/q6oqPjw+tWrVi+PDh/PDDD2RkZFiOL1682FKWs2PHDgPumIiIiIg86VSWAxw8eJBRo0axdu1aateuzdixY0lLS6NNmzbUqFEDAHt7e1q0aAGAl5cXDg4O2Nvb4+XlRXh4+D3PZzKZ7rrf3t6eVq1aAVCrVi1++eWXe8acPHkyJ06cYPfu3SxcuJBdu3bx0UcfASrLERERESmICuzM/e3q169PbGwsMTExNGzYkK+//hoPDw9Gjx7N6tWrgVvJd2YibmNjg4ODg+Xf6enp9zyHq6sr8fHxWfbFxcXh5uaWY/zcxASoVq0aAQEBLFy4kA0bNuSqj4iIiIhYJyX3wJkzZyz16+Hh4ZQoUYLevXvTq1cv/vzzz1zHKVq0KNeuXcvxWO3atTl48CBRUVEAHD58mJSUFMqUKfNAY7527Rp79uyxbB8/fpxy5co9UCwRERERsQ4Ftiwns+YewGw2M3XqVGxtbdm7dy9ffvkldnZ2FClShKlTp+Y6ZuPGjZk/fz5+fn68+eabWeruS5QowdixYxk4cCAZGRkUKVKEmTNnYmPzYL9fmc1mFixYQGBgIIULF8bR0ZEpU6Y8UCwRERERsQ4ms9lsftyDkMcvatNeQ+OVbNOIxIQEw+I5OTuTkJBoWDwAZ2cnQ+OJiIiIPG4qyxERERERsRJK7kVERERErISSexERERERK6HkXkRERETESii5FxERERGxElotR0RERETEShTYde4lq0sL1xgar+wbnTl67oph8Z55qjQJEdGGxQNw9ijBwp9+NyzeG+3qGRZLRERE5EGoLEdERERExEoouRcRERERsRJK7kVERERErISSexERERERK6HkXkRERETEShSY1XJq1KiBl5cXZrMZW1tbxo0bR4MGDfIU89ixY0RGRtKyZUsAgoKCmDZtGh4eHgBUq1aN9u3bc+bMGQYOHJjruPPmzWPt2rXY2NhgY2PDxIkTqVu3Lv7+/kRGRlK4cGEABg0aRIcOHbL0nTVrFqtXryYhIYGDBw/m6fpEREREJH8pMMl94cKFCQkJAWDHjh3MnDmTr7/+Ok8xjx07xpEjRyzJPYCvry+BgYFZ2rVu3TrXMQ8ePMi2bdsIDg7GwcGBmJgYUlNTLcdnzJhB7dq179i/VatWvPrqq7Rv3/4+rkRERERErEGBSe5vl5SUhLOzMwCRkZEMGzaMpKQk0tPT+fe//423tzf169fnpZdeYvv27ZQsWZLhw4czffp0Ll26xNixY3n++ef59NNPuXnzJgcOHODNN9/M8VxBQUEcOXKEwMBARo8eTbFixThy5AhRUVG8//772Wbeo6KicHNzw8HBAQB3d/f7urZ69erd/w0REREREatQYJL7mzdv4ufnR3JyMlFRUSxZsgSAtWvX0rx5cwYNGkR6ejo3btwA4Pr16zRp0oRRo0bx9ttv8/HHH7Nw4ULOnDnDqFGjaN26NUOGDLEk7nArkV+3bh0HDhwAoG/fvphMpizjiIyM5Ntvv+Xs2bM5ltU0a9aMuXPn0r59e5o2bYqvry+NGjWyHB8xYoSlLGfx4sW4ubk9nBsmIiIiIvlOgUnuby/LOXjwIKNGjWLt2rXUrl2bsWPHkpaWRps2bahRowYA9vb2tGjRAgAvLy8cHBywt7fHy8uL8PDwO57n72U5QUFBWY63adMGGxsbnn76aaKjs79xtWjRogQFBbF//3727NnDsGHDeO+99+jevTtw77IcERERESm4CuRqOfXr1yc2NpaYmBgaNmzI119/jYeHB6NHj2b16tXAreQ+c9bdxsbGUiZjY2NDenr6A587M87d2Nra0rhxY4YMGcK4ceP46aefHvh8IiIiIlJwFMjk/syZM6Snp+Pq6kp4eDglSpSgd+/e9OrViz///DPXcYoWLcq1a9cMHdvZs2c5d+6cZfvYsWOULVvW0HOIiIiIiHUqMGU5mTX3AGazmalTp2Jra8vevXv58ssvsbOzo0iRIkydOjXXMRs3bsz8+fPx8/O74wO19+v69etMmjSJhIQEbG1tqVixIhMnTsx1/2nTprF27Vpu3LhBixYt6NWrF++8844hYxMRERGRJ5vJbDabH/cg5PG7tHCNofHKvtGZo+euGBbvmadKkxCR/RmFvHD2KMHCn343LN4b7eoZFktERETkQRTIshwREREREWuk5F5ERERExEoouRcRERERsRJK7kVEREREHtCYMWNo2rQpnTp1yvG42Wxm0qRJtG3bls6dO2dZmTE4OJh27drRrl07goODDRmPHqgVEREREXlA+/bto0iRIpYXpP7dzz//zNKlS/m///s//vjjDyZPnsz3339PXFwcPXr0YNWqVZhMJrp3705QUBAuLi55Gk+BWQpT7i7+wiVD47lUKMv5y8atblOxTAmuxiYYFg+guJszvx67YFi8JjUqcCU61rB4AKVLuBkaT0RERIzVsGFDwsLC7nh88+bNdO3aFZPJRL169UhISCAyMpK9e/fSrFkzXF1dAWjWrBk7duy4418AckvJvYiIiIhYpaMt3spT/8Nvt2T58uWW7T59+tCnT5/7ihEREUHp0qUt26VLlyYiIiLbfg8PDyIiIvI0XlByLyIiIiLWymTKU/cHSeYfNz1QKyIiIiLykHh4eHDlyv9e7HnlyhU8PDyy7Y+IiMDDwyPP51NyLyIiIiLWyWSTt48BfHx8WL16NWazmd9//x0nJydKlSpF8+bN2blzJ/Hx8cTHx7Nz506aN2+e5/OpLEdERERErJNN3spycmP48OHs3buX2NhYWrRowTvvvENaWhoAL7/8Mi1btuTnn3+mbdu2ODo68uGHHwLg6urKW2+9Rc+ePQF4++23LQ/X5oWWwhRAq+UYQavliIiIPFmOtR6ap/41Nn9i0EgenQIzc1+jRg28vLwwm83Y2toybtw4GjRokKeYx44dIzIykpYtWwIQFBTEtGnTLPVS1apVo3379pw5c4aBAwfmOu68efNYu3YtNjY22NjYMHHiROrWrYu/vz+RkZEULlwYgEGDBtGhQwdLvxs3bjB06FAuXLiAra0trVq1YsSIEXm6RhERERHJPwpMcl+4cGFCQkIA2LFjBzNnzuTrr7/OU8xjx45x5MgRS3IP4OvrS2BgYJZ2rVu3znXMgwcPsm3bNoKDg3FwcCAmJobU1FTL8RkzZlC7du079n/jjTdo0qQJKSkpBAQE8PPPP2cZn4iIiEiB8QjKcp40BSa5v11SUhLOzs4AREZGMmzYMJKSkkhPT+ff//433t7e1K9fn5deeont27dTsmRJhg8fzvTp07l06RJjx47l+eef59NPP+XmzZscOHCAN998M8dzBQUFceTIEQIDAxk9ejTFihXjyJEjREVF8f7772eZeQeIiorCzc0NBwcHANzd3XN9XY6OjjRp0gQABwcHnnnmGUPWSxURERHJl/K4FGZ+VGCS+5s3b+Ln50dycjJRUVEsWbIEgLVr19K8eXMGDRpEeno6N27cAOD69es0adKEUaNG8fbbb/Pxxx+zcOFCzpw5w6hRo2jdujVDhgyxJO5wK5Fft24dBw4cAKBv376Y/valioyM5Ntvv+Xs2bPZymrg1tvJ5s6dS/v27WnatCm+vr40atTIcnzEiBGWspzFixfj5pZzTXZCQgJbt26lX79+Btw9ERERkXxIyb31ur0s5+DBg4waNYq1a9dSu3Ztxo4dS1paGm3atKFGjRoA2Nvb06JFCwC8vLxwcHDA3t4eLy8vwsPD73iev5flBAUFZTnepk0bbGxsePrpp4mOzv7AadGiRQkKCmL//v3s2bOHYcOG8d5779G9e3fg3mU5AGlpaQwfPhx/f388PT1zcXdERERErI+pAJblFMh17uvXr09sbCwxMTE0bNiQr7/+Gg8PD0aPHs3q1auBW8l95qy7jY2NpUzGxsaG9PT0Bz53Zpy7sbW1pXHjxgwZMoRx48bx008/3dc5xo0bx1NPPUVAQMADjlJERERE8qMCM3N/uzNnzpCeno6rqyvh4eGULl2a3r17k5KSwp9//knXrl1zFado0aJcu3bN0LGdPXsWGxsbnnrqKeDWQ7tly5bNdf9Zs2aRlJTE5MmTDR2XiIiISL6jshzrlVlzD2A2m5k6dSq2trbs3buXL7/8Ejs7O4oUKcLUqVNzHbNx48bMnz8fPz+/Oz5Qe7+uX7/OpEmTSEhIwNbWlooVKzJx4sRc9b1y5Qqff/45lStXplu3bgC89tpr9OrVy5CxiYiIiOQrBbAsRy+xEkAvsTKCXmIlIiLyZDneeWSe+ldfM82gkTw6BWbmXkREREQKmAI4c18gH6gVEREREbFGmrkXEREREav09/cNFQRK7kVERETEOim5l4LKpULul9vMrYplShgar7ibs6Hx4NZDsEbSA7AiIiJPkAJYc6/kXgAIj4wxNF65Uu4kXIkyLJ5z6ZJEx8YbFg+ghJsLiXHGxXRydeGvS8atEARQqWwJEqKN/dk4l3A3NJ6IiIg8OZTci4iIiIh1UlmOiIiIiIh1MKksR0RERETESpgK3qrvSu5FRERExDoVwLKcgvfrjIiIiIiIlcr3yX2NGjXw8/OzfObPn/9AcXx8fIiJMXZVkkxhYWF06tQpx/116tTBz88PX19fAgMDycjIyNO59uzZw5tvvpmnGCIiIiJWwcaUt08+lO/LcgoXLkxISMjjHsYDq1ChAiEhIaSlpdGvXz82bdpEu3bt7tkvLS0NO7t8/+MTEREReWj0hlor4uPjQ9euXdm6dStpaWl8/PHHVKlShWvXrjFp0iSOHDkCwODBg2nfvn2WvosWLWLVqlUA9OzZk4CAAK5fv867777LlStXyMjI4K233sLX15cjR47w0Ucfcf36ddzc3JgyZQqlSpXiyJEjjB07FoBmzZrdc7x2dnbUr1+f8+fPExYWxtixY4mNjcXd3Z0pU6ZQtmxZRo8ejYODA8eOHaNBgwa88sorjB8/npiYGGxtbfnkk08AuH79OkOGDOHkyZPUrFmTGTNmFMgvt4iIiBRw+XT2PS/yfXJ/8+ZN/Pz8LNtvvvkmvr6+ALi5uREcHMw333zDwoULmTx5Mp999hnFihVjzZo1AMTHZ32J0ZEjRwgKCmLFihWYzWZ69+5No0aNuHjxIqVKlbKU/SQmJpKamsqkSZP47LPPcHd3Z926dcyaNYspU6YwZswYAgMDadiwIVOnTr3nddy4cYPdu3czZMgQJk2aRLdu3ejWrRsrV660nAMgIiKCZcuWYWtrS69evRg4cCBt27YlOTmZjIwMLl++zNGjRwkNDaVUqVK8/PLLHDhwAG9vb0Put4iIiEi+UQAnN/N9cn+3spzM8pZatWqxceNGAHbv3s3MmTMtbVxcXLL0OXDgAG3atKFIkSIAtG3blv379/P8888zdepUpk+fTqtWrfD29ubkyZOcPHmS119/HYCMjAxKlixJQkICiYmJNGzYEAA/Pz927NiR4xgvXLiAn58fJpOJ1q1b07JlS0aOHMns2bMtfadPn25p36FDB2xtbUlKSiIiIoK2bdsCUKhQIUubOnXqULp0aQCqV69OeHi4knsRERGRAiDfJ/d3Y29vD4CNjQ3p6el5ilWpUiWCgoL4+eef+fjjj2nSpAlt27alatWqLF++PEvbhISEXMfNrLnPLUdHx3u2cXBwsPzb1tY2z9cuIiIiki8VwLKcfL9azv167rnn+Oabbyzbfy/L8fb2ZtOmTdy4cYPr16+zadMmvL29iYiIwNHRET8/P/r378/Ro0epVKkSMTExHDx4EIDU1FROnTqFs7MzTk5O7N+/H8BSApRb9evXJzQ01NI3p1n3YsWKUbp0aTZt2gRASkoKN27cuK/ziIiIiFgzk8mUp09+lO9n7v9ec//8888zYsSIO7YfNGgQEydOpFOnTtjY2DB48OAsq9PUrFmT7t2706tXL+DWA7XPPPMMO3bsYNq0adjY2GBnZ8e///1vHBwc+PTTT5k0aRKJiYmkp6fTr18/qlatypQpUxg7diwmkylXD9Tebty4cYwZM4Yvv/zS8kBtTqZNm0ZgYCCffPIJ9vb2lgdqRURERIQCWXNvMpvN5sc9CHn8wiONXeO/XCl3Eq5EGRbPuXRJomPj793wPpRwcyExzriYTq4u/HUp2rB4AJXKliAh2tifjXMJd0PjiYiIPKlOv/Fhnvo/vXCsQSN5dPL9zL2IiIiISI4KYM29knsRERERsU4FsCxHyb2IiIiIWCfN3IuIiIiIWIdHseLN9u3bmTx5MhkZGZYXjN7uww8/ZM+ePcCthWCuXr1qWVGxRo0aeHl5AVCmTBk+//zzPI9Hyb2IiIiIyANIT09n4sSJLFq0CA8PD3r27ImPjw9PP/20pc3Ysf97KHfp0qUcPXrUsn23l7E+KCX3Atxa3cZozqVLGhqvhJvLvRvdJydXY2NWKlvC0Hig1W1EREQe2EOeuT906BAVK1bE09MTgI4dO7J58+Ysyf3tQkNDeeeddx7qmJTcCwDhXwQbGq/cm92IO3XesHiuVSuSGBNrWDwAJ3c3Yo+eMSye2zNViNz4q2HxAEq1bULifbzxODecnJ0NXbLzYfxCIyIiYog81twvX76c5cuXW7b79OlDnz59LNsRERGULl3asu3h4cGhQ4dyjBUeHk5YWBhNmjSx7EtOTqZ79+7Y2dkxcOBA2rRpk6fxgpJ7EREREbFWeZy5/3synxehoaG0b98eW1tby76tW7fi4eHBxYsX6devH15eXlSoUCFP57HJ60BFRERERJ5EJhubPH3uxcPDgytXrli2IyIi8PDwyLHtunXr6NixY7b+AJ6enjRq1ChLPf6DUnIvIiIiIvIAateuzblz57h48SIpKSmEhobi4+OTrd2ZM2dISEigfv36ln3x8fGkpKQAEBMTw2+//XbHWv37obIcEREREbFOD/mBWjs7OwIDAxkwYADp6en06NGDqlWr8sknn1CrVi1at24N3Jq19/X1zbI055kzZxg/fjwmkwmz2cw//vEPJfciIiIiInf0CNa5b9myJS1btsyyb+jQoVm2c1ohp0GDBqxZs8bw8RS45D46OpopU6bw+++/4+Ligr29PQMGDKBt27aPe2gWkydP5scff+Tnn3/GJhf1XiIiIiKSgwL4htoClTmazWbefvttvL292bx5M0FBQcycOTPLgxD3kpaW9hBHCBkZGWzatIkyZcqwd+/exzIGEREREcmfCtTM/a+//oq9vT0vv/yyZV+5cuXw9/cHICwsjJEjR3Ljxg0Axo0bR4MGDdizZw+ffPIJzs7O/PXXX2zYsIG33nqLK1eukJycTN++fS3LJH3//fcsWLAAJycnqlevjoODA4GBgcTExDB+/HguXboE3Hpb2bPPPpttjHv27OHpp5/G19eX0NBQy1qos2fP5sKFC1y8eJGyZcvyr3/9K8d4hw4dYvLkySQnJ1O4cGE+/PBDKleu/PBuqoiIiMgTyvQIynKeNAUquT916hTPPPPMHY8XL16cRYsWUahQIc6dO8fw4cMJCgoC4OjRo6xZs8byBrIPP/wQV1dXbt68Sc+ePWnXrh0pKSnMmzePoKAgihYtSr9+/ahevTpwq9SmX79+eHt7c+nSJfr378/69euzjSE0NJSOHTvSpk0bZs6cSWpqKvb29sCtBy++/fZbChcuzHvvvZdjvMqVK/PNN99gZ2fHrl27mDVrFrNnzzb6VoqIiIg8+QpgWU6BSu7/bsKECRw4cAB7e3tWrVpFWloaEydO5Pjx49jY2HDu3DlL29q1a1sSe4ClS5eyceNGAC5fvsz58+eJjo6mYcOGuLq6AtChQwdLjF27dnH69GlL/6SkJK5du0bRokUt+1JSUvj5558ZPXo0xYoVo27duuzcuZNWrVoB4OPjQ+HChe8aLzExkVGjRnH+/HlMJhOpqamG3jMRERGRfEMz99atatWq/PTTT5bt8ePHExMTQ8+ePQFYvHgxJUqUICQkhIyMDOrUqWNpW6RIEcu/9+zZw65du1i+fDmOjo74+/uTnJx813NnZGSwYsUKChUqdMc2O3fuJDExkS5dugBw48YNChUqZEnuHR0d7xnvP//5D40bN2bu3LmEhYXRt2/fe90WEREREetUAGfuC9QDtU2aNCE5OZlvv/3Wsu/mzZuWfycmJlKyZElsbGwICQkhPT09xziJiYm4uLjg6OjImTNn+P3334Fbs/v79u0jPj6etLS0LL9ING/enKVLl1q2jx07li1uaGgokyZNYsuWLWzZsoXNmzeza9cuyzMAt7tTvMTERMvbzoKDg3NzW0RERETEShSo5N5kMjF37lz27duHj48PPXv2ZNSoUYwYMQKAV155heDgYLp06cLZs2ezzNbfrkWLFqSlpfHiiy/y3//+l3r16gG3XiH85ptv0qtXL15++WXKlSuHk5MTAB988AFHjhyhc+fO+Pr68t1332WJeePGDXbs2MELL7xg2VekSBGeffZZtm7dmm0Md4o3YMAAZs6cSdeuXbWqjoiIiBRsJlPePvmQyWw2mx/3IKxJZh19WloagwcPpkePHk/UGvp3Ev6FsbP85d7sRtyp84bFc61akcSYWMPiATi5uxF79Ixh8dyeqULkxl8NiwdQqm0TEhMSDI3p5OzMX5eiDYtXqWwJw2KJiIgY6dzYz/PU/6kP/2nQSB6dAlVz/yjMmTOHXbt2kZycTPPmzWnTps3jHpKIiIhIwVQAa+6V3Bts1KhRj3sIIiIiIgL5trQmLwpUzb2IiIiIiDXTzL2IiIiIWKcCWJajB2pFRERExCqd//eCPPWv+O8BBo3k0dHMvQBw8b/f3rvRffB875U8P6F+u6c+/OdDWTUmevchw+KVaFqHq/v/NCweQHHvmsTEGXvd7q7Oht5LJ2dnwuevNiweQLmBXQ2NJyIiBZRq7kVEREREJL/SzL2IiIiIWCebgjePreReRERERKxTASzLUXIvIiIiIlbJVABXy1FyLyIiIiLWqQDO3Be8QqR7iI6O5r333qN169Z0796dPn36sHHjxlz1rV+/frZ93333HatXr76vMaSlpdGkSRNmzJhxX/1EREREpGDTzP1tzGYzb7/9Nl27duW///0vAOHh4WzZsiVb27S0NOzs7n37Xn755fsexy+//MJTTz3Fjz/+yHvvvYcph98609PTsbW1ve/YIiIiIgVGASzL0cz9bX799Vfs7e2zJOTlypXD398fgKCgIP75z3/St29fAgICchVz9uzZfPnll5w5c4aePXta9oeFhdG5c+cc+4SGhtK3b1/KlCnDwYMHLft9fHyYPn063bp148cff2Tnzp306dOHbt26MWTIEK5duwbAnDlz6NGjB506dWLcuHHoPWUiIiJSIJlMefvkQ0rub3Pq1CmeeeaZu7Y5evQon376KV9//fV9xa5SpQqpqalcvHgRgHXr1vHiiy9ma5ecnMyuXbvw8fGhU6dOhIaGZjnu6upKcHAwTZs2Zd68eSxatIjg4GBq1arFokWLAHjttddYtWoVa9eu5ebNm2zduvW+xioiIiJiFZTcy+0mTJhAly5d6NGjh2Vfs2bNcHV1faB4L774IuvXrwdg/fr1+Pr6ZmuzdetWGjduTOHChWnXrh2bNm0iPT3dcjyzzx9//MHp06d5+eWX8fPzY/Xq1Vy6dAmAPXv20KtXLzp37syvv/7K6dOnH2i8IiIiIvmZycaUp09+pJr721StWpWffvrJsj1+/HhiYmKylNM4Ojo+cHxfX1+GDh1K27ZtMZlMPPXUU9nahIaGcuDAAXx8fACIi4vj119/pVmzZlnObzabadasGTNnzszSPzk5mQkTJrBq1SrKlCnD7NmzSU5OfuAxi4iIiEj+oZn72zRp0oTk5GS+/fZby76bN28aFr9ChQrY2Njw2Wef5ViSk5SUxP79+9m2bRtbtmxhy5YtBAYGsnbt2mxt69Wrx2+//cb58+cBuH79On/99ZclkXdzc+PatWts2LDBsPGLiIiI5CsFsCxHM/e3MZlMzJ07lylTprBgwQLc3d1xdHRkxIgRuep/48YNWrRoYdl+/fXXs7Xx9fVl2rRpbN68OduxjRs30qRJExwcHCz7WrduzfTp00lJScnS1t3dnSlTpjB8+HDLsXfffZdKlSrRq1cvOnXqRIkSJahdu3auxi4iIiJidfJpaU1emMxaSkWAi//99t6N7oPne69wbuznhsV76sN/kpiQYFg8ACdnZ6J3HzIsXommdbi6/0/D4gEU965JTJyx1+3u6mzovXRydiZ8/mrD4gGUG9jV0HgiIlIwXfxkeZ76ew7tY9BIHh2V5YiIiIiIWAmV5YiIiIiIVcrpRaDWTjP3IiIiImKdbEx5++TC9u3bad++PW3btmX+/PnZjgcFBdGkSRP8/Pzw8/Pj+++/txwLDg6mXbt2tGvXjuDgYEMuWTP3IiIiImKdHvLMfXp6OhMnTmTRokV4eHjQs2dPfHx8ePrpp7O08/X1JTAwMMu+uLg45syZw6pVqzCZTHTv3h0fHx9cXFzyNCbN3IuIiIiIdbKxydvnHg4dOkTFihXx9PTEwcGBjh075rgiYk527txpeTmqi4sLzZo1Y8eOHXm9Ys3cyy2e771ieMynPvynofGcnJ0NjQe3VrgxUnHvmobGg1ur2xjN6Hup1W1ERKQgioiIoHTp0pZtDw8PDh3KvhLfTz/9xL59+6hUqRJjxoyhTJkyOfaNiIjI85iU3AsAkT/uMjReqQ7PkRAdY1g85xLuJMbGGRYPwMnNlcSYWOPiubsR8/txw+IBuNerTnzYZUNjupQvY+i9dHJzfShLgEZtO2BYvJIvPGtYLBERyT9MeVznfvny5Sxf/r/lNPv06UOfPve3PGarVq3o1KkTDg4OLFu2jFGjRvHVV1/laVx3o+ReRERERKxTHmvu75XMe3h4cOXKFct2REQEHh4eWdq4ublZ/t2rVy+mT59u6bt3794sfRs1apSn8YJq7kVERETEWj3k1XJq167NuXPnuHjxIikpKYSGhuLj45OlTWRkpOXfW7ZsoUqVKgA0b96cnTt3Eh8fT3x8PDt37qR58+Z5vmTN3IuIiIiIdXrIq+XY2dkRGBjIgAEDSE9Pp0ePHlStWpVPPvmEWrVq0bp1a5YuXcqWLVuwtbXFxcWFKVOmAODq6spbb71Fz549AXj77bdxdXXN+5jyHEFEREREpIBq2bIlLVu2zLJv6NChln+/9957vPfeezn27dmzpyW5N4qSexERERGxSnpDrTyw+vXr57ptUFDQXZc6SktLo0mTJsyYMcOIoYmIiIgUTI/gDbVPGiX3j0FwcHCWhyv+7pdffuGpp57ixx9/xGw259gmPT39YQ1PRERExDqYTHn75EMqy3mIjh07xvjx47lx4wYVKlTgww8/ZPfu3Rw5coQRI0ZQuHBhli9fTuHChbP0Cw0NpW/fvnz33XccPHiQBg0aAODj48OLL77Irl27GDBgAC4uLsyePZuUlBQ8PT2ZMmUKRYsWZc6cOWzdupXk5GTq16/PxIkTC+SfpUREREQKGs3cP0QjR45kxIgRrFmzBi8vL+bMmUOHDh2oVasWM2bMICQkJFtin5yczK5du/Dx8aFTp06EhoZmOe7q6kpwcDBNmzZl3rx5LFq0iODgYGrVqsWiRYsAeO2111i1ahVr167l5s2bbN269ZFds4iIiMgTQ2U5YpTExEQSExMtLyPo1q0b+/fvv2e/rVu30rhxYwoXLky7du3YtGlTlhIcX19fAP744w9Onz7Nyy+/jJ+fH6tXr+bSpUsA7Nmzh169etG5c2d+/fVXTp8+/RCuUEREROTJZjKZ8vTJj1SW84QJDQ3lwIEDlhcgxMXF8euvv9KsWTMAHB0dATCbzTRr1oyZM2dm6Z+cnMyECRNYtWoVZcqUYfbs2SQnJz/aixARERF5EpgK3jx2wbviR8TJyQlnZ2fLbH1ISAgNGzYEoGjRoly7di1bn6SkJPbv38+2bdvYsmULW7ZsITAwkLVr12ZrW69ePX777TfOnz8PwPXr1/nrr78sibybmxvXrl1jw4YND+sSRURERJ5sBbAsRzP3Brlx4wYtWrSwbL/++utMnTrV8kBt5gOvcKtEZ/z48dkeqN24cSNNmjTBwcHBEqd169ZMnz6dlJSULOdzd3dnypQpDB8+3HLs3XffpVKlSvTq1YtOnTpRokQJateu/bAvXURERESeECbzndZalAIl8sddhsYr1eE5EqJjDIvnXMKdxNg4w+IBOLm5khgTa1w8dzdifj9uWDwA93rViQ+7bGhMl/JlDL2XTm6uXN3/p2HxAIp71yRq2wHD4pV84VnDYomISP5xednGPPUv81Jbg0by6GjmXkRERESsUz4trckLJfciIiIiYpXy64o3eaEHakVERERErIRm7kVERETEOhXAshw9UCsiIiIiVulK0NY89S/dvZVBI3l0NHMvAMTFJxoaz9XFyfAVWRISjB2js7MTCRHRxsXzKMGlKONW3wEoW9LtoVx3/IVLhsVzqVCWiKtxhsUD8CjuSvz5cMPiuVQsR2JCgmHxAJycnQ2NJyIiD0EBrLlXci8iIiIiVslUAMty9ECtiIiIiIiV0My9iIiIiFgnleWIiIiIiFiJAliWo+ReRERERKyTZu5FRERERKyD3lCbT9SvX/+hxd60aROdO3emQ4cOdOrUiR9//PGBY4WFhdGpU6cc99epUwc/Pz/L59KlSwwZMuS+4m/dupWuXbvSpUsXfH19WbZsGQCzZ8/m+eeft8SeMWPGA1+DiIiIiOQfmrm/zfHjx5k6dSoLFy7E09OTixcv8vrrr1O+fHlq1apl6LkqVKhASEhIln2ffvpprvunpqYybtw4Vq5cSenSpUlJSSEsLMxyPCAggP79+xs2XhEREZF8pwDW3OfLmfucHDt2jN69e9O5c2fefvtt4uPjuXr1Kt27dwduJe7VqlXj0qVbL+9p06YNN27cyBLjyy+/5M0338TT0xMAT09P3nzzTRYtWgSAv78/hw8fBiAmJgYfHx/g1kz8K6+8Qrdu3ejWrRu//fbbfY//9ln+oKAgBg8eTP/+/WnXrh3Tpk3L1v7atWukp6fj6uoKgIODA5UrV77v84qIiIhYLZMpb598yGqS+5EjRzJixAjWrFmDl5cXc+bMoXjx4iQnJ5OUlMT+/fupVasW+/fvJzw8nOLFi+Po6JglxunTp7PN0NeuXZvTp0/f9dzFixdn0aJFBAcHM2vWLCZNmnTP8V64cMFSNjNhwoRsx48dO8bHH3/MmjVrWL9+PZcvX85y3NXVFR8fH1q1asXw4cP54YcfyMjIsBxfvHixJf6OHTvuOR4RERERq2NjytsnH7KKspzExEQSExNp1KgRAN26dWPo0KHArfr8AwcOsG/fPv75z3+yY8cOzGYzzz77rGHnT0tLY+LEiRw/fhwbGxvOnTt3zz5/L8u5vaQGoGnTpjg5OQFQpUoVwsPDKVOmTJY2kydP5sSJE+zevZuFCxeya9cuPvroI0BlOSIiIiIFkdXM3N+Jt7c3Bw4c4NKlS7Ru3Zrjx49z4MABvL29s7WtUqUKR44cybLvyJEjltl8W1tbzGYzACkpKZY2ixcvpkSJEoSEhLBq1SpSU1PzPG4HBwfLv21tbUlPT8+xXbVq1QgICGDhwoVs2LAhz+cVERERsRYmk02ePvlR/hz13zg5OeHs7Mz+/fsBCAkJoWHDhsCt5P6HH36gYsWK2NjY4OLiwvbt23Ocue/fvz/z58+3zKKHhYWxZMkSywx4uXLlLMn/7avoJCYmUrJkSWxsbAgJCbljIm6ka9eusWfPHsv28ePHKVeu3EM/r4iIiEi+obKc/OHGjRu0aNHCsv36668zdepUxo8fz40bN/D09GTKlCkAlC9fHrPZbEn2n332Wa5cuYKLi0u2uDVq1GDEiBEMGjSIlJQUwsPDWbJkieVB1TfeeIN3332XFStW0LJlS0u/V155hXfeeYfVq1fz/PPPU6RIkYd5+QCYzWYWLFhAYGAghQsXxtHR0XLNIiIiIkK+fSg2L0zmzDoTyWbGjBn88ccffPnll1nKZKxRXHyiofFcXZxIjI0zLJ6TmysJCcaO0dnZiYSIaOPieZTgUlSsYfEAypZ0eyjXHX/hkmHxXCqUJeJqnGHxADyKuxJ/PtyweC4Vy5GYkGBYPAAnZ2dD44mIiPGith3IU/+SLxj3jOajki9n7h+VESNGPO4hiIiIiIjkmpJ7EREREbFOj6Bufvv27UyePJmMjAx69erFwIEDsxxftGgR33//Pba2tri7u/Phhx9anpOsUaMGXl5eAJQpU4bPP/88z+NRci8iIiIiVsn0kGvu09PTmThxIosWLcLDw4OePXvi4+PD008/bWlTo0YNVq1ahaOjI99++y3Tp0/n448/BqBw4cJZlkY3glWsliMiIiIiks1DXi3n0KFDVKxYEU9PTxwcHOjYsSObN2/O0qZJkyaWF6fWq1ePK1euPJRLzaSZewFuPQBrNCc3V0PjOTsbP0ZnjxKGxitb0s3QePBwrtulQllD43kUdzU0Htx6CNZIegBWRKQAyuPM/fLly1m+fLllu0+fPvTp08eyHRERQenSpS3bHh4eHDp06I7xVq5cmWXFx+TkZLp3746dnR0DBw6kTZs2eRovKLmX/+/yik2GxivTuw1xZy4YFs+1SgUS4+INiwfg5Opi+KoxUZv2GhYPoGSbRsTEGbvKi7urM2fDowyLV7lcSa4EbzMsHkDpbi9wedlGw+KVeaktcafOGxYPwLVqRa5EG7s6UukSxv9yKCIiD+7vyXxehISEcOTIEb7++mvLvq1bt+Lh4cHFixfp168fXl5eVKhQIU/nUVmOiIiIiFgnkylvn3vw8PDIUmYTERGBh4dHtna7du3i888/Z968eVmWV89s6+npSaNGjTh69GieL1nJvYiIiIhYJZONKU+fe6lduzbnzp3j4sWLpKSkEBoaio+PT5Y2R48eJTAwkHnz5lG8eHHL/vj4eFJSUgCIiYnht99+y/Ig7oNSWY6IiIiIWKeHvFqOnZ0dgYGBDBgwgPT0dHr06EHVqlX55JNPqFWrFq1bt2batGlcv36doUOHAv9b8vLMmTOMHz8ek8mE2WzmH//4h5J7EREREZHHqWXLlrRs2TLLvsxEHmDx4sU59mvQoAFr1qwxfDxK7kVERETEOj2Cl1g9aay+5r5atWqMGDHCsp2WlkaTJk1488038xR3zJgxLFu2LMu+TZs2MWDAgDzFBXjrrbfo3bt3nuOIiIiIFGgP+YHaJ5HVJ/dFihTh1KlT3Lx5E4Bffvklx6eY71fHjh0JDQ3Nsi80NJROnTrlOkZaWlq2fQkJCfz5558kJiZy8eLFXPcTERERkaxMJlOePvmR1Sf3cKsWatu2bcCtBLxjx46WY4cOHaJPnz507dqVl156ibNnzwJw6tQpevbsiZ+fH507d+bcuXNZYjZt2pS//vqLyMhIAK5fv86uXbto06YNYWFhvPjii/zrX/+iY8eOvPHGG5ZfLvz9/Zk8eTLdu3fnq6++yjbWn376iVatWmX75WH06NEEBgbSq1cvpk+fzoULF+jfvz/du3fnlVde4cyZMwBs2bKFXr160bVrVwICAoiOjjbsPoqIiIjkKw/5DbVPogKR3Pv6+rJu3TqSk5M5ceIEdevWtRyrXLky33zzDatXr2bIkCHMmjULgGXLltG3b19CQkJYtWpVlrePAdja2tKuXTvWr18P3HoJQePGjSlWrBgA58+f59VXXyU0NBQnJyc2bNhg6ZuamkpQUBBvvPFGtrFmzv7n9JeBiIgIli1bxpgxYxg3bhzjxo0jKCiIUaNGMWHCBACeffZZVqxYwerVq+nYsSMLFiww4A6KiIiISH5QIB6orV69OmFhYaxduzbb08yJiYmMGjWK8+fPYzKZSE1NBaBevXp8/vnnXLlyhXbt2vHUU09li9uxY0emTZtGv379CA0Nxc/Pz3KsfPny1KhRA4CaNWsSHh5uOebr65vjOKOjozl//jzPPvssJpMJOzs7Tp48iZeXFwAdOnTA1taWa9eucfDgwSxPYmeuk3rlyhWGDRtGVFQUKSkplC9f/gHumIiIiIgVyKelNXlRIJJ7AB8fH6ZNm8ZXX31FXFycZf8nn3xC48aNmTt3LmFhYfTt2xeAzp07U7duXbZt28bAgQOZMGECTZs2zRKzQYMGREVFcfz4cQ4ePGiZ9QeyvH3M1taW5ORky7ajo2OOY1y/fj3x8fG0bt0agKSkJEJDQy3JfWY/s9mMs7MzISEh2WJMmjSJgIAAWrduzZ49e5gzZ8793CYRERER62FTIIpUsigwV9yzZ0/efvttqlWrlmV/YmKi5QHb4OBgy/6LFy/i6elJ3759ad26NSdOnMgW02Qy8eKLLzJq1ChatGhBoUKF8jTG0NBQFixYwJYtW9iyZQurVq3KVpoDUKxYMcqXL28pCTKbzRw/fjzb9axevTpP4xERERHJ17RajvUqXbq0ZVb+dgMGDGDmzJl07do1yyo069evp1OnTvj5+XHy5Em6du2aY9xOnTpx/PjxLA/pPoiwsDDCw8OpV6+eZZ+npydOTk788ccf2dpPnz6dlStX0qVLFzp27MimTZsAGDx4MEOHDqV79+64urrmaUwiIiIi+ZnJxpSnT35kMpvN5sc9CHn8Lq/YZGi8Mr3bEHfmgmHxXKtUIDEu3rB4AE6uLsRfuGRYPJcKZYnatNeweAAl2zQiJi7B0Jjurs6cDY8yLF7lciW5ErzNsHgApbu9wOVlGw2LV+altsSdOm9YPADXqhW5Eh1raMzSJdwMjSciUtDFHj2Tp/5uz1QxaCSPToGpuRcRERGRAiafltbkhZJ7EREREbFOSu5FRERERKxEPq2bz4sC80CtiIiIiIi108y9iIiIiFglUwEsy9FqOSIiIiJilfK6cp9rlQoGjeTR0cy9ABB/PtzQeC4Vy5GQkGhYPGdnJ0PjZcaMizcupquL0xN/H+HWdScmGLe8ppOz80NZpjThUoRh8ZzLehgazxLzIfxsEqKuGhevZHHDYomI5EsFcOZeyb2IiIiIWKcCmNzrgVoRERERESuhmXsRERERsUqmArgUppJ7EREREbFOBbAsR8m9iIiIiFinAjhzr5p7g1SrVo0RI0ZYttPS0mjSpAlvvvkmAJs3b2b+/PkPHD84OJjhw4dn2RcTE0OTJk1ISUnJsU9QUBATJ0584HOKiIiI5GsmU94++ZCSe4MUKVKEU6dOcfPmTQB++eUXPDw8LMdbt27NwIEDHzh+27Zt+eWXX7hx44Zl34YNG2jVqhUODg4PPnARERERsRpK7g3UsmVLtm3bBkBoaCgdO3a0HLt9Fn39+vV06tSJLl268OqrrwKQnp7O1KlT6dSpE507d2bp0qVZYhcrVoxGjRqxdetWy75169bRqVMntmzZQq9evejatSsBAQFER0c/5CsVERERefKZTKY8ffIj1dwbyNfXl88++4xWrVpx4sQJevTowYEDB7K1++yzz/jyyy/x8PAg4f+/TGj58uWEh4ezevVq7OzsiIuLy9avY8eOrFmzBl9fXyIiIvjrr79o0qQJSUlJrFixApPJxPfff8+CBQsYPXr0w75cERERkSebTcGbx1Zyb6Dq1asTFhbG2rVradmy5R3b1a9fn9GjR/Piiy/Stm1bAHbv3s1LL72End2tH4mrq2u2fi+88AITJkwgKSmJ9evX0759e2xtbbly5QrDhg0jKiqKlJQUypcv/1CuT0RERCRfyaez73lR8H6dech8fHyYNm1alpKcv5s4cSLvvvsuly9fpkePHsTGxuYqduHChXn++efZuHEj69ats5xj0qRJvPrqq6xZs4aJEyfe8QFbEREREbFuSu4N1rNnT95++22qVat2xzYXLlygbt26DB06FDc3N65cucJzzz3H8uXLSUtLA8ixLAduleYsWrSI6Oho6tevD0BiYqLl4d3Vq1cbej0iIiIi+ZaNKW+ffEhlOQYrXbo0ffv2vWubadOmcf78ecxmM02aNKF69epUrVqVc+fO0aVLF+zs7OjduzevvfZatr7NmjVj1KhR9OzZ0/Kgx+DBgxk6dCguLi40btyYsLCwh3JtIiIiIvlKASzLMZnNZvPjHoQ8fvHnww2N51KxHAkJiYbFc3Z2MjReZsy4eONiuro4PfH3EW5dd+L/f5DbCE7OziTGxRsWD8DJ1YWESxGGxXMu62FoPEvMh/CzSYi6aly8ksUNiyUikh8lxuSu9PlOnNzdDBrJo6OZexERERGxTgVw5l419yIiIiIiD2j79u20b9+etm3bMn/+/GzHU1JSePfdd2nbti29evXKUj79xRdf0LZtW9q3b8+OHTsMGY+SexERERGxTiZT3j73kJ6ezsSJE1mwYAGhoaGsXbuW06dPZ2nz/fff4+zszMaNGwkICGDGjBkAnD59mtDQUEJDQ1mwYAETJkwgPT09z5es5F5ERERErNNDXi3n0KFDVKxYEU9PTxwcHOjYsSObN2/O0mbLli1069YNgPbt27N7927MZjObN2+mY8eOODg44OnpScWKFTl06FCeL1k19wLcenDTaM7OTk90PLj1EKyR8sN9hFsPwRoaz9XF0Hhw64HVJzkePJyfjR6CFRExjpm81dwvX76c5cuXW7b79OlDnz59LNsRERGULl3asu3h4ZEtQY+IiKBMmTIA2NnZ4eTkRGxsLBEREdStWzdL34iIvC/+oOReALi657Ch8Yo3rk3M78cNi+der7qhK9vArcQ+7swF4+JVqUDcqfOGxQNwrVrxoazIciU6b6sH3K50CbeH8v2JCN1pWDyPjs3zzUpGscf/MiyeW/VKxIddNiwegEv5MobGExF5mDLyuCbk35P5/EBlOSIiIiIiD8DDw4MrV65YtiMiIiwvFr29zeXLtyZa0tLSSExMxM3NLVd9H4SSexERERGxShlmc54+91K7dm3OnTvHxYsXSUlJITQ0FB8fnyxtfHx8CA4OBmDDhg00adIEk8mEj48PoaGhpKSkcPHiRc6dO0edOnXyfM0qyxERERERq/SwX9VqZ2dHYGAgAwYMID09nR49elC1alU++eQTatWqRevWrenZsyfvv/8+bdu2xcXFhVmzZgFQtWpVXnzxRXx9fbG1tSUwMBBbW9u8jynPEUREREREnkBmHnJ2D7Rs2ZKWLVtm2Td06FDLvwsVKsSnn36aY99BgwYxaNAgQ8ejshwRERERESthVTP3V65cYcKECZw5c4aMjAxeeOEFRo4ciYODw0M7Z1BQENOmTcPDw4PU1FQCAgLo3bt3nmLOnj2bIkWK0L9//7u2W7lyJUuWLAHAbDbz7rvv0qZNG0aPHs3evXtxcrq1TF+PHj3o27dvnsYkIiIikt/kdbWc/Mhqknuz2czgwYN5+eWXmTdvHunp6YwbN45Zs2YxatSoh3puX19fAgMDuXr1Kh07dsTHx4cSJUrcs196evoD11ZduXKFzz//nODgYJycnLh27RoxMTGW4yNHjqRDhw4PFFtERETEGpgfdtH9E8hqkvtff/2VQoUK0aNHDwBsbW0ZO3YsrVu3ZsiQIaxfv56NGzeSlJREREQEXbp0YfDgwQCEhISwdOlSUlNTqVu3LuPHj8fW1pb69evTt29ftm7dSuHChfnss8/umrQXL16cChUqcOnSJU6dOsXUqVNJT0+nVq1aTJgwAQcHB3x8fHjxxRfZtWsXAwYMwMnJiVmzZpGeno6bm5tlJv706dP4+/tz6dIl+vXrl23m/erVqxQtWpQiRYoAULRoUYoWLfowbq2IiIhIvlQQk3urqbk/deoUNWvWzLKvWLFilClThvPnb71Y6PDhw3z66af88MMP/Pjjjxw+fJgzZ86wfv16vvvuO0JCQrCxsWHNmjUAXL9+nbp16/LDDz/g7e3NihUr7jqGixcvcvHiRTw8PBg9ejSzZs1izZo1pKen8+2331raubq6EhwcTNOmTRk3bpxlTJ988omlzV9//cWXX37J999/z9y5c0lNTc1yrurVq1OiRAlat27NmDFj2LJlS5bj06ZNw8/PDz8/P06cOHH/N1REREQkn8sw5+2TH1nNzH1uPPfcc7i5uQHQtm1bDhw4gJ2dHUeOHKFnz54A3Lx5k+LFb73+3d7enlatWgFQq1Ytfvnllxzjrlu3jgMHDuDg4MDEiROJjY2lfPnyVKpUCYBu3brxzTffEBAQANwq4wH4/fff8fb2xtPTE7iV9Gdq2bIlDg4OuLu74+7uztWrV7O83tjW1pYFCxZw+PBhdu/ezZQpU/jzzz955513AJXliIiIiBREVpPcP/3002zYsCHLvqSkJC5fvkzFihU5evQoJpMpy3GTyYTZbKZbt26899572WLa29tb+tjY2JCenp7juTNr7jMdP378rmN1dHS85/Xc/hCwra0taWlp2dqYTCbq1KlDnTp1eO655xg7dqwluRcREREp6FSWk481bdqUGzdusHr1auDWw6offfQR3bp1syTTv/zyC3Fxcdy8eZNNmzbRoEEDmjZtyoYNG7h69SoAcXFxhIeH52kslSpVIjw83FIOFBISQsOGDbO1q1evHvv37+fixYuWc+dWREQEf/75p2X7+PHjlC1bNk/jFhEREbEmKsvJx0wmE3PnzmXChAl89tlnZGRk0LJlS4YPH25pU6dOHd555x3LA7W1a9cG4N133+WNN94gIyMDe3t7AgMDKVeu3AOPpVChQkyZMoWhQ4daHqh9+eWXs7Vzd3dn4sSJvPPOO2RkZFC8eHEWLVqUq3OkpaUxdepUIiMjKVSoEO7u7kyYMOGBxywiIiJibQrizL3JXECuOigoiCNHjmQpn5H/ubrnsKHxijeuTczvdy9Puh/u9aoTF59oWDwAVxcn4s5cMC5elQrEnTpvWDwA16oVSUgw9rqdnZ24Eh1rWLzSJdweyvcnInSnYfE8OjYn/nze/iL3dy4Vyz2Un03s8b8Mi+dWvRLxYZcNiwfgUr6MofFERB6m85ej89S/Ypl7L23+pLGashwRERERkYLOaspy7qV79+507979cQ9DRERERB6R/Fo3nxcFJrkXERERkYKlgFSfZ6HkXkRERESsUgHM7VVzLyIiIiJiLQrMajkiIiIiUrCcCovMU/+q5UsZNJJHR2U5AmDokpBwa1nIhKirhsVzLln8oSw7GB0bb1i8Em4uD2XZQSPvI9y6l/EXLhkWz6VCWRIi8rbU2N85e5Qg9uQ5w+K5eT31cJbCjI4xNKZzCXcSExIMi+fk7ExinHHfcQAnVxcSLkUYFs+5rIdhsURE/q4gTmEruRcRERERq1QQC1SU3IuIiIiIVcoogMm9HqgVEREREbESmrkXEREREatUACfuldyLiIiIiHUqiGU5Su7vU40aNfDy8iI9PZ3KlSszdepUHB0d7ytGUFAQR44cITAwMMfjb731FtHR0axYscKIIYuIiIgUSAUwt1fN/f0qXLgwISEhrF27Fnt7e5YtW2Zo/ISEBP78808SExO5ePFijm3S0tIMPaeIiIiIWAfN3OeBt7c3J06cIC4ujrFjx3Lx4kUcHR2ZOHEi1atXv+P+u/npp59o1aoVJUqUIDQ0lH/+858AjB49GgcHB44dO0aDBg149dVXmTBhArGxsRQuXJj//Oc/VKlShS1btjBv3jxSU1NxdXVlxowZlChR4lHcDhEREZEnSkFcClMz9w8oLS2N7du34+XlxezZs3nmmWdYs2YNw4YNY9SoUQB33H83oaGhdOrUiY4dOxIaGprlWEREBMuWLWPMmDGMGzeOcePGERQUxKhRo5gwYQIAzz77LCtWrGD16tV07NiRBQsWGH/xIiIiIvlAhtmcp09+pJn7+3Tz5k38/PyAWzP3PXv2pHfv3syePRuApk2bEhcXR1JSEgcOHMhx/51ER0dz/vx5nn32WUwmE3Z2dpw8eRIvLy8AOnTogK2tLdeuXePgwYMMHTrU0jclJQWAK1euMGzYMKKiokhJSaF8+fIP5T6IiIiIPOnyaX6eJ0ru71Nmzf3DsH79euLj42ndujUASUlJhIaGWpL7zAd3zWYzzs7OOY5j0qRJBAQE0Lp1a/bs2cOcOXMeylhFREREnnQqy5EH4u3tzQ8//ADAnj17cHNzo1ixYnfcfyehoaEsWLCALVu2sGXLFlatWpWtNAegWLFilC9fnvXr1wO3vrjHjx8HIDExEQ8PDwBWr15t5GWKiIiIyBNOM/cGGDx4MGPHjqVz5844Ojry0Ucf3XV/TsLCwggPD6devXqWfZ6enjg5OfHHH39kaz99+nT+/e9/M2/ePNLS0vD19aV69eoMHjyYoUOH4uLiQuPGjQkLCzP8ekVERETyg4yCN3GPyVwQ/14h2cSduWBoPNcqFUiIumpYPOeSxUlISDQsHoCzsxPRsfGGxSvh5kJ82GXD4gG4lC9j6H2EW/cy/sIlw+K5VChLQkS0YfEAnD1KEHvynGHx3LyeIv58uGHxAFwqliMhOsbQmM4l3ElMSDAsnpOzM4lxxn3HAZxcXUi4FGFYPOeyHobFEhH5u30ncl5WPLcaVvM0aCSPjmbuRURERMQq5dcVb/JCyb2IiIiIWKXHndvHxcUxbNgwwsPDKVeuHB9//DEuLi5Z2hw7dox///vfJCUlYWNjw6BBg/D19QVuvedo7969ODk5AfDRRx9Ro0aNu55Tyb2IiIiIyEMwf/58mjZtysCBA5k/fz7z58/n/fffz9KmcOHCTJ06laeeeoqIiAh69OhB8+bNcXZ2BmDkyJF06NAh1+fUajkiIiIiYpXMZnOePnm1efNmunbtCkDXrl3ZtGlTtjaVKlXiqaeeAsDDwwN3d3diYh78mS49UCsiIiIiVumXP8/nqX/YkV9Zvny5ZbtPnz706dMn1/29vb3Zv38/cOsXjYYNG1q2c3Lo0CFGjRpFaGgoNjY2jB49moMHD+Lg4EDTpk0ZMWIEDg4Odz2nynIE4KGsJGLkKh1Ori5cjTVuFRGA4m7ORFyNMyyeR3HXh7Mii4Erk8Ct1UkuRcUaFq9sSbeHMkbDV/S5EmVYPADn0iUNXdkGbq1uY/RKNA9ljAaujuTsUYLEGOO+jwBO7m6GxhOR/Cuvc9i5SeYDAgKIjs7+/8V33303y7bJZMJkMt0xTmRkJO+//z5Tp07FxuZWcc3w4cMpWbIkqampjBs3jvnz5zN48OC7jkfJvYiIiIjIA1q8ePEdjxUvXpzIyEhKlSpFZGQk7u7uObZLSkrizTffZNiwYVneeVSqVCkAHBwc6N69OwsXLrzneFRzLyIiIiJWyWzO2yevfHx8WL16NQCrV6+mdevW2dqkpKTw9ttv4+fnl+3B2cjIyP9/HWY2bdpE1apV73lOJfciIiIiYpUyzOY8ffJq4MCB/PLLL7Rr145du3YxcOBAAA4fPswHH3wAwPr169m/fz/BwcH4+fnh5+fHsWPHABgxYgSdO3emc+fOxMbGMmjQoHueU2U5IiIiImKVHve6MW5ubixZsiTb/tq1a1O7dm0AS0Kfk6+++uq+z6nkXkRERESsUkYBXBNSZTkiIiIiIlaiwCT38+bNo2PHjnTu3Bk/Pz/++OOPxz0kRo8ejY+PD35+fnTr1o2DBw/mOaa/vz+HDx82YHQiIiIi+dvjfonV41AgynIOHjzItm3bCA4OxsHBgZiYGFJTU3PVNy0tDTu7h3ebMl8pvHPnTgIDA1mzZs09+2R+4TLXQBURERGR7PJpfp4nBSK5j4qKws3NzfJGr9vXGD106BAffvgh169fx8HBgcWLF/PTTz/x008/cf36dTIyMpg/fz7/+c9/OHXqFGlpaQwePJg2bdqQnp7OjBkz2Lt3LykpKbz66qu89NJL7Nmzhzlz5uDm5sbJkyepWbMmM2bMuOuLCxo2bMiFCxcAWLRoEatWrQKgZ8+eBAQEEBYWRv/+/albty5//vkn8+fPJzQ0lDVr1mAymWjRogUjRowA4Mcff2TChAkkJiYyefJkvL29H9atFREREXliGbHiTX5TIJL7Zs2aMXfuXNq3b0/Tpk3x9fWlUaNGpKSkMGzYMGbNmkWdOnVISkqicOHCABw9epQffvgBV1dXZs6cSZMmTZgyZQoJCQn06tWL5557jjVr1uDk5MSqVatISUnhpZdeolmzZpb+oaGhlCpVipdffpkDBw7cNcnesmULXl5eHDlyhKCgIFasWIHZbKZ37940atQIZ2dnzp8/z9SpU6lXrx4///wzW7ZsYcWKFTg6OhIXF2eJlZ6ezsqVK/n555+ZM2fOXV+uICIiImKtzCi5t0pFixYlKCiI/fv3s2fPHoYNG8Z7771HzZo1KVmyJHXq1AGgWLFilj7NmjXD1dUVgJ07d7JlyxbLW8GSk5O5fPkyv/zyCydOnGDDhg0AJCYmcv78eezt7alTpw6lS5cGoHr16oSHh+eY3E+bNo158+bh7u7O5MmT2b17N23atKFIkSIAtG3blv379+Pj40PZsmUtby3bvXs33bt3x9HREcAy1sw+ADVr1iQ8PNyguygiIiIiT7oCkdwD2Nra0rhxYxo3boyXlxerV6+mZs2ad2yfmTRn+vTTT6lcuXKWfWazmX/96188//zzWfbv2bPHUgKUee709PQcz5NZc59p9+7ddxxTZsJ/L5nntrGxueN5RURERKxdAazKKRir5Zw9e5Zz585Zto8dO0bZsmWpVKkSUVFRHDp0CICkpCTS0tKy9W/evDlff/215anpo0ePWvZ/9913lodz//rrL65fv56nsXp7e7Np0yZu3LjB9evX2bRpU44z/s899xxBQUHcuHEDIEtZjoiIiIg8/jfUPg4FYub++vXrTJo0iYSEBGxtbalYsSITJ07EwcGBWbNmMWnSJG7evEnhwoVZtGhRtv5vvfUWH374IV26dCEjI4Py5cvzxRdf0KtXL8LDw+nevTtmsxk3Nzc+++yzPI21Zs2adO/enV69egG3Hqh95plnCAsLy9KuRYsWHD9+nB49emBvb0/Lli0ZPnx4ns4tIiIiYk3yaX6eJyZzfl3EUwwVf97Y2nyXiuVIjIs3LJ6TqwtXYxMMiwdQ3M2ZiKtxhsXzKO76UO5jwqUIQ2M6l/XgUlSsYfHKlnR7KGOMv3DJsHguFcqScCXKsHgAzqVLkphg7HfSydnZ0HvpXNbj4YwxItqweM4eJUiMMe77CODk7mZoPBHJv0L3nsxT/46NvAwayaNTIGbuRURERKTgKYhz2EruRURERMQq5de6+bxQci8iIiIiVqkA5vZK7kVERETEOhXEmXs9UCsiIiIiVil417E89e/2XA2DRvLoaOZeADjV9z+Gxqv61TgOnjJu5Zj6VcuREB1jWDwA5xLuXF620bB4ZV5qy8VPlhsWD8BzaB9DV42BWyvHXLhy1bB4FUoXJ3z+asPiAZQb2JVLS0INi1e2X0eidxw0LB5AiefrExNn7Eo07q7OXPl+s2HxSvdqTXzYZcPiAbiUL0P0L78bFq9Es3rEh18xLB6AS7nSDyWmiOQ/BXEKW8m9iIiIiFilgligouReRERERKxSRsHL7ZXci4iIiIh1Kogz9zaPewAiIiIiImIMzdyLiIiIiFUyU/Bm7q06uY+NjSUgIACA6OhobGxscHd3B+D777/HwcHB0nbx4sX06dMHR0fHu8b09/dn5MiR1K5dO9v+yMhIChcuTEpKCgEBAfTp0ydP409ISGDNmjW8+uqrOR6fN28ea9euxcbGBhsbGyZOnEjdunWzjAVg0KBBdOjQIU9jEREREclvVHNvZdzc3AgJCQFg9uzZFClShP79++fY9quvvqJLly73TO7vZsaMGdSuXZu4uDjatm1Lt27dsvwCcb8SEhL47rvvckzuDx48yLZt2wgODsbBwYGYmBhSU1OzjUVERESkoCqINfdWndznZPfu3UydOpX09HRq1arFhAkTWLZsGZGRkfTr1w9XV1eWLl3K+PHjOXz4MMnJybRv354hQ4bk+hzXr1/H0dERW1tb0tPT+eCDDzhy5Agmk4kePXoQEBCAv78/NWrUYP/+/dy4cYOpU6cyf/58Tp48yYsvvsiwYcP473//y4ULF/Dz8+O5555j1KhRlnNERUXh5uZm+eUh8y8SIiIiIlJwFajkPjk5mdGjR7N48WIqVarEyJEj+fbbbwkICGDx4sUsWbLEkiQPGzYMV1dX0tPTCQgI4Pjx41SvXv2u8UeMGIGDgwPnz59n7Nix2NracuTIESIiIli7di1wazY+k729PUFBQSxZsoS33nqLoKAgXF1dadOmDQEBAbz33nucOnXK8teH2zVr1oy5c+fSvn17mjZtiq+vL40aNcoylsyynMWLF+Pm5pbn+yciIiKSnxTEspwCtVpORkYG5cuXp1KlSgB069aN/fv359h2/fr1dOvWja5du3Lq1CnOnDlzz/gzZsxgzZo1bNu2jYULFxIeHo6npycXL17kP//5D9u3b6dYsWKW9j4+PgB4eXlRtWpVSpUqhYODA56enly5cve3KxYtWpSgoCAmTpyIu7s7w4YNIygoKMtYQkJCCAkJUWIvIiIiBZLZbM7TJz8qUMl9bl28eJGFCxeyePFi1qxZwwsvvEBycnKu+7u7u/PMM8/wxx9/4OLiQkhICI0aNWLZsmV88MEHlnaZJTU2NjZZavNtbGxIS0u753lsbW1p3LgxQ4YMYdy4cfz000/3cZUiIiIi1k3JvZWzsbEhPDyc8+fPAxASEkLDhg2BWzPh165dA+DatWs4Ojri5OREdHQ027dvv6/z3Lhxg2PHjlGhQgViYmIwm820b9+ed999l6NHj+Y6zu1j+ruzZ89y7tw5y/axY8coW7bsfY1TRERExJplmPP2yY8KVM19oUKFmDJlCkOHDrU8UPvyyy8D0Lt3bwYMGECpUqVYunQpzzzzDC+++CKlS5emQYMGuYqfWeeekpJCt27dqFWrFsePH2fMmDFkZGQAMHz48FyP183NjQYNGtCpUyeef/75LA/UXr9+nUmTJpGQkICtrS0VK1Zk4sSJ93E3RERERMTaFJjk/p133rH8e/Xq1dmO+/v74+/vb9n+6KOPcoyzdOnS+9pfvXp1goOD79q+cePGNG7cOMdj//3vf3OMW6tWLZYtW3ZfYxEREREpSPJraU1eFJjkXkREREQKlgKY2yu5FxERERHrlPGYs/u4uDiGDRtGeHg45cqV4+OPP8bFxSVbuxo1auDl5QVAmTJl+Pzzz4Fbi7wMHz6cuLg4atasybRp0+75gtQC9UCtiIiIiBQcj3u1nPnz59O0aVN++uknmjZtyvz583NsV7hwYcsS5pmJPdxa2jwgIICNGzfi7OzMypUr73lOJfciIiIiIg/B5s2b6dq1KwBdu3Zl06ZNue5rNpv59ddfad++PXDr/UybN2++Zz+V5YiIiIiIVcrrcpbLly9n+fLllu0+ffrQp0+fXPe/evUqpUqVAqBkyZJcvXo1x3bJycl0794dOzs7Bg4cSJs2bYiNjcXZ2Rk7u1vpeunSpYmIiLjnOU3mgvgYsYiIiIhYvXnrDuSp/yDfZ+/ZJiAggOjo6Gz73333XUaPHs3+/fst+xo2bMi+ffuytY2IiMDDw4OLFy/Sr18/Fi9eTLFixejTpw8bN24E4PLly/zjH/9g7dq1dx2PZu4FgKt7Dhsar3jj2sRfuGRYPJcKZUlISDQsHoCzsxPRsfGGxSvh5sLVvUcMiwdQvFEt4s+HGxrTpWI5zoRFGRavSvmSRO8+ZFg8gBJN6xD9y+/GxWtWj9ijZwyLB+D2TBVi4hIMjenu6kzMkdPGxav1NAlXjPtZAziXLklCVM4zTw8Ur2Txh/Idj7gaZ2hMj+Kuhn7PSzStY1gsEbmzRzGHvXjx4jseK168OJGRkZQqVYrIyEjc3d1zbOfh4QGAp6cnjRo14ujRo7Rv356EhATS0tKws7PjypUrlnZ3o5p7EREREZGHwMfHx/J+pdWrV9O6detsbeLj40lJSQEgJiaG3377jaeffhqTyUTjxo3ZsGEDAMHBwfj4+NzznEruRURERMQqmc15++TVwIED+eWXX2jXrh27du1i4MCBABw+fJgPPvgAgDNnztCjRw+6dOlCv379+Mc//sHTTz8NwPvvv8+iRYto27YtcXFx9OrV657nVFmOiIiIiFilx73OvZubG0uWLMm2v3bt2tSuXRuABg0asGbNmhz7e3p65mr5y9spuRcRERERq1QQl41Rci8iIiIiVslMwcvurarm/sMPP8zyxHL//v0t9UwAH330EYsWLcrTOfbs2cObb76Z4/5nn32Wrl270r59e1599VW2bt36wOepX7/+PdvMmzePjh070rlzZ/z8/Pjjjz8A8Pf3p3379vj5+eHn58ePP/74wOMQERERkfzDqmbuGzRowPr16wkICCAjI4PY2FiSkpIsxw8ePMiYMWMe2vm9vb354osvADh27Bhvv/02hQsXpmnTpoaf6+DBg2zbto3g4GAcHByIiYkhNTXVcnzGjBmWWi4RERGRguhx19w/DlY1c1+/fn1+//13AE6dOkXVqlUpWrSoZYmhM2fO8Mwzz7B79266du1K586dGTNmjGX5oTvt3759Ox06dKBbt26WFwncS40aNXjrrbf4+uuvgVtLG73zzjv06NGDHj16cODArZcqXLt2jTFjxtC5c2c6d+5sWe4oU0xMDH369GHbtm1Z9kdFReHm5oaDgwMA7u7uuVr7VERERKSgeNyr5TwOVpXce3h4YGtry6VLlzh48CD16tWjTp06/P777xw+fBgvLy/MZjOjR49m1qxZrFmzhvT0dL799luSk5PvuH/cuHF8/vnnBAUFERWV+xfC1KxZk7NnzwIwefJk+vXrx6pVq5g9ezb/+te/APjss88oVqwYa9asYc2aNTRp0sTSPzo6mjfffJMhQ4bwwgsvZIndrFkzLl++TPv27fn3v//N3r17sxwfMWKEpSwnNjb2Ae+oiIiISP6VYTbn6ZMfWVVZDtyavT948CAHDx7k9ddfJyIigt9++w0nJycaNGjAX3/9Rfny5alUqRIA3bp145tvvqFJkyY57m/cuDHly5fnqaeeAqBLly6sWLEiV2O5/a1ou3bt4vTp/715MikpiWvXrrF7925mzpxp2e/i4gJAamoqAQEBBAYG0qhRo2yxixYtSlBQEPv372fPnj0MGzaM9957j+7duwMqyxERERHJp/l5nlhdct+gQQMOHjzIyZMnqVq1KqVLl2bhwoUUK1bMkvg+KkePHqVKlSoAZGRksGLFCgoVKpSrvnZ2dtSsWZOdO3fmmNwD2Nra0rhxYxo3boyXlxerV69+5NcoIiIiIk8OqyrLgVvJ/datW3FxccHW1hZXV1cSExP5/fffqV+/PpUqVSI8PJzz588DEBISQsOGDe+4v3LlyoSHh3PhwgUAQkNDczWO48eP89lnn/Hqq68C0Lx5c5YuXWo5fuzYMQCee+45vvnmG8v++Ph4AEwmEx9++CFnz55l/vz52eKfPXuWc+fOZYlXtmzZ3N4mEREREatnNpvz9MmPrG7m3svLi9jYWDp16pRl37Vr13B3dwdgypQpDB06lPT0dGrVqsXLL7+Mg4PDHfdPnDiRgQMH4ujoyLPPPsu1a9dyPPf+/fvp2rUrN27coHjx4vzrX/+yrJTzwQcfMHHiRDp37kx6ejre3t5MnDiRQYMGMXHiRDp16oSNjQ2DBw+mXbt2wK2Z+ZkzZzJo0CCKFi1q+UUB4Pr160yaNImEhARsbW2pWLEiEydOfFi3VURERCTfycif+XmemMz59dcSMdTVPYcNjVe8cW3iL1wyLJ5LhbIkJCQaFg/A2dmJ6Nh4w+KVcHPh6t4jhsUDKN6oFvHnww2N6VKxHGfCcv9g+L1UKV+S6N2HDIsHUKJpHaJ/+d24eM3qEXv0jGHxANyeqUJMXIKhMd1dnYk5cvreDXMbr9bTJFwx7mcN4Fy6JAlRV42LV7L4Q/mOR1yNMzSmR3FXQ7/nJZrWMSyWiNzZlO935an/mF7PGTSSR8fqynJERERERAoqqyvLEREREREB8m3dfF4ouRcRERERq1QQa+6V3IuIiIiIVSqIM/d6oFZERERErNKE73bmqf/4l5sbNJJHRzP3AsDpNz40NN7TC8cStWmvYfFKtmlEYkysYfEAnNzduBK8zbB4pbu9wOVvNhgWD6DMq+1JiI4xNKZzCXdDVxLxKO7Khenf3Lvhfajw/quc6PmBYfGqrZxM5IbdhsUDKNW+KQkR0YbGdPYoQfiXPxgWr1z/LoauWgW3Vq6KWLvDsHgenZ4n7tR5w+IBuFat+FBW4Dn16gTD4lX9ZjxRW/cbFg+gZCtvQ+OJSP6k5F5ERERErJKZglegouReRERERKxSQaw+V3IvIiIiIlapIK6Wo5dYiYiIiIhYCc3ci4iIiIhVUlmO5FlsbCwBAQEAREdHY2Njg7u7OwDff/89Dg4OlraLFy+mT58+ODo63jWmv78/I0eOpHbt2ln2b926lU8++YSMjAzS0tLo27cvL730ErNnz2bFihWW8z7//POMGDHCwKsUERERefIVwNxeyb3R3NzcCAkJAWD27NkUKVKE/v3759j2q6++okuXLvdM7nOSmprKuHHjWLlyJaVLlyYlJYWwsDDL8YCAgDueV0RERKQgyCiA2b2S+0dg9+7dTJ06lfT0dGrVqsWECRNYtmwZkZGR9OvXD1dXV5YuXcr48eM5fPgwycnJtG/fniFDhtwx5rVr10hPT8fV1RUABwcHKleu/IiuSEREROTJVxDLcvRA7UOWnJzM6NGjmTVrFmvWrCE9PZ1vv/2Wvn37UqpUKZYsWcLSpUsBGDZsGEFBQfzwww/s27eP48eP3zGuq6srPj4+tGrViuHDh/PDDz+QkZFhOb548WL8/Pzw8/Njxw7jXjgjIiIiIk8uzdw/ZBkZGZQvX55KlSoB0K1bN7755htLXf7t1q9fz4oVK0hLSyMqKoozZ85QvXr1O8aePHkyJ06cYPfu3SxcuJBdu3bx0UcfASrLEREREdFSmPLYXLx4kYULF7J48WLWrFnDCy+8QHJy8j37VatWjYCAABYuXMiGDRsewUhFRERE8gez2ZynT36k5P4hs7GxITw8nPPnzwMQEhJCw4YNAShatCjXrl0DbtXQOzo64uTkRHR0NNu3b79r3GvXrrFnzx7L9vHjxylXrtxDugoRERGR/MdsztsnP1JZzkNWqFAhpkyZwtChQy0P1L788ssA9O7dmwEDBlCqVCmWLl3KM888w4svvkjp0qVp0KDBXeOazWYWLFhAYGAghQsXxtHRkSlTpjyKSxIRERHJF7RajhjqnXfesfx79erV2Y77+/vj7+9v2c6sl/+7zAdub1esWDH+7//+757nFREREZGCQ8m9iIiIiFilxz1xHxcXx7BhwwgPD6dcuXJ8/PHHuLi4ZGnz66+/Zqm+OHv2LLNmzaJNmzaMHj2avXv34uTkBNyaCK5Ro8Zdz6nkXkRERESskpnHm93Pnz+fpk2bMnDgQObPn8/8+fN5//33s7Rp0qSJ5QWocXFxtGvXjmbNmlmOjxw5kg4dOuT6nHqgVkRERESsUobZnKdPXm3evJmuXbsC0LVrVzZt2nTX9hs2bOD555/H0dHxgc+p5F5ERERE5CG4evUqpUqVAqBkyZJcvXr1ru1DQ0Pp1KlTln2zZs2ic+fOfPjhh6SkpNzznCrLERERERGrlNfJ9+XLl7N8+XLLdp8+fejTp0+WNgEBAURHR2fr++6772bZNplMmEymO54rMjKSkydP0rx5c8u+4cOHU7JkSVJTUxk3bhzz589n8ODBdx2zyZxfV+gXEREREbmLwV/8lKf+c95sl6f+7du3Z+nSpZQqVYrIyEj8/f3v+NLRJUuWcPr0af7zn//keHzPnj0sXLiQL7744q7n1My9ABC1ZZ+h8Ur6NPx/7N13fE33/8DxVyRCkJAYoahVqoRSMygaIkgiS4zas8PeovbeWpQum9okIvZWs7baWwRJNDLJujm/P/LL+boSI/eeW+v99PB45J577/t87n6fz/l83h8i/rmuWTw7h0+IvHZHs3gAeUoXIyY6WrN41jY2/HvsvGbxAPLWqEDkrXuaxsxTogiPDp3RLF6+2pUIP3BKs3gA+et+wcON+zSLV9CrPhGnLmkWD8Dui8+IiXisaUxrO1sizl/TLJ5dhdJE3XugWTyA3EUKcX/ZFs3ifdSuKY8v39IsHoBt2RKE7zquacz8DasTvveEdvG+qsqNnjM0iwdQau4AHq7drVm8gr4NNIslxJuS8oa7sJ2cnPD396d79+74+/vToMGLP1dBQUH0799fb1tYWBgFChRAURR27dpF6dKlX7lPGXMvhBBCCCHeS4qiGPXfWN27d+fQoUM0atSIw4cP0717dwDOnz/PDz/8oN7u3r17PHjwgOrVq+vdf+DAgbi7u+Pu7s7jx4/57rvvXrlP6bkXQgghhBDCBGxtbVmyZEm67RUqVKBChQrq5SJFinDw4MF0t1u6dGmm9ynJvRBCCCGEeC9pUc7yXSPJvRBCCCGEeC99gLm9JPdCCCGEEOL99CEWhXwvk/vHjx/TsWNHAB49ekSWLFmws7MDYO3atVhaWqq3Xbx4MS1btnzlSmDt2rVj8ODBeuOj0raHhYWRLVs2cuTIwcSJEylZsqRR7XdycmLdunVqmzPy9OlThg8fztWrV1EUBWtra/744w9y5szJZ599RpkyZdTb/vzzzxQpUsSoNgkhhBBCvGvedLWcN+G9TO5tbW0JCAgAYM6cOeTIkYMuXbpkeNulS5fSrFkzo5b5nT59OhUqVGD16tVMnTqVX3755ZX3SU5OxsLC8Kd/6dKl5MuXjxkzUkup3bx5k6xZswKQPXt29fELIYQQQogPxwdTCvPIkSN4enri7u6On58fiYmJLF26lLCwMDp06EC7du0AGDVqFN7e3ri6ujJ79uxM7aNq1arcvXsXRVGYMmUKbm5uuLu7s2VLak3oY8eO8fXXX/Ptt9/i6uqKTqfTu92yZcvUWMuXL8fLywt3d3du3LiRbl/h4eHY29url0uWLKl3RkIIIYQQ4kP3pkthvgnvZc/98xISEhg6dCiLFy+mRIkSDB48mD///JOOHTuyePFilixZog6B6devH3ny5EGn09GxY0cuX75M2bJlX2s/e/fupUyZMuzYsYPLly8TEBDA48ePad68OVWrVgXg4sWLBAYGUrRoUf78809CQkLw9/fHwsKCyMhINZatrS0bN25kxYoVLFy4kAkTJujty8fHh86dO7N9+3Zq1qyJl5cXxYsXByA+Ph4PDw8gtbTSzz//bOQzKIQQQgjx7nlXE3RjfBDJfUpKCkWKFKFEiRIAeHl5sWLFCnVc/rO2bt3KmjVrSE5OJjw8nBs3brwyuR84cCDZs2encOHCjBgxgkWLFuHq6oq5uTn58uWjWrVqnD9/nly5clGhQgWKFi0KpJ5NaNWqlTo8J0+ePGrMRo1Slzt2cHBg586d6fb52WefsWvXLg4dOsThw4dp3rw5q1evplSpUjIsRwghhBACGXP/wQsODmbhwoWsW7eO3LlzM3ToUBISEl55v7Qx968jR44cr3W7tPHzWbJkQafTZXibnDlz0qhRIxo1akSWLFnYv38/pUqVeq34QgghhBDi/fNBjLnPkiULISEh3LlzB4CAgACqVasGpCbIcXFxAMTFxWFlZYW1tTWPHj3iwIEDBu2vatWqbN26FZ1OR0REBCdOnKBixYrpblerVi1Wr15NcnIygN6wnFc5efIkUVFRACQmJnL9+nU++ugjg9orhBBCCPE+Uoz89y76IHrus2XLxqRJk+jTpw86nQ4HBwdat24NQIsWLejatSsFChRg2bJllCtXjiZNmlCwYEG++OILg/bn7OzM6dOn8fDwwMzMjEGDBpE/f35u3rypdztfX19u375Ns2bNsLCwoEWLFrRt2/a19hEcHMzo0aOB1GFH9erVw8XFxaD2CiGEEEK8j2RYznuoV69e6t/+/v7prm/Xrp1aKQdg8uTJGcZ5tpLNq7abmZkxZMgQhgwZore9Ro0a1KhRQ71sYWGBn58ffn5+erfbs2eP+neFChUy3Ienpyeenp4Ztun06dMZbhdCCCGE+JDIhFohhBBCCCHeEx9gbv9hjLkXQgghhBDiQyA990IIIYQQ4r2U8gF23UtyL4QQQggh3ksf4ph7M+VDfNRCCCGEEOK912KqcYt6rhnsoVFL/jvScy8AuOjUW9N45fbM5tCFO5rFq12+GNGhjzSLB2Bjn4/wXcc1i5e/YXUerNyhWTyAQq0bEXX3vqYxc3/8ESFhEZrFK1zAjpDf/DWLB1C4uyf3Zq/RLF6R3i0I23lUs3gABZxrEh0do2lMGxtrQjcf1CyevduXRIf/q1k8AJv8efn35EXN4uWtUs4k7/HIm8GaxsxTsijXu2VcTc0Qn/w+lH+P/6NZPIC81R248d00zeKVmj+I8L0nNIsHkP+rqprGE+JVPsRhOTKhVgghhBBCiPeE9NwLIYQQQoj30gfYcS/JvRBCCCGEeD99iMNyJLkXQgghhBDvpQ+xboyMuRdCCCGEEOI9IT33QgghhBDivfQBdtxr03Pv5+eHo6Mjbm5ur7ztsWPHOHXqVIbXbdiwgZo1a+Lh4YGHhweDBw8GYOjQoWzbtu2VsW/evEm7du3w8PCgSZMmjBgxQt1nlSpV1LgdO3bM8P67du1i7ty5mdrn2+DXX3/F2dkZFxcXDh5MLaOXmJhImzZtSE5OfsOtE0IIIYR4M1JQjPr/LtKk597b25u2bdsyZMiQV972+PHj5MiRgy+++CLD65s2bcrIkSNfa786nQ5zc3P18oQJE+jQoQMNGzYE4MqVK+p1VatW5ddff31pvD/++IN58+a91r7fFtevXycoKIigoCBCQ0Pp1KkT27dvx9LSEkdHR7Zs2UKzZs3edDOFEEIIIf5z0nNvoGrVqpE7d+5025cuXUrTpk1xd3enX79+3Lt3j1WrVrF48WI8PDw4cSLzi2M4OTkxbdo0vLy80vWsh4WFUbBgQfXyp59++tpxb926RdasWbGzs1O3HT58GG9vb1xcXNi7dy8ACQkJ+Pn54e7ujqenJ0ePpi6M89133+Hv7w/AqlWrGDBgQIb78ff3x93dnWbNmjFo0CAA7t27R/v27XF3d6dDhw7cv3+fmJgYXFxcuHnzJgD9+/dnzZr0i/rs3r0bV1dXLC0tKVq0KMWKFePcuXMANGzYkMDAwNd+DoQQQggh3ieKohj1/11k0jH3v/32G3v27MHS0pLo6GhsbGxo1aoVOXLkoEuXLhneZ8uWLZw8eRKA9u3b4+Pjk+42efLkYePGjem2d+zYkQ4dOlC5cmXq1KmDt7c3NjY2AJw4cQIPj9QlhBs3bsx3332nd99Tp05Rvnx5vW0hISGsW7eOu3fv0r59e2rVqsWKFSsACAwM5MaNG3Tp0oXt27czbtw4WrduTZEiRVi0aBGrV69O175r164xf/58Vq5ciZ2dHZGRkQCMHz8eLy8vvLy8WLduHePHj2fevHmMHDkSPz8/2rdvT1RUFC1atEgXMzQ0lM8//1y9bG9vT2hoKAClS5fm/PnzGT7PQgghhBDi/WPS5P7TTz9l4MCBNGjQQB0q8yqvMyynadOmGW738fGhTp06HDx4kN27d7Nq1So2bdoEvHpYTnh4uF6vPUCTJk3IkiULxYsXp2jRoty8eZOTJ0/Stm1bAEqVKsVHH33ErVu3KFu2LL1796Z9+/bMnTuXPHnypNvH0aNHady4sbqftNucPn2aOXPmAODh4cG0aanLh9euXZtt27YxduxYAgICXvqcZMTc3JysWbMSGxtLrly5Mn1/IYQQQoh32YdY596kpTB/++03vv76ay5evEjz5s01m9xpZWX1wuvs7e1p3rw58+fPx8LCgqtXr75WzOzZs5OQkKC3zczM7KWXn3f16lXy5MlDWFgYAA8ePFAn8a5cufK12vGslJQUbty4Qfbs2YmKigJg586daszz589jb2/Pw4cP1fuEhoZib2+vXk5MTCRbtmyZ3rcQQgghxLtOUYz7/y4yWXKfkpLCgwcPqFmzJgMHDiQmJoYnT56QM2dO4uLiTLLPAwcOkJSUBKT2xEdGRuolui9TsmRJ7ty5o7dt27ZtpKSkcPfuXYKDgylRogRVq1ZVx7HfunWLBw8eULJkSc6dO8eBAwfYuHEjCxcuJDg4mEKFChEQEEBAQACtW7emZs2abNu2jcePHwOow3IqV65MUFAQkDrcp2rVqgAsXryYUqVKMWPGDPz8/EhKSsLZ2VmNWaFCBZycnAgKCiIxMZHg4GBu375NxYoVAXj8+DG2trZkzZrVuCdWCCGEEOIdJGPuDdS/f3+OHz/O48ePqVu3Lr169cLT05NBgwYRGxuLoii0b98eGxsbvvrqK3r37s3u3bsZMWKEmshq4dChQ0yYMEHtqR40aBD58+dXJ6W+TLVq1ZgyZQqKoqg99IUKFaJ58+bExcUxZswYsmXLxtdff83o0aNxd3fH3NycSZMmATB8+HAmTZqEvb09Q4YMYdiwYSxdulSvt7906dJ8++23tGvXjixZslCuXDkmT57MiBEj8PPzY8GCBdjZ2TFp0iRu3rzJ2rVrWbt2Lbly5aJatWrMnz+f3r1767W7dOnSNGnShKZNm2Jubs7IkSPVCkLHjh2jfv36Wjy1QgghhBDvnJR3Mz83ipnyrh6WmMD48eNxcnKiVq1ab7opmujZsycDBgygRIkSr7ztRafer7xNZpTbM5tDF+68+oavqXb5YkSHPtIsHoCNfT7Cdx3XLF7+htV5sHKHZvEACrVuRNTd+5rGzP3xR4SERWgWr3ABO0J+89csHkDh7p7cm52+OpShivRuQdjOo5rFAyjgXJPo6BhNY9rYWBO6+aBm8ezdviQ6/F/N4gHY5M/LvycvahYvb5VyJnmPR94M1jRmnpJFud5tsmbxPvl9KP8e/0ezeAB5qztw47tpmsUrNX8Q4XszX9XuZfJ/pV2HnhCvw3mUcb8lO8ekL2aSGVu3bmXu3LncuHGDtWvXUqFChQxvd+DAASZMmEBKSgq+vr50794dgODgYPr3709kZCTly5dn6tSpWFpavnSfJh1z/6759ttvefr06ZtuhiYSExNp2LDhayX2QgghhBDvozc9LKdMmTLMmTOHatWqvfA2Op2OsWPH8scffxAUFMTmzZu5fv06ANOnT6djx47s3LkTGxsb1q1b98p9SnL/jHz58tGgQYM33QxNWFpa4unp+aabIYQQQgjxxqQoxv03VqlSpShZsuRLb3Pu3DmKFStG0aJFsbS0xNXVld27d6MoCkePHsXFxQUALy8vdu/e/cp9mrQUphBCCCGEEG/KnnEtjbr/6tWr9dYuatmyJS1bGhfzeaGhoXqLsNrb23Pu3DkeP36MjY0NFhap6XrBggXVtYxeRpJ7IYQQQgghMvA6yXzHjh159Cj9vMC+ffu+9jpPWpIJtUIIIYQQQphQu3btGDx4cIYTak+fPs3cuXNZsGABgLroavfu3alZsyaHDh3CwsIi3e1eRHruBQDBMzO/yNbLFO3fmtujftcsXvEx3YiJjNIsHoB1ntw8Onhas3j5vqxMxNkrmsUDsPv8UyIio7WNmcdG0yovNjbWJqmWo2UFp3J7Zmv6WkPq6x1174GmMXMXKcTDDXs1i1fQ+yuiH2lXGQnAJp8dYdsOaxavQONaRN0J0SweQO5ihU1Sgef+si2axfuoXVMeHTmnWTyAfI4VudpqlGbxyqwaQ2jAfs3iAdh71CP4x1Waxizat5Wm8YT4r1WoUIHbt28THByMvb09QUFBzJgxAzMzM2rUqMH27dtxdXVl48aNODk5vTKeTKgVQgghhBDCBHbu3EndunU5ffo033zzDV26dAFSx9l369YNAAsLC0aOHEnXrl1p2rQpTZo0oXTp0kDqmk2LFi3C2dmZyMhIfH19X7lP6bkXQgghhBDCBJydnXF2dk633d7ent9//98Ih3r16lGvXr10tytatOhrlb98lvTcCyGEEEII8Z6Q5F4IIYQQQoj3hCT3QgghhBBCvCckuRdCCCGEEOI98crk/tGjRwwYMIAGDRrg7e1Ny5Yt2blz52sFr1y5crptK1euxN/fP1ONTE5OpmbNmkyfPj1T98usxYsXq21r164d58+fN+n+tKAoCuPHj8fZ2Rl3d3cuXLgAQEREhDojWwghhBBCfBhemtwrikKPHj2oWrUqu3fvZsOGDcycOZOHDx+mu21ycvJr7bB169Z4enpmqpGHDh2iePHibNu2jRetuaXT6TIV83nJycmsX78eNzc3o+L81w4cOMDt27fZsWMH48aNY/To0QDY2dlRoEABTp48+WYbKIQQQggh/jMvTe6PHj1K1qxZad26tbqtcOHCtGvXDoANGzbw7bff0r59ezp27PhaO5wzZw4LFizgxo0bNG/eXN1+79493N3dM7xPUFAQ7du3p1ChQpw+/b+FaJycnJg2bRpeXl5s27aNv/76i5YtW+Ll5UXv3r2Ji4sDYO7cufj4+ODm5saIESMyPEA4evQo5cuXx8Lif9VBAwIC8PDwwM3NjXPnUhcbiYyM5Pvvv8fd3Z0WLVpw+fJlkpOT8fHx4dixYwDMmDGDWbNmZfhYfvvtN9zd3WnWrJl6JuLSpUu0aNECd3d3evToQVRUFCEhITRq1IiIiAhSUlL4+uuv+euvv9LF2717N56enpiZmVGpUiWio6MJCwsDoEGDBgQGBr74xRBCCCGEEO+Vlyb3165do1y5ci8NcPHiRWbPns3y5cszteNSpUqRlJREcHAwAFu2bKFJkybpbpeQkMDhw4dxcnLCzc2NoKAgvevz5MnDxo0bcXR0ZP78+SxatIiNGzfi4ODAokWLAGjbti3r169n8+bNxMfHs3dv+hUgT506Rfny5fW2xcfHExAQwKhRoxg2bBiQenBSrlw5AgMD6devH0OGDMHCwoLJkyczevRoDh8+zMGDB+nRo0e6fezfv589e/awZs0aNm3aRNeuXQEYPHgwAwcOJDAwkDJlyjB37lwKFy5Mt27dGD16NAsXLuSTTz6hTp066WKGhoZSsGBB9XLBggUJDQ0FUlc8k557IYQQQogPR6Ym1I4ZM4ZmzZrh4+OjbqtduzZ58uQxaOdNmjRh69atAGzdupWmTZumu83evXupUaMG2bNnp1GjRuzatUtvCE7afc6ePcv169dp3bo1Hh4e+Pv7c/9+6vLjx44dw9fXF3d3d44ePcr169fT7Sc8PBw7Ozu9ba6urgBUq1aN2NhYoqOjOXnyJB4eHgA4OjoSGRlJbGwspUuXxsPDg2+++YaJEydiaWmZbh9HjhzB29sbKysrIPXAJCYmhpiYGKpXrw6Al5cXJ06cAMDX15e4uDhWrVrF4MGDM/HMprKzs1N78YUQQgghxPvvpSvUli5dmh07dqiXR40aRUREhN5wmrRE1RBNmzalT58+ODs7Y2ZmRvHixdPdJigoiJMnT+Lk5ASkDos5evQotWvX1tu/oijUrl2bmTNn6t0/ISGBMWPGsH79egoVKsScOXNISEhIt59s2bKl225mZvbSy8+7evUqNjY2/Pvvv0DqAcfIkSMB6N2790vvm5GnT5+q8xuePHlCrly5WLFiBWvWrAFSh/jY29vrzYF4+PAh9vb2QOpjz5YtW6b3K4QQQggh3k0v7bmvWbMmCQkJ/Pnnn+q2+Ph4zXb+8ccfkyVLFubNm5fhkJzY2FhOnDjBvn372LNnD3v27GHkyJFs3rw53W0rVarEqVOnuHPnDpCaDN+6dUtN2G1tbYmLi2P79u0ZtqVUqVLqfdNs2bIFgBMnTmBtbY21tTVVq1Zl06ZNQOoZAVtbW3LlysWOHTuIiopi+fLljB8/nujoaD7//HMCAgIICAigQYMG1KpViw0bNvD06VMg9UDF2toaGxsbtbc+ICCAatWqATB9+nTc3d3p3bs3I0aMAKBNmzZqTHt7e5ycnPD390dRFM6cOYO1tTUFChQA4Pbt25QuXToTr4gQQgghhHiXvbTn3szMjJ9//plJkybxxx9/YGdnh5WVFQMHDnyt4E+fPqVu3brq5U6dOqW7TdOmTZk6dSq7d+9Od93OnTupWbOm3hCXBg0aMG3aNBITE/Vua2dnx6RJk+jfv796Xd++fSlRogS+vr64ubmRL18+KlSokGFb69atm27oS7Zs2fD09CQ5OZmJEycC0LNnT4YNG4a7uztWVlZMnjyZiIgIZsyYweLFiylUqBBt2rRhwoQJTJkyJd0+Ll++jI+PD1mzZqVevXr079+fKVOmMGrUKJ4+fUrRokWZNGkSx48f5/z586xcuRJzc3N27NjB+vXr9YZEAdSrV4/9+/fj7OyMlZWV2k5IPfioX79+ho9XCCGEEEK8f8yUF9WW/AD16NGDQYMGZTg86F3Upk0b5s2bR+7cuV952+CZKzXdd9H+rbk96nfN4hUf042YyCjN4gFY58nNo4OnX33D15Tvy8pEnL2iWTwAu88/JSIyWtuYeWyIjo7RLJ6NjTUhv/lrFg+gcHdPLjplfijbi5TbM1vT1xpSX++oew80jZm7SCEebkg/4d9QBb2/IvpRhGbxAGzy2RG27bBm8Qo0rkXUnRDN4gHkLlaYqLv3tY358UfcX7ZFs3gftWvKoyPnNIsHkM+xIldbjdIsXplVYwgN2K9ZPAB7j3oE/7hK05hF+7bSNJ4Q7zpZofYZAwYMIDw8/E03QxMRERF06tTptRJ7IYQQQgjxfnjpsJwPTcmSJSlZsuSbboYm7OzsaNiw4ZtuhhBCCCGE+A9Jz70QQgghhBDvCUnuhRBCCCGEeE/IhFohhBBCCCHeEzLmXgBwf0mQpvE+6uBKdPi/msWzyZ/XJFU/tKyokfvjj/j35EXN4gHkrVLOJBVZokMfaRbPxj6fptVTILWCitZVY258N02zeACl5g8iJlrbSkbWNjY8vnxLs3i2ZUsQFfLw1TfMhNyFC2rfRlNUyzFBzNCgvzSLZ+9axyTVtR6s3PHqG76mQq0bEX7glGbxAPLX/YKQBZs0jVm4SzNNq/rYe9TTLJYQb4IMyxFCCCGEEOI9Icm9EEIIIYQQ7wlJ7oUQQgghhHhPSHIvhBBCCCHEe0KSeyGEEEIIId4TBiX3lStXfu3bbtiwgdDQ0Bden5ycTM2aNZk+fbohTXltixcvxt/fH4B27dpx/vx5k+5PC4qiMH78eJydnXF3d+fChQsZ3m7WrFnUq1cv3euyfPly1q1b9180VQghhBBCvAVM3nO/ceNGwsLCXnj9oUOHKF68ONu2beNFJfd1Op1RbUhOTmb9+vW4ubkZFee/duDAAW7fvs2OHTsYN24co0ePzvB2X331FWvXrk233cfHh+XLl5u4lUIIIYQQ4m2hWXJ/6dIlWrRogbu7Oz169CAqKopt27bxzz//MHDgQDw8PIiPj093v6CgINq3b0+hQoU4ffq0ut3JyYlp06bh5eXFtm3b+Ouvv2jZsiVeXl707t2buLg4AObOnYuPjw9ubm6MGDEiwwOEo0ePUr58eSws/lfWPyAgAA8PD9zc3Dh37hwAkZGRfP/997i7u9OiRQsuX75McnIyPj4+HDt2DIAZM2Ywa9asDJ+D3377DXd3d5o1a6aeicjoeQkJCaFRo0ZERESQkpLC119/zV9/pa+fvHv3bjw9PTEzM6NSpUpER0dneKBUqVIlChQokG67lZUVhQsXVh+fEEIIIYR4v2mW3A8ePJiBAwcSGBhImTJlmDt3Lo0bN8bBwYHp06cTEBBA9uzZ9e6TkJDA4cOHcXJyws3NjaAg/YWU8uTJw8aNG3F0dGT+/PksWrSIjRs34uDgwKJFiwBo27Yt69evZ/PmzcTHx7N3b/qFb06dOkX58uX1tsXHxxMQEMCoUaMYNmwYAHPmzKFcuXIEBgbSr18/hgwZgoWFBZMnT2b06NEcPnyYgwcP0qNHj3T72L9/P3v27GHNmjVs2rSJrl27vvB5KVy4MN26dWP06NEsXLiQTz75hDp16qSLGRoaSsGCBdXLBQsWfOkQp4w4ODhw4sSJTN1HCCGEEEK8mzRJ7mNiYoiJiaF69eoAeHl5vVZCuXfvXmrUqEH27Nlp1KgRu3bt0huC07RpUwDOnj3L9evXad26NR4eHvj7+3P/furKoseOHcPX1xd3d3eOHj3K9evX0+0nPDwcOzs7vW2urq4AVKtWjdjYWKKjozl58iQeHh4AODo6EhkZSWxsLKVLl8bDw4NvvvmGiRMnYmlpmW4fR44cwdvbGysrKyD1wORlz4uvry9xcXGsWrWKwYMHv/K5MlTevHlfOixKCCGEEEK8PyxefRPTCQoK4uTJkzg5OQGpw2KOHj1K7dq1AdREWVEUateuzcyZM/Xun5CQwJgxY1i/fj2FChVizpw5JCQkpNtPtmzZ0m03MzN76eXnXb16FRsbG/79918g9YBj5MiRAPTu3ft1H7Lq6dOnPHyYuiz8kydPyJUrFytWrGDNmjVA6hAfe3t79TYADx8+xN7ePlP7SUhIIFu2bJlunxBCCCGEePdo0nNvbW2NjY2N2isdEBBAtWrVAMiZM6c6Pv5ZsbGxnDhxgn379rFnzx727NnDyJEj2bx5c7rbVqpUiVOnTnHnzh0gNRm+deuWmrDb2toSFxfH9u3bM2xfqVKl1Pum2bJlCwAnTpzA2toaa2trqlatyqZNm4DUMwK2trbkypWLHTt2EBUVxfLlyxk/fjzR0dF8/vnnBAQEEBAQQIMGDahVqxYbNmzg6dOnQOqBysuel+nTp+Pu7k7v3r0ZMWIEAG3atFFj2tvb4+TkhL+/P4qicObMGaytrTMcW/8yt2/fpkyZMpm6jxBCCCGEeDcZ1HP/9OlT6tatq17u1KkTU6ZMYdSoUTx9+pSiRYsyadIkIHUoyqhRo8iePTurV69Wx93v3LmTmjVr6g1xadCgAdOmTSMxMVFvf3Z2dkyaNIn+/fur1/Xt25cSJUrg6+uLm5sb+fLlo0KFChm2t27duumGvmTLlg1PT0+Sk5OZOHEiAD179mTYsGG4u7tjZWXF5MmTiYiIYMaMGSxevJhChQrRpk0bJkyYwJQpU9Lt4/Lly/j4+JA1a1bq1atH//79M3xejh8/zvnz51m5ciXm5ubs2LGD9evX4+PjoxezXr167N+/H2dnZ6ysrNR2Anh4eBAQEADA1KlT2bx5s/q6+Pr60qtXLyB1vkHPnj1f9nIKIYQQQoj3hJnyovqT75kePXowaNAgihcv/qab8p+5ePEiixYtYtq0aa+87f0lQa+8TWZ81MGV6PB/NYtnkz8v0Y8iNIsHYJPPjqi79zWLl/vjj/j35EXN4gHkrVKOqHsPNI2Zu0ghokMfaRbPxj4fYdsOaxYPoEDjWjzckH5yvKEKen/Fje9e/TnIjFLzBxETHa1pTGsbGx5fvqVZPNuyJYgKefjqG2ZC7sIFtW/jnRDN4gHkLlbYJDFDg9JXNTOUvWsdIs5e0SwegN3nn/Jg5Q7N4hVq3YjwA6c0iweQv+4XhCzYpGnMwl2aERqwX7N49h71NIslxJvwwaxQO2DAAMLDw990M/5Tjx8/pk+fPm+6GUIIIYQQ4j/yRifU/pdKlixJyZIl33Qz/lNpE5OFEEIIIcSH4YPpuRdCCCGEEOJ9J8m9EEIIIYQQ74kPZkKtEEIIIYQQ77sPZsy9eDlTVBIJ23lUs3gFnGsSE/FYs3gA1na2PFy7W7N4BX0b8HD9Hs3iART0cdK06hCkVh4K/TdSs3j2efNwd9oKzeIBfDyoDVdbjdIsXplVYwjf87dm8QDyO1UzyWvzYPlWzeIVatvEJG0M23JIs3gFmtbWtGoVpFauirx1T9OYeUoU4Vr7cZrFK710BOH7TmoWDyB//SpcdMr8ooovUm7PbE2rVoHpKlddbTFcs3hl1oznwaqdmsUDKNTKWdN4QryMDMsRQgghhBDiPSHJvRBCCCGEEO8JSe6FEEIIIYR4T0hyL4QQQgghxHtCknshhBBCCCHeE5LcCyGEEEII8Z4wKrl//PgxHh4eeHh4ULt2bb788kv1cmJiot5tFy9ezNOnT18Zs127dpw/fz7d9r179+Lp6UmzZs1o2rQpq1atAmDOnDl6+50+fXqGcSdMmMDff6eWwnNyciIiIiKzD/c/l5iYSN++fXF2dsbX15d799KXdnvw4AHt2rWjadOmuLq6smTJEvW6KVOmcOTIkf+yyUIIIYQQ4g0yqs69ra0tAQEBQGqSnSNHDrp06ZLhbZcuXUqzZs2wsrLK9H6SkpIYMWIE69ato2DBgiQmJuoluh07dnzhfiH1IOTs2bP88MMPmd73m7R27VpsbGzYuXMnQUFBTJ8+nR9//FHvNubm5gwdOpTy5csTGxuLj48PtWvX5pNPPqFt27aMGDECR0fHN/MAhBBCCCHEf0rzYTlHjhzB09MTd3d3/Pz8SExMZOnSpYSFhdGhQwfatWsHwKhRo/D29sbV1ZXZs2e/NGZcXBw6nY48efIAYGlpScmSJV+7TTt27ODLL7/U2/bHH3/g7u5O8+bNuXPnDgD37t2jffv2uLu706FDB+7fv09MTAwuLi7cvHkTgP79+7NmzZp0+9DpdEyZMgU3Nzfc3d1ZtmzZC5+Pc+fO4e7uTkJCAk+ePMHV1ZWrV6+mi7lnzx68vLwAcHFx4ciRIzy/oHCBAgUoX748ALly5aJkyZKEhoYCULhwYSIjIwkPD3/t50oIIYQQQry7NE3uExISGDp0KLNmzSIwMBCdTseff/5J+/btKVCgAEuWLFGT3n79+rFhwwY2bdrE33//zeXLl18YN0+ePDg5OfHVV1/Rv39/Nm3aREpKinr94sWL1WE5Bw8eTHf/U6dOqQlwGmtrawIDA2nbti0TJ04EYPz48Xh5eREYGIi7uzvjx4/H2tqakSNH4ufnR1BQEFFRUbRo0SLdPlavXk1ISAj+/v7q/V/0fFSsWBEnJyd+/PFHpk2bRrNmzShTpky6mKGhoRQqVAgACwsLrK2tefz4xau03rt3j0uXLvH555+r28qVK8epU6deeB8hhBBCCPH+0DS5T0lJoUiRIpQoUQIALy8vTpw4keFtt27dipeXF56enly7do0bN268NPaECRNYvHgxFStWZOHChQwbNky9rmPHjgQEBBAQEJCuhx4gPDwcOzs7vW1ubm4AuLq6cubMGQBOnz6tbvfw8ODkydSlwWvXrk2ZMmUYO3YsEyZMyLB9R44coWXLllhYpI50ypMnD7du3Xrh89GjRw8OHTrEP//8Q9euXV/62F9HXFwcvXv3ZtiwYeTKlUvdnjdvXsLCwoyOL4QQQggh3n5vpFpOcHAwCxcuZPHixQQGBlK/fn0SEhJeeb9PP/2Ujh07snDhQrZv3/7a+8uWLdtrxX+RlJQUbty4Qfbs2YmKigJg586d6tmCjCYAv0pkZCRPnjwhLi5ObdusWbPUmAD29vY8ePAAgOTkZGJiYrC1tU0XKykpid69e+Pu7k6jRo30rktISCB79uyZbp8QQgghhHj3aJrcZ8mShZCQEHUMe0BAANWqVQMgZ86cxMXFAam9zFZWVlhbW/Po0SMOHDjw0rhxcXEcO3ZMvXz58mUKFy782u0qVaoUd+/e1du2detWALZs2ULlypUBqFy5MkFBQQAEBgZStWpVIHXYT6lSpZgxYwZ+fn4kJSXh7Oysni2oUKECtWrVYvXq1SQnJwOpyXuJEiVe+HyMHDmSPn364O7urlb46devnxoTUqv6bNy4EYDt27dTs2ZNzMzM9B6Hoij88MMPlCxZkk6dOqV77Ldv36Z06dKv/VwJIYQQQoh3l1HVcp6XLVs2Jk2aRJ8+fdDpdDg4ONC6dWsAWrRoQdeuXSlQoADLli2jXLlyNGnShIIFC/LFF1+8NK6iKPzxxx+MHDmS7NmzY2VlxaRJk167XfXr12fVqlX4+vqq26KionB3d8fS0pKZM2cCMGLECPz8/FiwYAF2dnZMmjSJmzdvsnbtWtauXUuuXLmoVq0a8+fPp3fv3nr78PX15fbt2zRr1gwLCwtatGhB27ZtM3w+/P39yZo1K+7u7uh0Olq1asWRI0fSVbVp3rw5gwYNwtnZmdy5czNr1iwgdSz+8OHD+f333zl58iQBAQGUKVNG7fHv378/9erVIykpiTt37uDg4PDaz5UQQgghhHh3aZbc9+rVS/3b398/3fXt2rVTK+UATJ48OcM4aRNun5UrVy5+//33V+73RapWrcqMGTOIjo7GxsaGPXv2ADBo0CC92xUuXJilS5emu39aLz+An59fhvuwsLDAz88v3fWOjo7png9PT088PT2B1FKWa9euzTBmtmzZMqwkZG9vrz4fVatW5cqVKxnef9++fbi4uKjzAIQQQgghxPvtg1mhdujQody/f/9NN+M/lZycTOfOnd90M4QQQgghxH/kg+nSfbY85IeiSZMmb7oJQgghhBDiP/TB9NwLIYQQQgjxvpPkXgghhBBCiPeEmaIoyptuhBBCCCGEEMJ4H8yYe/Fyd0b/oWm8YqO7En7glGbx8tf9guhHEZrFA7DJZ0fE2YwrDRnC7vNPebB866tvmAmF2jYhJjpa05jWNjZcu6fdqsWlixTg9qiMq1kZqviYbtzsn75SlKFKzuyt6fsRUt+Tjx5HaRozn21u7v28TrN4RXo0JzIqRrN4AHlyWxO286hm8Qo41yT6fqhm8QBsPrIn8mawpjHzlCyq6fu8+JhuhG05pFk8gAJNa3O980TN4n2ycBgP1+/RLB5AQR8n7oxfrGnMYsM7cmvAHM3ilZjRi4cb92kWD6CgV32ud8u4SqAhPvl9qGaxxPtHhuUIIYQQQgjxnpDkXgghhBBCiPeEJPdCCCGEEEK8JyS5F0IIIYQQ4j0hyb0QQgghhBDvCUnuDTR//nxcXV1xd3fHw8ODs2fPvvC2Q4cOZdu2bS+NN3ToUJycnPDw8MDLy4vTp09neLuffvqJw4cPG9V2IYQQQgjxfpJSmAY4ffo0+/btY+PGjVhaWhIREUFSUpLRcQcPHkzjxo3566+/GDlyJIGBgXrX63Q6+vTpY/R+hBBCCCHE+0mSewOEh4dja2uLpaUlAHZ2dgDMnTuXvXv3kpCQQOXKlRk7dixmZmZ69/3nn3+YPHkyT548wdbWlkmTJlGgQAG921SrVo27d+8C4OTkRJMmTTh8+DBdu3bl4MGD1K9fn8aNG3Pu3DkmTpzIkydPsLS0ZPHixVhZWTF9+nSOHz9OYmIibdq0oVWrVv/BsyKEEEIIId40GZZjgNq1a/PgwQNcXFwYPXo0x48fB6Bt27asX7+ezZs3Ex8fz969e/Xul5SUxPjx45k9ezYbNmzAx8eHWbNmpYu/Z88eypQpo17OkycPGzduxNXVVd2WmJhIv379GDZsGJs2bWLx4sVkz56ddevWYW1tzfr161m/fj1r1qwhOFjbxVyEEEIIIcTbSXruDZAzZ042bNjAiRMnOHbsGP369WPAgAHkzJmTP/74g/j4eCIjIyldujROTk7q/W7dusXVq1fp1KkTACkpKeTPn1+9furUqcyfPx87OzsmTJigbm/atGm6Nty6dYv8+fNTsWJFAHLlygXAoUOHuHLlCtu3bwcgJiaGO3fuULRoUe2fCCGEEEII8VaR5N5A5ubm1KhRgxo1alCmTBlWr17NlStXWL9+PYUKFWLOnDkkJCTo3UdRFEqXLs3q1aszjJk25v55VlZWr90uRVEYPnw4X375ZeYekBBCCCGEeOfJsBwD3Lx5k9u3b6uXL126RIkSJQCwtbUlLi5O7Tl/VokSJYiIiFAr4SQlJXHt2jWD2lCiRAnCw8M5d+4cALGxsSQnJ1OnTh1WrlypTvC9desWT548MWgfQgghhBDi3SI99wZ48uQJ48ePJzo6GnNzc4oVK8bYsWOxtrbGzc2NfPnyUaFChXT3s7S0ZPbs2YwfP56YmBh0Oh0dOnSgdOnSmW6DpaUls2bNYvz48cTHx5M9e3YWLVqEr68vISEheHt7oygKtra2zJs3T4uHLYQQQggh3nKS3BvAwcGBVatWpdver18/+vXrl2775MmT1b8/++wzVqxY8dLbPGvPnj0vvF3FihVZs2ZNuvv079+f/v37v/gBCCGEEEKI95IMyxFCCCGEEOI9Icm9EEIIIYQQ7wlJ7oUQQgghhHhPSHIvhBBCCCHEe8JMURTlTTdCCCGEEEIIYTypliMAuDN+sabxig3vSPi+k5rFy1+/CtHh/2oWD8Amf14izlzWLJ5dpbI8WLVTs3gAhVo5E/M4UtOY1rZ5uHI3VLN4n35sz+3hv2oWD6D4+G+4NWCOZvFKzOjFo0NnNIsHkK92JcIiojSNWcAuN/eXBGkW76MOrkRGxWgWDyBPbmvCth/RLF4BF0eiH4ZrFg/ApmB+Im8GaxozT8mi3Bn9h2bxio3uSmjQX5rFA7B3rcP1bhlXXjPEJ78P5eH6Pa++YSYU9HHizrhFmsYsNqITN/v8qFm8kj/15eHGfZrFAyjoVZ9rHcdrFq/04uFcapS+Op8xPtsxS9N44s2RYTlCCCGEEEK8JyS5F0IIIYQQ4j0hyb0QQgghhBDvCUnuhRBCCCGEeE9Ici+EEEIIIcR7QpJ7IYQQQggh3hOaJffz58/H1dUVd3d3PDw8OHv27EtvP3ToULZt2/bK2zg5OeHh4YGXlxenT5/O8HY//fQThw8fNrjtaeLj42nbti06nY5jx47xzTffGB3zv/DPP//g7u6Os7Mz48ePJ23pgilTpnDkiHYl64QQQgghxNtNkzr3p0+fZt++fWzcuBFLS0siIiJISkrSIjSDBw+mcePG/PXXX4wcOZLAwEC963U6HX369NFkX+vXr8fZ2Rlzc3NN4v1XRo8ezbhx4/j888/p1q0bBw4coF69erRt25YRI0bg6Oj4ppsohBBCCCH+A5r03IeHh2Nra4ulpSUAdnZ22NvbAzB37lx8fHxwc3NjxIgRZLQg7j///EPbtm3x9vamS5cuhIWFpbtNtWrVuHv3LgBOTk5MmzYNLy8vtm3bpncW4Ny5c7Rq1YpmzZrRvHlzYmNj0el0TJkyBR8fH9zd3Vm1alWGjyMwMJAGDRqol2NjY+nevTsuLi6MHDmSlJQUADZv3oy7uztubm5MmzYNgJ07d9KhQwcURSEsLAwXFxfCw9MvzHLnzh06duxIs2bN8PLy4u7duyiKwpQpU3Bzc8Pd3Z0tW7YAMH78eObOnQvAwYMHadOmjdqGNGFhYcTGxlKpUiXMzMzw9PRk9+7dABQuXJjIyMgM2yGEEEIIId4/mvTc165dm59//hkXFxccHR1p2rQp1atXB6Bt27b07NkTgEGDBrF3716cnJzU+yYlJTF+/HjmzZuHnZ0dW7ZsYdasWUyaNElvH3v27KFMmTLq5Tx58rBx40YgNfEFSExMpF+/fsyaNYuKFSsSGxtL9uzZWbduHdbW1qxfv57ExERatWpF7dq1KVq0qBovMTGR4OBgihQpom47d+4cW7Zs4aOPPqJr167s2LGDypUrM336dDZs2ICNjQ2dO3dm165dODs7s337dlasWMHBgwfp1asX+fPnT/dcDRw4kO7du+Ps7ExCQgIpKSns2LGDy5cvExAQwOPHj2nevDlVq1ZlwIAB6t/jx4/n999/J0sW/eOx0NBQChYsqF4uWLAgoaH/W320XLlynDp1ChcXl9d8NYUQQgghxLtKk+Q+Z86cbNiwgRMnTnDs2DH69evHgAED8Pb25tixY/zxxx/Ex8cTGRlJ6dKl9ZL7W7ducfXqVTp16gRASkqKXlI8depU5s+fj52dHRMmTFC3N23aNF07bt26Rf78+alYsSIAuXLlAuDQoUNcuXKF7du3AxATE8OdO3f0kvvHjx9jbW2tF69ixYrqbVxdXTl58iQWFhZUr14dOzs7ANzd3fn7779p2LAhI0aMwM3NjUqVKuHm5paufbGxsYSGhuLs7AxAtmzZADh58iSurq6Ym5uTL18+qlWrxvnz52nQoAHjxo2jbdu2+Pn58fHHH7/W6/GsvHnzZngmRAghhBBCvH80Se4BzM3NqVGjBjVq1KBMmTL4+/vj6urKmDFjWL9+PYUKFWLOnDkkJCTo3U9RFEqXLs3q1aszjJs25v55VlZWr902RVEYPnw4X3755Qtvkz17dhITE/W2mZmZvfTy8x4+fEiWLFl49OgRKSkpZMmSBT8/Py5evEiBAgWYNWvWa7c5zdWrV8mTJ4+aoOt0Ory9vYHU4UmtW7fm4cOHem1IGxIFkJCQQPbs2TO9XyGEEEII8e7RZMz9zZs3uX37tnr50qVLfPTRR2oib2trS1xcnNpz/qwSJUoQERGhVsJJSkri2rVrBrWjRIkShIeHc+7cOSC1pzw5OZk6deqwcuVKdZLvrVu3ePLkid59c+fOjU6n0zv4OHfuHMHBwaSkpLB161aqVKlCxYoV+fvvv4mIiECn0xEUFES1atVITk5m2LBhzJgxg1KlSrFo0SIAJk2aREBAAL///ju5cuWiYMGC7Nq1C0gdCvT06VOqVq3K1q1b0el0REREcOLECSpWrEhISAiLFi1i48aNHDhwgLNnz2Jubk5AQAABAQH06dOHAgUKkCtXLs6cOYOiKPj7++vNG7h9+zalS5c26PkUQgghhBDvFk167p88ecL48eOJjo7G3NycYsWKMXbsWGxsbPD19cXNzY18+fJRoUKFdPe1tLRk9uzZjB8/npiYGHQ6HR06dDAoIbW0tGTWrFmMHz+e+Ph4smfPzqJFi/D19SUkJARvb28URcHW1pZ58+alu3/t2rU5efIktWrVAqBChQqMGzeOO3fuUKNGDZydncmSJQsDBgxQJ8/Wq1ePhg0bMnfuXKpWrUrVqlUpW7YszZs3p379+pQqVUpvH1OnTmXkyJH89NNPZM2alZ9++glnZ2dOnz6Nh4cHZmZmDBo0iHz58tGpUycGDx6Mvb09EyZMwM/Pj3Xr1qnDedKMGjUKPz8/4uPjqVu3LnXr1gVSD5Tu3LmDg4NDpp9LIYQQQgjx7tEkuXdwcHhhBZp+/frRr1+/dNsnT56s/v3ZZ5+xYsWKl97mWXv27Hnh7SpWrMiaNWvS3ad///70798/4wfw/9q0acPixYupVasWNWrUyLBNAG5ubunG1KdNGobUsf4vquFfvHhxli5dmm77kCFDGDJkiN62xYsXq387ODikKwOapkKFCmzevDnd9n379uHi4oKFhWajr4QQQgghxFtMVqh9Rvny5alRowY6ne5NN0UTycnJdO7c+U03QwghhBBC/EekS/c5zZs3f9NN0EyTJk3edBOEEEIIIcR/SHruhRBCCCGEeE9Ici+EEEIIIcR7wkxRFOVNN0IIIYQQQghhPOm5F0IIIYQQ4j0hyb0QQgghhBDvCUnuhRBCCCGEeE9Ici+EEEIIIcR7QpJ7IYQQQggh3hOS3AshhBBCCPGekOReCCGEEEKI94Qk90IIIYQQQrwnLN50A8Tbp3PnzixcuBCAX3/9lW+++cbomMuXL6dt27YAXLt2jdKlSxsdU2szZ86kf//+ABw6dIjatWubdH9z586lZ8+emb7fwYMHefjwIY6OjhQpUkTdvm7dOpo3b25Um06dOkVISAg6nU7d5unpaVRMre3bt49r166RkJCgbjPkedQ65n/9/jHEuHHjMDMze+H1w4cPz3TMd+GzbQo7duygUaNGAERFRZE7d+63LqYp3pP379/no48+MjrOyzx58oRs2bJhbm5u0v0Y4vz585w8eZLQ0FCyZ89O6dKlqV27tlGv1b///supU6cICwsjW7ZslClTBgcHB7JkeXv6X9+FNor/keRepBMREaH+vW3bNk2S+/Xr16sJwODBg9m4caPRMQFu3brFggULuH//PsnJyer2pUuXZjrWwYMH1R/C6dOnmzw5W7dunUEJ5MmTJylXrhy//vorHTp0oF27dgCsWLHCqOR+0KBBBAcHU7ZsWfVH1czMzODk/vbt28ycOZPr16/rJc27d+82uI0jR44kPj6eY8eO4evry/bt26lQoYLB8bSMacr3T0REBL///nu65zKz73MHBwfN2pTGVJ9t0O5xpzl58iRz585Vvy8URcHMzMyg9+T8+fPVRLxjx46aPG6tY5riPdmjRw+1Xb169WLOnDlGx0xJSSEoKIjAwEDOnz+PpaUliYmJ2NraUq9ePVq1akWxYsUyFfP06dNs2rSJEydOEB4eribi9evXp1mzZlhbW2cq3vr161m+fDlFihShfPnylCxZkoSEBE6dOsUff/xB6dKl6dOnT6YOfI4ePcrvv/9OZGQk5cqVw87OjsTERHbt2kVwcDAuLi507tyZXLlyZaqtACEhIdy5c4datWoRHx9PcnKyQXFM2UZhOpLci3Re1rOnBUVRNIvVp08fWrVqRYsWLd7KHoQvvvgiw+2KouglK69r7969bNy4EQsLC3r16sWAAQMIDg5m2LBhRj+v//zzD1u2bNHs9ffz86N3795MnDiRpUuXsmHDBlJSUoyKefr0aQIDA3F3d6dnz5506tSJbt26vXUxtTZw4ECaNGnCvn37GDNmDBs3bsTOzi7Tcby8vEzQuv/R8rMN2j3uND/88AN+fn6a9Dg++1i1etymiKm1Z9sVHBysScz27dvj6OhI//79KVOmjPraREZGcuzYMaZPn07Dhg3x8PB4rXhdu3alQIECNGjQgG+//Za8efOSkJDA7du3OXbsGN9//z0dO3akQYMGr93G+Ph4Vq5cSfbs2TO8/tKlS9y5cydTyf3+/fsZN25chvdJTk5m3759HDp0CBcXl9eOCbBmzRpWr15NVFQUu3bt4uHDh4waNYolS5ZkKo4p2yhMS5J7kU5wcDDffvttur/T/PLLL5mOGR0dzc6dO0lJSSE2NpYdO3boXZ/WW5VZFhYWfP311wbd93n//vsvixYtQlEU9e9nderUKdMxbWxsWLduHfny5Ut3Xb169TIdLzk5GQsLCzX2L7/8wogRI+jduzdJSUmZjves0qVLEx4eToECBYyKkyYhIQFHR0cAChcuTK9evfD29qZPnz4Gx0z7YbWysiI0NBRbW1vCw8ONaqdWMU3x/kkTGRmJr68vS5cupXr16lSvXh0fHx+D42nZI26qzzZo/7itra0N+txlJD4+nosXL5KSkkJCQgIXL17US3zLly//xmOa4j357MG/Vh0BixYtImvWrOm258mTBxcXF1xcXDL1/TZ16tR0B4EWFhaUL1+e8uXL07lzZ70z1K+jTZs2L73+s88+y1Q8gCFDhrzwOgsLCxo2bJjpmJB6Fnft2rW0aNECgOLFi2f68Zq6jcK0JLkX6cybN0/9u3PnzprErF69Onv27AGgWrVq7N27V+/6zCYAkZGRAHz11VesWLECZ2dnLC0t1evz5MmT6Ta2aNGCuLi4dH8bw8PDg/v372eY3Lu5uWU63scff8zx48epXr06AObm5kycOJFZs2alS6peV9rBW1xcHK6urlSsWFHvh9aQgzkAS0tLUlJSKFasGMuXL8fe3t7o57R+/fpER0fTpUsXvL29MTMzM3qegVYxTfH+SZN2QFegQAH27dtHgQIFiIqKMjielj3iWn+2n6XV475w4QIANWrUYMqUKTRq1Ejv+8KQRDx//vxMmjQJgHz58ql/Q2rSa8iBktYxTfGevHz5Ml988YV69jHt77Q2njp1KtMxs2bNiqIonDt3jtDQUADs7e2pWLGiegCRUfL/Imnv5UePHunFe/Z72JgzQM8zdP4UwI0bNwgLC6NixYrkzJlT3X7gwAHq1q1rUExLS0u99/ezQ1YNcfDgQXbt2qX3XDZo0MDg9gnTM1Pe1nN/4q2RlJTEtWvXsLe3J2/evG+6OQA4OTlhZmaW4alrQ8fQvgvi4+MBMjw1HBoair29faZjHj9+/KXXpx1IZNa5c+coVaoUMTEx/PTTT8TGxtKlSxcqVapkULznJSYmkpCQkOmxs/91TC3s3buXqlWr8uDBA8aNG0dcXBw9evTI1LCCZ3l7e7Nhwwbc3d0JDAwEwMfHh/Xr12vZbKNp9bjT5qVkxNBEXGjnr7/+YsyYMRQrVkz9Dnv48CF3795l1KhR1KlTJ1PxLl26xKhRo4iJidGLZ2Njw6hRoww6mHuZ+vXrs2/fvkzfb+nSpaxYsYJSpUpx+fJlhg0bpvaEe3l5GTznYurUqdjY2ODv78+IESP4888/+eSTT+jXr1+mY02YMIHbt2/j6empPpehoaH4+/tTrFgxgybhi/+AIsRzRowYoVy9elVRFEWJjo5WmjRpori5uSl16tRRAgMDDYq5e/du5d69e+rlOXPmKO7u7so333yj3L17V5N2G2v16tXKrVu3FEVRlJSUFGXo0KHKF198obi5uSkXLlx4s437D9y9e1eJj49XLz99+lQJDg42Ou6TJ0+MjvFsrLlz5yo//PCDoiiKcuvWLWXPnj1vRcx36f3j6+urKIqidO7cWdm7d69y4cIFpUGDBgbFehc+26Zw9uxZJSwsTL28ceNG5dtvv1XGjRunPH78+K2IaYr35JMnT5TExET18o0bN5RFixYpO3bsMCieoihK48aNM/yuuXv3rtK4ceNMx2vWrJly5syZdNtPnz6tuLu7G9TGypUrZ/i/UqVKymeffWZQTDc3NyU2NlZRFEUJDg5WvLy8lMWLFyuKoigeHh4GxVQURdHpdMrq1auVXr16Kb169VJWr16tpKSkGBSrUaNGGW5PSUlRnJ2dDW6jMC1J7kU6TZs2Vf9etGiR8t133ymKoihhYWEGf+G4ubmpSd6ePXuURo0aKefPn1fWrFmjdO7c2eC2Ll++XImKilIvR0ZGKsuXLzcolqurq/qjtWnTJsXLy0uJiIhQDh06pLRu3drgNr4rvLy8lISEBPVyQkKC4u3tbXC8U6dOKU2aNFHq1aunKIqiXLp0SRk1apRRbezTp4/y22+/Ka6uroqipCYazZo1eytimvL9c/PmTaV9+/ZqGy9duqT8/PPPmY6T1r49e/Yo0dHRypUrV5S2bdsqXl5eyq5duwxqm6k+24qi3eNOM2PGjHTfFzNnzjQolqenp5pwHz9+XKldu7aybds2ZdasWUqvXr3eipimeE9+/fXX6gHD7du3lWrVqiljx45V2rdvr0ybNs2gmM7OzkpSUlK67QkJCUrDhg0NivcihsRTFEWpV6+eEh4enuF1devWNSjms7+1iqIosbGxSufOnZWJEyca9b0WFxenJCcnq5eTk5MN7mRxc3NTzp49m2772bNnFTc3N4PbKEzr7SsvIt64Z8c2Hj58WD1NmD9/foNjmpmZYWVlBaTWcvbx8cHBwQFfX1+DJ/pAalUAGxsb9XLu3LlZu3atQbHMzc3Vx75v3z48PDywtbWlVq1aPH361OA2vit0Op3eOE1LS0ujJulOnDiRBQsWqPMfypYty4kTJ4xq4927d+nWrZs6FtvKysroqiJaxTTl+2fEiBEMGDBAbWPZsmXZsmVLpuPUrVuXH374gezZs5MrVy7KlCnDsmXL2LBhg8FDfEz12QbtHneaAwcOpPu+OHDggEGxdDqd+t7esmULLVu2xMXFhb59+3Lnzp23IqYp3pPR0dEUL14cgI0bN+Lq6sqIESP4/fff2b9/v0ExfXx8aN68Ob/99huBgYEEBgby22+/0aJFC4Pmv9StW5fu3buzZcsWTp06xalTp9iyZQvdu3fnyy+/NKiNafOnMmLI/CmAvHnzcunSJfVyzpw5+fXXX3n8+DFXr141KCakllFNG8IJqcM5DZ3QP3nyZMaNG0fTpk3p3LkznTt3pkmTJowfP15vToh4u8iEWpGOtbU1e/fuxd7enlOnTjFhwgQgdVLOs18YmaEoCnFxcVhZWXH06FG9CjeGlIRMk5KSotaqhtQfR0MT0ixZshAWFkbu3Lk5cuSIXpUgQx+31ovSmGLhnDR2dnbs3r1bTfJ27dqFra2tUTELFSqkd9nY8oOWlpbEx8err/fdu3f1DkjeZExTvH/SPH36lIoVK+ptM2SBny1btrB9+3bmzZvHkCFDaNSoEW5ubkbNgzDVZxu0e9xpdDodiYmJ6usbHx9PYmKiQbFSUlLU6lVHjhxh3Lhxevt5G2Ka8j0JqTXQu3btCqR+jgytnvPNN9/QsGFDdu/ezZkzZ4DUSZvTp0/nk08+yXS84cOHs3//fnbv3k1YWBiQOim7TZs2BldLetl49UGDBhkUc+rUqenezxYWFkydOpWWLVsaFBNSP3fPTs7NmTOnwQdz5cuXZ+3atYSHh+tNqDWms0+YniT3Ip2xY8cyfvx4Hj16xLBhw9QP8ZEjR6hfv75BMTt06ICnpye5cuWiZMmS6iJBFy9eNOpLok6dOvTt25dWrVoBsGrVKoN7Znr37o2Pjw8pKSk4OTmpK20eP36cokWLGhRT60VpTLFwTpoxY8YwcOBANaEoWLAgU6dONTheoUKFOHXqFGZmZiQlJbF06VJKlSplVBt79epF165defDgAQMGDOD06dNG9x5pFdMU7580tra23L17V02etm3bZtDnxtbWllatWtGqVStCQ0PZtm0bkyZN4t9//8XV1dWgCXem+myntVeLx53G3d2dDh064O3tDcCGDRsMXqTN1dWVtm3bYmtrS/bs2alatSoAd+7cMXhBH61jmuI9+emnnzJlyhTs7e25e/euujBWdHS0QfHSlCpVSu/74cKFCwYl9mnq1aunl8iHh4e/dQlpwYIFX3hdlSpVDI5rZWXFhQsX1InD//zzzwvr87+u/Pnzq8/fnDlz6NWrl1HxhGlJtRzxnwkNDeXff/+lbNmyag9uWFgYycnJBi9nrigKq1at4siRIwDUqlULX19fg3v3kpOTiYuL0+sRf/LkCYqi6PWEvC5PT0/8/f3T/W0oreOl0el0TJ8+nSFDhqjl8gx5vM+KiIhgwoQJHDlyBEVRqF27Nj/88IPBZwNSUlLYtm0bjo6OnD17FkVR+Pzzz40qaad1TK3fP2mCg4MZMWIEp0+fxsbGhiJFijB9+nQKFy5scExILX+6c+dOFi1aRHh4OIcPHzYojik+26Dt41YUhYcPH3Lt2jW97wtDOwMAzpw5Q3h4OLVr1yZHjhxA6qrZT548Mbgii9YxtX5PxsfHs3TpUsLCwmjevDlly5YF4NSpU9y9e9fgg6XnGVMt5r+IZ+rY33zzDb/++qtB9z137hz9+/enQIECKIrCo0ePmDVrlmYrVJvyuRQa+e+H+QuhjeTkZMXFxeVNN+OlXFxclAsXLijnz59XGjdurFy4cEH5559/1P9vOt6z0iqoaCE5OVnp37+/ZvHSeHl5vRMxtZScnKxMnjxZUZTUiXIxMTFGxYuPj1e2bNmi9OjRQ6lVq5YyZMgQZf/+/XoT8N4GWj9uRVFkAuA7xJhqMf9FPFMLDQ016v6JiYnKlStXlCtXruhVN9LCu/ZcfohkWI54Z5mbm1OiRAnu379vVO+gKWm9KI0pFs5J89lnn/Htt9/SuHFjtccQDFuEyNzcnPv37+uNb9ZCrVq1WLBgAU2bNlUncYJhi5aZMqaWzM3NOXnyJIDe62KIAQMGcPjwYapVq4a7uzszZswgW7ZsWjRTc1o+7jTlypXj3Llz6cbxi7ePoYtCvYivr68mcV62MJYx0hZmTPveMWSl8CNHjuDo6JhuQcPbt28Dxi0o96wNGzYAaP79LrQjw3JEhtKGKzRt2vRNN+Wl2rRpw8WLF6lYsaJeYmbIqqonT56kSpUqH+wXlp+fX4bbDR3TPnjwYG7cuIGTk5NecmZo1QZIXbzsecYuWmaKmFobNWoUoaGhRh94+fv707BhQ4PHhP/XtHrcaRo3bszdu3f56KOP9L4v0hbyEm/W2rVr9ZJwnU7H/PnzDU70Dx8+TK1atfS2bdy4ES8vr0zHMsXCWPfv32fatGkcOXIEGxsbFEUhNjaWmjVrMmDAAIoUKZKpeLNnz6Z3796af5dD6kJwkyZNUtt07tw5hg8fzqZNmwyOKUxHknvxQmmrWGpFp9Ph6urKtm3bNIv5otVVDVlVNe3xajme8Ny5cxQqVEidiOTv78/27dspXLgwPXv2zHTvsNbxTGnu3LkZbte6R84UB2PGxgwNDSUkJESvwkm1atUMjmeKH2tT0Ol0PHr0SO9xG3NWTevHHRISkuF2Y+YuTJs2LV21lIy2Zcb+/fvTVXVZuXIlrVu3zlScCxcuvPR6rVdqNdaAAQOIjo5mwoQJREVFMXToUKpXr86QIUMMitemTRs++eQThgwZwpMnTxg+fDiWlpbMnj0707E8PDwYO3Ysn3/+ud72M2fOMHLkSIOS3JYtW9KhQwdcXFzUeWI6nY5t27axZMkS1qxZk+mYpuqYO3jwIBMmTKBdu3aEhYVx4MABxo8f/9a9h0QqSe7FC02fPh1bW1tNhyt89913jBgxQtNhNI8ePeL8+fMAVKxYkbx58xoUp0WLFnz66afs3r07wy9GQ5bZ9vLyYtGiReTJk4e///6bfv36MWLECC5dusTNmzcz/SOjdbxnPXz4kHHjxnHq1CkAqlatyg8//PDSig6ZkZCQwJ49e2jSpInRsRRF4ejRowQGBrJv3z6DJ4KaIua0adPYunUrpUqV0pvYbcjZpJd524aXLFu2jLlz55IvXz69kqda94ob+7gvX76srrdQtWpVdUKooTLqDHB3dzfqcbdq1Yo+ffrg6OgIwO+//86xY8f4448/MhWnXbt2L7zO2GF8t27dYsGCBdy/f5/k5GR1uzExIbVc65gxY8iRIwfTp083qmqMoigsXLiQ1atXA6nVgwytSd+oUaN0w13SODs7s3PnTk1jvuy6V9G6Yy7NsWPH6Ny5M7a2tmzcuPGtqz4k/kfG3IsXSlssZsWKFeo2Y4crREdH4+rqqskwmrQ2Tps2jerVq6MoCuPGjWPw4ME0btw407F++eUXjhw5wl9//aVZb8SLFqVxcXHBw8Pjjcd7lp+fH25ubvz0008AbNq0CT8/PxYtWmRwTJ1Ox19//cXmzZs5fPgwVapUMSq5P3PmDJs3b2bXrl1ERUUxcuRIg3v1TBVz165dbNu2zSRDu65fv87mzZsJCgrC2traJD/ghlq6dCnbtm0zem2EjGj1uJcsWcLatWtxdnYGUuuTt2jR4qVJ8Iv8+eefrFy5kuDgYNzd3dXtcXFxVK5c2aD2pZk3bx7ffvstWbNm5eDBg9y8eZN58+ZlOs6yZcuMasfL9OnTh1atWtGiRQuj169Ic/v2bZYuXYqLiws3btwgICCAcuXK6f1WZEZUVBTnzp2jaNGihIaGcv/+fb11UTIjbWEsT09PtcPj4cOH+Pv7G1xxqXz58owePRovLy+9mBs3buSzzz4zKCaYZh7Rzz//zLZt21i+fDlXrlyhXbt2DB061ODy2MK0JLkXL7Rnzx7NY/bp00fTeL/88gvr1q1Te+sjIiLo2LGjQcm9nZ0drq6ulCpVyujevDRaL0pjioVz0kRERODj46Ne9vb2ZsmSJQbFOn78OJs3b2b//v1UrFiRU6dOsWvXLoN/pGfOnMm2bdsoVKgQbm5u9OjRAx8fH4PGzpoyJkDRokVJSkrSLLm/d+8eQUFBbN68maxZsxISEsL69eszPR73WStWrMDd3V1drTUqKorNmzfTpk0bg2MWLFgQa2trg+//PFM87nXr1rFmzRp1/H63bt1o2bKlQcm9u7s7devWZebMmQwYMEDdnjNnTqOHx9nZ2TF//nw6duyIg4MDs2fPNniBqDRXr17l+vXreot2GVO20sLCQm/BMi18++23jBw5klq1aqEoCosWLaJ58+YEBQUZFK9ly5Z069aN5s2bEx8fz/Tp02ndujWrVq3KdCxTLIw1ZcoU1q1bx+zZs/ViOjk5GTUB2BQdc5GRkaxdu5bs2bNTuXJlvvzyS4YPHy7J/VtKknuRzqtOBRoz496QsfAvoyiK3jCcPHnyYOxIswIFCvDLL78QEhKid7rZkHG+Wi9KY4qFc9LkyZOHgIAA9bT15s2bDUpS6taty0cffUSrVq0YPHgwuXLlwsnJyeDEHlIn2hUvXpzWrVvj5ORk1GqYpowJqQvIeHp64ujoqJfgGzKsq2XLlsTGxtK0aVPmzJlD8eLFcXJyMirBBVizZo1eIp87d27Wrl1rUHKfdmanaNGitGvXjvr16+s9bkMmUJvqcYP+CrfGrHZrbW2NtbU1M2fOJCoqigcPHqDT6YiMjCQkJMSgs3+VK1fGzMxM7V1OSkri3r17bNu2DTMzM3XIXGbNnTuXY8eOcePGDerVq8eBAweoUqWKQcl9WlWXr776ihUrVuDs7Kz3ehtzYLNu3Tr1e8zMzIzOnTvz1VdfGRxv0aJF6hDQ7NmzM3z4cP7++2+D42m9MJalpSVff/215gdJpuiY++GHH3j06JG6RkTFihWNOqsrTEuSe5HO3r17X3q9Icl92o/W89J+xAz90apTpw5dunTB1dUVSO2xqFu3rkGx0nz//fdUqVIFR0dHo378IXWOgaOjo7ooTdpzkJKSwogRI954vGdNnDiRcePGMWnSJMzMzKhcubJBBzQuLi7s3r2brVu3Ym5uToMGDYxOmv/66y8OHTpEUFAQEydOpEaNGiQkJKhnMd6WmJBafSejCjyGyJs3r7pAVEREBMWLF9fkACQlJUVveIJOpyMpKcmgWGmLnn300Ud89NFHJCUlGRwrjaket7e3N76+vuqwnF27dumdrTLETz/9xIYNG/j444/VbYaOZz99+rRRbXmR7du3ExAQgKenJ5MmTeLRo0cGT/j19vZWD0AAFixYoF5nbO9wbGwsQ4YM4eTJk5iZmanzfgxlbW3NpEmT1IS+evXq9OjRw+B4z+vevbvmizkZU9Dh7NmzjBgxguDgYMqUKcPEiRONXhU8zdatW5k6daomQ2CF6cmEWvHO27Fjh1oPu2rVquoPt6E8PDwICAjQomnvjF27dnHnzh3KlClj1IqdaRRF4dixYwQFBbF//35iYmKYMGEC9erVM3rl28TERPbu3UtQUBAnTpzA0dGRGTNmvHUxtRITE8OOHTsICgri9u3bxMTEsGDBAqMmlU6ZMoX79+/TqlUrAFatWkWhQoUYOnSoVs02mikeN6RWkHn2+6JcuXJGxXNxcSEwMFDTORY7d+6kZs2a6jCn6Ohojh8/TsOGDQ2K17x5c9atW4e3tzdLly4lZ86cNGnSRNPKZVro1KkTbm5u6vyhTZs2ERgYaHAPca9evShdurQ61C4gIIDLly+/sJJXZmm5SrgWMb29vRkwYADVqlVj9+7drFu3Tu/gyxjNmjVj0aJF6YbASinMt9R/uGCWeEcMGTJE/XvDhg2axNy+fbv6d2RkpNHxbt26pXz77beKq6ur0q9fP+Xhw4dGx0wzc+ZMZd++fZrFe9uNGjVKadOmjTJ9+nTFx8dHmTt3rqbxExMTlT179ij9+/dXqlevrmnsmJgYZePGjW9FzN69eyuKkroKakb/tfDo0SNl2bJlSsuWLZW6desaHEen0yl//vmn0qtXL6VXr17KypUrjV6htmPHjkpUVJR6OTIyUuncubNRMdMY+7jPnDmjuLu7K5UqVVJatGihXLt2TZN2KYqi9OzZU3n06JFm8RRFUZo1a5ZumzGrgo4aNUqJiopS/vzzT8XZ2Vnx8PBQhg4dakQLFWX58uXpXu/ly5cbFTOjx53RtjcV73nGPt6MzJw50+D7enp6vvSyMZ7/DtPpdLLi81tMknuRzrM/Ilp9OTwbR4uYrVu3VlavXq3cuHFD+eOPP5QePXoYHTNNpUqVlE8//VSpUKGCUrlyZaVSpUpK5cqVNYv/tnF1dVUTuydPniheXl4m29fTp09NFvtNu3//vqIoinLv3r0M/2tNq5iPHz9WLl26ZHQcrRPSFzHkcXt5eSl//fWXkpCQoGzZskWzgw5FUZRz584pderUUTp37qx888036n9jZJQ0aZVIBQcHv7Wvd/v27RV/f38lOTlZSU5OVvz9/ZX27dsbHK9FixbK33//rV4+ceKE0qJFC6PaeOjQoXTbjO0Ey+hg8+jRo5mO4+TkpGzfvl39//xlY0yePFnp3Lmzsn79emX9+vVKly5dlClTphgVU5iOjLkX6WgxtvV5yjOjvxQNRoLFxcXRokULAEqWLGl0hZNnmWrc69sqa9as6twCKysrTV6fF8mePbvJYr9p33//PRs3bqRw4cKMGzfO6DkQr2LMwkvt2rVj/vz5JCcn4+3tTd68ealcuTLDhg0zOKa5uTn3799XJzCGhISY5LvEkMetKAq1a9cGoEmTJvz222+atWfo0KF069aNMmXKaFYS0sHBgUmTJqkTnFesWGFUed4OHTqola/SJiU/u80QWs7bSKPVvJ80o0ePZsiQIcTGxgJgY2PD5MmTjWrjzz//zPbt29MtjGXMb1Dfvn1p1qwZ3bp1IyEhgWnTpvHPP/+o9flfV/Xq1fXmzD1/2ZhiGEOGDNEbAtuyZUujh8AK05HkXqTz8OFDxo8fj6Io6t/PMqTqR3x8PBcvXiQlJYWEhAQuXryol0Rm9ofr+Rhp8dMuG/JD+PxqjmZmZtja2lKoUKFMx3rejh07mD59Ov/++y9K6hkzoyYSaxnv5s2benW67969q3dZ60WI3jYZrUZryAq1z76fDX1d/ysxMTHkypWLtWvX4unpSe/evfVec0P069ePr7/+mmrVqqEoCidPnmTs2LEatdg40dHRelXAnr9sTNKTPXt22rdvb1T7njdixAjmzZtH3759MTMzo3bt2owcOTLTcRISEnj69CmPHz8mKipKfY/GxsYSGhpqVBvr1KlD37599eZtGDtfp3Dhwpou9vbZZ5+xadMmNbk3tqIYwPLly1m4cKFaaciYhbHSrFmzhunTp9OqVSvi4uJwd3dn5cqVmY5jyhWrg4ODqVevnvpZiY+P5969e5pUsBLak+RepDN48GD1bwcHB01i5s+fX/3iyZcvn96XkCGVJZ6N93xMQytVZNSjExUVRVJSEjNnzjRqUZFp06bxyy+/aFa5QMt4aTWRTeXp06dGlcF8lru7O66urjRt2lSvOokxWrZsma46RUbbXsUUvdSQ2iO6bNkyOnbsqGnMsLAwtm7dSt++fY2Ol5KSQkxMDBs2bODs2bMADBs2DDs7O6Nja8GUPZpVq1ZlxowZajnVNMb0tOfIkYOBAwfy5MkTtSa/IVatWsWSJUsICwvT61nOlSsXbdu2NTgupP5OrFq1Sk1Ca9WqZVRtdkjtHf7hhx/01l+YPHmywUnrzJkz6dq1q168hQsX0q9fP4PbqOXCWGksLCzIli0b8fHxJCQkUKRIEaPOAj169IiZM2cSFhbGH3/8wfXr1zl9+rRRr0+fPn301gfIkiULffr0Yf369QbHFKYjyb1IR8shLmm0XinRFCsvvijm+fPnGT9+vN6CIJmVN29ezRJ7reMZM7zjZU6dOsXw4cN58uQJ+/bt4/Lly6xatYrRo0cbHPOXX35hy5Ytao9m06ZNadKkiToUJDPCw8MJDQ1Nd9YnNjaWp0+fZjres2dAnj/7AYafATE3N2fz5s2aJvfff/89Xbp0oUqVKlSsWJHg4GCKFy9ucLwsWbLwxx9/0LRpU6PqkqcZN27cS5OlzJ49NGWP5sWLF4HUlY7TGNrBkEarz06HDh3o0KEDy5YtM2ihrhfR6XS4urqybds2WrdurVncK1euqIk4pK6/cOnSJYPjHThwgP79++vFO3DggFHJvZYLY6Vp3rw5DRo0YN26dTx+/JhRo0axfft2Zs+ebVC8oUOH4u3trZ4FKV68OP369TMqudfpdHoHr5aWlkYPwxKmI8m9EK9QoUIFnjx5YlQMBwcH+vbtS8OGDfW+IA3tMdQ6nilMmjSJBQsW8N133wFQtmxZTpw4YVTMwoUL061bN7p168bt27eZN28e06dPNygB+Ouvv9iwYQMPHz7US/5y5syplxC8LlOeAfniiy8YO3ZsuuXkDe0dbtKkCU2aNFEvFy1alDlz5hjVRi2XvNfqjOF/wRQdDVp/dlq2bMnSpUvVGNWrV6dly5ZkzZrVoHjm5uaUKFFCb46FFlJSUoiKiiJ37txA6oJZxqy8rdPp9IbYxcfH663QawitF8YCmDBhAhUqVABSF1GcP3++USU2Hz9+TNOmTdW5JRYWFkbPB7Gzs2P37t00aNAASC2fbGtra1RMYTqS3AvxCo8ePTJ6yEVcXBxWVlYcOnRIb7uhybjW8Uzl+fkKWkw4DAkJYcuWLWzdupUsWbIYvBiPl5cXXl5ebN++HRcXF6PbZaozIIB68PLTTz+p2wzpHf7999/p1q3bC3vGDZlPk0bLJe+fP3uYtlCWsWskmMKSJUvw8fEhZ86cDB8+nIsXLzJgwADq1KljVFwtPztjxowhOTlZ7WXftGkTo0ePZsKECQbHjI6OxtXVlYoVK+odzBkzZr5z5860bNmSxo0boygK27dv59tvvzU4nru7Ox06dMDb2xuADRs2GLQq77NMsTBW2bJlMzz4MlSOHDl4/Pix+hk/c+aMumaCocaMGcPAgQMZN24ciqJQqFAhpk6dalRMYTqS3IsXOnnyJFWqVHnltvdFRglPZGQkp0+fNmqVRNB+WIAphxlopVChQpw6dQozMzOSkpJYunSp0UOJfH19SU5OpnHjxvz0008ULVrU6HY6Ojpm+GNt7I+hlrTqHU57/k3RM26KJe+vXr3K4MGD1cmgdnZ2TJkyhdKlS2u+L0OtX7+eDh06cPDgQSIjI5k6dSqDBw82KrnX6rOTttry+fPn9RYbcnR0pFmzZga3D1LHYGvN09MTBwcHjh49CsDcuXP55JNPDI7XvXt3ypYty5EjR4DU4WjGTvodNmwYpUuXVg+0AwIC8PPzM2phrNGjR6c7+BozZky6Yhava+jQoXz33XfcvXuXVq1a8fjxY72OAUN8/PHHrFmz5q0+0Bb/IyvUihfKaBlsQ5fGfr4SzfOMmXwWGhpKSEiI3unbatWqZTrO84/LzMyMPHnyUKFCBXVVvszSuqfUFD2vr6qSYuhY8YiICCZMmMCRI0fUUoQ//PCDUadyb968ScmSJQ2+f0ZMvYqlFhITE9m+fTshISEkJyer23v27PkGW6UvKSmJlStXajb0A6BVq1b07duXmjVrAnDs2DFmzZpl1PjmU6dOpfu+MKY3193dncDAQMaPH0+NGjVwdnY2euVSrT47ad/XXl5e/PTTT+ok9ODgYHr37m3Qd/mzHj16xPnz5wGoWLGiwd+TGVm9erVRvdfP27t3rybzQTJawdzYVc2bNWuWbqXXjLZlRnJyMrdu3UJRFEqUKGHU5/B533zzDb/++qtm8YT2pOdepHP69GlOnz5NRESE3rLfsbGxBo9/TKtEk5iYyD///MOnn34KpE6gcnBwyHQ93zTTpk1j69atlCpVSq3VDoYl96aYSJzW66RVT6nW8eB/p9HThlOkLf1ubAlMOzs7ZsyYYVzj/l9AQAAeHh7s37+f/fv3p7u+U6dOBse+e/eu3njznj17qs/B2+K7777D2tqa8uXLZ7pE57NeNcTBmCEVGfU+Gjv048mTJ2piD1CjRg2j5r8MGjSI4OBgypYtq35fmJmZGZXcOzg40LlzZ+7du8eAAQOIjY3VZHyzFp+dtL67wYMH0759e/VMV0hICBMnTjQq9pYtW5g2bRrVq1dHURTGjRvH4MGDady4sdHthtRKP1om97Nnz9Ykuc+ePTsnTpygatWqQOrZbGPX7zA3N+fu3bt6B1/P/p69rmfLuz7r9u3bgHbDNo0toypMT5J7kU5SUhJPnjxBp9Opp+AgtXyaobP304YV9OzZkw0bNqjJ/dWrV43qId21axfbtm0zKuExpe3bt/PVV1/p9aC9TfHgf2PFDx8+rNfb+Omnn+Ll5cXAgQMNipvRKeVcuXLh4OBAw4YNMxUrrXrNs+9HrWj1Y22qMyCQ+mO6YMECg++f5syZMxQqVAhXV1c+//xzTRcsM8XQj6JFi/Lzzz+rB1ubNm0yaijWP//8w5YtWzQtWzphwgQuXbpE0aJFsbKy4vHjx0YlzkePHmX58uXcunULSB1K1aZNG2rUqJHpWM920LRs2VLtnDE3N+fSpUt6B06Z9csvv7Bu3Tq1tz4iIoKOHTtqltxrPahAq3imWBjr2YMvRVG4f/++Qe+hZ8u7ZkSr5N6YstDivyHJvUinevXqVK9eHS8vLzXxS0lJ4cmTJ0YvAnLr1i01sQcoU6YMN27cMDhe0aJFSUpKemuT+ytXrqh/L1261OhkXOt4z0pbeChtTsWpU6dISUkxOF5CQgI3b95Uf+x37NhBkSJFuHz5MseOHcvUPIa0hXIyGoayePFig9sIqRPFBg8ebPSPtZaL7zyvcuXKXLlyRe+zY4hDhw5x6NAhgoKC2Lx5M/Xq1cPNzU2TMexa9T4+a+LEicyZM4devXoBUKVKFaMS59KlSxMeHk6BAgWMalea5ORkzM3NKV++PA8ePODw4cN8/PHHlCtXzqB4+/btY+zYsfTo0YOePXuiKAoXLlxg2LBhjBw5knr16mUqXkpKSoYHxM933BhCURS9YTh58uTRNCHX+vOk1YJqplgYy9HRkR07dnDz5k0gddV1Q37TTDkX699//1Vf77T9mGKYpNCGJPfihWbOnMmYMWPIkiULzZs3JzY2lvbt29O1a1eDY3766af88MMPao9eYGCgUQmLlZUVnp6eODo66n0ZGlP1Y+vWrXplAl+07X0zYcIEhg0bpv5oWVtbG5VIXblyhZUrV6oJXuvWrWnTpg1//vmn0auhPmvx4sVG1YAvW7Zsuh/rxYsXU7Zs2UzFMWW1nJMnT7Jx40YKFy6s9z7P7NkAc3Nz6tatS926dUlMTGTz5s20a9eOnj17arKokRa9j8/KnTs3w4cPJzY2FjMzM6Mn8T1+/Fit8PLsGGRDEsm0VUVz5MjB999/z4IFCyhXrhwXL17Ex8eH7t27ZzrmggULmDdvnt5777PPPsPBwYHx48dnOrnPnz+/yeZl1KlThy5duuDq6gqkDtOpW7euUTEHDRrEyJEjsba2pmDBgoSEhDBs2DCWLFliULwff/yRnj17YmFhQcWKFYmNjWXChAlGJcGmWBhrxYoVuLu7q697VFQUa9eupU2bNgbH3LdvH9euXSMhIUHdZsx74euvv6ZPnz40bdoUgIULF7Ju3TqTL4IoDCPJvXih69evkytXLjZt2kTdunUZMGAA3t7eRiX3kyZNYuXKlWoJv2rVqhm1CIqTkxNOTk4G3z8jv/32W7pEPqNtr+Phw4eMHz8eRVHUv5+V2YMQreM9y8HBgU2bNhETEwNgdLWYqKgonjx5osZ5+vQpkZGRmJuba3qmRavewmd74Iw5YDhz5gzjxo3j5s2bJCUlodPpsLKy4tSpUwa37ffffzf4vs9LTExk3759bN68mZCQENq1a4ezs7NRMSMiIsiVKxdr167l33//BQzvfXzWlStXGDJkCFFRUQDY2toyefJkypQpY1C8tDMAWliyZAk7d+4kLi6Opk2bsmfPHuzs7Hj69CnNmzc3KLkPDw/P8KCybNmyPHr0KNPxTFkvY8iQIezYsYOTJ08CqcN+jH0fValSBV9fX/z8/NShaEOGDDE4nk6no0WLFkycOJF///2XsWPHGr2YlykWxlqzZo1eIp87d26jkvuRI0cSHx/PsWPH8PX1Zfv27WodfUMtW7aMkSNHsm3bNv79919KlSrF2rVrjYopTEeSe/FCycnJJCUlsWvXLtq2bUvWrFmNHquaLVs2OnbsqNlqm88OS4mKiuLBgweZ7nFNs3//fg4cOEBoaKhe0hwbG2vw8ILBgwerf2sxCVbreM/Sesnyrl274uHhQY0aNVAUhb///ptvv/2WJ0+e4OjoqFm7tRw/ncaYpGjs2LHMmjVLXZrd399fndCWWd26dcPNzY2GDRtqUnpu8ODBXLt2jbp169KzZ0+Dk+RnrV27lpkzZ/Lxxx9z7949xo4dqy50Y6xRo0YxdOhQvWo5I0eONLhaTvXq1QkJCeHOnTvUqlWLp0+fGlwkIGvWrOTOnZvcuXPz8ccfY2dnB6SeTTS0MkmOHDkMuu5FjB2ylpHbt28zZcoUgoODKVOmDEOGDMHe3l6T2K1ateKTTz6hQ4cO2NrasnHjRvLnz29wvAEDBlCrVi1atGiBjY0NK1asoFixYka10RQLY6WkpKAoivpdptPpjFr99fTp0wQGBuLu7k7Pnj3p1KkT3bp1M6qNBQoU4Msvv+TXX38lS5YsDBgwQMphvsUkuRcv1LJlS5ycnChbtizVqlUjJCTE6PGFJ0+eZO7cudy/f1+vpJ8hC90AtGvXjvnz55OcnIy3tzd58+bliy++wM/PL9Ox7O3tcXBwYM+ePXqlOXPmzGlQPPjfwceLhvq86XjP0nrJcl9fX+rVq8e5c+cA6Nevn5oEZLY3rnLlyhkm8Yqi6J121oqxBwzFihVDp9Nhbm6Oj48Pnp6eDBgwINNxWrZsyZYtW5g8eTLVq1fHzc2NevXqGdwjvmnTJqysrLh9+7Ze7fy0xMKQswtLliwhKCgIOzs7goODGThwoGbJvdbVctasWcPq1auJiopi165dhIaGMmrUKIOGfcTHx3Px4kVSUlJISkri4sWLKIpi1Hvy7t27L6xoFBwcnOl4hqwO/CrDhg3D09OTqlWrsnfvXsaNG6dZ2Vh/f3/mz5/PlClTuHLlCt27d2fSpEkGd9j8/fffjB8/nh49enD16lXGjRvHhAkTjDoYMcXCWHXq1KFv377q3KJVq1YZVY8/rSCAlZUVoaGh5MmTh/DwcKPa2LFjRwoUKMDmzZt58OABP/zwA9WqVTPqzIowHUnuxQu1b9+e9u3bq5c/+uijTK+I+bwffvgBPz8/HBwcNFmtNCYmRh0O4OnpSe/evQ0ez122bFnKli2Lm5ubpjWBQduhPqaIB6ZZsjxbtmwUKFCAhIQE7t69y927dw0qU3r69Gmj2pERUx0wWFlZkZiYyGeffcbUqVMpUKCAwROTGzZsSMOGDXn69Cl79+7F39+f0aNHU7duXdzc3Khdu3am4l2+fNmgdrxM1qxZ1V7rokWLGt2L+Sytq+WsWLGCtWvX0qJFCyD1ADYiIsKgWPnz51fHbufLl09vHHe+fPkMijlv3rwXXte5c2eDYmotLi5Off5Kliyp6aT+HTt28Oeff5I3b17c3NxwdnZm6NChBq8ZMGXKFH766Se1hPCOHTvo0KED27ZtM7iNplgYa9CgQaxevZqVK1cCUKtWLYM7VQDq169PdHQ0Xbt2xcfHB4DmzZsb1ca2bduqVc5sbGxYvXq1SYsICONIci9em5mZGQEBAeqXhSGsra0zPSnsZXQ6HWFhYWzdupW+fftqEvOvv/7ip59+Us8uGNOrqfVQH1MMHUqj9ZLla9euZenSpTx8+JCyZcty9uxZKlWqZPQBolZMccAAMHXqVFJSUhg5ciSLFy/mwYMHenX0DWFlZUXTpk1p2rQply9fVhOeS5cuadRqwz0/9+P5y8bMA3m2Wo6ZmZnR1XIsLS31zno8e/Yws7RaNfhZ1atX1zym1hISEtSzFPC/Mxhpl41ZkHDevHkkJiZy9epVIHUy8Zo1awyOt3r1aszNzdXKQI0aNTKoc+F5aZPS9+7da3RiD5AlSxZat25N69atuXDhgsHP4blz5yhUqBA9evQAUs98lSlThpIlSxo9FLZhw4bs3r1bb5G6tP2It4+sUCsypX79+uzbt8/g+0+fPh2dTkejRo30fmQN/TLbunUr8+bNo0qVKowePZrg4GCmTp1qVDLl7OzMnDlz+PTTT40ennH58mUuXbrE7Nmz6d27t7o9Z86c1KhRg9y5c7/ReM+6cOEC48aN49q1a5QuXVpdstzQU+Lu7u6sW7eOFi1aEBAQwI0bN5g1a9ZbtfLru+LRo0ds3bqVoKAgwsPDadKkCW5ubga/Nlp61SqnhvTsJiQksHLlSu7evUuZMmXw8fHR5Gza1KlTsbGxwd/fnxEjRvDnn3/yySefGDUZ8kPzsgmpZmZmRh28Hz9+nCFDhlC4cGEUReHBgwdMmTLF4IT86tWrDB48mKioKBRFwc7OjilTpmhS+hUMX7HdVDG9vLxYtGgRefLk4e+//6Zfv36MGDGCS5cucfPmTYPXqQGYMWMG586dU8+MBwUFUaFCBb3JxeLtIcm9SOdlw1pu3brFP//8Y3DsjH4YjP1B0Fq7du1YsmSJJsOG0iQlJWk61EfreGm0XLLcx8eH9evX4+Hhwdq1a7G0tMTV1ZWgoCANW/z2cXJyyvCg0JB5JWvWrGHz5s3cunULFxcXmjZtyhdffKFFM99qffv2xcLCgqpVq3LgwAEKFy6cqXURXiQlJYV169bx119/AaljnX19fU0yKVtknre3N9OnT1drp9+6dYsBAwawYcMGg+K1atWKvn376k3InjVrlsETsp/n6elp8JAhU8Rs1qyZupDcmDFjsLOzUytEeXh4EBAQYHC73N3dCQgIUH8XdTodnp6eRq9kLkxDhuWIdP79918WLFig1vFNoyiKOuHHUFqdyl6zZg3Vq1enePHiKIrCsGHD2L59O4ULF2bKlCkGLyIDqeMfu3XrRvXq1fXOLnTq1MngmFoO9TFFPEg9C/Lll19SunRp5s2bx8WLF/nuu+8MPqtSsGBBoqOjadiwIZ06dcLGxoaPPvrI4PbpdDo6duxokuEQWlq/fr36d2JiIlu3blVLOWbW6dOn+eabb3B0dNT0YPNtd+PGDTVpaN68uVHjj5+VJUsWmjVrRtWqVWXxnbdQUlKS3utSokQJo6rGaD0h+3laLYz1LGNq0aekpJCcnIyFhQVHjhxh3Lhx6nWGVoV6VnR0tDpJO61ksng7SXIv0qlfvz5xcXEZLjFtyBLoaW7cuEFYWBgVK1bUK6F14MCBTC9+8uzqrJs3b+bKlSvs3r2bS5cuMX78eP7880+D2/njjz+SI0cOEhISjPpheVba2GEthvqYIh6kjndt0qQJJ06c4MiRI3Tp0oXRo0cbXMv4559/BlJri9eoUYOYmBijxqeam5uTJUsWYmJijK7Bb0q2trZ6lzt27Ii3tzd9+vTJdCxTrjj5NrOwsMjwb2Pt3r2bqVOnkpSUxJ49e7h06RI//fSTQRMDL1y48NLrDTkoflGlnDTv+wRGBweHdIscGlPyV+sJ2WCahbHWrl2rHsA2bNgQnU7H/PnzM53ou7q60rZtW2xtbcmePTtVq1YF4M6dO0ZXuvvmm2/w8vLSK208cOBAo2IK05HkXqTzsglrM2bMMCjm0qVLWbFiBaVKleLy5csMGzZMnXk/a9asTCf35ubm6pCRffv24eHhga2tLbVq1WLatGkGtTFNWFgYmzdvNirG8woWLEiZMmU0S8S1jgeoE3L3799PixYtqF+/Pj/++KNBsXQ6Ha6urmpVCq0mCubIkQN3d3dq1aqlV/fbmEmbWns26UtJSeGff/4xauLmh+jy5cvq8KO06kVffPGF0Weofv75Z9atW6cOD/zss88ICQkxKNbkyZNfeJ2hQw3TKuLs2LGDR48eqUluUFAQefPmNaid75IxY8awYsUK9exc1apV+frrrw2O9+yEbMDoCdlgmoWxjh49yo4dO5gwYQJRUVEMHTrUoO/M7777DkdHR8LDw6ldu7b6+5CSksKIESOMaqObmxvVq1fn/PnzmJmZMXDgQKPWIBCmJcm9+E+sXbuWDRs2kDNnTu7du0fv3r0JCQmhQ4cOBi0YlCVLFsLCwsidOzdHjhzR6/GKj483qq1169blr7/+ok6dOkbFeZbWQ31MMXTI3t6ekSNHcujQIbp160ZiYqLBJRzNzc0pUaIE9+/fN2oozvMaNWpEo0aNNItnCs8mfRYWFhQuXNjgg6R3SUREBGvWrCEkJETvYMaQHk1TVQGysLDQ7KyPKavlTJ48WW+cuZOTk1pX/U0zxRmLNJaWlrRp0wZHR0fMzMwoUaKEUasc586dm+HDhxMTE4OZmZnRvddgmoWxZsyYwZYtW3B3dydHjhxMnz6dKlWqGBSrUqVK6baVKFHCqPalOXPmDCdPnsTMzAydTmf0isTCdCS5F/+JlJQUdShOkSJFWLZsGb179+b+/fsGJfe9e/fGx8eHlJQUnJyc1OoHx48fN/q068qVK1m4cCGWlpZYWFhoMp5d66E+phg69OOPP3Lw4EE6d+6MjY0NYWFheiviZlZ0dDSurq5UrFgRKysrdbsxQwu0rKltKqZI+u7evUvBggWxtLTk2LFjXLlyBU9Pz3TzYt6k77//nipVquDo6Gh0WVZT+eSTTwgMDESn06kLeVWuXNnouFevXuX69et6Nf6NWdjo6dOnBAcHq99lwcHBPH361NhmasIUZyzS7Nu3j1GjRvHxxx+jKAr37t1jzJgxBpdPPnfuHD/88INaCjNXrlxMnDjRqKE+plgY6/bt2yxduhQXFxdu3LhBQEAA5cqV0/vefNNGjx7N3bt3cXV1BVIX2jp8+DCjRo16wy0TGVKE+A+0a9dOuXjxot62pKQkZdCgQUrZsmUNipmUlKRERkbqbYuLi1NiY2MNbqepuLq6vtXx0ly6dElZtmyZsmzZMuXSpUtGxTp27FiG/w2xc+dOZfny5erl5s2bK05OToqTk5OydetWo9qppQsXLigDBgxQPD09FU9PT2X48OHK7du3FUVJfb8aqlmzZkpSUpJy+/ZtpVGjRsrkyZOVrl27atVsTTRr1uxNN+GVnjx5osycOVPx9vZWvL29lZkzZyrx8fFGxZwzZ47Stm1bxdHRURk6dKhSq1YtpVevXkbF3L9/v1KvXj2lbdu2Sps2bZSvvvpKOXjwoFEx3wUuLi7q50VRFOXOnTuKi4uLwfHc3NyUv//+W738999/K25ubka10cfHR7l27Zp6efv27Ua1UVFSH/ehQ4cURVGUlJQUZcGCBUrTpk2Niqk1FxcXJSUlRb2s0+mUxo0bv8EWiZeR5F78Jx48eKCEhYVleN2JEycMinn27Fnl7NmziqIoyrVr15SFCxcq+/btM7iNz7YnLi5OURRF8ff3VyZOnKiEhIQYFXPKlCma/jhrHU9RFGXx4sWKq6ur8uOPPyo//vij4ubmpixdulTTfRiqZcuWyv3799XLzZo1UyIiIpSQkBClffv2b7Bl/7Nt2zalYcOGytq1a5VLly4ply5dUtauXas0a9ZMOXXqlFHt9PT0VBRFUX7//Xf1NfHw8NCi2ZqZOXOmJp8/U0lOTlbatm2reVw3NzdFp9Mp7u7uiqIoSnh4uNKxY0ej4yYkJKjvo4SEBKPjmcKVK1eUoKAgZePGjep/Y3h7e+tdTklJSbctMzL6jKR9lgyVnJysKIqixMbGqh1JERERRsWMiYlJt+3mzZtGxdRa9+7dlXv37qmX7927p3zzzTdvsEXiZWRYjvhPFCxY8IXXGTK2cO7cuRw4cIDk5GRq167N2bNnqVGjBr/99ptawtFQo0ePZtOmTVy+fJlFixbh6+vL4MGDWb58ucExtR7qY4qhQ+vWrWPNmjXqRNVu3brRsmVLgyeLnTlzhnHjxnHz5k2SkpLQ6XRYWVkZ1MakpCQKFSqkXq5SpQq2trbY2tq+NcMV5s6dy6JFiyhSpIi6rWzZstSsWZMmTZoYNR/CwsKCzZs34+/vz/z58wHjVlc1haVLl/Lrr7+SNWtWsmbNqsl7UkumqraULVs2smTJgoWFBbGxseTNm5cHDx4YFTMpKYlVq1bprQbasmVLk6xtYai5c+dy7Ngxbty4Qb169Thw4ABVqlQxaDjSjh07gNRqOd26daNJkyaYmZmxbds2KlSokOl4afMCqlWrxsiRI3F1dcXMzIwtW7YYPbn/xo0bGS6M9XyVrMyIjY1lyJAh6nj2qlWrarKugxbS5rPFxcXRtGlTKlasCKQOeUr7W7x9JLkX76Tt27fj7+9PYmIitWvX5sCBA+TKlYsuXbrg6+trVHJvYWGBmZkZu3btok2bNvj6+rJu3Tqj2nv69Gmj7m/qeGmeHStt7LjpsWPHMmvWLPr06cP69evx9/fn9u3bBsWKjo7Wuzxy5Ej174iICGOaqRmdTqeX2KcpUqQIH330kVErOU6aNIlVq1bx7bffUrRoUYKDg9VKKm8LU70ntWSKaksODg5ER0fj6+uLt7c3OXLkMHoc/+jRo0lOTqZ169ZAagnH0aNHM2HCBKPiamn79u0EBATg6enJpEmTePToEYMGDTIo1t69e9W/8+XLx99//w2AnZ0dCQkJmY73/LyAZ1fFNrbC2MiRIxk6dKjewlgjRowwamEsPz8/3Nzc+Omnn4DU19vPz49FixYZ1VYtpFVwEu8WSe7FO8nc3Bxzc3OsrKz4+OOP1SoI2bNnN3qxn5w5c/Lrr78SGBjI8uXL1YVBjHHy5Ek+++wzcuTIQUBAABcvXqRDhw4GV5LROh6krg7p6+urVkDYtWsXPj4+BscDKFasGDqdDnNzc3x8fPD09GTAgAGZjlOxYkXWrFlDixYt9LavWrXqrek9srCwyLA6UEhIiFEVPyB1IuizCWjRokXp3r27UTG1pigKmzZt4t69e/To0YMHDx4QHh7+1rw+YJpqS6NHjwagdevWfPnll8TGxlK2bFmjYp4/f15daRTA0dHxrTuY0/KMhdbrOZhyoTtTLIwVERGh913r7e3NkiVLjIqplWrVqr3ygCjtLJ14e0hyL95JWbNm5enTp1hZWemVjIuJiTE6uZ81axabN29mwoQJ5M+fn/v379OlSxejYmo91McUQ4c6depE9erVOXnyJJD6g2vMSr9WVlYkJiby2WefMXXqVAoUKGBwac1hw4bRo0cPAgMD1VJ7Fy5cIDExUV0s603r3bs3nTp14ptvvlHb+M8///Dbb78Z3KOZ5vbt28ycOZPr16/r9WTu3r3bqLhaGj16NFmyZOHo0aP06NGDHDlyMGbMGL0Ve980FxcXsmXLpp6V0ul0ehVuDNGhQwc1EUs7c/PsNkOYm5tz9+5dPv74YyC1Ws7bVoFIyzMW8+bNo02bNuTOnTvD648cOUJ8fDxfffXVa8ULCAigWbNmL0w47969S1hYmLrIU2aYYmGsPHnyEBAQgJubG5C6MGPaSrBvWvv27WnUqBENGjTQ67hITEzk5MmT+Pv7U6NGjbemVKtIZaYoBtQhFOINS0xMzLA3NCIigvDwcD799FNN9hMREYGtra3RvRJeXl5s3LiRuXPnYm9vj6+vr7rtTceLjIx86fWG/siEhISQL18+kpKSWLx4MTExMXz99ddG1YQ+cuQI169fB1J7sx0dHQ2OZQqXL19m4cKFem3s3Lmz0T25rVu3pnfv3kycOJFffvmFDRs2kJKSYtCqt6aS9v7z9PTE398fgGbNmun1QL9pLVq0YNGiRWpZ3ri4OLp06WLQkIqEhASePn1K+/btWbZsmVrSNzY2lq5du6oLuBniyJEj+Pn5UbRoURRFpVmfhwAAGrVJREFU4f79+0ycOFGvx/htcu/ePaPOWOzatYs//viDbNmyUa5cOXU4zp07d7h8+TKOjo58++232NnZvVa8JUuWsH79esqXL4+DgwO2trYkJiZy584d/v77b2xtbRkwYADFixfPdFujoqKYM2eO2glSpUoVevXq9cIDk9cREhLCuHHjOHPmDABffPEFw4cP13SNEEMlJCSwbt06AgMDuXfvHjY2NsTHx6MoCrVr1+brr782qhNImIYk90L8vzNnzjBjxgxy587N999/z+DBg3n8+DEpKSlMmTIl06voPqtt27Z8+eWXbNiwgeXLl5M3b148PDwIDAx84/GcnJwwMzNTk5O0A5m0U61vU+/wh8rb25sNGzbg7u6uvsZp294Wvr6+rFq1iubNm7Nx40YiIiLo3Lmzmui/DTw8PAgICHjlttexZMkSlixZQlhYGAUKFFC358qVixYtWtC2bVuj2pqYmMjNmzcBKFmypNFDu7SW0dkJY89Y3L59m1OnThEeHk62bNkoVaoU1apVI3v27JmOpdPpOHr0aLp4devW1SRp1nJhrHdFUlISjx8/Jnv27G/VGhsiPRmWI8T/Gzt2LP379ycmJoYOHTrw+++/U6lSJW7cuMGAAQOMSu61HuqjZbw9e/YY3I6M7Nq1i9DQUNq0aQOkJn1pk14HDRpE48aNNd3fh8DS0pKUlBSKFSvG8uXLsbe3VxfmeVu0a9eOHj168OjRI2bNmsW2bdvo27fvm26WHisrKy5cuKA3bMqQxBFSE9kOHTqwbNkygytKvcjbXC0n7YzF48eP1YoxkHrGIjQ01KjYxYsXN6g3PSPm5ubUrl2b2rVraxIvjSkWxgoODmbChAmcOXMGMzMzKlWqxLBhw4we7qO1rFmz6h3IireX9NwL8f+e7cFr0qQJW7duVa97dqiBsbQa6qN1vJ07d1KzZk21TGB0dDTHjx+nYcOGmYrTqlUrZs2apZau9PDwYPHixTx9+hQ/P7+3ZqLYu+TcuXOUKlWKmJgYfvrpJ2JiYujatWuGS82/STdu3ODo0aMA1KxZk1KlSr3hFuk7d+4c/fv3p0CBAiiKoh6IGJOYJSYmap6I//DDDyQnJ6tlJTdt2kSWLFneimo5pj5j8bZzd3dn1KhR6nj9EydOMGbMGIPPwkLqcLGvv/5aHXMfFBTE8uXLWbt2rSZtFh8e6bkX4v89OxH3+d48QxNnrYf6mHLo0Ny5c9VKOQA2NjbMnTs308n9u1CT3pQSEhLIli2bpjHTKs7kzJlT88oiWoqPj0en02FmZkZ8fPybbk46FStWZOvWrdy6dQuAEiVKGN0bPmbMGM3LVr7N1XJMecbiXWBubq43Ebdq1apYWBiXSj19+lRvfQAPDw8WLFhgVEzxYZPkXoj/d/nyZb744gsURSEhIYEvvvgCSB17bmhFDa2H+phy6FBGlWx0Ol2m47wLNelNyc3Njbx581K1alWqVq1KlSpVDF40KW0BmRf55ZdfDIprCnPnzmX79u00atQIRVHw8/OjcePGfP/992+6aZw7d45ChQqRP39+smbNysWLF9m+fTuFCxemZ8+eBk0aT05OxsLCwiSJ+LtQLadly5YsXbr0rRw6ZAqmWBgrrZhB3bp1+e2332jatKkas169elo1XTMhISHcuXOHWrVqER8fT3Jy8gc15+BdIsm9EP/v0qVLmsfU6XTUqVMHgNmzZ6vDKAwdrqB1vGc5ODgwadIkdaz8ihUr1LHJmfEu1KQ3pZ07d3L//n1OnDjBvn37GDt2LNbW1gZN2jxz5gyFChXC1dWVzz//nLd5FGVgYCCbNm1Sz1p0794dDw+PtyK5HzVqlLog0N9//8306dMZMWIEly5dYuTIkcyePTvTMX19fdm4caNJEvHBgwfTvn37dNVy3iZanrHo3LkzCxcuBODXX3/lm2++0ayd+/bt49q1a3olZHv27JnpOKZYGMvb21uvmMGzVZvMzMwMWhPEVNasWcPq1auJiopi165dPHz4kFGjRskwy7eUJPdCmJDWQ31MMXQozYgRI5g3b546CbJ27dp6ve6v612oSW9KDx8+5NSpU5w4cYIrV67wySefUKVKFYNiHTp0iEOHDhEUFMTmzZupV68ebm5ulC5dWuNWG69AgQJ6Q5ISExOxt7d/w61KpdPp1N75LVu20LJlS1xcXHBxcVHrlWdWWkL2bCIOqb2bhibiixcv5osvvqBatWrs2LHjrayWY4ozFs+e0du2bZtmyf3IkSOJj4/n2LFj+Pr6sn37dipUqGBQLFMsjKV1MQNTWrFiBWvXrlU7bYoXL/5BnIl9V0lyL4QJaT3UxxRDh9LkyJGDgQMHGhUDIG/evKxatUqvJn29evXeupr0plK/fn0qVKjAN998w9ixY42KZW5uTt26dalbty6JiYls3ryZdu3a0bNnz7du4qK1tTWurq7Url0bMzMzDh06RMWKFRk/fjyA3gq7/7W0VaYtLCw4cuQI48aNU68zZOgZpCakaWcDWrZsqcYxNzfn0qVLBtWkDw0NZeLEidy8eZMyZcrwxRdfULlyZQoWLPjWJPemOGNhqtVNT58+TWBgIO7u7vTs2ZNOnTrRrVs3g2KZYmGsEydOvPT2sbGx3L9/nzJlymS6vVqztLTUew8au2q7MC1J7oUwIa2H+phi6FCaW7dusXDhQkJCQvS+uJcuXWpQPEdHxw8moX+Wv78/J0+eZPPmzfz+++8UK1aMatWq4evra1C8xMRE9u3bx+bNmwkJCaFdu3Z6E5/fFs7OznrtMnQcsim4urrStm1bbG1tyZ49u5pQ3blzx+AxwykpKRmWI9XpdAaXKR0yZAiQ+pr/888/nD59mg0bNjBixAhsbGzYsmWLQXG1ZIozFsHBwer8kmf/TmPo3JK0s5tWVlaEhoZia2tLeHi4QbEiIyPx8PB45cJYmbFjxw6mT59OnTp1cHBw0Fu869ixY9y/f199T7xp1apV45dffiE+Pp5Dhw7x559/4uTk9KabJV5ASmEKIYDU1URbtWqFg4OD3vAfY8oEfqji4uI4efIkJ0+eVIcu7N27N9NxBg8ezLVr16hbty6urq5vRQ/ei6QlJQDFihXTvGKQsc6cOUN4eDi1a9cmR44cQOoB7ZMnTwyaW2LMCtOvEhMTw+nTpzl16hRnzpwhOjqaTz/99K2olFS3bl06deoE/K86EqSesciePbt6XWYcP378pdcbeqD4888/065dO44cOcLYsWMxMzOjefPmBq+/YIqFsSIjI9mxY0e6mPXq1cvUWQBTS0lJYd26dfz1118A1KlTB19fX5OddRHGkeReCAG8fSuevqu8vb1JSkqicuXKVKlShapVq1K4cGGDYpUtWxYrKytAf+hC2urBp06d0qTNxkhOTmbmzJmsX7+ewoULoygKDx48wNvbm379+r231VO0XPsizYgRI7h27Ro5c+bk888/5/PPP6dSpUrkzp1b0/0Yo06dOrRq1eqF1xsyWfV5SUlJXLt2DXt7e/LmzWt0PEg9G5KQkGBw5aoP3ZMnT8iWLZs69Eqn05GYmKh+P4m3iyT3QggA5syZg52dHc7OznpjKw0pE/ghi4iIwM7O7k034z8zceJE4uLi8PPzU4e4xMbGMmXKFLJly/ZGx9qbUmRkpOafjS5duvD48WPKlClD5cqVqVSpEmXKlHmrekdNccZi5MiRtGvXjtKlSxMTE0PLli0xNzcnMjKSIUOGqIs7ZdbTp09ZuHAhDx48YPz48dy+fZtbt27x1Vdfadr+D0GLFi1YtGgROXPmBFLPTnbp0kWvwo94e8iYeyEEgPqD/eziKWZmZuzevftNNemdlDVrViZNmsTff/8NpA4p6NGjx3vbY7hv3z62b9+ul4DmypWL0aNH06RJkzfYMtMyxUHvggULUBSFa9eucfr0aRYtWsTVq1fJkycPlSpVonfv3prvM7NM0R948uRJdfL5+vXrKV68OPPmzSM8PJxu3boZnNz7+flRvnx5zpw5A4C9vT19+vSR5N4ACQkJamIPqQvqfQiLEr6rJLkXQgDvVlm2t9mwYcMoXbo0P/30E5BaZcPPz0+vLvb7xMzMLMOeZXNz87eqx/ldYWZmRpkyZbCxscHa2ppcuXKxb98+zp0791Yk94sXL9Y85rNDtw4fPkzjxo0ByJ8/v1Fx7/5fe/cf1HT9xwH8yUBCndiu1FOzg8xupdGhpU1P5PQObGhsI6IuDEr+yFzW6YnhDzyTSIswIjsP8US8PE4rYchUooN+2DKhaRdSSWmYGopy0vgx3I/vH379nFNQ2T7jM8fz8df2/hzvPfmHe/He+/1+NTXho48+QkVFBYCrB2u5WcE9gwcPRn19vXA+5ddff73pOmbyHSzuiQa4rVu3CtfD7d+/32W1NTc3F0uXLpUq2l2pqakJ+fn5wnu9Xu/2Xep3g/Hjx6O0tBQajcZlvKysDOHh4dKEuksVFxfDbDbDbDYjKCgIkZGRiIyMxHPPPeczh6m98Y3FsGHDUF1djVGjRuHnn38WGmHZbDZ0dXW5PW9wcDC6urqEfzKbmppEuVJUrMZY1/99PXToEGbMmOFxNm9ZuXIl3nzzTYwcORJOpxMtLS3YtGmT1LGoFyzuiQY4o9EoFPcFBQUuxf13333H4r6PQkJCXO6vrqur8+sVrrVr10Kv1+OLL75wWdXr6uoaEE3LxHTmzBnMnTsXGRkZGDlypNRx+s0777yDrKwstLS0YOXKlcKKvclkQnR0tNvzvvHGG0hLS8O5c+ewbNkymM1mj28cErMx1vV/X3Nycny6uI+IiMD+/ftx8uRJAEB4eLjfHpb3ByzuiQa467+mvvEra36F3Xfr1q1Deno6LBYLACA0NPSm1vX+ZNSoUdizZ8+AbVompoyMDKkjSCI8PNzlrM81M2fOxMyZM92a0+Fw4PLly8jPz8exY8fgdDqxatUqjw+7i9kY625gMpmgUqlQWVnpMn7q1CkAQExMjASp6HZY3BMNcNfvi75xjzT3TPedUqmEwWAQinu5XI6ioiIolUqJk3nXQG1aRr5JJpOhsLAQarXao9X/G4nZGOvixYvYvn07nE6n8Pp67vQMENuRI0egUql67dPB4t43sbgnGuB+++03TJ48GU6nE1arFZMnTwZwddW+u7tb4nR3r+s7nxYVFSE1NVW6MEQD0PTp07Ft2zao1WqX+9g9OTcQHR2NtrY2LFy4EDqdTmiM5Y7nn39e6GZ8/WtfsmTJEjgcDsycORNqtVrqOHSHeM89EZGXzZo1C998843UMYh8lsPhwIEDB0QtIGfPnn3TmJjX+w6kxlhscnh34co9EZGXcXsT0a1dv41GLD1d7+vpt5E3NsY6e/Ysamtr3bo7f/fu3Zg6dSrCwsLgdDqxcuVKVFZWYsyYMdi4cSMee+wxj7KKyRvfgpD3sLgnIhJBZGRkj0X8te1ORHRr3iognU4nfvzxR5SXl6OmpgY//PCD23OJ2RiruLgYWq0WALBv3z78/vvvqKqqQkNDA7KysrBr1y63c4rNaDQCAD777DNhjE0OfReLeyIiEZjNZqkjEN3VxC4gjx49in379qGqqgqXL19GZmYmVqxY4VFGMRtjBQYGCtdJ1tTUID4+HgqFAtOnT8cHH3zgUU6xscnh3YXFPREREUlOrAIyNzcXBw4cwOjRozFv3jwsXrwYCQkJwiq5J8RsjCWTyXD+/HkMHz4cJpMJr732mvDMk+ZdYjp27BjWrFmD06dP45FHHkF2djbGjx8vdSy6DRb3REREJJkb71C/UV+vW9yzZw/CwsLw4osvYvbs2QgODhbt3IuYjbGWLFmChIQEOBwOzJ49GxMmTAAA/PTTTxg3bpwoeT21bt06rFixAk899RS+/vprZGdn99iTgHwLb8shIiIiydyueVdfi2e73Y5Dhw6hoqICJpMJ06ZNg8lkQk1NDYKC3F/TvHajj0qlEhpjPfHEEx41xrLZbGhvb8fw4cOFsY6ODjidTgwdOtTtecWi1Wqxd+/eXt+Tb2JxT0RERH6pu7sb1dXVqKioQG1tLVQqFT788EO35xtoV0LOmTPH5ZzCxo0bXd6ziZVvYnFPREREknn77bexYcMGAMDevXtF2RvfE4vFgqqqKmg0GrfnyMnJgUKhGDBXQor9rQr1Dxb3REREJBmNRoPS0lIAvr/tw9uNsYjEwAO1REREJJm7qcmbmI2x6uvrb/l84sSJbs3rDS0tLcjNzcX58+dRWFiIxsZGmM1mJCYmSh2NesCVeyIiIpKMSqVCXFwcnE4njEYj4uLiXJ6vXr1aomS9E6Mx1oIFC3p9FhAQgOLiYk8iiiotLQ06nQ5btmyBwWCAzWaDVqtFeXm51NGoB1y5JyIiIsmkp6cLrydNmiTavPPnz0dcXBzUajUefPBBUeYUszHWzp07RcnUH1pbW6FWq1FQUAAACAoKgkwmkzgV9YbFPREREUnGWwdot2zZAqPRiLfeegsBAQFQq9V45plnMGbMmD7P5c3GWADwxx9/oLGx0WWLjycHf8U2ZMgQtLa2Cluojh49imHDhkmcinrDbTlERETk106dOoVPP/0U5eXlaGho6PPPq1QqhIWFISUlRWiMNWfOHFEO0n7yySc4fPgw/vzzT8yaNQvffvstpkyZgo8//tjjucVSX1+P9evX48SJE5gwYQJaW1uRl5cHpVIpdTTqAYt7IiIi8ktnzpyB0WjE/v37IZPJoFar8eqrr/Z5Hm81xgKubh8qKyuDRqOBwWBAS0sLli9fju3bt3s0r9hsNhtOnjwJp9OJ8PBwDBo0SOpI1AtuyyEiIiLJ1dXVYcqUKbcdu1OJiYmw2WyYO3cu8vLyMG7cOLezBQYGIioqClFRUUJjLKvViqioKI8bY91zzz2QyWQICgqCxWLBfffdh3Pnzrk9n5gqKyt7HD916hQANrHyVSzuiYiISHJZWVk33XHf09id2rhxIx566CExorkIDg5GbGwsYmNjhcZYnpg0aRLa2tqQmJgInU6HIUOGIDIyUqS0nqmurr7lcxb3vonbcoiIiEgyZrMZZrMZO3bsQGpqqjBusVjw1VdfwWAw9Gm+srIyxMfH97qt5ZVXXvEkrlf9888/sFgs3MtOHuHKPREREUnmypUr6OjogN1uR3t7uzAul8vdOlTa2dkJAC5z+bKUlBTs2LEDAPDAAw/cNOYrampqcOLECVitVmFMr9dLmIh6w+KeiIiIJDN16lRMnToVWq0WY8eOBQA4HA50dHRALpf3eb4XXngBQM+FZ1FRkUdZu7u7ERwcfNuxO2G1WtHZ2YnW1lZcvnwZ1zZSWCwWNDc3e5RTbJmZmejq6sLhw4eRmJiIgwcP4vHHH5c6FvWCHQiIiIhIcrm5ubBYLOjo6MC8efOgVqtRWFgo6md4WtwnJSXd0didKCkpgU6nw19//QWtVgudTgedTofXX38dycnJHuUUm9lsxvvvv4/Q0FDo9XqUlJQIh2rJ93DlnoiIiCTX2NgIuVwOg8GAqKgoLFu2DDqdDmlpaaJ9hrvHDC9cuIDm5mZ0dXXh+PHjLqvs17YB9VVKSgpSUlKwc+dOLFiwwK05+ktISAgAYPDgwWhuboZCocCFCxckTkW9YXFPREREkrPZbLhy5QqqqqqQnJyMQYMGCR1RxeLufN9//z2+/PJL/Pvvv3jvvfeE8aFDh2Lp0qUeZUpKSkJxcTFqa2sBXN2mlJSU5FP3yEdHR6OtrQ0LFy6ETqdDQEAAEhMTpY5FveBtOURERCS54uJibN26FUqlEgUFBTh79iyWL1+OXbt29WmeyMjIHot4p9MJq9WK48ePu53x4MGDiI2Ndfvne7Jq1SrYbDZoNBoAgMFggEwmw7vvvivq54ilu7sbVqsVw4YNkzoK9YLFPREREfkcp9MJu93ucQdYMbW1tWHz5s04cuQIgKur7IsXL3ar0LXZbAgKCsKzzz5703WfPY1J4ZdffsHo0aMxYsQIAEBpaSkOHjyIsWPHQq/X495775U2IPWIB2qJiIjI5wQEBKCsrEzqGC5WrVqFoUOHIi8vD3l5eZDL5cjIyHBrrmvbWgIDA9HU1CSMnz59GoGBgaLk9dTatWuF7UFHjhxBTk4ONBoN5HI5MjMzJU5HvfGdf4eJiIiIrpOfn4+EhASpYwiampqQn58vvNfr9YiPj3drrmsbJ9LT0/Hyyy9j3LhxAIAzZ84gOzvb87AisNvtwuq80WhEUlKS0J3X3d+bvI/FPREREUlm/vz5vT5raWnpxyS3FxISgtraWjz55JMAgLq6OuEmmb66dOmS0EU3KSkJdrsdwNWV/IaGBjz99NPihPaAw+EQtg+ZTCasX79eeHYtL/keFvdEREQkmYsXL2Lbtm0IDQ11GXc6nUJDqr6y2+1ITU3Fzp07xYgoWLduHdLT02GxWAAAoaGh2LBhg1tzORyOHrvo3tipV0pxcXFITk6GQqFASEiI8E/N33//7VaDMeofLO6JiIhIMtHR0Whvb8ejjz5607Np06a5NWdgYCBkMhn+++8/UW91USqVMBgMQnEvl8tRVFQEpVLZ57lGjBjRYxddX7Jo0SKoVCpcuHABM2bMEG4hcjgcWLNmjcTpqDe8LYeIiIj8zqJFi9DQ0IDp06djyJAhwvjq1atF/Zzo6GjU1NT0+ec0Gg1KS0tFzUIEcOWeiIiI/FBMTAxiYmK8/jnurpEWFRWJG4To/1jcExERkd/RarX98jnudr3lHfHkLSzuiYiIyG9UVVWhubkZL730EoCr98lfunQJALB8+XLMnTu3z3PerustkS9hcU9ERER+o7CwEJs2bRLed3d34/PPP0dnZycyMjLcKu7NZrOYEYm8isU9ERER+Y0rV65g9OjRwvspU6ZAoVBAoVCgs7NTwmRE/UMmdQAiIiIisbS1tbm8z8zMFF5f255D5M9Y3BMREZHfiIiIwO7du28aLykpQUREhASJiPoX77knIiIiv3Hx4kUsXrwYgwYNwsSJEwEA9fX16O7uxubNm3H//fdLnJDIu1jcExERkd8xmUxobGwEADz88MNQqVQSJyLqHyzuiYiIiIj8BPfcExERERH5CRb3RERERER+gsU9EREREZGfYHFPREREROQn/gdxVeYKp0KghwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_correlation(pearson, \"Pearson's Correlation\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Predictors weakly or strongly correlated with a target variable are collected." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "pearson_weakly_correlated = set()\n", + "pearson_strongly_correlated = set()\n", + "pearson_uncorrelated = set()\n", + "# Iterate over the raw and transformed target.\n", + "for target in TARGET_VARIABLES:\n", + " corrs = pearson.loc[target].drop(TARGET_VARIABLES).abs()\n", + " pearson_weakly_correlated |= set(corrs[(weak < corrs) & (corrs <= strong)].index)\n", + " pearson_strongly_correlated |= set(corrs[(strong < corrs)].index)\n", + " pearson_uncorrelated |= set(corrs[(corrs < uncorrelated)].index)\n", + "# Show that no contradiction exists between the classifications.\n", + "assert pearson_weakly_correlated & pearson_strongly_correlated == set()\n", + "assert pearson_weakly_correlated & pearson_uncorrelated == set()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Show the continuous variables that are weakly and strongly correlated with the sales price or uncorrelated." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3Ssn Porch Three season porch area in square feet\n", + "BsmtFin SF 2 Type 2 finished square feet\n", + "Low Qual Fin SF Low quality finished square feet (all floors)\n", + "Misc Val $Value of miscellaneous feature\n", + "Pool Area Pool area in square feet\n" + ] + } + ], + "source": [ + "print_column_list(pearson_uncorrelated)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1st Flr SF First Floor square feet\n", + "1st Flr SF (box-cox-0)\n", + "BsmtFin SF 1 Type 1 finished square feet\n", + "Garage Area Size of garage in square feet\n", + "Lot Area (box-cox-0.1)\n", + "Mas Vnr Area Masonry veneer area in square feet\n", + "Total Bsmt SF Total square feet of basement area\n", + "Total Porch SF\n", + "Wood Deck SF Wood deck area in square feet\n" + ] + } + ], + "source": [ + "print_column_list(pearson_weakly_correlated)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Gr Liv Area Above grade (ground) living area square feet\n", + "Gr Liv Area (box-cox-0)\n", + "Total SF\n", + "Total SF (box-cox-0.2)\n" + ] + } + ], + "source": [ + "print_column_list(pearson_strongly_correlated)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Spearman\n", + "\n", + "Spearman's correlation coefficient shows an ordinal rank relationship between two variables." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "columns = sorted(DISCRETE_VARIABLES + ORDINAL_VARIABLES) + TARGET_VARIABLES\n", + "spearman = df[columns].corr(method=\"spearman\")" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAu0AAAKvCAYAAADeLvEAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdeVhV1ff48TejgDKKYSmVE4qKI6QlagGKEwIKDilqaZpjZRZoSaWmUabmmH6dciiHQknFWXNIQ3FClEpJEVBBZAYBuZzfH/y4HxFQL6AyrNfz8Dzcc87ae99zsRabdfbWUhRFQQghhBBCCFFhaT/vAQghhBBCCCEeTZJ2IYQQQgghKjhJ2oUQQgghhKjgJGkXQgghhBCigpOkXQghhBBCiApOknYhhBBCCCEqOEnahRBCPFWLFi2iadOm+Pn5Pe+hVDlOTk40bdqUkJCQZ95306ZNadq0KTExMc+8byGqI93nPQAhqrLc3Fx+//13du3axT///ENycjKGhoZYWlpibW2Nvb09HTt2pFWrVs97qKIMmjZtCsA///zzVPsJCQlh2LBhRY7r6elhbm5OixYtcHd3p2fPnk91HBVRXFwcW7du5cSJE9y4cYPk5GRq1KjBiy++SOvWrenduzevv/46Wlpaz3uoFV5ISAinTp3C1tYWFxeX5z0cIcT/J0m7EE9JYmIi7733HuHh4epjNWrUQFEUrl27xn///ceRI0cwNjYmNDT0OY5UVEbm5ubo6OgAkJGRQXx8PPHx8Rw+fJjdu3czf/589fmqTFEUli1bxo8//kh2drb6uImJCVlZWVy5coUrV67w66+/Ymdnx+LFi6lbt+5zHHHFd+rUKRYvXoynp+cjk/YGDRoA+b80CiGePknahXhKPvnkE8LDw6lZsybjxo3D3d2dOnXqAJCenk5YWBj79+/nyJEjz3mkojL69ddfqV+/vvp1dHQ0c+fOZc+ePezdu5dNmzYxZMiQ5zjCZ+Ozzz7jt99+A8DR0ZF33nkHe3t7DAwMALh16xaHDx9mzZo1XLx4kaioKEnay8mePXue9xCEqFYkaRfiKYiMjOT48eMAzJ49mx49ehQ6X6tWLd544w3eeOONQrODQpSWtbU1c+fO5erVq1y9epWgoKAqn7Rv2rRJnbBPnDiRCRMmFLnmxRdf5O2332bAgAEsXLgQbW15lEsIUTlJ0i7EU/Dvv/+qv3/rrbceeW2NGjWKHFu0aJH6z9OzZ89m3bp1BAYGcuPGDWrUqEHbtm0ZN27cI2vh8/Ly+P333wkKCiIiIoL09HTMzMywt7fnnXfeoXXr1kViVCoVx48f5+DBg4SHh3P79m1SU1MxMzOjdevWDB06lNdff73Y/nx8fDh16hRz5szBxcWF5cuXc/DgQW7duoWenh6hoaHqmux69epx6NAhjh07xqpVq7h8+TJ5eXnY2dkxadIk2rZtC0BaWhorV65kz5493Lp1C3Nzc/r06cPEiRPVM6kPun37Nrt27eLEiRNER0cTFxeHjo4OL7/8Mk5OTowYMQITE5MicQ+P68yZM6xYsYLz589z7949Xn31VQYMGMCQIUM0rok+cOAAmzdv5tKlS6SkpFCzZk11/bmLiwu9evXSqL1H0dPTo0OHDurEvTinT59m7969XLhwgVu3bpGcnIyxsTHNmzfH29u7yC+YBfz8/Ni2bRsTJkxg3LhxrF+/nsDAQKKiotQ/kxMmTMDOzk7jcS9fvpx58+ahr6/P/Pnzn6iOOjs7m4ULFwL5/8aKS9gfpKury+TJk1EUpci5hIQEVq5cyR9//MGtW7fQ1dWlQYMG9OrVi6FDh6Kvr18k5sH7MWbMGFatWkVwcDAxMTFkZmZy+vRpUlNTcXZ2BvKfdzh//jyrV6/m7Nmz3L17l6FDh/LZZ5+p24yJiWHNmjUcP36c27dvo62tTYMGDejRowdDhw7FyMjosfflQZp+1jExMerxAmzbto1t27YVuubgwYPqv/AUPMvx4LEH3bhxg5UrV/Lnn38SHx+PgYEBNjY2eHh40K9fv2LLtx7870ivXr34v//7P3bu3MmtW7eoWbMmHTt25IMPPuDVV1/V6F4IURVI0i7EUxYXF8fLL79cqlhFUZg0aRL79+9HV1cXQ0NDkpOTOXz4MEePHmXu3LnFJn3p6elMnDiREydOAKClpUXNmjW5c+cOu3fvZu/evXz22WcMHTq0UFxkZCSjR49Wv65VqxZ6enrcuXOHAwcOcODAASZPnsyYMWNKHHNiYiL9+vUjOjoafX39EutdN27cyMyZM9HS0sLIyIj09HROnDjBmTNnWLNmDQ0aNGD48OH8+++/GBkZkZeXx+3bt1m5ciVXr15l+fLlRdqcPXs2e/fuBfIT2Jo1a5KamkpERAQRERHs2LGD9evXP7I8IjAwkM8//5y8vDxq1apFdnY2//zzDzNnziQqKqpQkvU48+fP58cff1S/rlmzJllZWVy/fp3r168TEhJSrkk7oE5K8/LyipzLyMgo9JnXrFmTGjVqkJiYyPHjxzl+/DgDBw5kxowZJbafm5vL6NGjOX78OHp6eujp6ZGSksIff/zByZMn+emnn9S/dD2J7777jpUrV2JkZMTSpUtL/KXwYfv27ePu3bsAjBs37on7e/iXrrCwMN577z2Sk5OB/Hty//59Ll68yMWLFwkKCmL16tXUrl272Pays7MZMmQIYWFh6OnpFfvLJEBwcDCffPIJubm5GBsbF0lY9+3bx5QpU9R/eTM0NOT+/ftcunSJS5cusWPHDtasWYOlpeUTvc/SfNY6OjpYWlqSmZlJZmYmNWrUwNjYuFC7T/qcxOHDh/nggw/U78fY2Jh79+4RGhpKaGgowcHBLFmypMRfRNLT0xk8eDCXL19GX18fbW1tEhMTCQ4O5sSJE2zdurXU/10VotJShBDl7saNG4qNjY1iY2OjvPvuu8rdu3c1il+4cKFiY2OjtG/fXrG1tVXWrFmj3Lt3T1EURYmKilLeeecdxcbGRmnVqpUSFRVVJH7cuHGKjY2N4unpqRw7dkzJyspSFEVRkpOTlaVLlyotWrRQmjVrpoSGhhaK+++//5SpU6cqx44dU9LS0tTHExISlCVLlii2trZK06ZNlfPnzxfpc+jQoYqNjY3Spk0bpWvXrsqRI0cUlUqlKIqiXL9+XVEURfnrr78UGxsbpXXr1kqLFi2UefPmKSkpKYqiKEp0dLQycOBAxcbGRunfv78yYcIExdXVVTl9+rSSl5enZGdnK1u2bFGaN2+u2NjYKH/88UeRMcyfP19Zt26dcu3aNXXfOTk5SkhIiNK/f3/FxsZGee+994rEPTyuGTNmKHfu3FEURVFSUlKUmTNnKjY2NkrTpk2Vf//9t0h8wWf9oOjoaKVZs2aKjY2N8v333xf6Gbh7966yZ88eZerUqUXaepSCcdrY2CjR0dFFzufk5Cg9e/ZUbGxslD59+hQ5n5mZqUycOFHZv3+/kpSUpD6ekpKibNiwQWnTpo1iY2OjBAcHF4n19fVVbGxsFHt7e+W1115Tdu3apWRnZyuKoigRERFKnz591J/dwwp+nn19fdXHVCqVMn36dHWbZ8+e1ehefPbZZ4qNjY3yxhtvaBT3oOTkZKVTp07q+3XhwgVFURQlNzdX2b17t+Lg4KDY2NgoI0aMKBJbcD/atGmj2NvbF7ofMTExSk5OjhIdHa3+vNq0aaNMnDhR/bndv39f/f2FCxeUFi1aKM2bN1fmzZun3L59Wz2Os2fPKv369VP/t+Rhb731lmJjY6P89ddfhY6X5bMu7vMqTkk/i1FRUer2hw4dqkRGRiqKoijZ2dnKpk2blJYtWyo2NjbKtGnTirRZ8N8Re3t75a233lKOHj2q5ObmKiqVSjl9+rTSpUsXxcbGRpk0adIjxyZEVSRJuxBPyaeffqr+n1qLFi2U4cOHK/PmzVP279//2CS+4H+aNjY2ytKlS4ucz8rKUlxdXYv9H9+ff/6p2NjYKK6urkpqamqx7S9fvlyxsbFRRo8erdF7Wrx4sWJjY6P4+fkVOVfwP9sWLVoo//zzT7HxDyadxbURGxurNG3aVN1OQbL/oKlTp5YY/yhJSUlKx44dlaZNmxZJMh4c12effVZsfEFSumjRoifqb9euXYqNjY3So0cPjcb5KI9K2m/cuKFMmjRJfX758uUat79t2zZ1ovWwgiTVxsZGOX36dJHzFy9eVJ+PjY0tdO7hJDAnJ0f56KOPFBsbG+X1119XIiIiNB7roEGDSkxkn1TBz7O9vb0SHx9f5PyxY8fU7+nEiROFzj14P44dO1Zs+w8m7YMGDVL/IlnSe/nll1+KPZ+UlKT+5SIsLKzQuZKS9sd51Gdd1qS94N+oi4uLkpmZWSRu06ZN6l+CH/43XvDfkVatWhX773/Pnj2KjY2N0rJlS/UvSUJUF/JEjhBPycyZM3nnnXfQ09Pj/v37nDx5kh9//JHx48fz+uuv4+Xlxe+//15sjW0BQ0NDhg8fXuR4jRo1ePfdd4H8P6s/2EZBDeqAAQOK/Gm7gJubG5Bfy61SqZ74PTk5OQFw9uzZEq/p3LkzNjY2j23rwTKcAi+99BKvvPIKAK6ururvH1RQPnHlypUnGnMBMzMz2rZti6IonDt3rsTrSir9Kaj1fdJ+a9WqBeTX5d+7d0+jsT4JLy8vOnXqRKdOnWjTpg0uLi7q1Tw6d+7MiBEjNG6z4PO9cOFCiT8X9vb22NvbFznesmVLddnRo+5RVlYWEyZMYNeuXbz44ots3LiRZs2aaTzWgnIWU1NTjWMLFJRSeXl5qVd2epCjo6O61Gf37t3FttG0aVMcHR0f29e7775b7EOwN27c4OzZs5iYmODl5VVsrJmZGV26dAFQl7yV1ZN81qWhKAr79u0DYMSIERgaGha5xtvbGysrKxRFUX8GDyvp37+TkxNaWlrk5ORw48aNchu3EJWB1LQL8ZTo6+vj5+fHe++9x/79+zl9+jTh4eFERUWhKAoXL17kk08+4eDBg8yfP7/Y/6G3bNmyxJpPBwcHAFJTU4mJicHa2hpAnZAuW7aMVatWPXKM9+7dIzk5uVC9blZWFps2beLgwYNcvXqV1NRUcnNzC8XFx8eX2OaT1DPXqFGjxAfJateuzfXr10tM/AtqelNTU4s9HxYWxi+//MK5c+eIi4sjMzOzyDUljd/MzEx9Hx9mZWX1yH4f1rp1a8zMzLhz5w4DBw5kyJAhvPHGGyW2r6mkpKRij0+YMIHx48eXuEpKbm4u27ZtY8+ePeoNv+7fv1/omuzsbFJSUrCwsCgS/6gHTa2srLh9+zYpKSnFnk9PT2fUqFGcPn2aV199lTVr1vDSSy+V2N7TlJOTo/7lomPHjiVe16FDB86dO8fly5eLPd+mTZsn6q+k6wp+Ac7MzKRr164lxhf8HN+6deuJ+oOyf9alER0dTVpaGpB/74qjra3Na6+9xo4dO7h06VKx15T0c6anp0ft2rVJSEgo8edMiKpKknYhnrLatWszaNAgBg0aBOSvVHH48GGWLFnCrVu32LNnD+3atSt2Rr0gUSzOg+cSExPVyeCdO3eAJ08uH5wFjo+Px8fHh+vXr6uPGRkZYWJigra2NiqViqSkpGIT4QLm5uaP7dPS0rLEVVgKHnQrbuYTUCejD/8iAbBq1Sq+++479V8edHR0MDU1VT8Mm5aWRnZ2dokz3zVr1ixxzAWr/BTXb3FMTU359ttv+eSTT/jnn3/w9/dXv69OnTrRv39/XnvttSdqqzgFK3YoikJ8fLx6Q6Xly5fTqlWrYhPAjIwMRo4cWegvDQYGBhgbG6vva0JCAsBTuUf79+8H8hOvlStXlilhNzMzAyh14paSkqJ+WPdR/84K/nqQmJhY7PknTXZLuq7g32tubq763j9KVlbWE/VXHp91aTx4n8pyX8vz36IQVYUk7UI8Y5aWlnh7e+Ps7IybmxsJCQn89ttvxSbtpVGQiCxZskTjLchnz57N9evXsba25tNPP6VDhw6Fyg9u3LhBt27dHtnG89qF88qVK8ydOxdFURg6dCiDBw+mQYMGhcbzySefPLYkqTx17dqVgwcPsnv3bvXKOPHx8Wzfvp3t27czYMAAZs6cWaY+tLS0sLKyYsSIEdSuXZspU6bwySefsGPHjiJJ09KlSzl37hzm5ub4+fnRuXPnQn9lUalUNG/eHOCp3CMHBweioqKIj4/ns88+Y8WKFSWutvI4jRo14uzZs/z9999lHldZ9kp40p/3kq4ruM/NmjUjKCio1ON42PP+rCH/vpZUoieE0JzUtAvxnFhYWKjrpB+c2X7Qo8pQHjz34CxeQfnIzZs3NRpPTk4OBw8eBGDu3Ll07969SL3wk8wEPi979+4lLy8PR0dHpk+fTuPGjYskSgVLBD5LxsbGDBgwgAULFnDs2DF27drFgAEDANiyZQt//PFHufXl5uaGvb09KSkpLFiwoMj5gpr36dOn4+HhUWQZw6f9+davX5+1a9diaWlJSEgI48ePJycnp1RtFZReJCQkEBYWpnG8qampesb5Uf9Wbt++DTz5jLqmCj6Dgn7Ky/P6rB+8T8/zvgpRFUnSLsRzVPCQVklrmYeHh5f4p+vTp08DYGJiUmhjk4La2aNHj2o0lqSkJHUCVTAD97DyegjuaYiLiwNKHntmZibnz59/hiMqXuPGjZk5c6b6czp16lS5tl+wZvn27du5du1aoXMF98jW1rbY2JMnT5brWIrTqFEj1qxZg7m5OcePH2fixImlSty7deumTviWLl36xHEFs8r6+vo0adIEyH8guyQF50r6uSqrgp+D5ORkLly4UG7tluWzLihdK80MvLW1tXoDs5Lua15envrnvkWLFhr3IUR1JUm7EE9BdHT0Y1c2uHfvHgcOHABK/h9rZmYm69atK3I8JyeHNWvWAPmrLDxYH+7p6QnA8ePHH5u4P1gPXLNmTXU7//zzT5Fr4+Pj2bBhwyPbe54KVmt5cDfaB/34449kZGQ8s/E8LhEtqMst7UxzSTp16kSzZs3Iy8srsgHVo+5RRkYGy5YtK9exlMTGxoY1a9ZgamrKH3/8weTJkzWuTzYwMGDixIkA6mdEHiU3N5d58+YRGhqqPubq6grkr7hU3F+1jh8/rq4J79mzp0bje1KNGjVSJ+7fffddkQdFH5SVlfXEPy9l+awLYp/0uZgHaWlpqUvo1q1bV+ykw9atW4mLi0NLS6vEHXiFEEVJ0i7EU3D16lV69OjBhAkTCA4OLpQQZGZmcujQIYYMGUJMTAwAw4YNK7YdY2NjfvjhB3766Sf1A2jR0dGMHTuWyMhIatSoUWTpxC5dutC9e3cURWHChAmsXLmy0MNeycnJHDhwgPfff59vvvlGfbxWrVrq5GHatGlEREQA+bNiJ0+exMfH55nVgpdGp06dAPjjjz9Yvny5OllITEwkICCA5cuXqx9efBZ++eUXRo4cyY4dOwp9/qmpqfz444/qmcbOnTuXe98jR44EYMeOHURHR6uPF9yjb775hlOnTqk/z7CwMEaMGKFeRvFZsLW1ZdWqVRgbG7N//36mTJmi8dKDb7/9Nh4eHgAsXLiQkSNH8ueffxaqUb99+za//PILvXr1Yvny5YV2ih06dCh16tQhKyuLUaNGcfHiRSC/3nvv3r1MnjwZgDfeeOOJd2otjc8++wx9fX1Onz7NiBEjCA0NVY9TpVLxzz//sHjxYlxcXB5ZMvegsnzWBX+BOHv2bImle4/y/vvvY2RkRHx8PKNHj+a///4D8n9B3bJlC7NmzQLyl9qUXU2FeHLyIKoQT4Guri4qlYr9+/erV8wwMDBAT09PvRwa5D+cNmnSJLp3715sO87OzmRkZDB79my+++47DA0N1bNfOjo6zJkzp9j/6QUEBJCXl8eBAwf47rvvmDt3LsbGxqhUqkKzzf369SsUN3XqVIYNG8a///6Lh4cHRkZG5OXlkZWVhZmZGV9//TXjx48v8/15GhwdHenevTv79u1j3rx5zJ8/HxMTE1JTU1EUBS8vL1QqlXod+6dNURT1dvGQvwqPrq5uodnLgQMHPnKZv9Lq1asXCxYsIDY2lv/7v/9Tb1X/4Ycf8ueff3Lr1i18fHyoUaMGOjo6ZGZmYmBgwJIlS9QJ/7NgZ2fHypUreffdd9m9ezf6+vp88803JS5XWZxvvvkGa2trli9frr7fWlpamJiYkJWVVSiBb9euXaGlRk1NTVm6dCmjRo3in3/+wcvLi5o1a5Kbm6uOa9q0KXPnzi2391ycVq1asXjxYj7++GNCQ0MZMmQI+vr6GBkZkZGRUWj2vaRVlx5Wls/6tdde4+WXX+bGjRv06NEDc3NzdSnfzz//rF75pSQvv/wy33//PR9++CGnTp2iZ8+emJiYcO/ePfV7ef3115k2bdoTvRchRD6ZaRfiKejcuTN79uzB19cXFxcX9SYhmZmZmJiY0KJFC4YPH05QUBDvv/9+ie1oaWnxww8/MHXqVBo2bMj9+/cxNTXlrbfeYtOmTfTu3bvYOCMjI5YsWcLy5cvp3r07L7zwAvfu3SM3N5dXXnmFnj17MmfOHD7//PNCca1bt2bz5s24uLhgamrK/fv3qV27NgMHDmT79u2l2gTnWZo/fz4ff/wxjRo1QldXF0VRaNeuHQEBAXz99dfPdCxubm7MmjWLXr16qceTmZlJnTp1cHJyYtmyZepkurzp6uqqVyMKDAxUP/RnbW3N1q1b6du3L7Vr1yYvLw9jY2Pc3Nz49ddfn2iToPLWpk0bVqxYgZGREUFBQXz++eca/UVHS0uLCRMmsH//fiZMmEDbtm2xsLAgMzMTXV1dmjRpwoABA1i3bh2//PJLkRV1WrVqxa5duxgxYgSvvvoqubm56Ojo0LJlSz799FO2bt1a5CHOp6Fr167s3buXsWPH0qJFC/T19UlLS6NmzZq0bduW0aNHExgYSL169Z6ovbJ81np6eqxduxZ3d3esrKxITU0lNjaW2NjYJy5jcnJyYseOHQwYMIB69epx7949DAwMaN++PTNnzmTVqlUl7kEhhCiellKR/94tRDW1aNEiFi9ejKenZ6ESFiGEEEJUTzLTLoQQQgghRAUnSbsQQgghhBAVnCTtQgghhBBCVHCStAshhBBCCFHByYOoQgghhBBCVHAy0y6EEEIIIUQFJ0m7EEIIIYQQFZwk7UIIIYQQQlRwFSppt7W1xd3dnb59++Lp6cnZs2c1il+0aBGrVq16SqN7MgcOHKBp06ZERkaqj4WEhDBmzBiN2klISODjjz/G2dmZfv36MXDgQPbv31/ewxVCCCGEEJVAhUraDQwMCAoK4vfff2fy5MnMmzevXNp90m2Xy8POnTtp3749u3btKnUbiqIwfvx47O3tOXjwIIGBgcybN0+9FfmDnuV7E0IIIYQQz4fu8x5ASdLT0zExMVG/XrlyJbt37yYnJ4du3boxadIkAJYtW8b27duxsLDgxRdfpEWLFgD4+PjQrFkzzpw5Q58+fbC1tSUgIACVSkXLli356quv0NfX5+TJk8Ued3Jyonfv3hw9ehQdHR1mzpzJvHnziIqKYuTIkQwePLjImDMyMjhz5gzr1q3j/fffV4+x4P2MHj2aqKgoOnTowJdffsnmzZu5ceMGvr6+AAQGBhIeHk63bt3Q09Mr1Ee9evXw8fFRX7dv3z4yMzPJy8tjw4YN5f8BCCGEEEKICqNCzbRnZWXh7u5Ojx49+Pzzzxk3bhwAx48fJyoqil9//ZWgoCAuXbrE6dOnCQ8PJzg4mO3bt/N///d/XLx4sVB79+/fJzAwkCFDhuDn58f8+fPZsWMHKpWKn3/+mezs7GKPF3jxxRcJCgrC3t4ePz8/fvjhB7Zs2cKiRYuKHf/Bgwfp3LkzDRo0wNzcnPDwcPW5sLAwpk+fTnBwMNHR0ezbtw9XV1cOHDigviY4OJhevXpx5coVmjdv/sh7dfnyZRYuXCgJuxBCCCFENVChkvaC8pg9e/awcuVKfH19URSFP//8kz///BMPDw88PT3577//uH79OqGhobi4uGBoaEitWrVwcnIq1F6vXr0AuHbtGvXr16dBgwYAeHp6EhoaWuLxAs7OzgDY2NjQunVratWqhYWFBfr6+qSmphYZ/65du+jdu7e67wdLZFq1aoW1tTU6Ojr07t2bM2fOYGFhgbW1NefPnycpKYn//vuP9u3bF2n3q6++om/fvvTv3199rFOnTpiZmZXmNgshhBBCiEqmwpbHtG3blqSkJBITE1EUhdGjRzNo0KBC16xdu/aRbRgaGpZpDHp6egBoa2ujr6+vPq6trV2kljw5OZm//vqLf//9Fy0tLVQqFVpaWnz66acAaGlpFbq+4HWvXr3YvXs3DRs2pFu3bmhpadGkSRP27dunvvaLL74gMTERLy+vcntvQgghhBCi8qhQM+0PioyMRKVSYWZmhqOjI7/99hsZGRkAxMXFcffuXRwcHDhw4ABZWVmkp6dz+PDhYttq0KABsbGxREVFARAUFISDg0OJx0tj7969uLu7c/jwYQ4dOsSRI0eoX7++euY+LCyM6Oho8vLy2L17t3pGvVu3bhw8eJCdO3eqZ+k7duxIdnZ2oVKdrKysUo1LCCGEEEJUfhVqpr2gph3yV1AJCAhAR0cHR0dHIiMj1TPtRkZGfPfdd7Ro0YJevXrh7u6OhYUFdnZ2xbZbo0YN5syZwwcffKB+4HTw4MHo6+sXe7w0du7cyXvvvVfoWPfu3dm5cye9evXCzs6OmTNnqh9E7datGwCmpqY0atSIq1ev0qpVKyB/Fn7JkiXMmTOHlStXYmFhgaGhIVOmTCnV2IQQQgghROWmpSiK8rwHIYQQQgghhChZhS2PEUIIIYQQQuSTpF0IIYQQQogKTpJ2IYQQQgghKrgK9SCqKH9pSckaxxibm5X7OIQQQgghROnJTLsQQgghhBAVXLWaabe1tcXGxgZFUdDR0WH69Om0a9euTG1GREQQHx9P165diz0fFhZGQEAACQkJGBoa0qJFCz7//PMyb460aNEijIyMGDlyZJnaEUIIIYQQFV+1StoNDAwICgoC4NixY8ybN48NGzaUqc2IiAjCw8OLTdoTEhL44IMPmDdvHm3btgVgz549ZGRkyI6mQgghhBDiiVWrpP1B6enpmJiYABAfH89HH31Eeno6KpWKL7/8Ent7e9q2bcugQYM4evQoderUYfLkyXz33XfcvHmTadOm0blzZxYuXEhWVhZnzpxhzJgx9OrVS93Hxo0b8fDwUCfsAD169AAgOTmZadOmER0djaGhITNmzKBZs2YsWrSImzdvEhMTw82bNxk+fDjDhg0DYNmyZWzfvh0LCwtefPFFWrRo8QzvmBBCCCGEeF6qVdJesONqdnY2d+7c4aeffgLydzN1dHRk7NixqFQq7t27B0BmZiYdO3bE19eX8ePHs2DBAlavXk1kZCS+vr44OzszadIkwsPD8ff3L9LflStX8PDwKHYsixYtonnz5ixdupSTJ0/i6+ur/ivAtWvXWLduHenp6fTs2ZPBgwfzzz//EBwczPbt21GpVHh6ekrSLoQQQghRTVSrpP3B8phz587h6+vLzp07sbOzY9q0aeTm5uLi4oKtrS0Aenp6dOnSBQAbGxv09fXR09PDxsaG2NjYMo3lzJkzLFq0CIDXX3+d5ORk0tPTAejatSv6+vpYWFhgYWHB3bt3CQ0NxcXFRV1W4+TkVKb+hRBCCCFE5VFtV49p27YtSUlJJCYm4uDgwIYNG7CyssLPz4/t27cD+Um7lpYWANra2ujr66u/V6lUj+2jcePGXLp0SeOxFfQDoKOjQ25ursZtCCGEEEKIqqPaJu2RkZGoVCrMzMyIjY3F0tKSAQMG4O3trVGiXbNmTTIyMoo9N3ToULZv386FCxfUx/bt20dCQgL29vb8/vvvAISEhGBubk6tWrVK7MfBwYEDBw6QlZVFeno6hw8ffuIxCiGEEEKIyq1alccU1LQDKIpCQEAAOjo6nDp1ilWrVqGrq4uRkREBAQFP3GaHDh1YsWIF7u7uRR5EtbS0ZN68eQQEBHD37l20tbVxcHCgc+fOTJgwgWnTpuHm5oahoSHffPPNI/tp0aIFvXr1wt3dHQsLC+zs7Ep3E4QQQgghRKWjpSiK8rwHIZ4e2RFVCCGEEKLyq7blMUIIIYQQQlQWMtMuhBBCCCFEBVetatqro6hbCRrHvPKiJQl/ntc4zrJTG41jhBBCCCHE40l5jBBCCCGEEBWcJO1CCCGEEEJUcBW6PMbW1hYbGxsURUFHR4fp06fTrl27MrUZERFBfHw8Xbt2LXIuJCSEcePGUb9+ffUxX19f3njjjTL1KYQQQgghRFlU6KTdwMCAoKAgAI4dO8a8efPYsGFDmdqMiIggPDy82KQdwN7enuXLl5epj6chNzcXXd0K/XEJIYQQQoinpNKUx6Snp2NiYgJAfHw8Q4YMwd3dnT59+hAaGgpA27ZtCQgIoHfv3owYMYKwsDB8fHxwdnbm4MGD5OTksHDhQoKDg3F3dyc4OPiJ+g4LC8PNzY3s7GwyMzPp3bs3//77LyEhIQwZMoTRo0fj6uqKv78/eXl5AOzcuRM3Nzf69OnDd999B4BKpcLPz48+ffrg5ubG2rVrAfDx8eHixYsAJCYm4uTkBEBgYCDvv/8+w4YNY8SIEWRmZjJ16lS8vLzw8PDgwIED5XZ/hRBCCCFExVWhp24LdjDNzs7mzp07/PTTT0B+Quzo6MjYsWNRqVTcu3cPgMzMTDp27Iivry/jx49nwYIFrF69msjISHx9fXF2dmbSpEmEh4fj7+9fbJ+hoaHqXVMBFi1aRKtWrXBycmLBggVkZWXRt29fbGxsCAkJISwsjODgYF566SVGjRrFvn37aNu2LXPnziUwMBATExPeffddDhw4QN26dYmLi2Pnzp0ApKamPvYeXL58md9//x0zMzPmzZtHx44dmTNnDqmpqXh7e/PGG29gZGRU1lsthBBCCCEqsAqdtD9YHnPu3Dl8fX3ZuXMndnZ2TJs2jdzcXFxcXLC1tQVAT0+PLl26AGBjY4O+vj56enrY2NgQGxv7RH2WVB4zfvx4vLy8qFGjBp9//rn6eKtWrbC2tgagd+/enDlzBl1dXV577TUsLCwAcHNz4/Tp04wbN47o6GhmzpxJ165dcXR0fOx4OnXqhJmZGQDHjx/n0KFDrF69GoDs7Gxu3bpFo0aNnui9CSGEEEKIyqlCJ+0Patu2LUlJSSQmJuLg4MCGDRs4cuQIfn5+vPPOO3h4eKCnp4eWlhYA2tra6Ovrq79XqVRl6j85OZnMzExyc3PJzs5Wz24X9Ffg4dcPMjU1JSgoiOPHj7Np0yZ2797NnDlz0NHRoWCPq5ycnEIxhoaGhV4vXLiQhg0blum9CCGEEEKIyqXS1LRHRkaiUqkwMzMjNjYWS0tLBgwYgLe3N5cuXXridmrWrElGRobG/fv7+/PBBx/g5ubG3Llz1cfDwsKIjo4mLy+P3bt30759e1q1asXp06dJTExEpVKxa9cuHBwcSExMRFEUXF1d+fDDD7l8+TIA9erVIzw8HIA9e/aUOAZHR0c2bNigTvAL4oUQQgghRNVWoWfaC2raARRFISAgAB0dHU6dOsWqVavQ1dXFyMiIgICAJ26zQ4cOrFixAnd3d8aMGUOvXr0KnX+4pn3s2LFkZWWhp6eHm5sbKpWKQYMGcfLkSbS1tbGzs2PmzJlERUXRoUMHunXrhra2Nh9//DHDhw9HURS6du2Ki4sLf//9N1OnTlU/rDp58mQA3n33XT788EO2bNlS4qo2AOPGjWP27Nn07duXvLw86tevXyFXuhFCCCGEEOVLSymYthUaCwkJYfXq1RU6cY66laBxzCsvWpLw53mN4yw7tdE4RgghhBBCPF6lKY8RQgghhBCiupKZdiGEEEIIISq4Cl3TLsouIuq2xjG2r9QlKeI/jePMbRsSH/ynxnEv9OqkcYwQQgghRHUi5TFCCCGEEEJUcJUiabe1tcXd3Z2+ffvi6enJ2bNny9xmREQER44cKfZcSEgI7du3x93dHXd3d0aMGPHItvz8/NRLNfr4+HDx4sUi1/j4+ODq6oq7uzs9e/Zk8+bNjx3j2rVr1bu9Qv5a9UIIIYQQovqpFOUxD+6MeuzYMebNm8eGDRvK1GZERATh4eElLrFY0s6oZTF37lzs7OxITk6mW7dueHp6qjeAKs66devo27dvkQ2WhBBCCCFE9VIpZtoflJ6ejomJCQDx8fEMGTIEd3d3+vTpQ2hoKJA/Ix0QEEDv3r0ZMWIEYWFh+Pj44OzszMGDB8nJyWHhwoUEBwfj7u5OcHDwY/uNiYmhT58+6terVq1i0aJFpXoPmZmZGBoaoqOjA8AXX3xBv3796N27NwsXLgTyE/b4+HiGDx+Oj4+POnb+/Pn07duXAQMGkJCg+XKOQgghhBCi8qkUM+0FmyxlZ2dz584dfvrpJwB27tyJo6MjY8eORaVSqUtJMjMz6dixI76+vowfP54FCxawevVqIiMj8fX1xdnZmUmTJhEeHo6/v3+xfT64yVKPHj1wc3Mr8/uYMmUK+vr6REVFMW3aNHXS/tFHH2FmZoZKpWLEiBH8/fffDBs2jLVr1/LTTz9hYWGhfl+tW7fmo48+4ttvv2XLli2MGzeuzOMSQgghhBAVW6VI2h8sjzl37hy+vr7s3LkTOzs7pk2bRm5uLi4uLtja2gKgp6dHly5dALCxsUFfXx89PT1sbGyIjY19oj4fLo+JiYkp8/soKI9JTExk0KBBdO7cmXr16rF79262bNlCbm4ud+7cITIykmbNmhWJ19PT46233gKgZcuW/Pmn5iu1CCGEEEKIyqfSlce0bduWpKQkEhMTcXBwYMOGDVhZWeHn58f27duB/ORWS0sLAG1tbXXduLa2NiqVqlT96urqkpeXp36dnZ1d6vdgYWFB8+bNuXDhAtHR0axevZq1a9eyY8cO3nzzzRLbfvh9lfa9CCGEEEKIyqXSJe2RkZGoVCrMzMyIjY3F0tKSAQMG4O3tzaVLl564nZo1a5KRkfHE19euXZu7d++SlJRETk4Of/zxRylGn+/evXtERETw8ssvk5GRgaGhIcbGxiQkJHD06NFSj1EIIYQQQlRNlaI8pqCmHUBRFAICAtDR0eHUqVOsWrUKXV1djIyMCAgIeOI2O3TowIoVK3B3d2fMmDH06tXrkdfr6ekxfvx4vL29sbKyomHDhhq/jylTpmBgYEBOTg6enp60bNkSgObNm9OzZ0/q1q1Lu3bt1NcPGDCAUaNG8cILL7B+/XqN+xNCCCGEEFWDlqIoyvMehHh6ZEdUIYQQQojKr9KVxwghhBBCCFHdSNIuhBBCCCFEBSflMUIIIYQQQlRwleJBVFF6aUnJGscYm5uRGqf5bqsmVpakxGpeQ29ar67Gtfe2r9TVuB8hhBBCiMpKymOEEEIIIYSo4Cps0m5ra4u7uzt9+/bF09OTs2fPlrnNiIgIjhw5Uuy5kJAQxowZU+iYn58fe/bseWSbD14TGhpK7969cXd3Jysrq9B1mr6f1NRUNm7c+MjxCSGEEEKI6qHCJu0GBgYEBQXx+++/M3nyZObNm1fmNh+VtJeH33//ndGjRxMUFISBgUGhc5q+n9TUVH755ZenNlYhhBBCCFF5VNik/UHp6emYmJgAEB8fz5AhQ3B3d6dPnz6EhoYC0LZtWwICAujduzcjRowgLCwMHx8fnJ2dOXjwIDk5OSxcuJDg4GDc3d0JDg7WaAyLFy+mf//+9OnTh+nTp/Pw87tbt25lz549/PDDD3z88cdP/H4yMjIYPnw4np6euLm5ceDAAQC+//57bty4gbu7u3rTqMzMTCZNmkSPHj34+OOPi4xBCCGEEEJUTRX2QdSCXVCzs7O5c+cOP/30EwA7d+7E0dGRsWPHolKpuHfvHpCf0Hbs2BFfX1/Gjx/PggULWL16NZGRkfj6+uLs7MykSZMIDw/H39+/2D5DQ0PVO68C3Lp1izfffBOAoUOHMmHCBAA++eQTDh8+jJOTk/pab29vzpw5w5tvvkmPHj2e+P3UqFGDJUuWUKtWLRITExk4cCDOzs58/PHHXLlyhaCgICC/POby5cvs2rWLF154gcGDB3PmzBns7e3LeKeFEEIIIURFV2GT9oJyEoBz587h6+vLzp07sbOzY9q0aeTm5uLi4oKtrS0Aenp6dOnSBQAbGxv09fXR09PDxsaG2NjYJ+rT3t6e5cuXq1/7+fmpvw8JCWHlypVkZWWRnJxMkyZNCiXtpX0/iqIwb948Tp8+jba2NnFxcSQkFL9yS6tWrahbN3/VlGbNmhEbGytJuxBCCCFENVApymPatm1LUlISiYmJODg4sGHDBqysrPDz82P79u1AftKupaUFgLa2Nvr6+urvVSpVmfrPzs7mq6++YuHChezYsYMBAwaQnZ1dLu9nx44dJCYmEhgYSFBQEJaWliW2XfCeAHR0dMr8voQQQgghROVQKZL2yMhIVCoVZmZmxMbGYmlpyYABA/D29ubSpUtP3E7NmjXJyMjQuP+CJNrc3JyMjAz27t2rcRsPevD9pKWlUbt2bfT09Pjrr7/UfxUo7ViFEEIIIUTVU2HLYwpqwAEURSEgIAAdHR1OnTrFqlWr0NXVxcjISP2Q5pPo0KEDK1aswN3dnTFjxtCrV68nijMxMcHb25s+ffpgaWmJnZ1dub0fNzc3xo4di5ubGy1btqRhw4ZA/i8I7dq1o0+fPnTu3FldWy+EEEIIIaofLUWWIKnSZEdUIYQQQojKr1KUxwghhBBCCFGdSdIuhBBCCCFEBSflMUIIIYQQQlRwFfZBVFE+EpJSNI6xNDclfu9JjeNecH2dWxs1X1nnxSGuJJy4oFGM5RutiU/U/L29YGGqcYwQQgghxPMm5TFCCCGEEEJUcNU2abe1tcXd3Z2+ffvi6enJ2bNny9xmREQER44cKfF8aGgoXl5e9OjRA1dXVzZu3Fim/tq2bVumeCGEEEIIUTlU2/IYAwMDgoKCADh27Bjz5s1jw4YNZWozIiKC8PBwunbtWuTcnTt3mDJlCkuWLKFFixYkJiYyatQoXnjhBbp161amfoUQQgghRNVWbWfaH5Seno6JiQkA8fHxDBkyBHd3d/r06UNoaCiQP6sdEBBA7969GTFiBGFhYfj4+ODs7MzBgwfJyclh4cKFBAcH4+7uTnBwcKE+Nm7ciKenJy1atADAwsKCTz75hFWrVgHg5+fHnj171NcXzKJnZGQwfPhwPD09cXNz48CBA0/9fgghhBBCiIql2s60F+xQmp2dzZ07d/jpp58A2LlzJ46OjowdOxaVSsW9e/cAyMzMpGPHjvj6+jJ+/HgWLFjA6tWriYyMxNfXF2dnZyZNmkR4eDj+/v5F+rt69SoeHh6FjrVs2ZKrV68+cpw1atRgyZIl1KpVi8TERAYOHIizszNaWlrlcyOEEEIIIUSFV22T9gfLY86dO4evry87d+7Ezs6OadOmkZubi4uLC7a2tgDo6enRpUsXAGxsbNDX10dPTw8bGxtiY2Of2jgVRWHevHmcPn0abW1t4uLiSEhIoE6dOk+tTyGEEEIIUbFIeQz5pShJSUkkJibi4ODAhg0bsLKyws/Pj+3btwP5SXvB7La2tjb6+vrq71Uq1WP7aNSoEZcuXSp0LDw8nJYtWwKgo6NDXl4eAHl5edy/fx+AHTt2kJiYSGBgIEFBQVhaWpKdnV0u71sIIYQQQlQOkrQDkZGRqFQqzMzMiI2NxdLSkgEDBuDt7V0k0X6UmjVrkpGRUey5IUOGsG3bNiIiIgBISkpiwYIFjBs3DoB69eqp+zp06JA6aU9LS6N27dro6enx119/PdVZfSGEEEIIUTFV2/KYgpp2yC9BCQgIQEdHh1OnTrFq1Sp0dXUxMjIiICDgidvs0KEDK1aswN3dnTFjxtCrVy/1uRdeeIHvvvuO6dOnk5aWRmxsLN988w2vvfYaAAMGDGDcuHH07duXzp07Y2RkBICbmxtjx47Fzc2Nli1b0rBhw3K8C0IIIYQQojLQUhRFed6DqI42btzIpk2b2LBhA6amT2+XTtkRtTDZEVUIIYQQlVG1nWl/3oYMGcKQIUOe9zCEEEIIIUQlIDPtQgghhBBCVHAy017FRcbc0TimUf063PnjjMZxdd5sz+2tBzWOq+vtzI3ZP2kU8/K04aTE3ta4L9N6dUtdwiOEEEII8bzI6jFCCCGEEEJUcBV2pt3W1hYbGxsURUFHR4fp06fTrl27MrUZERFBfHw8Xbt2BSAwMJBvv/0WKysrAJo2bYqrqyuRkZGMHj36se0lJSUxYsQIABISEtDW1sbCwgKArVu3qtdyLy8jR47kwoULtG/fnuXLl5dr20IIIYQQouKqsEn7gzuWHjt2jHnz5rFhw4YytRkREUF4eLg6aQfo1asX/v7+ha5zdnZ+ovbMzc3VY1y0aBFGRkaMHDmyTGN8lFGjRnHv3j02b9781PoQQgghhBAVT6Uoj0lPT8fExASA+Ph4hgwZgru7O3369CE0NBTI39U0ICCA3r17M2LECMLCwvDx8cHZ2ZmDBw+Sk5PDwoULCQ4Oxt3dneDg4GL7CgwMZMaMGQD4+fkxa9YsBg0ahLOzM3v27HmisTo5Oak3R3rwtY+PD7NmzVKPPSwsDIDMzEymTp2Kl5cXHh4eHDhwoNi2X3/9dWrWrKnZzRNCCCGEEJVehZ1pL9j8KDs7mzt37vDTT/kPKu7cuRNHR0fGjh2LSqXi3r17QH7i27FjR3x9fRk/fjwLFixg9erVREZG4uvri7OzM5MmTSI8PFw9sx4YGEhwcDBnzuQ/dDls2DC0tLQKjSM+Pp6ff/6Z//77j7Fjx9KjR49HjrtWrVp06NCBI0eO4OLiwq5du+jevTt6enrq9xUUFMTp06eZNm0aO3fu5Mcff6Rjx47MmTOH1NRUvL29eeONN9QbLAkhhBBCiOqtwibtD5bHnDt3Dl9fX3bu3ImdnR3Tpk0jNzcXFxcXbG1tAdDT06NLly4A2NjYoK+vj56eHjY2NsTGxpbYz8PlMYGBgYXOu7i4oK2tTePGjUlISHiisXt5ebFy5UpcXFwIDAxk5syZ6nO9e/cGwMHBgfT0dFJTUzl+/DiHDh1i9erVAGRnZ3Pr1i0aNWr0RP0JIYQQQoiqrVKUx7Rt25akpCQSExNxcHBgw4YNWFlZ4efnx/bt24H8pL1gllxbW1v9EKi2tjYqlarUfZfmYdL27dsTGxtLSEgIKpUKGxsb9bmHZ/ILXi9cuJCgoCCCgoL4448/JGEXQgghhBBqlSJpj4yMRKVSYWZmRmxsLJaWlgwYMABvb28uXbr0xO3UrFmTjIyMpzjS//Hw8ODjjz+mX79+hY4X1NKHhoZibGyMsbExjo6ObNiwgYJ9ri5fvvxMxiiEEEIIISqHClseU1DTDqAoCgEBAejo6HDq1ClWrVqFrq4uRkZGBAQEPHGbHTp0YMWKFbi7uzNmzJinNXQA3NzcWLBgAX369Cl0vEaNGnh4eJCbm8vs2bMBGDduHLNnz6Zv377k5eVRv379Ypd0fPvtt/nvv//IzMykS5cufP3113Tu3Pmpvg8hhBBCCPH8aSkF07uiXO3Zs4eDBw/y3XffqY/5+Pjw6aefYmdn98zGITuiFiY7ogohhBCiMqqwM+2V2cyZMzl69CgrVqx43kMRQgghhBBVgCTtT8H06dOLPb5+/fpnPBIhhBBCCFEVSHmMEEIIIYQQFZzMtFdxySlpGseYmRpz58ApjePquLxG4tkIjeMs2tly94xmK+bUbt+cpH+va9yXuc2rpN7WvM7fpG4dEi/8o3GcReumGscIIYQQQjysUiz5KIQQQgghRHVWYWfabW1tsbGxQVEUdHR0mD59Ou3atStTmxEREcTHx9O1a1cgf/fTb7/9FisrKwCaNm2Kq6srkZGRjB49+rHtJSUlMWLECAASEhLQ1tbGwsICgK1bt5ZqY6ZHjf3LL78kPT0dbW1txo4dS69evcqtfSGEEEIIUXFV2KTdwMCAoKAgAI4dO8a8efPYsGFDmdqMiIggPDxcnbQD9OrVC39//0LXOTs7P1F75ubm6jEuWrQIIyMjRo4cWaYxlsTAwICAgABeffVV4uLi6N+/P46OjpiYmDyV/oQQQgghRMVRKcpj0tPT1clpfHw8Q4YMwd3dnT59+hAaGgpA27ZtCQgIoHfv3owYMYKwsDB8fHxwdnbm4MGD5OTksHDhQoKDg3F3d1fvTPqwwMBAZsyYAYCfnx+zZs1i0KBBODs7s2fPnicaq5OTE/fv3y/y2sfHh1mzZqnHHhYWBkBmZiZTp07Fy8sLDw8PDhw4UKTdBg0a8OqrrwJgZWWFhYUFiYmJmt1IIYQQQgjxRKZOncrrr79eZKPMAoqiMGvWLLp164abmxuXLl1Sn9u2bRvdu3ene/fubNu2rVzGU2Fn2gt2RM3OzubOnTv89FP+5js7d+7E0dGRsWPHolKpuHfvHpCf+Hbs2BFfX1/Gjx/PggULWL16NZGRkfj6+uLs7MykSZMIDw9Xz6wHBgYSHBzMmTP5GwkNGzYMLS2tQuOIj4/n559/5r///mPs2LH06NHjkeOuVasWHTp04MiRI7i4uLBr1y66d++Onp6e+n0FBQVx+vRppk2bxs6dO/nxxx/p2LEjc+bMITU1FW9vb9544w2MjIyK7SMsLIz79+/z8ssvl/4GCyGEEEKIEvXr14+hQ4fi6+tb7PmjR49y/fp19u3bx4ULF/jyyy/ZunUrycnJLF68mN9++w0tLS369euHk5MTpqamZRpPhU3aHyyPOXfuHL6+vuzcuRM7OzumTZtGbm4uLi4u2NraAqCnp0eXLl0AsLGxQV9fHz09PWxsbIiNjS2xn4fLYwIDAwudd3FxQVtbm8aNG5OQkPBEY/fy8mLlypW4uLgQGBjIzJkz1ed69+4NgIODA+np6aSmpnL8+HEOHTrE6tWrAcjOzubWrVs0atSoSNvx8fF88sknBAQEoK1dKf5QIoQQQghR6Tg4OBATE1Pi+YMHD+Lh4YGWlhZt2rQhNTWV+Ph4Tp06RadOnTAzMwOgU6dOHDt2rMQZ+ydVKbK+tm3bkpSURGJiIg4ODmzYsAErKyv8/PzYvn07kJ+0F8ySa2trqx8C1dbWRqVSlbrv0jxM2r59e2JjYwkJCUGlUmFjY6M+9/BMfsHrhQsXEhQURFBQEH/88UexCXt6ejpjxozho48+ok2bNhqPSwghhBBClI+4uDjq1q2rfl23bl3i4uKKHLeysiIuLq7M/VXYmfYHRUZGolKpMDMzIzY2lrp16zJgwABycnK4dOkSHh4eT9ROzZo1ycjIeLqD/f88PDz4+OOPGTduXKHjwcHBdOzYkdDQUIyNjTE2NsbR0ZENGzYwffp0tLS0uHz5Ms2bNy8Ul5OTw/jx43F3d39siY4QQgghRFV3ucu4x1/0CBfHd2Xz5s3q1wMHDmTgwIFlHdZTU2GT9oKadsgv9A8ICEBHR4dTp06xatUqdHV1MTIyIiAg4Inb7NChAytWrMDd3Z0xY8Y8raED4ObmxoIFC4r8KaRGjRp4eHiQm5vL7NmzARg3bhyzZ8+mb9++5OXlUb9+fZYvX14obvfu3YSGhpKcnKx+oOGbb75RlwcJIYQQQlQrD1UvaKqsSbqVlRW3b99Wv759+zZWVlZYWVlx6tT/NqmMi4vjtddeK9NYAbQURVHK3IooYs+ePRw8eJDvvvtOfczHx4dPP/0UOzu7ZzYO2RG1MNkRVQghhKgaLr85sUzxzf9Y9NhrYmJieP/999m5c2eRc3/88QcbNmzg//7v/7hw4QKzZs3i119/JTk5mX79+qknWT09PQkMDFTXuJdWhZ1pr8xmzpzJ0aNHWbFixfMeihBCCCFE1aRdtpn2x5k8eTKnTp0iKSmJLl26MHHiRHJzcwEYPHgwXbt25ciRI3Tr1g1DQ0N1BYWZmRnjxo3Dy8sLgPHjx5c5YQeZaa/yZKa9MJlpF0IIIaqGy06TyhTf/NDCchrJsyFJuxBCCCGEqHQinD8oU7ztwR/KaSTPhpTHVHGlnVVOuhypcZx580aljkuOvKFRjFmjl0lLTtG4L2MzU+78cUbjuDpvtudu6KXHX/iQ2vYtSLlxU6MY05df0rgfIYQQotp5yuUxFY0k7UIIIYQQovIp4+oxlU2l2FzpWbG1tcXd3V39VfAgqY+PDxcvXtS4vYiICI4cOVLi+YsXLzJr1qxSjbW0YxJCCCGEEJWPzLQ/wMDAgKCgoHJrLyIigvDwcLp27VrkXG5uLnZ2ds90+UchhBBCiCqjms20S9KuoePHj7No0SJycnKwtrZmzpw51KxZk7CwMGbPnk1mZib6+vqsWbOGhQsXkpWVxZkzZxgzZgyRkZHcuHGD6OhoXnrpJQYOHMjq1atZvnw5GRkZzJo1i/DwcAAmTJiAq6srX3zxBRcvXiQ7OxtXV1cmTSrbk9JCCCGEEFWBltS0V18P7sIKMGbMGHr16qV+nZiYyLJly1izZg1GRkasWLGCNWvWMHr0aD766CPmz59Pq1atSE9Px8DAgEmTJhEeHo6/vz8AixYtIjIykp9//hkDAwNCQkLUbS9dupRatWqxY8cOAFJS8h+y/OijjzAzM0OlUjFixAj+/vtvmjVr9ixuhxBCCCFExSUz7dXX48pjLly4wNWrVxk8eDAA9+/fp02bNly7do06derQqlUrAGrVqlViG05OThgYGBQ5fvLkSebNm6d+bWpqCsDu3bvZsmULubm53Llzh8jISEnahRBCCCFkpl2URFEUOnXqVCi5BvjnnyffdMfQ0PCJr42Ojmb16tX8+uuvmJqa4ufnR3Z29hPHCyGEEEKIqkFWj9FAmzZtOHv2LFFRUQBkZmZy7do1GjRowJ07dwgLCwMgPT2d3NxcatasSUZGxhO1/cYbb7Bx40b165SUFDIyMjA0NMTY2JiEhASOHj1a/m9KCCGEEKIy0tIq21clIzPtD3i4pr1z585MmTJF/drCwoI5c+YwefJkcnJyAPjwww9p0KAB8+fPZ9asWWRlZWFgYMCaNWvo0KEDK1aswN3dnTFjxjyy77FjxzJjxgz69OmDtrY2EyZMoHv37jRv3pyePXtSt25d2rVr93TeuBBCCCFEZVPNymO0FEVRnvcgxNMjO6IWJjuiCiGEEFXDPx5+ZYpvuv2bchrJsyEz7UIIIYQQovKphCUuZSEz7UIIIYQQotL5x3NqmeKbbptTTiN5NmSmvYpLS0rWOMbY3Iykv69pHGferAGpqWkax5mYGJOakKhZjKUFqXEJmvdlZcnNO0kax71Ux7zU/SVfi9EoxqxBfY1jCuKEEEKIaqOa1bRL0i6EEEIIISqfalYeI0m7EEIIIYSodLSq2Ux7tVmn3dbWFnd3d/XXihUrHnn9jz/+WC79rlq1ih49euDu7k7//v3Zvn17ubTr5OREYqJmJSVCCCGEEKJyqjYz7QYGBgQFBT3x9cuXL+f999/XqA+VSoWOjo769S+//MKJEyf49ddfqVWrFunp6ezfv1+jNoUQQgghRDG0qs3cM1CNkvbipKWl4eXlxbJly2jYsCGTJ0+mY8eO3LhxQ73RUuPGjfn+++8JCgpi/fr13L9/n9atW/PFF1+go6ND27ZtGThwICdOnMDf3x97e3t1+8uXL2f9+vXUqlULgFq1auHp6QnAyZMnCQgIQKVS0bJlS7766iv09fVxcnLCw8ODw4cPk5uby4IFC2jUqBFJSUl8/PHHxMXF0aZNG2TRHyGEEEJUa9Wspr3a/IpSkIQXfAUHB2NsbIy/vz9Tp05l165dpKSkMGDAAKZMmaKemf/++++JjIxk9+7d/PLLLwQFBaGtrc2OHTsAyMzMpFWrVvz++++FEvb09HQyMjKwtrYuMpbs7Gz8/PyYP38+O3bsQKVS8fPPP6vPm5ubs23bNgYNGsTq1asBWLJkCe3atWPXrl1069aNmzc127BHCCGEEKJK0dYq21clU21m2ksqj+nUqRN79uxhxowZJZbPnDx5kvDwcLy8vID8XwBq164NgI6ODq6urhqN5dq1a9SvX58GDRoA4OnpycaNGxkxYgQA3bt3B6Bly5bqcprTp0+zePFiAN58801MTU016lMIIYQQoirRqmYz7dUmaS9JXl4ekZGRGBgYkJKSQt26dYtcoygKnp6efPzxx0XO1ahRo1Ade4FatWphZGREdHR0sbPtj6KnpweAtrY2KpVKo1ghhBBCCFH1VJvymJKsXbuWRo0a8f333zN16lTu378PgK6urvr7119/nb1793L37l0AkpOTiY2NfWzbo0eP5quvviI9PR2AjIwMtm/fToMGDYiNjSUqKgqAoKAgHBwcHtmWg4ODuiTnyJEjpKSklO4NCyGEEEJUBVIeUzUV1LQX6Ny5M/369WPr1q1s3bqVWrVq4eDgwLJly5g0aRIDBgygb9++NG/enO+//54PP/yQd999l7y8PPT09PD396devXqP7PPtt98mMzOT/v37o6enh66uLu+88w41atRgzpw5fPDBB+oHUQcPHvzItsaPH8/HH39M7969adu2LS+99FK53BchhBBCiEqpmpXHaCmyDEmVlpaUrHGMsbkZSX9f0zjOvFkDUlPTNI4zMTEmNUGzNedNLC1IjUvQvC8rS27eSdI47qU65qXuL/lajEYxZg3qaxxTECeEEEJUF1dGzCpTfJO1n5fTSJ6NajPTLoQQQgghqo7q9iCqzLQLIYQQQohK5+o7X5cpvvGaz8ppJM+GzLRXcXeTUjWOqW1uQuL5vzWOs2jTjDuHQzWOq/OWPUkR/2kUY27bkNh4zUpqAOq9YMH1z5drHPfqrDGlfm8JSZo9NGxpbkrCyTCN+7J8vRVpyZo/oGxsJsuHCiGEqISq2Uy7JO1CCCGEEKLyqYQrwJRFtVzy0dbWttDuqCtWrHjk9T/++GOZ+1QUhaVLl9K9e3dcXV0ZOnQof/+t+Wx2gcDAQGbMmFHmcQkhhBBCVEpaWmX7qmSq5Ux7SbujlmT58uW8//77GvWhUqkKbbq0ceNGzp07R1BQEIaGhhw/fpxx48axc+dOjIyMNGpbCCGEEEJUL9Vypr04aWlpuLq68t9/+bXVkydPZsuWLcydO1e9xnvBjqhBQUF4eXnh7u6Ov7+/etfStm3b8s0339C3b1/OnTtXqP3/+7//w9/fH0NDQwAcHR1p3769esOktm3bqq/ds2cPfn5+ABw6dAhvb288PDwYMWIECQmaLzsohBBCCFHlPIPNlY4ePYqrqyvdunUrtjJj9uzZ6soNV1dX7O3t1ecerOzQdPK3ONVypv3hjZbGjBlDr1698Pf3Z+rUqQwbNoyUlBQGDBgA5M+SF8zMR0ZGsnv3bn755Rf09PT48ssv2bFjBx4eHmRmZtKqVSt1wl0gPT2de/fuYW1tXeh4y5YtuXr16iPH2r59e7Zs2YKWlhZbt25l5cqVRdoXQgghhKhunvaSjyqVihkzZrBmzRqsrKzw8vLCycmJxo0bq6+ZNm2a+vv169dz+fJl9WtNKzsep1om7SXdxE6dOrFnzx5mzJhR4k0+efIk4eHheHl5Afm/ANSuXRsAHR0dXF1dy3Wst2/f5qOPPuLOnTvk5ORQv75soCOEEEII8bTr0sPCwnjllVfUk669e/fm4MGDhZL2B+3atYuJEyc+tfFUy6S9JHl5eURGRmJgYEBKSgp169Ytco2iKHh6eqpLZR5Uo0aNQnXsBWrVqoWhoSHR0dGFZtsvXbpEp06dilyfnZ2t/n7WrFmMGDECZ2dnQkJCWLx4cWnfnhBCCCFE1VHG1WM2b97M5s2b1a8HDhzIwIED1a/j4uIK5YJWVlaEhRW/JHNsbCwxMTF07NhRfSw7O5t+/fqhq6vL6NGjcXFxKdN4pab9AWvXrqVRo0Z8//33TJ06lfv37wOgq6ur/v71119n79693L17F4Dk5GRiY2Mf2/bIkSOZNWsWWVlZAJw4cYKrV6/So0cPACwtLYmMjCQvL48DBw6o49LS0rCysgJg+/bt5fZehRBCCCGqs4EDBxIYGKj+ejBh19SuXbtwdXUtNHl7+PBhAgMD+f7775k9ezY3btwo03ir5Uz7wzXtnTt3pl+/fmzdupWtW7dSq1YtHBwcWLZsGZMmTWLAgAH07duX5s2b8/333/Phhx/y7rvvkpeXh56eHv7+/tSrV++Rffr4+JCamkrfvn3Jzc0lJyeHnTt3UqNGDQA+/vhjxowZg4WFBS1btiQzMxOACRMm8MEHH2BqakqHDh2IiYl5ejdGCCGEEKKyeMrlMVZWVty+fVv9Oi4uTj2R+rDg4GD8/f2LxANYW1vz2muvcfnyZV5++eVSj0dLURSl1NGiVDIyMpgwYQJ2dnZMnjz5qfYlO6IWJjuiFiU7ogohhKiM/ps0v0zxDRd+9Mjzubm5uLq6snbtWvWDqN9//z1NmjQpdF1kZCTvvfceBw8eVD8cm5KSgqGhIfr6+iQmJjJo0CCWLl1aYj38k6iWM+3PW82aNVmzZs3zHoYQQgghROX1lGfadXV18ff3Z9SoUahUKvr370+TJk344YcfaNmyJc7OzkD+LHuvXr0KrWYTGRnJF198gZaWFoqi8N5775UpYQdJ2oUQQgghRGX0DHY17dq1K127di107IMPPij0urgVY9q1a6fei6e8SHmMEEIIIYSodP778IcyxTdc8MHjL6pAZKa9iittjXNySprGcWamxkTHaV5nbm1lofE4jc1MSb19R+O+TOrW4fQ/0RrHOTS11rg2HfLr05OvRGkUY9bklVL3lXLjpsZxpi+/xJ+XNBsjQKcWr2gcI4QQQpSbMi75WNlI0i6EEEIIISqdp70jakUjSXs5s7W1xcbGRv16yZIlsoupEEIIIUR5k5l2URYGBgYEBQU972EIIYQQQogqRJL2ZyA8PJxvvvmGzMxMzM3NmTNnDi+88AI+Pj60atWKkJAQ0tLS+Prrr7G3t0elUjF37lyOHTuGlpYWAwYMwMfHp8R2hBBCCCGqHSmPEWXx4G6r9evXZ8GCBcyaNYulS5diYWFBcHAw8+fPZ86cOQCoVCp+/fVXjhw5wuLFi1m7di2bN28mNjaW7du3o6urS3JyMvfv339kO0IIIYQQ1YqUx4iyeLg85t9//+Xff//lnXfeASAvL486deqoz3fr1g2AFi1aEBsbC8DJkycZNGgQurr5H4+Zmdlj2xFCCCGEqFZkpl2UJ0VRaNKkCZs3by72vL6+PgDa2tqoVKpStyOEEEIIUZ1Ut9VjtJ/3AKq6Bg0akJiYyLlz5wC4f/8+V65ceWTMG2+8webNm8nNzQUgOTm5VO0IIYQQQoiqQWbanzJ9fX0WLlzIrFmzSEtLQ6VSMXz4cJo0aVJijLe3N9evX6dv377o6uoyYMAAhg4dqnE7QgghhBBVVjWraddSFEV53oMQT4/siFqY7IhalOyIKoQQojK6Pn1FmeJfnTm6nEbybMhMuxBCCCGEqHyq2Uy71LQLIYQQQghRwUl5jBBCCCGEqHSivlxZpvhXvhxVTiN5NqQ8poorbY1z8rUYjePMGtTn7pnLGsfVbt+c5P80qzM3a2hNWmqqxn0Zm5gQH/ynxnEv9OpE0t/XNI4zb9agVPX6mtbBQ34tfGmfRYjbeUzjOKs+nYmN1+wZhnovWGjcjxBCCFGsarbkoyTtQgghhBCi8tGuXlXeVerd2tra4u7urv6KiYlh0KBB5da+k5MTiYmar47ypK5cucKwYcNwdXXFxcWFhQsXkpeX99T6E0IIIYSotLS0yvZVyVSpmXYDAwOCgoIKHdu0aVOR63Jzc9HVrVhvPSsri7Fjx/Lll1/i6OjIvXv3mDhxIuvWrWPEiBHPe3hCCCGEEOI5qlIz7cVp27YtACEhIbz99tu8//779O7dG5VKRUBAAP3798fNzU2d3IeEhDBkyBBGjx6Nq6sr/v7+xc52jxs3jn79+tG7d282b96sPn706FE8PT3p27cvw4cPByAzM5OpU6fi5eWFh4cHBw4cKNLejh07aNeuHY6OjgAYGhri7+/PypX5D1ksWrSIVatWqa/v06cPMTGa150LIYQQQlQFWtpaZfqqbCrWdHMZZWVl4e7uDkD9+vVZsmRJofOXL19mx44dWFtbs3nzZoyNjfntt9/Iyclh0KBBdOrUCYCwsDCCg4N56aWXGDVqFPv27aNHjx6F2po9ezZmZmZkZWXh5eVF9+7dURSF6dOns2HDBqytrUlOTgbgxx9/pGPHjsyZM4fU1FS8vb154403MDIyUrd39epVWrRoUaiPl19+mezsbFJL8cClEEIIIUSVVglLXMqiSiXtxZXHPMjOzg5ra2sA/vzzT/755x/27t0LQFpaGlFRUejp6dGqVSv1db179+bMmTNFkvb169ezf/9+AG7dukVUVBSJiYnY29urY83MzAA4fvw4hw4dYvXq1QBkZ2dz69YtGjVqVH5vXgghhBCiOqmEs+VlUaWS9sd5cGZbURQ+//xzOnfuXOiakJAQtB76ze3h1yEhIZw4cYLNmzdjaGiIj48P2dnZj+x74cKFNGzYsMTzjRs35vTp04WORUdHY2ZmhomJCTo6OoXKdB7XnxBCCCFElVbNZtqrfE17SRwdHfnll1+4f/8+ANeuXSMzMxPIL4+Jjo4mLy+P3bt30759+0KxaWlpmJqaYmhoSGRkJOfPnwegTZs2hIaGEh2dv+Z4QXmMo6MjGzZsoGAfq8uXi65l7ubmxpkzZzhx4gSQX+oza9YsJk6cCEC9evXUcZcuXZJ6diGEEEKIaqRazbQ/yNvbm9jYWPr164eiKJibm7N06VIgv4xm5syZREVF0aFDB7p161YotkuXLmzatImePXvSoEED2rRpA4CFhQUzZsxg4sSJ5OXlUbt2bdasWcO4ceOYPXs2ffv2JS8vj/r167N8+fJCbRoYGLBs2TJmzpzJV199RVxcHGPHjqVv374AuLq6EhQURO/evWnVqhWvvvrqU79HQgghhBAVVjWbaddSCqZ/BZBf+rJ69eoiSfWzduDAAebMmcO6deuoV69eqduRHVELkx1Ri4mTHVGFEEJUQtHf/1ymeOuP3y6nkTwb1XamvaJzcXHBxcXleQ9DCCGEEKJikpl2IYQQQgghKrboeb+UKd568uByGsmzITPtVVxpy1xKXR4TeknjuNr2LUi6HKlRjHnzRqQmaFaaAWBiacGdw6Eax9V5y57EC/9oHGfRuikpsbc1ijGtV5ekf69r3Je5zasal+JAfjlOwrFzGsdZdm5LQpJm/Vmam/K3u6/GfTULCtA4RgghRBUnSz4KIYQQQghRwVWz8hhJ2oUQQgghRKXz8D46VV21XacdwNbWFnd3d/VXTEwMgwYNKrf2nZycSEzUvIRDCCGEEEI8hrZW2b6ewNGjR3F1daVbt26sWLGiyPnAwEA6duyoziW3bt2qPrdt2za6d+9O9+7d2bZtW5nfbrWeaTcwMCAoKKjQsU2bNhW5Ljc3F13dan2rhBBCCCGqFZVKxYwZM1izZg1WVlZ4eXnh5ORE48aNC13Xq1cv/P39Cx1LTk5m8eLF/Pbbb2hpadGvXz+cnJwwNTUt9XgkE31I27ZtOXfuHCEhIfzwww+YmJhw7do1goODmTt3LqdOnSInJ4chQ4YwaNAgQkJCWLhwITVr1lRvxvTll1+irV34jxjjxo3j9u3bZGdnM2zYMAYOHAjk/wY3f/58VCoV5ubm/PTTT2RmZjJz5kyuXLlCbm4uEyZMwMXFhStXrjB16lTu379PXl4eixYtkk2WhBBCCFE9PeXymLCwMF555RWsra0B6N27NwcPHiyStBfn+PHjdOrUCTMzMwA6derEsWPH6NOnT6nHU62T9qysLNzd3QGoX78+S5YsKXT+8uXL7NixA2trazZv3oyxsTG//fYbOTk5DBo0iE6dOgH5H2pwcDAvvfQSo0aNYt++ffTo0aNQW7Nnz8bMzIysrCy8vLzo3r07iqIwffp0NmzYgLW1NcnJyQD8+OOPdOzYkTlz5pCamoq3tzdvvPEGmzZtYtiwYfTt25ecnBzy8vKe/k0SQgghhKiItJ9ulXdcXBx169ZVv7aysiIsLKzIdfv27eP06dM0aNCAqVOn8uKLLxYbGxcXV6bxVOukvbjymAfZ2dmpf7v6888/+eeff9i7dy8AaWlpREVFoaenR6tWrQr9FnbmzJkiSfv69evZv38/ALdu3SIqKorExETs7e3VsQW/jR0/fpxDhw6xevVqALKzs7l16xZt2rThxx9/5Pbt23Tv3l1m2YUQQghRbWmVccnHzZs3s3nzZvXrgQMHqishntRbb71Fnz590NfXZ9OmTfj6+rJu3boyjask1TppfxwjIyP194qi8Pnnn9O5c+dC14SEhBR5evnh1yEhIZw4cYLNmzdjaGiIj48P2dnZj+x74cKFNGzYsNCxRo0a0bp1a/744w9Gjx7NV199xeuvv16atyaEEEIIUbmVsTzmcUm6lZUVt2//b6+VuLg4rKysCl1jbm6u/t7b25vvvvtOHXvq1KlCsa+99lqZxlutV4/RhKOjI7/88gv3798H4Nq1a2RmZgL55THR0dHk5eWxe/du2rdvXyg2LS0NU1NTDA0NiYyM5Pz58wC0adOG0NBQoqOjAdTlMY6OjmzYsIGCzWovX74MQHR0NNbW1gwbNgxnZ2f++UfzzX6EEEIIIcTj2dnZcf36daKjo8nJyWHXrl04OTkVuiY+Pl79/aFDh2jUqBGQn8sdP36clJQUUlJSOH78OI6OjmUaj8y0PyFvb29iY2Pp168fiqJgbm7O0qVLgfwPdebMmeoHUbt161YotkuXLmzatImePXvSoEED2rRpA4CFhQUzZsxg4sSJ5OXlUbt2bdasWcO4ceOYPXs2ffv2JS8vj/r167N8+XJ2795NUFAQurq6WFpaMmbMmGd9G4QQQgghKoanvCOqrq4u/v7+jBo1CpVKRf/+/WnSpAk//PADLVu2xNnZmfXr13Po0CF0dHQwNTVlzpw5QH7J87hx4/Dy8gJg/Pjx6jLo0tJSCqZzRamEhISwevVqli9f/ryHUqzkazEax5g1qF/quLuhlzSOq23fgqTLkRrFmDdvRGqC5mvgm1hacOdwqMZxdd6yJ/GC5n/ZsGjdlJTY24+/8AGm9eqS9O91jfsyt3mVtOQUjeOMzUxJOHZO4zjLzm1JSNKsP0tzU/5299W4r2ZBARrHCCGEqNpiV/1epvh6I/uW00ieDZlpF0IIIYQQlU512xFVZtqFEEIIIUSlc3P1jjLFv/SuWzmN5NmQmfYqLn7vSY1jXnB9nZSYWxrHmdZ/keT/ojWOM2tozd2kVI1iapubEJ+oeSnICxamxCwL1Diu/th+JF+J0jjOrMkr3Lh9V6OYl+vWJvH83xr3ZdGmmcb3EfLvZexyzbdXrjfGk5C/b2gU06HZy6UuT0r487zGcZad2mgcI4QQopJ4yjXtFY0k7UIIIYQQovKpZuUxsuRjCWxtbXF3d1d/xcSU/GBmYGAgM2bMAGDRokWsWrWqyDWLFi2ic+fOuLu706NHD7744ovH7mh64MABrl69qn7t4+PDxYsXS/mOhBBCCCGqEG2tsn1VMjLTXoLH7ZZaGiNGjGDkyJHk5eUxZMgQTp06RceOHUu8/sCBA7z55ps0bty4XMchhBBCCFHZVbcHUWWmXQNOTk4kJuYvM3jx4kV8fHxK1c79+/fJzs7G1NQUgC1bttC/f3/69u3LxIkTuXfvHmfPnuXQoUN8++23uLu7c+NGfu3wnj178PLywtXVldBQzWuDhRBCCCFE5SMz7SXIysrC3d0dgPr167NkyZIyt7l27Vp+//13bt68SZcuXbC1tQWgW7duDBgwAID58+fz66+/4uPjg5OTE2+++SY9evRQt6FSqfj11185cuQIixcvZu3atWUelxBCCCFEpaNVveaeJWkvwdMsj7l//z6TJk1i165d9O7dmytXrrBgwQLS0tLIyMh45Da3BbuttmjRgtjY2HIdnxBCCCFEpVEJ69LLonr9ilJGOjo6FCxrn52dXep29PT06Ny5M6dPnwbAz88Pf39/duzYwYQJE8jJySkxVl9fHwBtbW1UKlWpxyCEEEIIUalpaZXtq5KRpF0D9erVIzw8HIB9+/aVuh1FUTh79iwvv/wyABkZGdSpU4f79++zY8f/NgqoWbMmGRkZZRu0EEIIIURVVM1Wj5GkXQMTJkxg9uzZ9OvXDx0dHY3j165di7u7O3369CEvL4+3334bgA8++ABvb28GDx5Mw4YN1df36tWLVatW4eHhoX4QVQghhBBCVD9aSkG9h6iSZEfUwmRH1KJkR1QhhBCV0e2tB8sUX9fbuZxG8mzIg6hCCCGEEKLyqYQlLmUhSbsQQgghhKh8KuHDpGUh5TFCCCGEEKLSuR14uEzxdfu9VU4jeTZkpr2KS05J0zjGzNSYxAv/aBxn0bopKVGarx1v+ko9UhMSNYoxsbQgLVXz+m1jExMSL17ROM7CrglJf1/TOM68WQONx2lsYlLqZwpSb9/ROM6kbh2S/r2ucZy5zavcTkjSKKaupXmpP7eEJM2fYbA0NyX1jmbPFJjUqa1xP0IIIZ6DajbTLkm7EEIIIYSodLSqWU17tV3y0dbWFnd3d/VXTExMubV94MABrl69qn79ww8/cOLEiXJrHyAkJIQxY8aUa5tCCCGEEJVGNdtcqdrOtBsYGBAUFPRU2j5w4ABvvvkmjRs3BvLXYRdCCCGEEOVIZtqrLycnJxIT82urL168iI+PDwCLFi1i6tSp+Pj44OzszLp169Qx27dvx83Njb59+/LJJ59w9uxZDh06xLfffou7uzs3btzAz8+PPXv2AHDy5Ek8PDxwc3Nj6tSp5OTkqPteuHAhnp6euLm5ERkZCUBYWBgDBw7Ew8ODQYMG8d9//z3LWyKEEEIIISqAajvTnpWVhbu7OwD169dnyZIlj7z+2rVrrFu3jvT0dHr27MngwYO5fv06y5Yt45dffsHCwoLk5GTMzMxwcnLizTffpEePHoXayM7Oxs/Pj7Vr19KgQQM+/fRTfv75Z0aMGAGAubk527ZtY+PGjaxevZqvv/6ahg0bsnHjRnR1dTlx4gTz589n0aJFT+WeCCGEEEJUGpWwxKUsqm3Srml5TNeuXdHX18fCwgILCwvu3r3LX3/9RY8ePbCwsADAzMzskW1cu3aN+vXr06BBAwA8PT3ZuHGjOmnv3r07AC1btmT//v0ApKWl4evrS1RUFFpaWty/f1/DdyqEEEIIUfVoVbOkXcpjHqCjo0PBsvXZ2dmFzunr6xe6Ljc3t9z719PTA0BbWxuVSgXkP8TaoUMHdu7cybJly9TlNEIIIYQQ1Zq2Vtm+KhlJ2h9Qr149wsPDAdi3b99jr+/YsSN79uwhKSl/rerk5GQAatasSUZGRpHrGzRoQGxsLFFRUQAEBQXh4ODwyD7S0tKwsrICYNu2bU/8XoQQQgghqrRqtnqMJO0PmDBhArNnz6Zfv37o6Og89vomTZrw/vvv4+PjQ9++ffnmm28A6NWrF6tWrcLDw4MbN26or69RowZz5szhgw8+wM3NDS0tLQYPHvzIPkaNGsW8efPw8PB4KrP7QgghhBCi4tNSCupBRJUkO6IWJjuiFiU7ohYmO6IKIUTlEL//rzLFv9CtYzmN5Nmotg+iCiGEEEKIyktLq3oVjEjSLoQQQgghKp9K+DBpWUh5jBBCCCGEqHTuHDpdpvg6To9eDKSikZn2Ki458sbjL3qIWaOXSYrQfOdVc9uG3PnjjMZxdd5sT9LlSM36at6I+ETNa5xfsDDlxncbNY57+ZMhJPx5XuM4y05tSEzWrIbbwsyEhBMXNO/rjdalvifRP2zWOM76g4Gcv6rZMwxtGtfjduBhjfuq2+8t4nYe0zjOqk9nYhZu0Sim/qQBpMTe1rgv03p1NY4RQghRBpVwBZiykKRdCCGEEEJUPpK0V14JCQnMmTOH8+fPY2pqip6eHqNGjaJbt27Pe2gAhIWFERAQQEJCAoaGhrRo0YLPP/8cQ0PD5z00IYQQQojK5RnUtB89epSvv/6avLw8vL29GT16dKHza9asYevWrejo6GBhYcHs2bOpV68eALa2ttjY2ADw4osv8uOPP5ZpLFUmaVcUhfHjx+Ph4cH3338PQGxsLIcOHXriNnJzc9HVfTq3JCEhgQ8++IB58+bRtm1bAPbs2UNGRsYTJe1Pc2xCCCGEEJWN1lOeaVepVMyYMYM1a9ZgZWWFl5cXTk5ONG7cWH2Nra0tv/32G4aGhvz888989913LFiwAAADAwOCgoLKbTxVJgv866+/0NPTK7RZUb169fDx8QEgJiaGTz/9lHv37gEwffp02rVrR0hICD/88AMmJiZcu3aNvXv3Mm7cOG7fvk12djbDhg1j4MCBAGzdupWVK1dibGxMs2bN0NfXx9/fn8TERL744gtu3rwJwLRp02jfvn2h8W3cuBEPDw91wg7Qo0cPIH8G/uuvvyY7OxsDAwNmz55Nw4YNCQwMZN++fWRmZpKXl8e8efP46KOPSE9PR6VS8eWXX2Jvb//0bqoQQgghRDUVFhbGK6+8grW1NQC9e/fm4MGDhZL2jh3/t9Z7mzZt+P3335/aeKpM0n7lyhWaN29e4vnatWuzZs0aatSowfXr15k8eTKBgYEAXL58mR07dqg/lNmzZ2NmZkZWVhZeXl50796dnJwcli1bRmBgIDVr1mT48OE0a9YMgK+//prhw4djb2/PzZs3GTlyJLt37y4yPg8Pj2LH1rBhQzZu3Iiuri4nTpxg/vz5LFq0SD2233//HTMzM1avXo2joyNjx45FpVKpfwERQgghhKh2nnJ5TFxcHHXr/m+RASsrK8LCwkq8/tdff6VLly7q19nZ2fTr1w9dXV1Gjx6Ni4tLmcZTZZL2h3311VecOXMGPT09fvvtN3Jzc5kxYwZ///032traXL9+XX2tnZ2dOmEHWL9+Pfv37wfg1q1bREVFkZCQgIODA2ZmZkD+LHlBGydOnODq1avq+PT0dDIyMqhZs+YTjTUtLQ1fX1+ioqLQ0tLi/v376nOdOnVS92lnZ8e0adPIzc3FxcUFW1vbUtwZIYQQQogqoIzlMZs3b2bz5v+tnjZw4EB1dYWmgoKCCA8PZ8OGDepjhw8fxsrKiujoaIYPH46NjQ0vv/xyqcdbZZL2Jk2asG/fPvXrL774gsTERLy8vABYu3YtlpaWBAUFkZeXR6tWrdTXGhkZqb8PCQnhxIkTbN68GUNDQ3x8fMjOzn5k33l5eWzZsoUaNWqUeE3jxo25dOlSsb9l/fDDD3To0IElS5YQExPDsGHD1OcerHd3cHBgw4YNHDlyBD8/P955550SZ++FEEIIIaq0Mibtj0vSraysuH37f0sAx8XFYWVlVeS6EydO8OOPP7Jhwwb09fULxQNYW1vz2muvcfny5TIl7VVm/9eOHTuSnZ3Nzz//rD6WlZWl/j4tLY06deqgra1NUFAQKpWq2HbS0tIwNTXF0NCQyMhIzp8/D+TPcp8+fZqUlBRyc3ML/YLg6OjI+vXr1a8jIiKKtDt06FC2b9/OhQv/W3973759JCQkkJaWpv5gt23bVuJ7jI2NxdLSkgEDBuDt7c2lS5cec1eEEEIIIaomLW2tMn09jp2dHdevXyc6OpqcnBx27dqFk5NToWsuX76Mv78/y5Yto3bt2urjKSkp5OTkAJCYmMjZs2cL1cKXRpWZadfS0mLJkiXMmTOHlStXYmFhgaGhIVOmTAHg7bffZuLEiWzfvp3OnTsXml1/UJcuXdi0aRM9e/akQYMGtGnTBsj/bWnMmDF4e3tjampKw4YNMTY2BuCzzz5jxowZuLm5oVKpsLe3Z8aMGYXatbS0ZN68eQQEBHD37l20tbVxcHCgc+fOjBo1Cj8/P5YtW0bXrl1LfI+nTp1i1apV6OrqYmRkREBAQDncOSGEEEII8TBdXV38/f0ZNWoUKpWK/v3706RJE3744QdatmyJs7Mz3377LZmZmXzwwQfA/5Z2jIyM5IsvvkBLSwtFUXjvvffKnLRrKYqilMcbqw4K6tRzc3OZMGEC/fv3rzBrwJdEdkQtTHZELUp2RC1MdkQVQojK4e6p8DLF136tZTmN5NmoMjPtz8LixYs5ceIE2dnZODo6lvkpYCGEEEIIUUrPYHOlikRm2oUQQgghRKVz98zlMsXXbl/yUuEVkcy0V3FpyZqXSxibmWpcrgL5JSspN25qHGf68ksk/xetUYxZQ2tSExI17svE0qJUf06r/VpLEs//rXGcRZtmJF+L0SjGrEH9Z9ZXQX+l+Q9f7fbNSb1zV6MYkzq1STxb9EHtx7FoZ8vdUM0fvK5t34LkK1EaxZg1eYWUmFsa92Va/0VubdqvcdyLgyp2iZ0QQoiKQZJ2IYQQQghR6WiVccnHykaSdiGEEEIIUflUs5r2Sp+0JyQkMGfOHM6fP4+pqSl6enqMGjWqwqzqEhYWRkBAAAkJCRgaGtKiRQs+//zzQpsmlcaiRYswMjJi5MiR5TRSIYQQQohKRGbaKw9FURg/fjweHh58//33QP4GRIcOHXriNnJzc9HVfTq3ISEhgQ8++IB58+bRtm1bAPbs2UNGRkaZk3YhhBBCiGpNu8rsEfpEKnXS/tdff6Gnp8fgwYPVx+rVq4ePjw8AMTExfPrpp9y7dw+A6dOn065dO0JCQvjhhx8wMTHh2rVr7N27l3HjxnH79m2ys7MZNmyYelvbrVu3snLlSoyNjWnWrBn6+vr4+/uTmJjIF198wc2b+Q9eTps2jfbt2xca38aNG/Hw8FAn7AA9evQAIDk5mWnTphEdHY2hoSEzZsygWbNmLFq0iJs3bxITE8PNmzcZPnw4w4YNA2DZsmVs374dCwsLXnzxRVq0aPGU7qwQQgghhKhIKnXSfuXKFZo3L3m5ntq1a7NmzRpq1KjB9evXmTx5MoGBgUD+trM7duzA2toagNmzZ2NmZkZWVhZeXl50796dnJwcli1bRmBgIDVr1mT48OE0a9YMgK+//prhw4djb2/PzZs3GTlyJLt37y4yPg8Pj2LHtmjRIpo3b87SpUs5efIkvr6+BAUFAXDt2jXWrVtHeno6PXv2ZPDgwfzzzz8EBwezfft2VCoVnp6ekrQLIYQQovqS8pjK66uvvuLMmTPo6enx22+/kZuby4wZM/j777/R1tbm+vXr6mvt7OzUCTvA+vXr2b8/f7m2W7duERUVRUJCAg4ODpiZmQH5s+QFbZw4cYKrV6+q49PT09U7pj6JM2fOsGjRIgBef/11kpOTSU9PB6Br167o6+tjYWGBhYUFd+/eJTQ0FBcXF3VZjZOTU6nukRBCCCFEVaAlD6JWHk2aNGHfvn3q11988QWJiYl4eXkBsHbtWiwtLQkKCiIvL49WrVqprzUyMlJ/HxISwokTJ9i8eTOGhob4+PiQnZ39yL7z8vLYsmULNWrUKPGaxo0bc+nSJY13TtXX11d/r6OjQ25urkbxQgghhBBVXjWbaa/UFfwdO3YkOzubn3/+WX0sKytL/X1aWhp16tRBW1uboKAgVCpVse2kpaVhamqKoaEhkZGRnD9/HsifjT99+jQpKSnk5uYW+gXB0dGR9evXq19HRBTdMGbo0KFs376dCxcuqI/t27ePhIQE7O3t+f3334H8XxrMzc2pVatWie/VwcGBAwcOkJWVRXp6OocPH37M3RFCCCGEEFVFpZ5p19LSYsmSJcyZM4eVK1diYWGBoaEhU6ZMAeDtt99m4sSJbN++nc6dOxeaXX9Qly5d2LRpEz179qRBgwa0adMGACsrK8aMGYO3tzempqY0bNgQY2NjAD777DNmzJiBm5sbKpUKe3t7ZsyYUahdS0tL5s2bR0BAAHfv3kVbWxsHBwc6d+7MhAkTmDZtGm5ubhgaGvLNN9888r22aNGCXr164e7ujoWFBXZ2dmW8e0IIIYQQlVg1m2nXUhRFed6DqMgK6tRzc3OZMGEC/fv3rzBrwD+JtOQUjWOMzUxJuhypcZx580ak3LipcZzpyy+R/F+0RjFmDa1JTUjUuC8TSwvungrXOK72ay1JPP+3xnEWbZqRfC1GoxizBvWfWV8F/d09c1njuNrtm5N6565GMSZ1apN4tuhfpR7Hop0td0MvaRxX274FyVeiNIoxa/IKKTG3NO7LtP6L3Nq0X+O4FwdVnv+eCCFERZL07/UyxZvbvFou43hWKvVM+7OwePFiTpw4QXZ2No6OjhrXpwshhBBCiPKnJTPtQgghhBBCVGzJkTfKFG/W6OVyGsmzITPtVVxpy2MSw68+/sKHWLRszJ0/zmgcV+fN9hqXTFi0syUxOVXjvizMTIj+/ufHX/gQ64/f5s6BUxrH1XF5TeMyHhNLCxJOXHj8hQ+xfKM1CUmaf96W5qbELN6qcVz9Cd78Gx2vUYyN9Qvc3vaHxn3V9XyTuJ3HNI6z6tOZW7/se/yFD3hxcHeNS2ogv6wmet4vGsdZTx7MrY17NY57cYirxjFCCCEqL0nahRBCCCFE5VPNymMq5ZKPCQkJfPzxxzg7O9OvXz8GDhyo3hjpeQsJCaF9+/a4u7vj7u7OiBEjuHjxIrNmzXps7KBBgx55vm3btuU1TCGEEEKIyk1Lq2xflUylm2lXFIXx48fj4eHB999/D0BsbCyHDh164jZyc3PR1X16b93e3p7ly5cXOvYkSzRu2rTpaQ1JCCGEEKJKkR1RK7i//voLPT09Bg8erD5Wr149fHx8AIiJieHTTz/l3r17AEyfPp127doREhLCDz/8gImJCdeuXWPv3r2MGzeO27dvk52dzbBhwxg4cCAAW7duZeXKlRgbG9OsWTP09fXx9/cnMTGRL774gps385c1nDZtGu3bt3/smENCQli9ejXLly9n0aJF3Lx5k5iYGG7evMnw4cMZNmwYkD+Tfu7cOeLj4/noo49IT09HpVLx5ZdfYm9vD8D8+fM5fPgwBgYGLF26FEtLy/K7uUIIIYQQlUUlnC0vi0qXtF+5coXmzZuXeL527dqsWbOGGjVqcP36dSZPnkxgYCAAly9fZseOHVhbWwMwe/ZszMzMyMrKwsvLi+7du5OTk8OyZcsIDAykZs2aDB8+nGbNmgHw9ddfM3z4cOzt7bl58yYjR45k9+7dRcYQGhqKu7s7AD169KBdu3aFzl+7do1169aRnp5Oz549GTx4MHp6eurzO3fuxNHRkbFjx6JSqdS/gGRmZtK6dWs++ugjvv32W7Zs2cK4cePKcDeFEEIIIURlUOmS9od99dVXnDlzBj09PX777Tdyc3OZMWMGf//9N9ra2ly/fl19rZ2dnTphB1i/fr26Fv7WrVtERUWRkJCAg4MDZmZmQH7SXdDGiRMnuHr1f6uqpKenqzdfetDD5TEhISGFznft2hV9fX0sLCywsLDg7t271K1bt9A4p02bRm5uLi4uLtja2gKgp6fHW2+9BUDLli35888/S3nXhBBCCCEqOSmPqdiaNGnCvn3/W8Ltiy++IDExES8vLwDWrl2LpaUlQUFB5OXl0apVK/W1RkZG6u9DQkI4ceIEmzdvxtDQEB8fH7Kzsx/Zd15eHlu2bKFGjRpleg/6+vrq73V0dMjNzS103sHBgQ0bNnDkyBH8/Px455138PDwQE9PT72RgLa2NiqVqkzjEEIIIYSotKpZeUylWz2mY8eOZGdn8/PP/1trOysrS/19WloaderUQVtbm6CgoBIT27S0NExNTTE0NCQyMpLz588D+bPcp0+fJiUlhdzc3EK/IDg6OrJ+/Xr164gIzbdjfxKxsbFYWloyYMAAvL29uXRJ8+3bhRBCCCGqMi0trTJ9VTaVbqZdS0uLJUuWMGfOHFauXImFhQWGhoZMmTIFgLfffpuJEyeyfft2OnfuXGh2/UFdunRh06ZN9OzZkwYNGtCmTRsArKysGDNmDN7e3piamtKwYUOMjY0B+Oyzz5gxYwZubm6oVCrs7e2ZMWNGub/HU6dOsWrVKnR1dTEyMiIgIKDc+xBCCCGEEJVHpUvaAV544QXmz59f7LlXX32VHTt2qF9/8sknAHTo0IEOHTqoj+vr67Ny5cpi2+jTpw8DBw4kNzeXCRMm4OLiAoCFhQULFix45Nge7ufhYxMnTix0bufOnervz507B4Cnpyeenp5F2i44D/m19j169HjkWIQQQgghqiztSlcwUiaVMml/2hYvXsyJEyfIzs7G0dFRnbQLIYQQQogKohKWuJSFJO3F8PX1fd5DEEIIIYQQj1LNVo/RUhRFed6DEEIIIYQQQhOpCYllijextCinkTwbMtNexaUlp2gcY2xmSlLEfxrHmds2JDnyhsZxZo1eJunf65r1ZfMqaUnJGvdlbG5GwokLGsdZvtGau6fCNY6r/VpLkv+L1ijGrKE1d89c1ryv9s1JibmlcZxp/RdJOBmmcZzl6600/vkyNjMl8azmqy5ZtLMt9f1PDL/6+Asf7KtlY1Jib2vcl2m9utzauFfjuBeHuHJ1jOYPmzde7qtxfy8OcdW4HyGEEBWDJO1CCCGEEKLS0apm5TFV6rHbhIQEPv74Y5ydnenXrx8DBw5U73haEYSGhuLl5UWPHj1wdXVl48aNZWqvbdu25TQyIYQQQohKRkurbF9P4OjRo7i6utKtWzdWrFhR5HxOTg4ffvgh3bp1w9vbm5iYGPW55cuX061bN1xdXTl27FiZ326VmWlXFIXx48fj4eHB999/D+RvUnTo0KEnbiM3Nxdd3adzS+7cucOUKVNYsmQJLVq0IDExkVGjRvHCCy/QrVu3p9KnEEIIIUSV9ZRXj1GpVMyYMYM1a9ZgZWWFl5cXTk5ONG7cWH3N1q1bMTExYf/+/ezatYu5c+eyYMECrl69yq5du9i1axdxcXG888477N27Fx0dnVKPp8rMtP/111/o6ekxePBg9bF69erh4+MDQExMDG+//bZ6DfSzZ88CEBISwttvv837779P7969ARg3bhz9+vWjd+/ebN68Wd3e1q1bcXV1xcvLi88//1y9sVJiYiITJ06kf//+9O/fnzNnzhQZ38aNG/H09KRFixZA/prvn3zyCatWrQLAz8+PPXv2qK8vmEXPyMhg+PDheHp64ubmxoEDB8rtngkhhBBCVFraWmX7eoywsDBeeeUVrK2t0dfXp3fv3hw8eLDQNYcOHVLvrePq6srJkydRFIWDBw/Su3dv9PX1sba25pVXXiEsTPPnxx5UZWbar1y5QvPmzUs8X7t2bdasWUONGjW4fv06kydPJjAwEIDLly+zY8cOrK2tAZg9ezZmZmZkZWXh5eVF9+7dycnJYdmyZQQGBlKzZk2GDx9Os2bNAPj6668ZPnw49vb23Lx5k5EjR7J79+5C/V+9ehUPD49Cx1q2bMnVq49+SK5GjRosWbKEWrVqkZiYyMCBA3F2dq6U2+8KIYQQQlQWcXFx1K1bV/3aysqqSOIdFxfHiy++CICuri7GxsYkJSURFxdH69atC8XGxcWVaTxVJml/2FdffcWZM2fQ09Pjt99+Izc3lxkzZvD333+jra3N9evX1dfa2dmpE3aA9evXq2vhb926RVRUFAkJCTg4OGBmZgbk70ha0MaJEycKJd/p6elkZGRQs2bNMr8PRVGYN28ep0+fRltbm7i4OBISEqhTp06Z2xZCCCGEqKwUyjaBuXnz5kIVFQMHDmTgwIFlHdZTU2WS9iZNmrBv3z716y+++ILExES8vLwAWLt2LZaWlgQFBZGXl0erVq3U1xoZGam/DwkJ4cSJE2zevBlDQ0N8fHzIzs5+ZN95eXls2bKFGjVqlHhNo0aNuHTpUqHdVcPDw2nZsiUAOjo65OXlqdu7f/8+ADt27CAxMZHAwED09PRwcnJ67HiEEEIIIaq6vDLuNPS4JN3Kyorbt/+3BHBcXBxWVlZFrrl16xZ169YlNzeXtLQ0zM3NnyhWU1Wmpr1jx45kZ2fz888/q49lZWWpv09LS6NOnTpoa2sTFBSESqUqtp20tDRMTU0xNDQkMjKS8+fPA/mz8adPnyYlJYXc3NxCvyA4Ojqyfv169euIiKLrUA8ZMoRt27apzyUlJbFgwQLGjRsH5NffX7p0CcivjypI2tPS0qhduzZ6enr89ddfxMbGlub2CCGEEEJUKXmKUqavx7Gzs+P69etER0eTk5PDrl27cHJyKnSNk5MT27ZtA2Dv3r107NgRLS0tnJyc2LVrFzk5OURHR3P9+vVCE8alUWVm2rW0tFiyZAlz5sxh5cqVWFhYYGhoyJQpUwB4++23mThxItu3b6dz586FZtcf1KVLFzZt2kTPnj1p0KABbdq0AfJ/kxozZgze3t6YmprSsGFDjI2NAfjss8+YMWMGbm5uqFQq7O3t1Q+pFnjhhRf47rvvmD59OmlpacTGxvLNN9/w2muvATBgwADGjRtH3759C43Pzc2NsWPH4ubmRsuWLWnYsOHTuH1CCCGEEOIBurq6+Pv7M2rUKFQqFf3796dJkyb88MMPtGzZEmdnZ7y8vPjkk0/o1q0bpqamzJ8/H8ivAOnZsye9evVCR0cHf3//Mq0cA6ClKE/wq4YAUNep5+bmMmHCBPr371/q5Ro3btzIpk2b2LBhA6ampuU80v+RHVELkx1Ri5IdUR/qS3ZEFUKISuFuUmqZ4mubm5TTSJ6NKjPT/iwsXryYEydOkJ2djaOjY6H6dE0NGTKEIUOGlOPohBBCCCGqD4XqNe8sSbsGfH19n/cQhBBCCCEEZX8QtbKR8hghhBBCCFHpxN1NLlO8VW2zchnHsyIz7VXcncOhGsfUecuelCjNV6kxfaVeqerLapubaPwPz6q2GTfvJGnc10t1zEn487zGcZad2pCakKhxnImlBYnJmt0TCzMTjevgIb8WPjklTfM4U2Puhl7SOK62fQti4zW7J/VesCDx/N8a92XRplmpx5h0OVKjGPPmjUiNS9C4LxMry1I/L1HaZ0E07c/yjdal/tkSQgjxfEnSLoQQQgghKp3qVixSZdZpLw9t27Yt9DowMLDI0o0Pe/CaxMREvL298fDwIDS08Ay3j48Prq6uuLu707Nnz0I7cJVk7dq13Lt3r8TxCSGEEEJUV3lK2b4qG5lpL0cnT57ExsaGr7/+utjzc+fOxc7OjuTkZLp164anpyf6+voltrdu3Tr69u2LoaHh0xqyEEIIIUSlVN1m2iVpf0KHDh1i2bJl3L9/HzMzM+bOnYulpaX6fEREBN999x1ZWVmEh4ezefNmDAwMim0rMzMTQ0ND9SL7X3zxBRcvXiQ7OxtXV1cmTZrEunXriI+PZ/jw4ZiZmal3XJ0/fz6HDx/GwMCApUuXFhqDEEIIIUR1URlny8tCkvYHZGVl4e7urn6dkpKi3q62ffv2bNmyBS0tLbZu3crKlSvx8/NTX2tra8ukSZMIDw/H39+/2PanTJmCvr4+UVFRTJs2TZ20f/TRR5iZmaFSqRgxYgR///03w4YNY+3atfz0009YWFgA+cl+69at+eijj/j222/ZsmUL48aNe1q3QwghhBBCVBCStD/AwMCAoKAg9evAwEDCw/N3Ybx9+zYfffQRd+7cIScnh/r162vcfkF5TGJiIoMGDaJz587Uq1eP3bt3s2XLFnJzc7lz5w6RkZE0a9asSLyenh5vvfUWAC1btuTPP/8s5TsVQgghhKjcpDxGFGvWrFmMGDECZ2dnQkJCWLx4canbsrCwoHnz5ly4cIG8vDxWr17Nr7/+iqmpKX5+fmRnZxcbp6enh5aWFgDa2tqoVKpSj0EIIYQQojKrbkm7rB7zhNLS0rCysgJg+/btZWrr3r17RERE8PLLL5ORkYGhoSHGxsYkJCRw9OhR9XU1a9YkIyOjTH0JIYQQQlRFsnqMKNaECRP44IMPMDU1pUOHDsTExGjcxpQpUzAwMCAnJwdPT09atmwJQPPmzenZsyd169alXbt26usHDBjAqFGjeOGFF9QPogohhBBCiOpHS6luf1uoZmRH1MJkR9Ri4mRH1EJkR9Ri+pIdUYUQFdB/sXfKFN+wXp1yGsmzITPtQgghhBCi0qlu084y0y6EEEIIISqdKzHxZYpvUv+FchrJsyEz7VVcWnKKxjHGZqYkhl/VOM6iZeNSx2lajmP6Sj1uJ2heHlPX0pybq3doHPfSu26lLuuIT9TsM3jBwpS7Zy5r3Fft9s1Jib2tcZxpvbpEz/tF4zjryYMJv3ZLo5iWDV7kbshFjfuq3cGu1D9bcTuPaRRj1aczydc0f2bFrEF94oKOaBxn5d6VpIj/NI4zt23I7d8OaRRTt79Tqfsq7c+/EEI8LdVt2llWjxFCCCGEEKKCk5l2IYQQQghR6VS3Cu8qP9Petm3bQq8DAwOZMWNGqdqKiIjgyJH//fn74MGDrFixokzjK6AoCkuXLqV79+64uroydOhQ/v77f3+OzsjIwN/fHxcXF/r164ePjw8XLmi+UoUQQgghRFWQpyhl+qpsZKZdAxEREYSHh9O1a1cAnJ2dcXZ2Lpe2N27cyLlz5wgKCsLQ0JD/x959h1VxtA8f/wKK2BAQxJ7YS9Bo7LElqKAUEeyJNSaaWGI3atRYsCU+saCxxG6MHUVULFiiRiVqjErsigpYEAFp0vf9g5f9gdQ9GBW4P17nujy7c+/M7tk9zJmdnTl9+jRDhw5l3759FCtWjClTplCxYkUOHz6Mvr4+/v7+3L2rbSg7IYQQQoj8Ig/Wu3OlQFfaQ0JC+OGHH3j06BEAkydPplGjRly5coXZs2cTGxuLkZERc+bMoWLFiixZsoSYmBguXrzIkCFDiImJwdfXl2nTpjFx4kRKlCiBr68vz549Y/z48XTs2JGkpCRmzpzJuXPnKFeuHIUKFaJr16507NgxTVl+/fVXfvvtN4oWLQpAq1ataNSoEZ6enrRo0YLLly+zYMEC9PWTb45UqlSJSpVk7GQhhBBCFEx5sbU8N/J9pT0mJgYnJyf1/YsXL7C2tgZg9uzZ9O/fn8aNG/Po0SMGDRqEl5cXVatWZfPmzRQqVIgzZ86wcOFC3Nzc+Pbbb9VKOiR3tUktKCiI33//nXv37vHNN9/QsWNHDh8+TGBgIAcOHOD58+fY2dnRtWvXNHGRkZG8fPkyXSXcysqKO3fuYG5uTp06dTAwMPgvDpEQQgghhHjH5ftKu5GRER4eHup7d3d3fH19AThz5gx37vzfMHKRkZFERUURERHBd999x4MHD9DT0yM+Pj5HebVv3x59fX2qV69OcHDyjIoXL16kY8eO6OvrY2FhQbNmzV7j3gkhhBBCFEwFrKE9/1fas5KUlMT27dspUqRImuWzZs2iWbNmLFu2jICAAPr165ej7RkaGupUjhIlSlC0aFH8/f3TtLb/+++/tGzZkho1anDjxg0SExOltV0IIYQQAhk9pkBp1aoVmzZtUt9fv34dgIiICCwtLQHYvXu3ur548eJERUVpyuOjjz7i8OHDJCUlERwczF9//ZVhukGDBuHq6kpMTAzwf3cBOnbsSOXKlbGysmLJkiXqCRoQEMCJEyc0lUUIIYQQIr8oaKPHFOhK+/fff4+vry+Ojo7Y2dmxZUvyrJBffvklP//8M126dCEhIUFN36xZM+7cuYOTkxMHDhzIUR62trZYWlpiZ2fH+PHjqVu3LiVLlkyXrm/fvtSrV4/OnTtjbW3NhAkTWLt2rXoXYPbs2Tx//pwOHTrg4ODApEmTMDMzew1HQQghhBBCvOvyffeYS5cupXnv4uKCi4sLAGZmZixatChdTMOGDTl06JD6fvTo0QCYmJiwa9eudNsDmDdvXob56uvr891331G8eHFCQ0Pp3r07NWvWTJennp4ew4cPZ/jw4URFRTF8+HDWrl3LmDFjgOQuNK6urlp2XQghhBAi38qDjeW5ku8r7e+Cr7/+mvDwcOLj4xk6dCgWFhZZpi9evDjr1q17Q6UTQgghhMh7Clqfdj2loO2xEEIIIYTI8y7cDMhVfONaFV9TSd4MaWnP50Iu39QcY/ZhLXz9HmuOs6pSjtsBQZrjalQsw9PnYZpiLEubaI5Jibty95HmuPrVynPt/hPNcXXfL8vNh081xdSqbMm9wGea86pawYKgkBea48qYldJ53wKDQjTFVChjpvl4QPIx0fXcCvG9k33CVMysqhP2IkJzXialShISFq45zszEmH/uBGqOa1C9guZzuX618joff62fNSR/3rqeW0IIkR2FgtXuXKAfRBVCCCGEECIvyDOV9oYNG6r//+OPP7C1tSUwMJAtW7awZ88eIHnipKdPs25Fcnd3Z+bMmf9ZOWfPnk3r1q1JSkpSl7m5ubFmzRpN27ly5Qp9+/bFxsYGZ2dnBg8ezM2b2lvNhRBCCCHyo7c55GNYWBgDBw7ExsaGgQMH8uJF+jvd169fp2fPntjb2+Po6Jhm5MGJEydibW2Nk5MTTk5O6rDjWclz3WPOnj2Lq6sra9asoUKFCvTu3Vtdt3v3bmrUqKGOsf6mJSUl4e3tTbly5fjrr79o3ry5TtsJDg5m1KhRLFiwgI8++giACxcu4O/vT61atdKkTUhIoFChPPcxCiGEEELkytt8KnPVqlW0aNGCwYMHs2rVKlatWsX48ePTpDEyMmL+/Pm8//77PH36lK5du9KqVSuMjY0BmDBhAh07dsxxnnmqtnf+/HmmTJnCqlWrqFy5MpDcil2sWDEqVKiAr68v48aNw8jIiG3btnHr1i3mzJlDdHQ0hoaGrF+/HoCgoCAGDRqEv78/7du3Z8KECQCcPn0aNzc34uLiqFSpEnPnzqV48eJYW1vTpUsXjh8/TkJCAosWLaJatWrpyufj40P16tWxs7Nj//79aSrtN27coGfPnoSGhvLll1/So0cPRo8ejZOTE5988gmQ/Kvrk08+4caNG3Tp0kWtsAM0btxY/f/EiRMxNDTk+vXrfPTRR0yaNOl1H2ohhBBCiHfa2xxL5ejRo+oEnV26dKFv377pKu1VqlRR/29paYmZmRkhISFqpV2rPNM9Ji4ujmHDhrFs2bIMK8wdO3bEysqKBQsW4OHhgb6+PqNHj2by5Mns3buX9evXY2RkBCTfrli0aBGenp54eXnx+PFjQkJCWL58OevWrWP37t1YWVmlGXbR1NSU3bt306tXL9auXZthGffv34+9vT0dOnTgxIkTxMfHq+tu3rzJhg0b2Lp1K8uWLePp06fY2dnh5eWl7t/Zs2f55JNPuHPnDnXr1s3yeDx9+pStW7dKhV0IIYQQBVKSkrvXtm3b1Pl7XFxc2LZtW47zfv78OWXKlAHAwsKC58+fZ5n+ypUrxMfHq43OAAsXLsTR0ZE5c+YQFxeXbZ55pqW9UKFCNGzYkJ07dzJlypRs0/v5+WFhYUH9+vWB5MmJUrRo0UKdlbRatWoEBgYSERHBnTt31O428fHxNGjQQI2xsbEBwMrKiiNHjqTLLy4ujj/++IOJEydSokQJPvzwQ06fPs2nn34KQLt27TAyMsLIyIhmzZpx9epV2rRpw+zZs4mLi+PkyZM0btxY/WGRWvfu3YmMjKRly5bqvnfs2BEDA4OcHDohhBBCCPGKnj170rNnz0zXDxgwgODg4HTLR40alea9np4eenp6mW4nKCiI8ePHM3/+fPT1k9vLx4wZg4WFBfHx8UydOpVVq1YxfPjwLMubZyrt+vr6LFq0iAEDBrBixQq+/vprnbdlaGio/t/AwIDExEQURaFly5b8/PPPGcYULlxYLUdiYmK69adPnyYiIoLOnTsD8PLlS4oUKaJW2jP6MIsUKULTpk05deoUXl5e2NnZAVC9enWuXbtG+/btAdixYwcHDx7kxIkTamzRokV12HMhhBBCiPzhv+4ek9KtOiOlS5cmKCiIMmXKEBQUhJmZWYbpIiMjGTJkCKNHj07TGJzSSm9oaIiLi0umvThSyzPdYyC5orpy5Uo8PT3ZsWNHuvXFixcnKioKSO5H9OzZM65cuQIkH7SEhIRMt92gQQP+/vtvHjx4AEB0dDR+fn45Ltv+/ftxdXXl2LFjHDt2jKNHj3LmzBlevnwJJPd9io2NJTQ0lL/++ot69eoBYGdnh7u7OxcuXKB169YAfP755+zevZu///5b3X5MTEyOyyKEEEIIkd8pSu5euWFtba2OXrhnzx7atWuXLk1K124nJ6d0D5wGBQX9/31Q8Pb2pkaNGtnmmWda2lOYmJiwevVqPv/883S/apydnfnhhx/UB1EXLlyIq6srMTExGBkZpemj/iozMzPmzp3LmDFj1H5Fo0aNSvMQQWZevnzJqVOnmDFjhrqsWLFiNGrUiOPHjwNQq1Yt+vXrR2hoKEOHDlVHuGnZsiUTJkygXbt26h0ACwsLFi5cyIIFC3j69CmlS5fGxMSEYcOGaTtYQgghhBD5VG6HbcyNwYMHM2rUKHbu3En58uVZtGgRAFevXmXr1q3Mnj0bLy8vLly4QFhYGLt37wZg3rx51KlTh3HjxhEaGoqiKNSuXTtNHTIzesrbfPRW/OdkRtT0cTIjaloyI2paMiNqejIjqhDiXfTHlZz3iMhI2/rZN8y+S/JcS7sQQgghhBAFrd1ZKu1CCCGEECLPSSpYdXbpHiOEEEIIIfKeo5fu5iq+XcP08/68y6SlPZ+LCNfex7aksbHOfeGfnfw7+4SvsGjzESFXb2vLq14NngSHas6rrLkpD+dv0hxX+bu+PDt2XnOchXUTzf2czUyMef6Xr+a8Sje1IjxYe79jY3Mz7o1cpDmu6uJRXL2n7dmHelXL8XT/ac15Wdq3IvjUJc1x5q0b8mjTAU0x5fvaEXb7gea8TGq8R8Byd81xFb9x4fmFfzXHlW78AY/WemqKKf+FI899rmrPq1k9ncsYsGS75riK3/bQ6dwSQhQsBa3ZOU8N+SiEEEIIIURBlG8q7Q0bNlT//8cff2Bra0tgYCBbtmxRx9F0d3fn6dOsR05wd3dn5syZ/0kZL1y4QLdu3ejYsSO2trZs3rw5V9tLvc9CCCGEEAVJkqLk6pXX5LvuMWfPnsXV1ZU1a9ZQoUIFevfura7bvXs3NWrUUMdIf5OePXvGuHHjWLZsGR988AEhISF8+eWXlClThg4dOrzx8gghhBBC5GUKea/inRv5pqUd4Pz580yZMoUVK1ZQuXJlANzc3FizZg0HDx7E19eXcePG4eTkRExMDFeuXKFXr1507tyZbt26ERkZCSTPUjVo0CBsbGz48ccf1e2fPn2anj174uzszLfffqvOvmptbc2SJUtwdnbG0dGRu3fTPxixefNmnJ2d+eCDD4DkyZzGjx/PmjVrAJg4cSIHDx5U06e0okdFRdG/f391297e3v/BkRNCCCGEyFve5oyob0O+aWlPmSp248aNVKuW/mngjh07snnzZiZMmEC9evWIi4tj9OjRLFy4kPr16xMZGYmRkREA169fZ8+ePRgaGtKxY0f69u1LkSJFWL58OevWraNYsWKsWrWKdevWMXz4cABMTU3ZvXs3mzdvZu3atcyePTtN/nfu3KFLly5plllZWXHnTtYTvxQpUoRly5ZRokQJQkJC6NmzJ+3atUNPTy8XR0sIIYQQIm/Li11cciPfVNoLFSpEw4YN2blzJ1OmTMk2vZ+fHxYWFtSvXx+AEiVKqOtatGhByZIlAahWrRqBgYFERERw584dtbtNfHw8DRo0UGNsbGyA5Ir4kSNHXtduoSgKP//8M+fPn0dfX5+nT58SHByMhYXFa8tDCCGEEEK82/JNpV1fX59FixYxYMAAVqxYwddff63ztgwNDdX/GxgYkJiYiKIotGzZkp9//jnDmMKFC6vlSExMTLe+WrVq/Pvvv7Rv315d5uvri5WVlZpPUlISAElJScTHxwPg6elJSEgI7u7uFC5cGGtra2JjY3XeNyGEEEKI/KCANbTnrz7tRYsWZeXKlXh6erJjx45064sXL672Q69SpQrPnj3jypUrAERGRpKQkJDpths0aMDff//NgwfJ4zdHR0fj5+eX47J9/vnn7N69m+vXrwMQGhrKokWLGDp0KAAVKlTg33+Tx0E+duyYWmmPiIigdOnSFC5cmHPnzhEYGJjjPIUQQggh8itFUXL1ymvyTUt7ChMTE1avXs3nn3+OmZlZmnXOzs788MMPGBkZsW3bNhYuXIirqysxMTEYGRmxbt26TLdrZmbG3LlzGTNmDHFxcQCMGjWKKlWq5KhcZcqU4aeffmLq1KlEREQQGBjIvHnzaNq0KQA9evRg6NChdO7cmdatW1OsWDEAHB0d+eabb3B0dMTKyoqqVavqcliEEEIIIfIV6dOeR1269H+zJZYrV45jx44B0K5dO3W5ra0ttra26vv69euzfXva2fpcXFxwcXFR369cuVL9f4sWLdi1a1e6vFPyAqhXrx6bNmU842aTJk3YuXMnkDyazMqVK2ndujWlSpXC3Nw8TVnGjx8PJP9Y2LZtW7b7LIQQQggh8q98U2nPaz7//HM+//zzt10MIYQQQog8qYA1tEulXQghhBBC5D0FrXuMnpIXe+ILIYQQQogCzf3P67mKd2lZ5zWV5M2QlvZ8LvzRU80xxuUteR4arjmutKkxl25rH92mYY0KPHzyXFNM5bKlCQwK0ZxXhTJmOu/b0+dhmuMsS5vwJDhUU0xZc1MiwrWXsaSxsc5x4cHaj6WxuRkRIdr2raSZKY+eaYsBKG9hyoPHwZrj3itnTvhTbXHGlua8CHyiOa9SFcoSHh6hOc7YuKTOcVo/75LGxoS90J6XSSnteaXkp/UcgeTzJPyZtu8EY4vSRIS90J6XSSnNMUKId0NBa3fOV0M+CiGEEEIIkR8VmEp7w4YNX/s23dzcWLNmTbrl9+7do2/fvjg5OdGpUyemTp0KgI+PD0OGDHnt5RBCCCGEKGiSlNy98hrpHvMfmD17Nv3791dnP7158+ZbLpEQQgghRP5S0LrHFOhK+7Fjx1i+fDnx8fGYmJiwYMECzM3NcXNz49GjRwQEBPDo0SP69+9Pv379AFi+fDl79uzBzMyMcuXK8cEHH6TbblBQEGXLllXf16pVK12asLAwJk+ejL+/P0WLFmXmzJnUrl0bNzc3Hj58yMOHDwkNDeXLL7+kR48eAKxevRovLy/i4uLo0KED33777X90ZIQQQggh3m0KUmkvMBo1asT27dvR09Njx44drF69mokTJwLg5+fHxo0biYyMpFOnTvTu3ZubN29y4MAB9uzZQ2JiIs7OzhlW2gcMGED//v1p2LAhrVq1wsXFBWNj4zRp3NzcqFu3Lr/88gtnz57lu+++w8PDA0humd++fTvR0dE4OzvTtm1bbt++zYMHD9i5cyeKovDNN99w/vx5mjRp8t8fKCGEEEII8VYV6Er7kydPGD16NM+ePSMuLo6KFSuq69q2bYuhoSFmZmaYmZnx/PlzLly4QPv27SlatCgA1tbWGW63a9eutGrVilOnTnH06FG2bt3K3r1706S5ePEibm5uQPJMq2FhYURGRgLJs7gaGRlhZGREs2bNuHr1KhcvXuTPP/+kS5cuAERHR3P//n2ptAshhBCiQMqL/dJzo0BX2l1dXRkwYADt2rXDx8eHpUuXqusMDQ3V/xsYGJCQkKBp25aWlnTr1o1u3brh4ODArVu3chyrp6eXbpmiKAwePJhevXppKocQQgghRH5U0Pq0F5jRYzISERGBpaUlAHv27Mk2fZMmTfD29iYmJobIyEiOHz+eYbqTJ08SHx8PwLNnzwgLC1PzSdG4cWO19d3HxwdTU1NKlCgBwNGjR4mNjSU0NJS//vqLevXq0apVK3bt2kVUVBQAT58+5flzbeMYCyGEEELkFzJ6TD718uVL2rRpo74fOHAgw4cPZ+TIkZQqVYpmzZoREBCQ5TY++OAD7OzscHJywszMjHr16mWY7s8//2T27NkUKVIEgPHjx2NhYcG9e/fUNMOHD2fy5Mk4OjpStGhR5s2bp66rVasW/fr1IzQ0lKFDh2JpaYmlpSV3795VW9qLFSvGTz/9ROnSpXU+JkIIIYQQeVVBa2nXUwraHr/j3NzcKFasGIMGDXot25MZUdOSGVEzjpMZUf+PzIiansyIKoR4F206diVX8X2t67+mkrwZBaalXQghhBBC5B8Frd1ZWtqFEEIIIUSes977cq7iB7T/8DWV5M2QlvZ8TmvXDEjunuH3SHtXhCrlzfn7VtbPBWTko5oVdeoeExyq/Va4uWkpjv1zL/uEr7BuUJVr97V3maj7flmCQrSVs4xZKW75B2nOq2alMjp3YfC58VBzXLPalTV3vzIub8k/d7R3oWpQvYLO59aFm9riGteqqPkzg+TP7c9/H2iOa/nBe9x8qL0bW63KlprPZesGVbn+QPt5XOe9sjqXUde4Fw+0nSel3qugc/c8rXml5CeEeLsKWruzVNqFEEIIIUSeU8Dq7AV7yEeAhg0b5jitu7s7T59m3Gr0zz//0L17d5ycnOjUqZM6cZKbmxtr1qx5LWUVQgghhBBvX1hYGAMHDsTGxoaBAwfy4kXGd2jr1KmDk5MTTk5OfP311+pyf39/unfvTocOHRg1ahRxcXHZ5lngK+1a7N69m6CgjLstfPfdd8yaNQsPDw/27dtHp06d3nDphBBCCCEKjiRFydUrN1atWkWLFi04fPgwLVq0YNWqVRmmMzIywsPDAw8PD1asWKEuX7BgAQMGDODIkSMYGxuzc+fObPOUSnsGrl+/To8ePXB0dGTYsGG8ePGCgwcP4uvry7hx43ByciImJiZNTEhICBYWFkDyDKrVq1dX1925c4e+ffvSrl07Nm7cqC4fOnQoLi4u2Nvbs23bNnV5w4YNmTNnDvb29vTv35+QkOTh+B4+fMigQYNwcXHhs88+4+7du//lYRBCCCGEeGcpipKrV24cPXqULl26ANClSxe8vb01lfvcuXPY2toC4OzszNGjR7ONk0p7BiZMmMC4cePw9PSkZs2aLF26lI4dO2JlZcWCBQvw8PDAyMgoTUz//v3p2LEjw4YNY+vWrcTGxqrr/Pz8WLNmDTt27GDZsmXqbKlz5szB3d2dXbt2sWnTJkJDkx8ajY6OxsrKiv3799OkSROWLl0KwNSpU5k6dSru7u589913zJgx4w0dESGEEEKId0tuZ0Tdtm0bLi4u6it1A2p2nj9/TpkyZQCwsLDIdJb62NhYXFxc6NGjh1qxDw0NxdjYmEKFkh8tLVu2bKbdr1OTB1FfERERQUREBE2bNgWSf/2MHDky27jhw4fTuXNnTp8+zb59+9i/fz+bNm0CoG3bthgaGmJmZoaZmRnPnz+nbNmybNq0iSNHjgDw+PFjHjx4gKmpKfr6+tjZ2QHg5OTE8OHDiYqK4tKlS2nKkpP+T0IIIYQQIr2ePXvSs2fPTNcPGDCA4OD0o+mNGjUqzXs9PT309PQy3Mbx48extLTE39+f/v37U7NmTUqUKKFTeaXS/hpVrlyZzz77jB49etCiRQu15dzQ0FBNY2BgQEJCAj4+Ppw5c4Zt27ZRtGhR+vbtm6Z1PjU9PT0URcHY2BgPD483si9CCCGEEO+y3PZLz8769eszXVe6dGmCgoIoU6YMQUFBmJmZZZjO0tISgEqVKtG0aVOuXbuGra0t4eHhJCQkUKhQIZ48eaKmy4p0j3lFyZIlMTY25sKFCwB4eHjQpEkTAIoXL05UVFSGcSdOnFD7Rz148AB9fX2MjY0zzSciIoJSpUpRtGhR7t69yz///KOuS0pK4tChQwB4enrSqFEjSpQoQcWKFfHy8gKS+0PduHEj1/srhBBCCJEXvc0+7dbW1uzZsweAPXv20K5du3RpXrx4ofaKCAkJ4e+//6Z69ero6enRrFkzta63e/durK2ts82zwLe0v3z5kjZt2qjvBw4cyPz58/nhhx94+fIllSpVYu7cuUByV5kffvgBIyMjtm3blqZfu4eHB3PnzsXIyAgDAwMWLFiAgYFBpvm2adOGrVu30qlTJ6pUqUKDBg3UdcWKFePKlSssX74cMzMzFi1aBMBPP/3E9OnTWb58OQkJCdjZ2VG7du3Xe0CEEEIIIfKAtzlO++DBgxk1ahQ7d+6kfPnyal3t6tWrbN26ldmzZ3P37l1++OEHtcfEV199pQ5UMn78eEaPHs2iRYuoU6cO3bt3zzbPAl9pz6y1evv27emW2draqk/6vmrhwoUZLh8xYkSa9/v27VP/v3r16kzLNWnSpHTLKlWqJGO+CyGEEELw33ePyYqpqSkbNmxIt7xevXrUq1cPgI8++ghPT88M4ytVqpSjYR5Tk+4xQgghhBBCvOMKfEv7u+jSpUtvuwhCCCGEEO+0t9k95m3QU3LbE18IIYQQQog3bPHev3IVP7Jz09dUkjdDWtrzufCn6ccXzY6xpTkRYS80x5U0KaVzXHh4hKYYY+OSRISEas/LzJSI0DDtcaYmhL3QVkYAk1Ildds3Hcuo8+em47HUekxMSpUkPDhEc17G5ma6x2m8BowtzTV/ZpD8uYU/y3hyjSzjLErr/Lnpcvx1Pbd0PSY6fydo/Lx1+azh/3/f6Xj+63pMhBCvx9vs0/42SKVdCCGEEELkOQWszi4PouZUrVq1GDdunPo+ISGB5s2bM2TIkBxv4+XLl4wdOxZHR0ccHBzo3bt3puO+p2jYsGGGyydOnMjBgwdznLcQQgghhMi7pKU9h4oVK8bt27eJiYnByMiIP//8M0ezV6W2ceNGzM3N+d///gfAvXv3KFy48H9RXCGEEEKIfK2gdY+RlnYN2rZty4kTJwDYv38/9vb26rqwsDCGDh2Ko6MjPXr0yHD892fPnqWp6FetWhVDQ0MA1q1bh4ODAw4ODhlOm6soCjNnzsTW1pYBAwbw/Ln2vrNCCCGEEPmFouTulddIpV0DOzs7Dhw4QGxsLDdv3uTDDz9U17m5uVG3bl08PT0ZPXo03333Xbr4rl278uuvv9KzZ08WLlzI/fv3AfD19cXd3Z3t27ezbds2duzYwbVr19LEHjlyBD8/Pw4cOMD8+fNlWEghhBBCFGiKouTqlddIpV2D2rVrExAQwL59+2jbtm2adRcvXsTJyQmAFi1aEBYWRmRkZJo0derUwdvbm0GDBvHixQu6devG3bt3uXjxIu3bt6dYsWIUL16cDh06cOHChTSx58+fx97eHgMDAywtLWnevPl/u7NCCCGEEOKdIX3aNbK2tubHH39k48aNhIWFaY4vXrw4NjY22NjYoK+vzx9//IGBgcHrL6gQQgghRD6WlPcay3NFWto16tatG8OGDaNWrVppljdu3Ji9e/cC4OPjg6mpKSVKlEiT5uLFi7x4kTxmcVxcHHfu3KF8+fI0btwYb29vXr58SXR0NN7e3jRu3DhNbJMmTfDy8iIxMZGgoCB8fHz+w70UQgghhHi3FbTuMdLSrlHZsmXp169fuuXDhw9n8uTJODo6UrRoUebNm5cujb+/P9OnTwcgKSmJtm3bYmtri56eHi4uLnTv3h1I/mFQt27dNLEdOnTg3Llz2NnZUb58eRo0aPDa900IIYQQIq/IixXv3JBKew5l9OBns2bNaNasGQAmJib88ssvWW6jS5cudOnSJcN1AwcOZODAgZnmq6enx7Rp0zSWWgghhBAif5LuMUIIIYQQQoh3irS0CyGEEEKIPKegdY/RUwraHgshhBBCiDxvxpbTuYr/oXer11SSN0Na2vO5sBcRmmNMSpXkRcBjzXGlKpbD/2mI5rhKlmYEhbzQFFPGrBQvHj7SnFepyuU5fPGO5jibRtV5+jxMc5xlaRPC7vlrijGpWomIUO15lTQ14em+U5rjLB1ac/baA81xLeq+R8jf1zXFmH1UR+dzRNfjf+LyPU0xn3xYlfBg7WU0Njfjz3+1H8eWH7xHREio5riSZqacv6nt3GpSqxLPQ8M151Xa1Bi/R8Ga46qUN9f589YaV8nSjLsBzzTnVa2iBSFh2o+JmYmxzt9B4eHavpeNjUtqzkeIgkChYLU7S6VdCCGEEELkOQWts0i+eBD1yZMnfPPNN9jY2NC+fXtcXV2Ji4v7z/Nt2LAhAAEBATg4OGSYxs/Pj6+++gobGxucnZ0ZOXIkwcHaW6xe5e7uzsyZM3O9HSGEEEII8e7L85V2RVEYPnw47du35/Dhwxw6dIjo6GgWLlyY620nJCTkKj42NpYhQ4bQu3dvDh8+zO7du/nss88ICdF+u1gIIYQQQvyfJCV3r7wmz3ePOXfuHEWKFKFr164AGBgYMHnyZNq1a8e3335L//79mT17NjVq1ACgb9++TJgwgWrVqjFr1ixu375NQkKCWvF3d3fn8OHDREdHk5SUxMqVKxk6dCjh4eEkJCQwcuRI2rdvn6OyeXp60qBBA6ytrdVlKeO6x8bGMn36dHx9fTEwMGDixIk0b94cd3d3jh07xsuXL/H396d9+/ZMmDABgF27drFq1SpKlixJ7dq1MTQ0fJ2HUgghhBAizyho3WPyfKX99u3bfPDBB2mWlShRgnLlyvHgwQPs7Ozw8vKiRo0aBAUFERQURL169fj5559p3rw5c+fOJTw8nO7du/Pxxx8DcO3aNfbu3YuJiQkJCQksW7aMEiVKEBISQs+ePWnXrh16eno6lS3F5s2bgeSK/d27dxk0aBCHDh0C4Pr16+zZswdDQ0M6duxI3759MTAwwM3NDXd3d0qUKEG/fv3SzZoqhBBCCFFQFLA6e96vtGenU6dOfPHFF3z77bd4eXnRsWNHAE6fPs2xY8dYu3YtkNzy/fhx8ogpLVu2xMTEBEj+Fffzzz9z/vx59PX1efr0KcHBwVhYWOSqXBcvXqRPnz4AVKtWjfLly+Pn5wdAixYtKFmypLouMDCQsLAwmjZtipmZGQB2dnbcv38/V2UQQgghhBB5Q56vtFevXl1toU4RGRnJ48ePee+99yhatCgmJibcuHEDLy8vpk+frqZbsmQJVatWTRN7+fJlihYtqr739PQkJCQEd3d3ChcujLW1NbGxsTku2/nz5zXvU+puLwYGBiQmJmrehhBCCCFEfpZUwJra8/yDqC1atODly5fs2bMHgMTERObNm4ezs7Na+bazs2P16tVERERQu3ZtAFq1asVvv/2m9oe6du1ahtuPiIigdOnSFC5cmHPnzhEYGJjjsjk6OnLp0iVOnDihLjt//jy3bt2icePGeHp6AskjzDx+/DjdD4jU6tevz/nz5wkNDSU+Pp6DBw/muBxCCCGEEPmNoii5euU1eb7Srqenx7Jlyzh48CA2NjbY2tpSpEgRxowZo6axtbXlwIEDdOrUSV02dOhQEhIS6Ny5M/b29ixevDjD7Ts6OuLr64ujoyMeHh5ZVqxfZWRkxIoVK9i0aRM2NjbY2dnx+++/Y2ZmxmeffYaiKDg6OjJ69Gjmzp2b5YOlZcqUYfjw4fTq1YvevXtTrVq1HJdDCCGEECK/kdFj8qBy5cqxYsWKTNebm5una0k3MjLKcJxzFxcXXFxc1PdmZmZs27Ytw+1eunQJgIoVK7Jv374M01SrVo01a9ZkuG7u3LnZ5r9y5Ur1/127dlVHyRFCCCGEKMjyYmt5buT5lnYhhBBCCCHyOz2loP1MEUIIIYQQed64tcdyFb/gC+vsE71D8kX3GJG5FwGPNceUqliO4LNXNMeZt6hP0IE/NceVsWtJ6PV7mmJM61QlKOSF9rzMSuE38RfNcVXmDSXoyDnt+XVoTnh4hKYYY+OSBJ+5rDkv848/5HlouOa40qbG3BuV8TMdWam6aCR/3wrQFPNRzYoErtmrOa8KgzrzeMthzXHletvg/7/fNcVUGvsZIf/c0JyXWYPaPJi1TnPce1MH8uyY9lGmLKyb8PCnzZpiKo//XOfzWNcyBq720BxX4UsnfP20fXdZVSnH/cmZd5PMzPtzviYiTPt3SUmTUpy6el9zXOt67xMREqotLzNTrtx9pDmv+tXKa44RIi8paKPHSKVdCCGEEELkOW+zzh4WFsbo0aMJDAykQoUKLFq0iFKlSqVJc+7cuTTPL967d4+FCxfSvn17Jk6cyF9//aXOyzNv3jzq1KmTZZ5SaRdCCCGEEHmOwturta9atYoWLVowePBgVq1axapVqxg/fnyaNM2bN8fDI/luY1hYGDY2NrRs2VJdP2HCBHXSz5zIVw+iPnnyhG+++QYbGxvat2+Pq6srcXFx/3m+DRs2BCAgIAAHB4cM09y+fZt+/fpha2tL+/btWbJkCUlJSTrnaW1tTUhIiM7xQgghhBBCN0ePHqVLly4AdOnSBW9v7yzTHzp0iNatW6eZwFOrfFNpVxSF4cOH0759ew4fPsyhQ4eIjo5m4cKFud52QkJCruJjYmL45ptvGDx4MIcOHcLT05MrV66wcePGXJdNCCGEEKIgSlKUXL1y4/nz55QpUwYACwsLnj9/nmX6/fv3p2vYXbhwIY6OjsyZMydHjcz5ptJ+7tw5ihQpoo5jbmBgwOTJk3F3d+fly5f06NGD27dvq+n79u3L1atXiY6OZtKkSXTr1i3NLyV3d3e+/vpr+vXrx4ABA4iKiqJ///44Ozvj6OiY7S+q1Dw9Pfnoo49o1aoVAEWLFmXatGmsXr0aADc3tzRjuTs4OBAQkPyA39ChQ3FxccHe3j7T8eKFEEIIIQoaRcnda9u2ber8OC4uLunqWQMGDMDBwSHd69U6oJ6eHnp6epmWMygoiFu3bqn1QIAxY8Zw8OBBdu3axYsXL1i1alW2+5tv+rTfvn2bDz74IM2yEiVKUK5cOR48eICdnR1eXl7UqFGDoKAggoKCqFevHj///DPNmzdn7ty5hIeH0717dz7++GMArl27xt69ezExMSEhIYFly5ZRokQJQkJC6NmzJ+3atcvyQ0px586ddGWrXLkysbGxhIdnPdrHnDlzMDExISYmhm7dumFjY4OpqanGoyOEEEIIkb/kdtTynj170rNnz0zXr1+/PtN1pUuXJigoiDJlyhAUFISZmVmmab28vOjQoQOFCxdWl6W00hsaGuLi4sLatWuzLW++aWnPTqdOnTh06BCQfPBSOv6fPn2aX3/9FScnJ/r27UtsbCyPHycPNdayZUtMTEyA5BPj559/xtHRkYEDB/L06VOCg4P/83Jv2rSJzp0706NHDx4/fsyDBw/+8zyFEEIIIUTmrK2t2bNnDwB79uyhXbt2mabdv38/9vb2aZYFBQUByfVLb29vatSokW2e+aalvXr16mqlPEVkZCSPHz/mvffeo2jRopiYmHDjxg28vLyYPn26mm7JkiVUrVo1Tezly5fTPCzg6elJSEgI7u7uFC5cGGtra2JjY3NctvPn045x7O/vj4mJCcbGxhgYGKR5KDVluz4+Ppw5c4Zt27ZRtGhR9UeFEEIIIURBl/QWh3wcPHgwo0aNYufOnZQvX55FixYBcPXqVbZu3crs2bOB5EFKHj9+TNOmTdPEjxs3jtDQUBRFoXbt2syYMSPbPPNNpb1FixYsWLCAPXv20KVLFxITE5k3bx7Ozs5q5dvOzo7Vq1cTERFB7dq1AWjVqhW//fYbU6dORU9Pj2vXrlG3bt1024+IiKB06dIULlyYc+fOERgYmOOyOTo6smLFCs6cOcPHH39MTEwMrq6ujBgxAoAKFSpw4sQJAP7991+1P3tERASlSpWiaNGi3L17l3/++ScXR0gIIYQQIv/IbfeY3DA1NWXDhg3plterV4969eqp7ytWrMipU6fSpdNlMJJ80z1GT0+PZcuWcfDgQWxsbLC1taVIkSKMGTNGTWNra8uBAwfo1KmTumzo0KEkJCTQuXNn7O3tWbw445khHR0d8fX1xdHREQ8Pj3Qt81kxMjJi+fLlLF++HFtbW5o3b85HH31E586d1XK9ePECe3t7fvvtN95//30A2rRpQ0JCAp06deJ///sfDRo00H5ghBBCCCHyobc5eszbkG9a2gHKlSvHihWZT2Ntbm7OtWvX0iwzMjJi5syZ6dKmPEmcwszMLNPRWy5dugQk/5rat29fhmlq1qzJpk2bAPD29mbu3Lk4ODhQoUIFjIyMMn0AIWWEmVcdO3Ysw+VCCCGEEAVBHqx350q+qrTnFe3bt6d9+/ZvuxhCCCGEECKP0FPeZocgIYQQQgghdPDVUq9cxf86vFP2id4h0tKez4U/1T4spbGlOc8vXss+4StKN6pL6LW7muNM61Yj9IaftpjaVQh/lvXsYxkxtijNM++/NMdZtG/Ks+MXtMd92pjQW/c1xZjWfJ/nF/7VnFfpxh8Q/uSZ5jjjshY65xf2IkJTjEmpkpo/a0j+vEN872iOM7OqrvmcNK1bjbC7DzXnZVKtMs9OXNQcZ/FJIx5vPpR9wleU+9yWoENnNcWUsW3Bk13au9aV7Wqt+TyG5HM55J8bmuPMGtTmboC2c7laRQudv7fCw7WdxwDGxiW5dv+J5ri675clIpv5OV5V0tiYR89CNedV3sJU5+8tIfKCtzl6zNsglXYhhBBCCJHnFLTOIvm20l6nTh1q1qxJYmIiVatWZf78+WnGXX+drK2t2blzZ7rZsKytrSlevDgAiYmJdOjQgaFDh1KkSJEMt9OrVy+2bt36n5RRCCGEECI/KWiV9nwz5OOrjIyM8PDwYN++fRQuXPitVYY3bNiAp6cnO3bsICAggGnTpqVLk5CQACAVdiGEEEIIkaF8W2lPrXHjxjx48IBjx47RvXt3unTpwoABAwgODiYpKQlra2vCU/UxtLGxITg4mJCQEEaMGEHXrl3p2rUrFy8m91cNDQ3liy++wN7enu+//z5Hv/SKFy/OjBkz8Pb2JiwsDB8fHz777DO+/vprdWrbhg0bAjB69Gh1siWAiRMncvDgQRITE5k/fz5du3bF0dFRKvlCCCGEKLCSlNy98pp8X2lPSEjg5MmT1KxZk0aNGrF9+3b27NmDvb09q1evRl9fH2tra44cOQLA5cuXKV++PObm5syePZv+/fuza9cu3NzcmDJlCgDLli3jo48+Yv/+/XTo0IFHjx7lqCwlSpSgYsWKPHjwAIBr167x/fffc+hQ2ofQ7Ozs8PJKfiI6Li6Os2fP8sknn7Bz505KlizJrl272LVrF9u3b8ff3/91HSohhBBCiDxDyeW/vCbf9mmPiYnByckJSG5p79atG35+fowePZpnz54RFxdHxYoVgeRK8rJly+jatSv79+/Hzs4OgDNnznDnzv+NWBEZGUlUVBTnz59n6dKlAHzyySeUKlUqx+VK3Spfr149KlWqlC5NmzZtmD17NnFxcZw8eZLGjRtjZGTEn3/+yc2bN9VKfkREBA8ePMhwG0IIIYQQ+VlebC3PjXxbaU/p056aq6srAwYMoF27dvj4+KgV74YNG/Lw4UNCQkLw9vbmm2++ASApKYnt27dn+uCoVpGRkQQGBvL+++9z48YNihUrlmG6IkWK0LRpU06dOoWXl5f6I0JRFKZMmULr1q1fS3mEEEIIIUTekO+7x6QWERGBpaUlAHv27FGX6+np0b59e+bOnUu1atUwNTUFoFWrVmzatElNd/36dQCaNGmCp6cnAH/88QcvXrzINu+oqChmzJhB+/btc9Qyb2dnh7u7OxcuXFAr6a1atWLLli3Ex8cD4OfnR3R0dA72XAghhBAif1EUJVevvKZAVdqHDx/OyJEjcXFxwcTEJM06Ozs79u7dq7ZqA3z//ff4+vri6OiInZ0dW7ZsAWDYsGFcuHABe3t7jhw5Qvny5TPNs3///jg4ONC9e3fKly/PzJkzc1TWli1bcv78eT7++GMMDQ0B6N69O9WrV8fFxQUHBwemTZtGYmKixqMghBBCCJH3KUruXnlNvu0ec+nSpXTL2rdvT/v27TNMX69ePW7evJlmmZmZGYsWLUqX1tTUlLVr12ZbhmPHMp95sFmzZjRr1izTMhcuXJi//ko7c6e+vj5jxoxhzJgx2eYthBBCCJGfJeXFmncu5NtKuxBCCCGEyL/yYheX3ChQ3WOEEEIIIYTIi/SUgvYzRQghhBBC5Hk9fvTIPlEWtk9wek0leTOke0w+FxESqjmmpJkpYS8iNMeZlCpJRGiY9vxMTQh/9lxTjLFFaZ33LSIs+9F+0sWZlCIi1ay5OY4zNiY8OERTjLG5me7HMVz752ZsXFLnY/niQaCmmFLvVdD8WUPy5/0i8InmuFIVymo+liVNTXgSrP14lDU31fk4hj8N1hxnbGmu07mla166Xje6fpdojTMpVVLnfdO1jCFh2r8TzEyMCQ7VdizNTUvpnJfWcwSSzxNdj4kQb5L0aRdCCCGEEOIdV8Dq7FJp16JOnTrUrFmTxMREqlatyvz58ylatKimbbi7u+Pr68u0adPSrfP29mbx4sXEx8dTqFAhhg8fTseOHdX1a9asYceOHRQpUoRChQrRt29funTpktvdEkIIIYQQ7ziptGuQepbVsWPHsnXrVgYOHPhatn3jxg3mz5/P2rVrqVSpEv7+/gwcOJCKFStiZWXFli1bOHPmDDt37qREiRJERkZy5MiR15K3EEIIIUReU9C6x8joMTpq3LgxDx48ICwsjKFDh+Lo6EiPHj24ceMGQKbLM7NmzRqGDBlCpUqVAKhUqRJDhgxh3bp1AKxcuZLp06dTokQJAEqUKIGzs/N/uIdCCCGEEO8umRFVZCshIYGTJ09Ss2ZN3NzcqFu3Lp6enowePZrvvvsOINPlmblz5w5WVlZpltWrV487d+4QGRlJVFSUWqEXQgghhCjoCtqMqFJp1yAmJgYnJye6du1K+fLl6datGxcvXsTJKXnIoBYtWhAWFkZkZGSmy4UQQgghRO4loeTqlddIn3YNUvdpf92qVauGr68vtWvXVpf5+vpiZWVFiRIlKFasGP7+/tLaLoQQQghRAElLey41btyYvXv3AuDj44OpqSklSpTIdHlmBg0axKpVqwgICAAgICCADRs2MGjQIAAGDx7MjBkz1Nb6qKgo9uzZ8x/umRBCCCHEu6ugdY+RlvZcGj58OJMnT8bR0ZGiRYsyb968LJdnpk6dOowbN45vvvmGuLg4AgMD2bBhA1WrVgXgs88+Izo6mq5du1K4cGEKFSr02kauEUIIIYTIa/Liw6S5IZV2DS5dupRumYmJCb/88kuOl7u4uODi4pLh9m1sbLCxsQFgwYIFLFq0iDVr1mBoaIienh5fffUVX331VS73QgghhBAi7ytoQz5Kpf0dNW7cuLddBCGEEEKId1YBq7NLn3YhhBBCCCHedXpKQesQJIQQQggh8jzb6dtzFX9oeo/XVJI3Q7rH5HN+k5Zrjqky9xsiwl5ojitpUoqI0DDtcaYmPHoWqimmvIUpT4K1xQCUNTfl+YV/NceVbvwBT5+HaY6zLG1CYFCIppgKZcx4EfBYc16lKpYj7EWE5jiTUiV5dvJvzXEWbT7C71Gwppgq5c15uvek5rwsO7ch6OAZzXFlOn6M/+JtmmIqjexJUIj287+MWSme7DqmOa5sV2teBD7RHFeqQlmC//xHU4x5ywY6n1tPPf7QHGfp1JbnF69pjivdqK5O+xZ8Kv1zR9nGtW5I+FNt5zGAsaU5dwOeaY6rVtGC8GfPteVlUZrbAUGa86pRsQxP3I9rjivr8inhj55qjjMub6n5WBpbmmvOR4gUSW+x2dnLy4ulS5dy9+5dduzYQb169TJMd/LkSWbPnk1SUhLdu3dn8ODBAPj7+zNmzBjCwsL44IMP+PHHHzE0NMwyT+keI4QQQggh8hxFUXL1yo2aNWvi5uZGkyZNMk2TmJjIzJkzWb16Nfv372ffvn3cuXMHSB5wZMCAARw5cgRjY2N27tyZbZ7vXKU9NDQUJycnnJycaNmyJa1bt1bfx8XFpUm7fv16Xr58qb63trbG0dERR0dH+vTpQ2Bg4H9SRm9vb2rVqsXdu3fVZT4+PgwZMkTTdoKDgxk7dizt2rXDxcWFnj17cuTIkRzF9u3bl6tXr2rKTwghhBBC5F61atXUYbkzc+XKFd577z0qVaqEoaEh9vb2HD16FEVROHfuHLa2tgA4Oztz9OjRbPN85yrtpqameHh44OHhQa9evRgwYID6/tXbBhs3bkxTaQfYsGEDnp6eNG3alOXLtXcNyYl9+/bRqFEj9u/fr/M2FEVh2LBhNG7cmKNHj+Lu7s7PP//Mkyfpb5MnJCTkprhCCCGEEPlOkpK713/t6dOnlC1bVn1vaWnJ06dPCQ0NxdjYmEKFknuply1blqdPs++Slif6tJ89e5b58+eTmJiIlZUVM2bMYOvWrQQFBdG/f39MTEzYtGlTmpgGDRqoywICAvjyyy9p0KABly5dwsrKiq5du7JkyRJCQkJYsGAB9evX56+//mL27NkA6Onp8dtvv6WbxTQqKoqLFy+yceNGvv76a7799lt1XWRkJIMHD+bBgwc0a9aM6dOns23bNh4+fMh3330HgLu7O76+vnTo0IHChQvTu3dvNb5ChQr07dtXTXf48GGio6NJSkpi9erVTJo0iRs3blC1alViYmJe/4EWQgghhMgjjs3qmav4bdu2sW3b/z331LNnT3r2/L9tDhgwgODg9M9pjBo1ivbt2+cqb12885X22NhYJk6cyPr166lSpQoTJkzg999/Z8CAAaxfv54NGzZgZmaWLu7UqVNpDujDhw9ZvHgxc+bMoVu3bnh6erJlyxaOHj3KihUr+OWXX1i7di3Tpk2jUaNGREVFUaRIkXTbPXr0KK1bt6ZKlSqYmpri6+uLlZUVkHwb5MCBA5QvX54vv/ySw4cPY2trS8+ePdVK+4EDB/j666+5du0adevWzXLfr127xt69ezExMWHdunUYGRnh5eXFjRs3Mp2gSQghhBBCZO/VSvqr1q9fn6vtW1papulB8fTpUywtLTE1NSU8PJyEhAQKFSrEkydPsLS0zHZ771z3mFclJSVRsWJFqlSpAiT3+7lw4UKm6fv370/r1q05efIk9vb26vKKFStSq1Yt9PX1qV69Oi1atEBPT49atWqpfd8/+ugj5s2bx8aNG4mIiFBvW6S2f/9+dbt2dnZpusjUr1+fSpUqYWBggL29PRcvXsTMzIxKlSrxzz//EBoayr1792jUqFG67c6YMYPOnTvTtWtXdVnLli0xMTEB4Pz583Tu3BmA2rVrU6tWrZweQiGEEEII8YbVq1eP+/fv4+/vT1xcHPv378fa2ho9PT2aNWvGoUOHANi9ezfW1tbZbu+dr7RrtWHDBo4fP06dOnVwc3NTl6fuD6+vr6++19PTIzExEYDBgwfj6upKTEwMvXv3TvOgKUBYWBjnzp1jypQpWFtbs2bNGry8vNQnkPX09NKkT3lvZ2eHl5cXhw8fpkOHDujp6VGjRg2uXfu/odB++OEH1q9fT2jo/w1jWLRo0ddxSIQQQgghxGt05MgR2rRpw6VLlxgyZAiDBg0CklvTv/rqKwAKFSrEtGnT+PLLL7Gzs6NTp07UqFEDgPHjx7Nu3To6dOhAWFgY3bt3zzbPd757jL6+PoGBgTx48ID33nsPDw8PdXid4sWLExUVla57TKFChZg8eTKOjo588803Oc7r4cOH1KpVi1q1auHr64ufnx/VqlVT1x86dAgnJydmzpypLuvTp4/a8n/lyhX8/f2pUKECXl5e9OiRPGh/hw4dWLFiBdeuXWP8+PEANG/enJ9//pnff/+dzz77DCDLfupNmjRh3759tGjRglu3bnHz5s0c75cQQgghhHh9OnToQIcOHdItt7S05Ndff1Xft23blrZt26ZLV6lSpRwN85jaO9/SXqRIEebOncvIkSNxdHRET09PfXizR48efPnll+rDm6mVKVMGBwcHNm/enOO8NmzYgIODA46OjhQqVIg2bdqkWb9v3750Dx7Y2Niwb98+IPk2yKxZs+jUqRMVKlRQP8xSpUpRrVo1Hj16RP369YHkVvhly5Zx/vx5rK2t6datG9999x3jxo3LsGy9e/cmOjqaTp06sWTJEj744IMc75cQQgghhMjb3umW9hEjRqj/37NnT7r1ffv2TVNhP3Ys7WyEU6dOVf+fUrEGmDdvnvr/ihUrqutSp8/IqyPUAPTr10/9f1Y/EFauXJluWZkyZVi4cGGG6V1cXNI8bGpkZJRpWiGEEEIIkb+98y3tQgghhBBCFHR6Sm7ncRVCCCGEEEL8p97p7jEi955fvJZ9oleUblSXkH9uaI4za1CbZ8fOa46zsG7Cw59y/uwBQOXxnxMeHqE5L2Pjkjycn76bU7b5fdeXwNUemuMqfOnEi4ePNMWUqlye4D//0ZyXecsGRISHa44raWxMwHJ3zXEVv3HB1++xphirKuV4uv+05rws7VvxdO9J7XGd23Bv5CJNMVUXjyL8UfYz073KuLwl/ou2ao6rNKqXztdp4MrdmmIqDHEm+MxlzXmZf/whT3Ydyz7hK8p2tdb5cwt/9lxTjLFFaZ2v0eDQF5rjzE1Lcerqfc1xreu9T3hwiKYYY3Mzzl57oDmvFnXf0/zdCsnfr8GnLmmOM2/dUKfP7fFvXprzKtenk+YYIfI66R4jhBBCCCHEO04q7UIIIYQQQrzjCnSlPTQ0FCcnJ5ycnGjZsiWtW7dW38fFxaVJu379el6+fJntNvv27cvVq1czXG5ra4uTkxOdOnVi27Zt2W7r1TwbNmyYg70SQgghhBD5TYHu025qaoqHR3IfSDc3N4oVK6bOaPWqjRs30rlz51zNUrpgwQLq1atHWFgYHTp0wNnZOc1Mrf9FnkIIIYQQIu8r0JX2jJw9e5b58+eTmJiIlZUVM2bMYOvWrQQFBdG/f39MTEzYtGkTP/zwA1evXiU2NhZbW1u+/fbbHOcRHR1N0aJFMTAwAMhwWxs3bkyXJ8DChQs5fvw4RkZG/PLLL5ibm/8nx0EIIYQQQrw7CnT3mFfFxsYyceJEFi5ciKenJ4mJifz+++/069ePMmXKsGHDBrXyPHr0aNzd3dm7dy/nz5/nxo3sR1sZN24cjo6OdOzYkaFDh6qV9oy2lVGe0dHRfPjhh+zdu5fGjRuzffv2/+5gCCGEEEKId4ZU2lNJSkqiYsWKVKlSBQBnZ2cuXLiQYVovLy+cnZ3p0qULt2/f5u7du9luf8GCBXh6enLixAnWrl1LYGCgpm0VLlyYTz/9FAArKys1XgghhBBC5G/SPUYH/v7+rF27lp07d1KqVCkmTpxIbGxsjuPNzMyoW7culy9fJikpKcfbKly4MHp6egDo6+uTmJj4WvZHCCGEEEK826SlPRV9fX0CAwN58CB5EgsPDw+aNGkCQPHixYmKigIgKiqKokWLUrJkSYKDgzl5UtvkIS9fvuT69etUrlw5y22lzlMIIYQQQhRc0tKeSpEiRZg7dy4jR45UH0Tt3bs3AD169ODLL7+kTJkybNq0ibp169KpUyfKli3LRx99lKPtjxs3DiMjI+Li4nB2dsbKygog0229mqcQQgghhCiYpNL+/40YMUL9/549e9Kt79u3L3379lXfz5s3L8PtZFa5zqrSndm2Xs3z0qX/m1a6Y8eOdOzYMdNtCiGEEEKI/EO6xwghhBBCCPGO01MURXnbhRBCCCGEEEJkTrrH5HMRYS80x5Q0KUV4cIjmOGNzM53jIkJCNcWUNDMlOFT7vpmb6r5vEaFhmuNKmpoQER6uLcbYmDC/AM15mVSp+OY/N43HpKSpCSFh2o4HgJmJsc5xWvfN2NyMF4FPNOdVqkJZzZ81/P/P+0WE5jiTUiU1X98lTUrpnpfGaxSSr1Od43S4bnT+vgvXfkyMjUvq/J2gyzmp83HU9XvrTX5uOl434c+ea44ztiitOUaId4V0jxFCCCGEEOIdJ5V2DQICAnBwcEizzM3NjTVr1uDu7s7Tp0/V5d9//z137twBwNrampCQ5JaVXr16qdvy9PRU01+9ehVXV9f/eheEEEIIIUQeJJX212T37t0EBQWp72fPnk316tXTpdu6dSsAgYGB7Nu3T11er149pkyZ8t8XVAghhBBC5DlSaX9NfH19GTduHE5OTsTExNC3b1+uXr2aLl3Dhg0B+N///seFCxdwcnJi/fr1+Pj4MGTIEACio6OZNGkS3bp1o0uXLnh7ewNw+/ZtunXrhpOTE46Ojty/f/+N7Z8QQgghhHh75EHU18TKyooJEyZQr169HKUfO3Ysa9euZeXKlQD4+Pio61asWEHz5s2ZO3cu4eHhdO/enY8//pitW7fSr18/OnfuTFxcHElJSf/JvgghhBBCiHeLVNo10NPT07RcV6dPn+bYsWOsXbsWgNjYWB4/fkyDBg1YsWIFT548wcbGhvfff/+15iuEEEIIId5NUmnXwMTEhBcv0g4p9uLFCypWrPja81qyZAlVq1ZNs6xatWp8+OGHnDhxgsGDBzNjxgxatGjx2vMWQgghhBDvFunTrkHx4sWxsLDg7NmzAISFhXHq1CkaNWpE8eLFiYqK0rStzNK3atWK3377jZR5r65duwaAv78/lSpVol+/frRr146bN2/mco+EEEIIIUReIJV2jX788Ud++eUXnJyc6N+/P8OGDaNy5co4Ozvzww8/qA+iZqdWrVro6+vTuXNn1q9fn2bd0KFDSUhIoHPnztjb27N48WIAvLy8cHBwwMnJiVu3btGlS5f/YA+FEEIIIcS7RrrHaFS9enU2bdqUbrmtrS22trbq+9Rpjh07pv7/0qVLABQuXJiNGzem2UazZs0AMDIyYubMmenyGDx4MIMHD87dDgghhBBCiDxHWtqFEEIIIYR4x0mlXQghhBBCiHecnpLytKMQQgghhBDinSR92vO556HhmmNKmxoTfPaK5jjzFvV5uv+05jhL+1aE/HNDU4xZg9o8fR6mPa/SJtz5cq7muOqrJ/HE/bjmuLIunxIc+iL7hKmYm5bi6b5TmvOydGjNvcBnmuOqVrDAb8IyzXFVfhzGn/8+0BTT8oP3CD51SXNe5q0bEvL3dc1xZh/VwX/xNk0xlUb21Dmvh3M2aI6rPLk/z05c1Bxn8UkjHsxYoynmvR8GEXTorOa8yti20PlzC1y5W3NchSHO3A4I0hRTo2IZnY9/+NNgzXHGlub8ccVPc1zb+lWICNP2nVDSpBTbTvpqzqtnGyvuT16hOe79OV/zeMthzXHletsQEa7tb05JY2NCLmsfCc3sw1o8/PE3zXGVJ/QhPDhEU4yxuZnmfIT4L0j3GCGEEEIIId5xUmkHFEWhd+/e/PHHH+oyLy8vBg0a9NrysLa2xtHREScnJxwdHfH29s42ZvHixZw5cwaAvn37cvXqVQBWrNDeciKEEEIIIfIu6R4D6OnpMWPGDEaOHEnz5s1JSEhg4cKFrF69WqftJSQkUKhQ+kO7YcMGzMzMuHfvHoMGDaJ9+/ZZbmfkyJEZLl+5ciVff/21TmUTQgghhBB5j7S0/381a9bk008/5ddff2XZsmV07tyZ5cuX061bN7p06aK2jAcEBPDZZ5/h7OyMs7Mzf//9NwA+Pj589tlnfP3119jb22eZV2RkJMbGxur2HBwc1HVr1qzBzc0NgIkTJ3Lw4ME0sQsWLCAmJgYnJyfGjh372vZfCCGEEEK8u6SlPZXhw4fj7OyMoaEhn3zyCc2bN2fu3LmEh4fTvXt3Pv74Y0qXLs26desoUqQI9+/fZ8yYMbi7uwNw7do1PD09qVSpUobb79+/P4qi4O/vz6JFi3Qq47hx49i8eTMeHh667qYQQgghhMhjpNKeSrFixbCzs6NYsWJ4eXlx/Phx1q5dC0BsbCyPHz+mTJkyzJw5kxs3bqCvr8/9+/fV+Hr16mVaYYf/6x7z8OFDBgwYQNOmTf/rXRJCCCGEEPmAVNpfoa+vj75+cq+hJUuWULVq1TTr3dzcMDc3x8PDg6SkJOrXr6+uK1asWI7yqFy5MqVLl+bu3buUKVOGpKQkdV1sbOxr2AshhBBCCJGfSJ/2TLRq1YrffvuNlLmnrl27BkBERAQWFhbo6+vj4eFBYmKi5m0/f/6cgIAAypcvT+nSpXn+/DmhoaHExcVx4sSJbOMLFSpEfHy85nyFEEIIIUTeJC3tmRg6dChz5syhc+fOJCUlUbFiRVauXMlnn33GiBEj2LNnD61bt85x6zok92nX19cnISGBsWPHYm5uDsCwYcPo3r07lpaW6Vr2M9KjRw86d+5M3bp1+d///qfzPgohhBBCiLxBKu2vGDFihPr/mTNnplv//vvv4+npqb4fP348AM2aNaNZs2aZbvfYsWOZruvXrx/9+vVLt3zevHnq/zdt2pQmz5R8hRBCCCFE/ifdY4QQQgghhHjHSaVdCCGEEEKId5yekvKkpRBCCCGEEOKdJH3a87nnoeGaY0qbGhNy+abmOLMPaxH85z+a48xbNiDs7kNNMSbVKvP0eZjmvCxLm/DAdb3muPemDNB537SW07K0CUGHzmrOq4xtC8IfPdUcZ1zekvtTVmqOe991CBduBmiKaVyrIsFnLmvOy/zjDwm9fk9znGmdqjzasF9TTPn+9prPR0g+Jx+t36c5rvwAB0Kv3dUcZ1q3mub8yg9wIOSfG5rzMmtQm5Crt7XH1auB//9+1xxXaexn3Hyo7VyuVVn38zj82XPNccYWpbly95HmuPrVyhMR9kJTTEmTUjx6Fqo5r/IWpjz88TfNcZUn9OH5hX81x5Vu/AFhLyI0xZiUKsnzi9e059WoruZrG5Kvb62ft7FFafzGumnOq8r/RmSfSAgNpHuMEEIIIYQQ77i3WmlXFIXevXvzxx9/qMu8vLwYNGjQa8vD2toaR0dHHB0d6dOnD4GBga9t29nx8fFhyJAh6vv4+HicnZ3V997e3tSqVYu7dzNvZevbty9Xr15Nt9zd3T3D0W2EEEIIIUT+81Yr7Xp6esyYMYN58+YRGxtLVFQUCxcu5IcfftBpewkJCRku37BhA56enjRt2pTly5fnpsi5cvHiRT766CP1/b59+2jUqBH792u/xSeEEEIIIQqOt96nvWbNmnz66af8+uuvREdH07lzZ5YvX87t27dJSEhg+PDhtG/fnoCAACZMmMDLly8BmDp1Kh999BE+Pj4sXrwYY2Nj/Pz8OHToUKZ5NWjQQB3vPCQkhB9++IFHj5L7JE6ePJlGjRrh5uZGQEAA/v7+PH78mEmTJvHPP/9w6tQpypQpw4oVKyhcuDBnz55l/vz5JCYmYmVlxYwZMzA0NOTkyZPMmTOHokWL0qhRozT5nzp1ijZt2gAQFRXFxYsX2bhxI19//TXffvstADExMUyaNIkbN25QtWpVYmJi1Phdu3axatUqSpYsSe3atTE0NHx9H4QQQgghhHhnvRN92ocPH46npyenTp0iNjaW5s2bs3PnTjZu3MhPP/1EdHQ0pUuXZt26dezevZuFCxfi6uqqxl+7do3vv/8+ywo7JFea27dvD8Ds2bPp378/u3btws3NjSlTpqjpHj58yIYNG1i+fDnjx4+nWbNmeHp6YmRkxB9//EFsbCwTJ05k4cKFeHp6kpiYyO+//05sbCxTp05lxYoVuLu78+zZszT5+/j40LRpUwCOHj1K69atqVKlCqampvj6+gKwZcsWjIyM8PLyYsSIEfz7b/LDQEFBQbi5ubFlyxZ+//137ty5k/sDL4QQQggh8oS33tIOUKxYMezs7ChWrBheXl4cP36ctWvXAhAbG8vjx48pU6YMM2fO5MaNG+jr63P//n01vl69elSqVCnT7ffv35+wsDCKFSvGyJEjAThz5kyaim9kZCRRUVEAtGnThsKFC1OzZk0SExPV1vGaNWsSEBCAn58fFStWpEqVKgA4OzuzefNmmjVrRsWKFXn//fcB6Ny5M9u3bwfg6dOnlCpViqJFiwKwf/9+dRZUOzs79u/fj5WVFefPn6dv374A1K5dm1q1agFw5coVmjZtipmZmRqT+hgIIYQQQoj8652otAPo6+ujr5/c8L9kyRKqVq2aZr2bmxvm5uZ4eHiQlJRE/fr11XXFihXLctsbNmzA2NiYcePG4ebmxqRJk0hKSmL79u0UKVIkXfqUbif6+voULlwYPT099X1iYqJO+3fy5Elat24NQFhYGOfOnePWrVvo6emRmJiInp4eEyZM0GnbQgghhBAif3snusek1qpVK3777TdS5ny6di15/NaIiAgsLCzQ19fHw8NDc+W5UKFCTJ48mT179hAWFkarVq3U/u0A169fz/G2qlSpQmBgIA8ePADAw8ODJk2aULVqVQIDA3n4MHmM59QPmJ46dUqttB86dAgnJyeOHz/OsWPH+OOPP6hYsSIXLlygSZMm7NuXPPbyrVu3uHkzebz0+vXrc/78eUJDQ4mPj+fgwYOa9l8IIYQQQuRd71ylfejQoSQkJNC5c2fs7e1ZvHgxAJ999hm7d++mc+fO3Lt3L9vW9YyUKVMGBwcHNm/ezPfff4+vry+Ojo7Y2dmxZcuWHG+nSJEizJ07l5EjR+Lo6Iienh69e/emSJEizJw5k8GDB+Ps7Kx2ZUlMTOThw4dUq1YNSB41JqVvfQobGxv27dtH7969iY6OplOnTixZsoQPPvhALfvw4cPp1asXvXv3VrclhBBCCCHyv3eme8yIEf83c1hG44+///77eHp6qu/Hjx8PQLNmzWjWrFmm2z127Fia91OnTlX/v2jRoizLAXDp0qUM17Vo0YI9e/aki2/Tpo3aBz7FhQsX0nTnSd3CnyKlfzvAwoUL060H6Nq1K127ds1wnRBCCCGEyL/emUp7fta4cWMaN278toshhBBCCCHyKD0lpfO4EEIIIYQQ4p0kLe35XEhYuOYYMxNjgkNfaI4zNy3Fk+BQzXFlzU0Jf/ZcU4yxRWnCXkRozsukVEnCw7XHGRuXJPxpsPY4S3MiQsM0xZQ0NSEiRPtxLGlmqjmvlPx0PSZay1nSzFTnc/JNfd7GxrqfI29637TGmZQqSUS49jKWNDbW/brRNS44RFuMuZnO+6bzuaWxjJBczmv3n2iKqft+WZ3z0vWc1PVze/o8TFOMZWkTnodqL2NpU2Odv++0HpNcff9o/NsGyX/fhMjIO/cgqhBCCCGEECItqbQLIYQQQgjxjpNKu44URaF379788ccf6jIvLy8GDRqUZdzx48fp0qULnTt3xs7Ojq1bt2aZ3s3NjTVr1qRbHhAQgIODg26FF0IIIYQQeYr0adeRnp4eM2bMYOTIkTRv3pyEhAQWLlzI6tWr1TSKoqAoijrTa3x8PFOnTmXnzp2ULVuWuLg4AgIC3tYuCCGEEEKIPEIq7blQs2ZNPv30U3799Veio6NxcnJCX18fW1tbPvzwQ/79919WrVpFhQoVAIiKiiIxMRETExMADA0NqVq1KpDccj558mRCQ0MxMzNj7ty5lC9fPk1+vr6+TJ48GYCWLVu+uR0VQgghhBBvlXSPyaXhw4fj6enJqVOn+OqrrwB48OABn332Gfv371cr7AAmJiZYW1vz6aefMmbMGPbu3UtSUhIArq6uODs74+npiaOjI66urunymjRpElOnTmXv3r1vZueEEEIIIcQ7QSrtuVSsWDHs7Ozo3LkzhoaGAJQvX54GDRpkmH727NmsX7+e+vXrs3btWrXl/NKlS2ofdScnJy5evJgmLjw8nIiICJo0aaKmEUIIIYQQBYNU2l8DfX19td86JFfks1KrVi0GDBjA2rVrOXTo0H9dPCGEEEIIkcdJpf0NioqKwsfHR31/48YNtftMw4YN2b9/PwCenp40btw4TayxsTElS5bkwoULahohhBBCCFEwyIOob5CiKKxevZpp06ZhZGRE0aJFmTt3LgBTp05l0qRJrFmzRn0Q9VVz585l8uTJ6OnpyYOoQgghhBAFiFTaX4MRI0ao/69YsSL79u3LMF2JEiX49ddfM1xXoUIFNm7cmOW2rays0jyEOmHCBF2LLIQQQggh8hDpHiOEEEIIIcQ7Tk9RFOVtF0IIIYQQQgiROekek8+F/H1dc4zZR3V4dvJvzXEWbT7iiftxzXFlXT4l+NQlTTHmrRvyPDRcc16lTY3xG+umOa7K/0bwZMdRzXFlu7cj/GmwphhjS3OeHTuvOS8L6yZEhIZpjitpaoLfhGWa46r8OIx/7gRqimlQvQL+i7ZqzqvSqF4ELNmuOa7itz14MH119glTeW/6l4TdfqA5L5Ma7+l8bj3dd0pznKVDa5327anHH9rzcmpL0IE/NceVsWtJwLKdmuMqDuvGzYdPNcXUqmyJ36TlmvOqMvcbngSHao4ra27KPp+bmuMcmtUi/NlzTTHGFqW5dv+J5rzqvl+W2wPSz/mRnRrrp/B0/2nNcZb2rXT6vgtcuVtzXhWGOHNv1GLNcVUXjSQ8OERTjLG5mc7fkQ/nbNAcV3lyf0LCtP99MzMx1hwj8hbpHiOEEEIIIcQ7Tirtr1i+fDn29vY4Ojri5OTE5cuXM007ceJEDh48mOX2Jk6ciLW1NU5OTjg7O3PpUsYtyosXL+bMmTO5KrsQQgghhMifpHtMKpcuXeLEiRPs3r0bQ0NDQkJCiI+Pz/V2J0yYQMeOHTl9+jTTpk1LN8Z6YmIiI0eOzHU+QgghhBAif5JKeyrPnj3D1NQUQ0NDAMzMzABYunQpx48fJzY2loYNGzJz5kz09PTSxPr6+jJv3jyio6MxNTVl7ty5lClTJk2aJk2a8PDhQwCsra3p1KkTZ86c4csvv+TUqVN88skndOzYkStXrjBnzhyio6MxNDRk/fr1FC1alAULFvDXX38RFxfH559/Tq9evd7AURFCCCGEEG+bdI9JpWXLljx+/BhbW1umT5/OX3/9BUCfPn3YtWsX+/btIyYmhuPH0z5sGR8fj6urK0uWLMHd3Z2uXbuycOHCdNs/duwYNWvWVN+bmJiwe/du7O3t1WVxcXGMHj2ayZMns3fvXtavX4+RkRE7d+6kZMmS7Nq1i127drF9+3b8/f3/oyMhhBBCCCHeJdLSnkrx4sVxd3fnwoUL+Pj4MHr0aMaOHUvx4sVZvXo1MTExhIWFUaNGDaytrdU4Pz8/bt26xcCBAwFISkrCwsJCXf/jjz+yfPlyzMzMmD17trrczs4uXRn8/PywsLCgfv36QPKETAB//vknN2/e5NChQwBERETw4MEDKlWq9PoPhBBCCCGEeKdIpf0VBgYGNGvWjGbNmlGzZk22bdvGzZs32bVrF+XKlcPNzY3Y2Ng0MYqiUKNGDbZt25bhNlP6tL+qaNGiOS6XoihMmTKF1q1ba9shIYQQQgiR50n3mFTu3bvH/fv31ffXr1+nSpUqAJiamhIVFaW2dKdWpUoVQkJC1JFh4uPjuX37tk5lqFKlCs+ePePKlSsAREZGkpCQQKtWrdiyZYv6YKyfnx/R0dE65SGEEEIIIfIWaWlPJTo6GldXV8LDwzEwMOC9995j5syZlCxZEgcHB8zNzalXr166OENDQ5YsWYKrqysREREkJibSv39/atSoobkMhoaGLFy4EFdXV2JiYjAyMmLdunV0796dwMBAXFxcUBQFU1NTfvnll9ex20IIIYQQ4h0nlfZUrKys2Lo1/WyNo0ePZvTo0emWz5s3T/1/nTp12Lx5c5ZpUjt27Fim6erXr8/27elnfxwzZgxjxozJfAeEEEIIIUS+JN1jhBBCCCGEeMdJpV0IIYQQQoh3nJ6iKMrbLoQQQgghhBAic9KnPZ8L+fu65hizj+rw7OTfmuMs2nzEE/fj2Sd8RVmXTwk+dUlTjHnrhjwPDdecV2lTY/zGummOq/K/ETzZcVRzXNnu7Qh/GqwpxtjSnGfHzmvOy8K6CRGhYZrjSpqa4Ddhmea4Kj8O4587gZpiGlSvgP+i9M+NZKfSqF4ELEn/nEd2Kn7bgwfTV2uKeW/6l4TdfqA5L5Ma7+l8bj3dd0pznKVDa5327anHH9rzcmpL0IE/NceVsWtJwLKdmuMqDuvGzYdPNcXUqmyJ36TlmvOqMvcbngSHao4ra27KPp+bmuMcmtUi/NlzTTHGFqW5dv+J5rzqvl+W2wNcNcfVWD+Fp/tPa46ztG+l0/dd4MrdmvOqMMSZe6MWa46rumgk4cEhmmKMzc10/o58OGeD5rjKk/sTEqb975uZiTHX2gzVFFP3pAxokZdI9xghhBBCCCHecVJpF0IIIYQQ4h2XbaV9+fLl2Nvb4+joiJOTE5cvX84y/cSJEzl48GC2aaytrXFycsLZ2VmdlOhVixcv5syZM9kVMVsxMTH06dOHxMREfHx8GDJkSK63+Sb4+vri6OhIhw4dcHV1JeXxg/nz53P27Nm3XDohhBBCCPGmZNmn/dKlS5w4cYLdu3djaGhISEiIOiNnbk2YMIGOHTty+vRppk2bhqenZ5r1iYmJjBw58rXktWvXLjp06ICBgcFr2d6bMn36dGbNmsWHH37IV199xcmTJ2nbti19+vRh6tSptGjR4m0XUQghhBBCvAFZtrQ/e/YMU1NTDA0NATAzM8PS0hKApUuX0rVrVxwcHJg6dSoZDULj6+tLnz59cHFxYdCgQQQFBaVL06RJEx4+fAiAtbU1P/30E87Ozhw8eDBNq/2VK1fo1asXnTt3plu3bkRGRpKYmMj8+fPp2rUrjo6OGU6MBODp6Um7du3U95GRkQwePBhbW1umTZtGUlISAPv27cPR0REHBwd++uknAI4cOUL//v1RFIWgoCBsbW159uxZujwePHjAgAED6Ny5M87Ozjx8+BBFUZg/fz4ODg44Ojpy4MABAFxdXVm6dCkAp06d4vPPP1fLkCIoKIjIyEgaNGiAnp4eXbp04ejR5AchK1SoQFhYWIblEEIIIYQQ+U+WLe0tW7Zk2bJl2Nra0qJFC+zs7GjatCkAffr0Yfjw4QCMHz+e48ePY21trcbGx8fj6urKL7/8gpmZGQcOHGDhwoXMnTs3TR7Hjh2jZs2a6nsTExN2705+kvzUqeQRFeLi4hg9ejQLFy6kfv36REZGYmRkxM6dOylZsiS7du0iLi6OXr160bJlSypVqqRuLy4uDn9/fypWrKguu3LlCgcOHKB8+fJ8+eWXHD58mIYNG7JgwQLc3d0xNjbmiy++wNvbmw4dOnDo0CE2b97MqVOnGDFiBBYWFumO1bhx4xg8eDAdOnQgNjaWpKQkDh8+zI0bN/Dw8CA0NJRu3brRuHFjxo4dq/7f1dWVX3/9FX39tL+fnj59StmyZdX3ZcuW5enT/xtNoW7duvz999/Y2tpm9REKIYQQQoh8IMtKe/HixXF3d+fChQv4+PgwevRoxo4di4uLCz4+PqxevZqYmBjCwsKoUaNGmkq7n58ft27dYuDAgQAkJSWlqez++OOPLF++HDMzM2bPnq0ut7OzS1cOPz8/LCwsqF+/PgAlSpQA4M8//+TmzZscOnQIgIiICB48eJCm0h4aGkrJkiXTbK9+/fpqGnt7ey5evEihQoVo2rQpZmZmADg6OnL+/Hnat2/P1KlTcXBwoEGDBjg4OKQrX2RkJE+fPqVDhw4AFClSBICLFy9ib2+PgYEB5ubmNGnShKtXr9KuXTtmzZpFnz59mDRpEpUrV87qY8hQ6dKlM7xzIYQQQggh8p9sx2k3MDCgWbNmNGvWjJo1a7Jnzx7s7e2ZMWMGu3btoly5cri5uREbG5smTlEUatSowbZt2zLcbkqf9lcVLVo0x4VXFIUpU6bQunXrTNMYGRkRFxeXZpmenl6W71/15MkT9PX1CQ4OJikpCX19fSZNmsS1a9coU6YMCxcuzHGZU9y6dQsTExO14p2YmIiLiwuQ3E2od+/ePHnyf+PyPnnyRO2aBBAbG4uRkZHmfIUQQgghRN6TZZ/2e/fucf/+ffX99evXKV++vFpBNzU1JSoqSm3pTq1KlSqEhISoI8PEx8dz+/ZtnQpZpUoVnj17xpUrV4Dklu2EhARatWrFli1b1Idj/fz8iI6OThNbqlQpEhMT0/youHLlCv7+/iQlJeHl5UWjRo2oX78+58+fJyQkhMTERPbv30+TJk1ISEhg8uTJ/O9//6NatWqsW7cOgLlz5+Lh4cGvv/5KiRIlKFu2LN7e3kByl5yXL1/SuHFjvLy8SExMJCQkhAsXLlC/fn0CAwNZt24du3fv5uTJk1y+fBkDAwM8PDzw8PBg5MiRlClThhIlSvDPP/+gKAp79uxJ0y///v371KhRQ6fjKYQQQggh8pYsW9qjo6NxdXUlPDwcAwMD3nvvPWbOnImxsTHdu3fHwcEBc3Nz6tWrly7W0NCQJUuW4OrqSkREBImJifTv31+niqahoSELFy7E1dWVmJgYjIyMWLduHd27dycwMBAXFxcURcHU1JRffkk/u1fLli25ePEiH3/8MQD16tVj1qxZPHjwgGbNmtGhQwf09fUZO3as+tBp27Ztad++PUuXLqVx48Y0btyY2rVr061bNz755BOqVauWJo8ff/yRadOmsXjxYgoXLszixYvp0KEDly5dwsnJCT09PcaPH4+5uTkDBw5kwoQJWFpaMnv2bCZNmsTOnTvVbjUpfvjhByZNmkRMTAxt2rShTZs2QPIPoAcPHmBlZaX5WAohhBBCiLwny0q7lZVVpiOyjB49mtGjR6dbPm/ePPX/derUYfPmzVmmSe3YsWOZpqtfvz7bt6efxnzMmDGMGTMm4x34/z7//HPWr1/Pxx9/TLNmzTIsE4CDg0O6PuspD9tCcl/6zMagf//999m4cWO65d999x3fffddmmXr169X/29lZZVuuMsU9erVY9++femWnzhxAltbWwoVyrZ3kxBCCCGEyAcKxIyoH3zwAc2aNSMxMfFtF+W1SEhI4IsvvnjbxRBCCCGEEG+InpLRAOtCCCGEEEKId0aBaGkXQgghhBAiL5NKuxBCCCGEEO84qbQLIYQQQgjxjpNKuxBCCCGEEO84qbQLIYQQQgjxjpNKuxBCCCGEEO84qbQLIYQQQgjxjpMpNQuAxMREBgwYwKZNm3Ics27duizXDxw4MNttxMTE8OjRI6pWrZrjfENCQti+fTuBgYEkJCSoy+fOnZtl3N9//01gYGCaCbS6dOmS43xz688//6Rly5YZrouMjCQkJITKlSunWX7jxg1q1679WssRFhaW5XoTE5MMl8+aNQs9Pb1M46ZMmZKLUmXs0aNHGS4vX778a8/rTbt48SJ16tShWLFieHh4cO3aNfr160eFChUyTJ/b603X60YXWvO6cuUKoaGhtG3bNs3yP/74g9KlS2NlZZVhXGJiIgsWLEg3o/R/7cKFCzx48ICuXbsSEhJCVFQUlSpVyjLGz8+P6dOn8/z5c/bt28eNGzc4duwYQ4cOTZf28OHDWW7LxsYmw+W6XqO6fiekFhgYyIMHD/j444+JiYkhISGBEiVKpEvn4eGBoijpvnv37NmDgYEBjo6OGW7/33//zTL/Dz74IMv1b/L8Hz9+PD/99FO2y1K8je/W3Hj+/Dl///03QUFBFClShJo1a2JlZYW+vrTxvguk0l4AGBgYoK+vT0REBCVLlsxRTFRUFJD8x+jq1atYW1sDcPz4cerVq5dt/LFjx5g/fz7x8fEcO3aM69evs3jxYlasWJFl3NChQ2nUqBEtWrTAwMAgR2UdP348/v7+1K5dW43R09PLtNLesGHDDL9EFUVBT0+Pv//+O0f5pvb9999z4sSJdMsPHDjAnDlzKF26NAkJCcydO5f69esDMGnSJHbv3p3pNnX5Q+bi4oKenh6KovD48WOMjY0BCA8Pp1y5chw7dizDbWVWccqp4OBgfv75Z4KCgli9ejV37tzh0qVLdO/ePdOYIUOGqP+PjY0lICCAKlWqsH///mzze/jwIWXLlsXQ0BAfHx9u3rxJly5d1P3NyMWLF1m6dCmPHj0iISFB/byPHj2qbWdzYPr06ezdu5cbN26wbt06unfvznfffcdvv/2WYfrcXm9arpvcnv9ar9EFCxZkWHmqXr06kyZNYuPGjRnGGRgYcPHixWy3n1pu923p0qX4+vri5+dH165diY+PZ/z48WzdujXLuKlTpzJhwgSmTZsGQO3atRk3blyGlfbjx48DyZWjS5cu0bx5cwB8fHxo2LBhppX2lGv077//5s6dO9jZ2QFw8OBBqlWrlmnZUn8nvCon5//27dvZtm0bL168wNvbmydPnvDDDz+wYcOGdGl/++031q9fn265jY0Nffr0ybTSPm/ePADi4uLw9fWlVq1aANy8eRMrKyu2bduWZRl1+bsBun2P3LlzJ837xMTELL+rdf3cMjtWKTw9PbNcDzn/sQVw7tw5fv31V8LCwqhbty5mZmbExcXh7e2Nv78/tra2fPHFF5nGizdDKu0FRLFixXB0dOTjjz+mWLFi6vLMfuUPHz4cgM8//xx3d3f1Qh0+fHiaylZmli5dys6dO+nbty8AderUITAwMNu4ly9fMn78+GzTpebr68uBAweybM1I7dKlS5q2n+Lrr7/OdF1mrVkrV67E3d2dMmXKcOXKFSZMmMDYsWPp0KFDhn9EU0v5Q5YRPT29DCs7KZXyKVOm0KFDB7V1848//sjyj7Ozs3OWZcnOxIkTcXFxUX+Uvf/++4wePTrLSvurf3T+/fdffv/99xzlN2LECHbt2sWDBw+YNm0a1tbWjB07ll9//TXTmO+//55JkybluNUoq88byPIHaKFChdDT08Pb25vPP/+c7t27s3PnzkzT5/Z603Ld6Hr+65IXJP8gyegOQ4UKFQgNDc0ytk6dOnz99dd07NgxzfdWZhXb3O7bkSNH2LNnj3o9WFpaqj+osvLy5Uv1x3iKzCqPKT9gvvjiC/bv30+ZMmUACAoKYtKkSZnmkVKmLVu28Pvvv1OoUPKf7169evH5559nGpfZD/Wc2rx5Mzt27KBHjx5A8rUdEhKSYdqEhASKFy+ebnmxYsWIj4/PNI+Uu8DDhw/H3d1drbTfunWLpUuXZltGXf5ugLbvkZUrV7JixQpiY2P56KOPgOQfg4aGhuqxyYiun1vK98vmzZsBcHJyAnJWWQdtP7Yg+W/ErFmzMrzTmZCQwIkTJ/jzzz+xtbXNUf7ivyGV9gLCxsYm0z90WQkODsbQ0FB9b2hoSHBwcLZxhQoVynGrfmqffPIJf/zxR7pb6VmpUaMGz549U//4afX8+XNiY2PV95l1z7h48SI//fRTmsoDJH9xX7lyJcOYpKQktVz169dn48aNfP311zx+/DjbHxlaujO96vLly7i6uqrv27Zty4IFC7KNCwkJ4ddff+XOnTtpjklmraEpQkNDsbOzY9WqVUDy56/1duoHH3yQ6XF8lb6+PoUKFeLIkSP06dOHvn37ZtsdqmTJkprOqy+++CLHaV9VvHhxVq5ciaenJ7/99htJSUlpbttnRtfrTZfrJkVOz39d8woPD890XUxMTJaxcXFxmJqa4uPjk2Z5Tr/LtO5b4cKF0dPTU6/N6OjoHOVjamrKw4cP1biDBw9iYWGRZczjx4/TfGeZm5tn2mUstRcvXhAZGal2a4mOjubFixc5KueLFy948OBBmmPSpEmTLGMMDQ3TnJNZnccxMTFER0en+46MjIzMstKews/PT62wA9SsWZO7d+9mG6fr+a/le2TIkCEMGTKE//3vf4wdO1ZTPqD9c0v5oXvmzBn27NmjLq9VqxbOzs6MGzcuy/y0/NgCsuyGVqhQIdq3b59lfuLNkEp7AaFrS2qXLl3o1q0bHTp0AMDb2ztH26pevTqenp4kJiZy//59Nm3aRMOGDTNNn3JbW1EUVq5ciaGhIYUKFcrytnZKS2hUVBT29vbUr1+fwoULq+uz64pz9OhR5s+fT1BQEGZmZjx69Ihq1apl2j3jww8/xMjIiKZNm6ZbV6VKlQxjihcvzsOHD9X+7GXKlGHjxo0MGzaM27dvZ1m+1G7dusWdO3eIi4tTl2VVSS1Tpgy//PILnTt3BpJbZ3Lyo2bcuHF06tSJEydOMGPGDHbv3o2ZmVm2ccWKFSM0NFSttPzzzz/Z/mhL3Y87KSmJa9eu5fiHV6FChdi3bx979uxh+fLlQOaViZRb182aNWP+/PnY2NikqYRk1l82o885pxYuXMi+ffuYPXs2FhYWPHr0iEGDBmUbp/V60+W6SaH1/Nc1rxYtWrBw4UJGjRqlnh+KorBkyRK1a0hmdO2TrHXfUnTq1Ilp06YRHh7O9u3b2bVrV5atqCl++OEHpk6dyr1792jdujUVK1bM9kdyixYtGDRoEPb29kByV7qPP/4427wGDx6Ms7MzzZo1Q1EUzp8/z4gRI7KN27FjBxs3buTJkyfUrl2by5cv06BBg2x/kDdp0oQVK1YQExPDn3/+ye+//65233pVt27d+Pbbb5kxY4Za6QwICGDmzJl069Yt2zLWrFmT77//Ps33VupK/Ktyc/6Dbt8jHTt2zLA7THb97nX93BRF4eLFizRq1AhI7maTlJSUbZyWH1spTp06hbe3N0+fPgWS7zS1a9eONm3aZBsr3gw9Jbt79CJPS7kAU27Dde/eXf21PX78eDp27JjtNnx9fdW+pU2aNKFu3brZxrx8+ZIVK1Zw+vRpAFq1asXQoUMpUqSIrruSzl9//ZXl+uwqXZ07d2bDhg0MHDiQPXv2cO7cOfbu3cucOXNeWxlv3LhB0aJFee+999Isj4+Px8vLS/3jlJWlS5fi4+PD3bt3adu2LSdPnqRRo0YsWbIk05iwsDCWLl3KhQsXAGjcuDHDhw/P9qEzFxcX3N3dcXR0VG/Ddu3alV27dmUZ9++//zJr1ixu375NjRo1CA0NZfHixVk+aJv6treBgQEVKlTA1tY2R+fInTt32Lp1Kw0aNMDBwQF/f3+8vLwYPHhwurQpXbQyklk3o9Tu37/Pzz//nO7uQ2bdjXR58Ds1Xa43XbyJ8x+SWxSnTJnClStXqFOnDgDXr1+nXr16uLq6Ztid4vbt2zx8+JB27doBMGfOHCIiIgDo06dPthWk3Ozbn3/+meZ7K7MHzDPb16SkpBz3+z18+LB6jTZp0kT9sZadZ8+ecfnyZSC5MSG7Vn1I7iO9c+dOevTogYeHB3fv3mXhwoXZdj9JSkpi586daY5J9+7dM71TuGXLFlatWkV0dDSKolC8eHG++uorPvvss2zLGBsby5YtWzh//jyQfEx69+79Wv9upPYmv0dAt8/N19eXyZMnExkZiaIoGBsbM2fOnGyvgR9//BFjY2P27NnD1KlT+f3336levTqjR4/OMP3s2bO5f/8+Xbp0wdLSEoCnT5+yZ88e3nvvvXfugdkCSxH5Ws+ePZVHjx6p7zt37qyEhIQogYGBSr9+/XK0jYSEBOXJkydKYGCg+soufZ8+fXQqb0Zlyq6cP/74Y46WvcrZ2VlRFEVxdHRUEhMT1f+/axwcHJTExES1bM+ePVMGDBjwn+TVvXt3RVEU5YsvvlCOHz+u/Pvvv0q7du1yFBsfH6/cunVLuXnzphIXF5ejmIiICCUiIkKnsr58+VK5e/dujtM/fPgwR8te1atXL+XMmTOKg4ODEhAQoCxZskRZtGhRljH9+vVTwsPDc1y21LReb4qiKBcuXFCioqIURVGUPXv2KHPmzMk2TtfzX5drVFGSj/XRo0eVo0ePZnvchwwZoly8eFF936lTJ+XgwYPK7t27lW+++SbbvHJzbQcFBSne3t7K0aNHlaCgoBzFhISEKLNmzVK6dOmiODs7K7NmzVJCQkJyFKuLJ0+eKBcvXlT++usv9ZUdFxcXRVGS/wbExsYqiqIodnZ22cYdOnRITa+F1mv7Tf/dSKH1e0QrX1/fLF85FR4eruk7JTExUdm2bZsyYsQIZcSIEcq2bduUpKSkTNPb2NhkuDwpKUnp0KFDjvMV/y3pHpPPxcfHU65cOfV9o0aNMDU1xdTUlJcvX2Ybv2nTJpYuXYq5uXmaPspZPQyjy2g1sbGxREdHExoayosXL9SHNCMjI9VbdZk5c+ZMumUnT57M9sEkY2NjoqKiaNKkCePGjcPMzCxdX8x3QZEiRdS+l5GRkZQuXZrHjx9nGePn58fatWvTDYGWXWvQN998Q0REBN999x2zZs0iKioqy4fjUmzevBlHR0dq1KgBJPff3LdvX6YPWq1fv541a9ao3X1MTEz49ttvsbe35/Hjx2nO2YzoMjrRt99+m260npEjR+Lu7p5lXrGxsbRo0QJI7mc6YsQIXFxcGDlyZKYxWh/8TqHL9QYZj1YzYcKETEerAe3nf26u0ZiYGM6dO6eOvBEVFYWlpWWa2/epBQUFqQ/7AZQoUUJ9AC67kUR02bcUO3bsYNmyZTRv3hxFUXB1dWXo0KHZdu0YM2YMjRs3Vu9+eXp6Mnr06AxHUsntCDc//fQTXl5eVK9ePc05kl3f9LJlyxIeHk779u0ZOHAgxsbGORpe9fjx48ydO5fGjRtjZ2dH69at1YcpM3Lt2jXWrl2r9kW3srLiyy+/5L333iMhISHT2Df9dwO0fY+cPXuWFi1aZDpkZ2bPWeg6Mk5uh4GNiYmha9euaveuxMREYmJiKFq0aIbpDQ0NuXLlSroHqq9evfqf3ekQ2kmlPZ979SGwlCHJgCwfSkmxceNGDh48iKmpqaZ8tVZatm7dyoYNGwgKCsLFxUX98i1RogR9+vTJMOb3339ny5Yt+Pv7pxkeKyoqKsv+8yl++eUXihQpwqRJk/D09CQiIoJhw4Zp2c03wsrKivDwcLp3746LiwvFihXLdv9GjhxJr1696N69u6YHQj/99FMg+aFNLd07tm/fnqaCXqpUKXbs2JFhpX3p0qVcvnyZ33//XR3/2t/fn9mzZxMYGMiOHTs4cuRIlvllNDpRQEBAhmnv3r3LnTt3iIiISPMHNzIyMk13l8wYGhqSlJTEe++9x2+//ZajEUV0ffBb1+tN62g1oP381+UaheTKyTfffEOTJk3UW/qnT59m/fr1rFu3jjVr1qS7Zf/q8d2+fbv6/5x8b+l6ba9evZrdu3erxz80NJRevXplW2l/9uxZmu0PHToULy+vDNPmdoQbb29vDh48mOkPnswsW7YMSB4xpVmzZkRERNC6dets4+bOnUt8fDwnT55k3759zJw5k48//pjZs2enS3vo0CEWLFjAkCFD+PLLL4Hk7h3ffvst06dPZ9GiRZmOXgJv5u9Galq+R86fP0+LFi3UITtfldn1ruvIODkZtSgrAwYMYN26dWr3s5iYGAYNGpTp8KXz5s1j+vTpREVFUbZsWSD5YemSJUv+J+PdC91IpT2fq1+/Ptu3b0/3MNXWrVvT/aLOSNmyZXUaBUZrpaV///7079+fTZs2Zdl3MDVHR0fatGnDzz//nOZp/uLFi+dowpDUfxS0Pqiry8RRusRAcisqQO/evWndujWRkZHZTspUqFChHPUhfVVmrerZfWknJSWpLYWQ3KqT2WgRe/fuxdPTM03rTaVKlVi0aBEtWrTI0Sg3GY1OlFkfWz8/P06cOEFERESaP7jFixdn1qxZ2eY1efJkXr58yZQpU1i8eDHnzp1j/vz5Wcbo+uC3rtebLqPVaD3/dblGAVxdXZk1a1a6vuFnzpzBwcFBvTuTWpkyZbh8+TIffvhhmuX//PNPjh5W1vXaNjU1TdPHvnjx4jn6AdWyZUv2799Pp06dgOTRY1q1apVt3I0bN9I8d5KTydYqVapEfHy85kp76pFpKlasCCSPVpST1vbChQvTpk0b9PT0iI2NxdvbO8NK+9KlS1m3bp26fUges7558+Z06tQp29bhN/F3IzUt3yPffvstoPvD0VpHxkkZBlZXsbGx6c7lrO6uf/DBB+zYsYNnz56leRA1J/3uxZsjD6Lmc8+fP2fYsGEULlxYbeX6999/iYuLY9myZZibm2cZP3nyZPz8/Pjkk0/S/JHIyYyoutI6UkoKrcO7pb5NHR8fT0JCAkWLFs329rQuXTN0nWwKkseObt68ufrHJTw8nL/++ivLIbjc3NwwMzOjQ4cOaT637H7MHDp0SP1/yh/nMmXKZNutY/78+Tx69IhevXoByT8Ky5Urx8SJE9Ol7dixIwcPHsxwO7a2tmnKkJnJkyfTokULVq1ahZubG5s2bSI+Pp6ZM2dmGnPp0qUc3YF5HbQ+vJpC1+vt2bNn7Nu3j3r16tG4cWMePXrEX3/9leV1o+v5D9qu0aw+b2tra/bv35/ulv2VK1cYNWoULi4u6oO4//77L7t372bRokXZNjjoum8TJkzg1q1btGvXTp14qFatWmplK7PPoWHDhrx8+VK9q5WUlKTuU2ZdXjZs2MCOHTvSjBTUo0ePbCufI0aM4MaNG7Ro0SLNOZLdNZr6bqSWycz++OMPvLy8+Ouvv2jatCmdOnWiZcuWGXZzsbOz48CBAxluJ6fXtq50+buhy/dIZq3j2VWyx4wZQ9GiRdOMjBMdHc3PP/+cZdyTJ0+YNWuWeg41btyY77//Xm0Nz0yvXr2YOnWq+nff19eXWbNm5ah7WQo3N7ccjXAj3hxpac/nSpcuzdatWzl79qzan7Rt27ZqH93slC9fnvLlyxMfH5+jcXZTWFtbZ9hikV2lJbORUrL68j127Bjz5s3TPLxb6tvUiqJw9OhR/vnnnyxjUsqodeIoXSebSolNPaqEsbExS5cuzbLSntJ3e82aNeqynMx++OrEGQ4ODjlqsU+ZNXLLli0AfPzxx5lOrGRpaan2D03t7Nmz6qgF2Zk6dSorVqzA0NCQsWPHqqMTZaVu3bps3ryZ27dvp6lIZ9dy5ufnx5o1a9SZVFNk9XzApEmT+Pbbb5kzZw4bN27E3d09R8O06Xq9WVhYpKlQli9fPtsKS27Ofy3XqKIoxMXFpWsZjo2NpXDhwhn2sa1fvz47duzgt99+U8/l6tWrs3379mwbGnKzb5UrV1aHZwXU0Wuy66qgS5eXnTt3sn37dvWuwFdffUXPnj2zrbRbW1tnOuRiVnSdzMzDwwM7OztmzpyZbet+oUKFePToUboGk8DAwCxjczvKmS5/NyDt98iYMWNo3bp1tt8jqe/ixMbGcuLEiRzdPZ07dy5btmxRvzeaNGmSo+/WSZMm4eDgwOLFi4HkO5WTJk3Kts/75MmTGTlyJGXKlEFRFIKDg1m4cGG2+aV27NgxqbS/a978s6/ibZg1a1aa0Ri0ioyMVCIjI3OcPiQkRH09efJEWbduXbYjbiiKbiOlODo6KiEhIYqTk5OiKIpy9uxZZdKkSTkua2op28hKyggrqdM6ODi89pis0uU0Nrfu3r2rtG/f/rVu89atW0r79u2V7777Ttm4caOyceNGZcKECUr79u2V27dvv9a8UhsxYoSycOFCpV27doq7u7sycOBAZdasWdnGOTo6Kps3b1YuX76sXL16VX1lJWX0ktSfU8qynMjp9darVy9FURSlQYMGSsOGDdVXynutcnL+a71Gly1bpgwePFgJCAhQl/n7+ytDhgxRli5dmmVeuo5ckpGc7FsKrd93iqIoYWFhyuXLl3M8oouDg4MSExOjvo+JicnxdR0bG6vcvHlT00hNmZXhdTpy6uiIbgAAUhFJREFU5IhiY2Oj7Nq1S7lx44Zy48YNZefOnYqNjY1y5MiRTONyO8rZmxxh61WxsbE6jXpz/vx5Zfr06dmm69y5c46WZSQuLi5X54mWa0a8GdLSXkB88MEHLF++HD8/Pzp06ICdnR316tXLNu7WrVtMmDBBnbnN1NSU+fPnZ9gPNbVX+4EOGDAg2xE3QLeRUgoVKoSpqSlJSUkkJSXRvHnzHI3HnPqhxKSkJHx9fXP0lLzWiaN0jUlhZWXF3Llz1VaozZs3ZztGb3x8PFu2bFH7yzZt2pSePXummXwqI6knK9HT08PCwiLbmfcgebbYpUuXqq3RKfEZtezXqFGDffv24enpqd79ady4MTNnzszxKAUDBw5k8eLFGBsbA8mj1YwZMybNnYVXPXz4kCVLlnD06FGcnZ1xcHDIchrxFLo8H6DLw6ug/XpLubOhS0uvrue/1mt06NCh/Pbbb3z++edqn9pixYrxxRdfZNuqrHXkktzum67fd7pMXOTi4kL37t3p0KGDejega9eu2ZbRx8eHiRMnUqFCBRRF4fHjx8yfPz/b0WO0TmbWu3dvtmzZkm60GyWLUW7at29PxYoVWbt2rTpyUfXq1bOdsyG3o5xpPSdnz57N999/r07Q96qcdFtM8fLlS548eZKjtNeuXWPfvn0cPHiQChUq5Kj/vomJCR4eHjg4OACwb9++LLs5ZjbKzf3794GczyYMqCNrZXSnTLwdUmkvIJydnXF2diYsLIzDhw+zYMECHj9+nOnwVSmmTZvGxIkT1ZkLfXx8mDp1aqZPoKdIPWNcyh/NnMzIpstIKboO75b6ocSUyX1++eWXbON0uaWqS0zq2F9++YVRo0YByQ+9pR4FKCPTp08nISGB3r17A8m3VKdPn57hw2Op6Tqyxffff8+kSZOwsrLK0Wg1RYoUydEMiZkJDQ1VK+yQPFrN8+fPs4xJqewZGxtz69YtzM3Ns42B5BF1Nm/erOn5gFcfXvXx8cn24VXQ/XqD5Id/g4ODSUxMVJdl9VyHrue/Ltdonz596NOnD5GRkQA5nnxIy8glqem6b7oe/40bN6oTF23atEmduCgrAwcOpGnTply8eBE9PT3mzp2bo4m05s+fz5o1a9QuGX5+fowdOzbboUtT/2g0MDCgbdu26brDpabrD8LatWvz448/aorJ7ShnWs9JJycnAL744gtN5YS0zwYkJSUREhKS5chEfn5+7N+/n3379mFqaoqdnR2KouR4dK45c+Ywa9YstRvfRx99lGWXPl1HuUnRt29f5s6dS8WKFdHX1+fKlStMmTKFvXv35qi84j/2Npv5xZt3+fJlZe7cuUr79u2VIUOGZJs+owlJcjJJSZ8+fdTXgAEDlO+//17zBBb+/v7K9evXs00XFRWlJCYmKvHx8Yq7u7uyYcOG/3RikxS6TAyUm8mEtNDlc3v58qWyfft2Zc6cOcqcOXOUvXv35rhrQrdu3XQqp66cnZ3TTB4UEBCgdOnSJcuY7du3K2FhYYqPj49ibW2tNG/eXNmyZUu2eX366afpXtbW1hmmjYmJUZ4/f55ueXBwcJquEJnR9XrbuHGj0rRpU8XOzk5xcHBQX/+1nF6juRUXF6ccPXpUGTZsmNK0adP/LB9dj7+WiYuio6PTdFW4e/eusm7dOuXQoUM5KmNuusvpMuGRra1tjtPrasyYMcq2bdvSLd+yZYsyevRoTdvSck6uX78+R8tSCwgIUF9PnjxR4uPjs0xfq1Yt5fPPP1fu37+vLsvs++N1SUxMVPbv369T7MmTJxVbW1vlt99+U37++WelS5cumiaBEv8taWkvIH788Ue8vb2pVKkSdnZ2DB06NE1LZWYqVarEsmXL1JaJvXv3qmNrZ0WXKdwTEhIwMDBAT0+Px48f4+vrm+ahsMyktKrr6+vTtm1bTE1NMx22K4W3tzerV6/m3r17QHJLzdChQ2ncuHG2k3tcuXKF77//Xm25KlGiBHPmzMHKyuq1xuTmFq6BgQEPHz5Uj5+/vz8GBgaZptdlLO3UmjVrxvz587GxsUnTGp1dNx5djRo1is8++4wmTZqgKAoXL17McsQHQH0wtmnTptk+kJvasWPHcpzW1dWV1q1bp2vN+vvvvzl9+jQzZszIMl7X603r+O66nv+6XqO6enXkku7du7No0aIsY3Jzbet6/LVMXPTll18ye/Zs3n//fR48eECvXr1wdHTk+PHjXLlyJdvuaFZWVnz//ffqKCR79+7N8nsEdJ/MzMDAgCpVqmT4cOnrNHnyZIYNG4anp2eGo5xlJTfn5J49e+jfv3+aZbt37063LLUKFSoAyd1i7ty5Q+HChTEzM8s0/dKlS9m/fz/9+vWjdevW2Nvbq+PJZ2X79u00bdqU999/H0VRmDx5MocPH6Z8+fLMmzcvy+9WfX19Vq9ejZ2dXbb5vKp169bMmDGDL774AlNTU3bv3i3DPr5L3vKPBvGGbNmyJcMWwOyEhYWlmZ7b1dVVCQsLyzZu/fr1SkREhJKUlKRMnjxZ6dKli3Lq1KlM02/btk1p0qSJ0rZtW2Xbtm2KjY2NMmrUKMXGxkZZuXJlhjGXLl1S+vTpowwbNkz5999/FXt7e+Xjjz9Wmjdvrvzxxx+Z5rV582bF2dlZOXPmjNrydObMGaVnz57K/v37s21Zc3BwUM6fP6++P3/+fLYtXbrEpDzs6OPjk+ErK2fOnFHatm2r9OnTR/n888+VTz/9VDl79mym6fv06aOcPn063fI///xTad26tfLFF19kmV/qOyspr759+2YZoyi5m0L8+fPnyrFjx5Rjx45le277+PiorW/79+9XZsyYoaxbty5HdxLi4uKUDRs2qNOBb9q0KdOHurJ62DQnU8brer316dMn2xa/FLqe/7pco7k1evRo5ciRIzm+45Pbazv18e/SpYsya9asHB3/1Hx8fBRvb+9My5z6ul+4cKH6MGJsbGyOWsxjY2OVtWvXKsOGDVOGDRuW7Xns5uamfPnll8rDhw/VZQ8fPlSGDBmirFy5MtsHzT/77DOlQYMGSr9+/ZQhQ4aor//CmTNn1IfTz5w5k216Xc9JT09PZciQIUrjxo3T7FOfPn0yffDV29tb+fTTT5UuXbooJ06cUD799FOle/fuyscff6y4u7tnW9aoqChl7969ypAhQ5QPP/xQmTZtWpZ/E+3t7dXvmb179yrOzs5KSEiI8ueffyq9e/fONr+ffvpJWb16tfLo0SMlNDRUfWVn6dKlioODg/L3338rW7ZsUWxtbZXjx49nGyfeDKm0FxBJSUnKoUOHlDlz5ihz585VDh8+nGX613Wb/+TJk8rQoUOVW7duZdl9wc7OTgkLC1MCAwOVDz/8UM07Ojo608qOs7OzcurUKeXAgQNK48aNlUuXLimKoih37tzJ8qn3jh07ZvjlFRISotSrV0/5/fffs9y3jLadXdcMXWIUJfn29JgxY7JNl5HY2Fjl+vXryvXr17Ot9GR1C/zTTz9VoqOjdSpDVo4eParY2Ngon376qaIoinLt2jVNlYGcjtYxffp0pXfv3oqLi4syduxY5ZtvvlF+//13Zdy4cTk6tpMnT1YmTJignDlzRjlz5owyceJEZfLkyRmm7dixY6bbyWpdbq+3SZMmKb169VJWrFihrF27Vn1lVg5dzn9drtHUDh06lO515swZJTg4OMu4oKAgxdvbWzl69KgSFBSUZdrcXtu5kZCQoDx58kQJDAxUXxlJXTHv2bNnmlFVsvpR8fz58wxHV7p161aWP1o7dOiQ4Tn08uVLpUGDBoq3t3emsYqirdFg5syZyqxZszJ9ZUfrKGe6npMBAQHKuXPnlB49eqTZJ19f30x//Do6Oir37t1T/l97Zx5Xc/b/8VdaCGOXsc2MMQzDGGsmRmEiSVQkW5YwDWUnspRdGctkN2MtRkiWKFmzTRhGhBgSpbKktOpW957fH30/n9+9de9nu3WLzvPx8FC3ezrn3j733vd5n/f79bp79y5p3749uwlKSUkRXYr2/v17EhgYyKmMo6wQM3PmTJWyHSGfHWLK+pRZvnw5+fDhA/v9y5cvdabEQ+GHlsdUEJYsWYL4+HjY2NgAKDS/+fvvv+Ht7a32/toe85P/Hf9dunQJdnZ2aNGiBeeRoKGhIWrWrImaNWviiy++YI8bjY2NNSqeyOVy1nVww4YNaN++PQCgefPmnGsD1DcR1q5dG40aNWKbNzXRpUsXeHl5wcbGBnp6eggNDYWpqSnbfKvu2FLKGKDweDopKUlw9/7x48dBCIGdnR2MjIxYxYZjx45BX19fpYlKGSJBS1uZlJQUrFu3Dm/evMGOHTvw9OlT3LlzR6NWO6Cddr0YtY4bN24gNDQUMpkM5ubm+Pvvv6Gvr49hw4axJQZcREdHqzRhmZmZaRxXt25d3Lt3r5j5z7179ziP0LV9vYnVd5dy/Ut5jSoTFBSEqKgodO3aFQBw8+ZNtGnTBi9fvsTkyZPVamofPnwYmzdvxo8//ghCCJYvX47JkydzNjFLeWyaStAY+NREAgICsGnTJtSrV0+lEbuoNjoAfPvtt/D19UWDBg0QHx/POsUWbcYsyrJly9SqGKWnp2Pbtm1Yu3at2nGVKlVSq5xTpUoVmJiYsFr0mmjVqhWrPNKsWTPO8iK+Mh0+xKqcSb0mGzdujMaNG4syGqpUqRKaNWsGoNBRlimbqlu3LmfpoYODAzp27Ahzc3N07doVlStXRs2aNeHk5AQnJyfO+d68eYOaNWsiMjJS5RrNzc3lXa+Ysj5lFixYgJSUFERGRgIo9Ezg04Sn6A4atFcQrl+/jrCwMLbW297eng3g1fHgwQO1Fu99+vThrSkFCt+8XVxc8PLlS8yaNQtZWVmcqiK5ubl4+PAhFAoF8vPz8fDhQ5DCkyAVIxxllH9flSpVVH7GVdNevXp1PHr0qJgE2aNHjwRZyD969AhAcWe8hw8fQk9PT23gKGUMQ9OmTTF8+HD07t1bRRVHnTvjvn37sGfPnmK39+3bF6NGjdIYtA8aNAhTpkyBl5cXW7P58uVLLF++XFBgO2/ePDg4OLDBzVdffYUZM2ZwBu3qLMSFIkatgwlYKleujEaNGrEfsHp6eoLkA8X0B3h4eGD69Omwt7dXcSI8duwYp5qItq83MZbnUq9/Ka9RZeRyOUJDQ1lzpJSUFMydOxeHDh3CqFGj1AbtO3bswNGjR9la/bS0NAwbNkxj0C71sUlREVFGTE/B8uXL4e/vj5cvX2LXrl3shvjp06ec63jx4oVaWcfOnTtj8eLFGsdJNTPLy8uDl5cXzp8/jyZNmkChUCApKQmWlpZYsmSJ2iSCvb29yvdMD0+1atU0zlN0vBiVM6nXpBQ5S4VCgfT0dCgUCujp6SE9PZ1NRHEZpx06dAi3b9/GlStXsHHjRtSqVQs//fQTzM3N2U2AOqZOnYrBgwdDoVCgd+/erOzozZs3Ofss7t69i0WLFiEhIQEtW7bEypUrBSWyGMLCwrB69WqYmpqCEIJly5bBw8OD1+CKohto0F5B+PLLL5GUlMQGZMnJyfjyyy813p9LG1eIs+OKFSsQExODpk2bwtjYGGlpaZza6fXr12dlrOrVq6ciaaXJAfHRo0fo2LEj+wbdsWNHAP+fNdbE3LlzMWnSJDg4OBQLrIRIle3Zs4czs1JSYxgYl0ZCCK/Wd0FBgdoPyKpVq3JmYLXR0gYKg6n+/fvjjz/+AFAYkPNJP2qjXW9kZMQG43l5eWjevDni4uLU3vfdu3fYvXs3CCHs10DhdSJETs7DwwOjR49G06ZNQQhBUlKSxmuZcfLcv3+/ipPn4cOHUbduXY1zSH29SWlWlnr9S3mNKpOcnKxyP0ZLu1atWho3T7Vr11a5nqtVq8YZGEt9bKampirf5+fn48mTJ2jQoAHn343h888/F7wBrVKlCn755Zdit3fs2JF9D1MH12uf67W9cOFCTJ48GZ06dVJ5Tv79919s3bpV47itW7ciPz8fFy9eZCU6s7KysHTpUhUJWnUo690TQlCnTh1BevcM8fHxePbsGeturQmp16QUOcusrCw4ODiwgbryBoUrSWRgYICuXbuyJ0yvX7/GlStX8PvvvyM+Ph4//PCD2k1Xr169cPHiRWRnZ6NmzZrs7W3btuVMACxZsgRz585Fly5dcP78eaxcuZLTv6IoW7duRVBQEHvdp6amYuzYsTRoLyfQoP0Th/kwz87ORv/+/dlje3VH+MpIPeZnqFSpEl69eoWTJ08CKCwP4bLelqI2ExMTI3oMUJiZKhpYNW/eHAcPHhTUJd+3b1/07dsXQ4YMEZzBkDKGoXnz5rC2tla5LSwsTO19c3NzkZOTU0ynPisri7dsQqqWNlAY4KelpbEfXlFRUbxBjLJ2/axZs/DTTz8J1q4Xo9YxdOhQNuBR/hoA50kAA2NUwqiRfP3115ylSnXr1sXUqVMFPQ7lMVJeb0x2WkymWOr1L+U1qoypqSlcXV3ZD//w8HCYmpoiJyen2LXCbKy++OILDB06FD///DNr1vXtt9+W+GPz8vKCs7MzWrRogczMTDg5OUFfXx/v37/H3LlzWWObojDrbNq0KZydndGzZ0+Va0PdaZhUvvzyS1y6dAkWFhYqt1+6dIkz8yrVzOzs2bM4fPiwSmlc9erV4e3tDScnJ86gXarevViVM6nX5Pv37zl/rq7ESmq5SVEaNGiAIUOGYMiQIVAoFJwbBwMDA5WAHQCvBwkhhC25sra2ZhMpQiGEqGxUa9WqJUjthqIb9Aj9a3zS3Lx5U+PP9PT0NLro3bt3j/OY/4cffuCcd82aNYiOjmbLMU6dOoXvv/8eM2fOlPhIyg9ZWVkIDQ1FcHAwFAoFBg8eDBsbG84gV8oYBnt7ezYA4boNAHbu3InIyEgsWbJEpcxl6dKlMDU1xYQJE0Q+WmEw5R1PnjxBixYtkJaWxuuCWFLcvHkTmZmZ6NGjR4m69mlyFmQQ4yzIh9TXm4uLC3bt2gUA2L59O1xdXUtsTSUNIQTh4eFs6UHHjh1hZWWlNktZtIysKGLKgYRgY2ODU6dOASg8Fbt58ya2bNmCt2/fYuLEiTh27Jjacbpc5/Pnz+Hq6ooOHTqoXCNRUVHYtm0bZ6mFFGxtbdXW5PP9DAAGDhxYzIxH3W1FCQwMRN++fQUlhrShd+/erPNzUTQ5OUtF234Jsfz888+YO3cu+72vr6/K93zvW76+vvjvv//Y8tnQ0FC0bNkSHh4eJbpOijRo0F5BuXXrFk6dOqWxERUoLCvYv38/njx5AqDwmH/UqFGCjottbW1x/PhxtkRCLpfDzs6O843+Y+TmzZuYNWsWMjMzYWVlhcmTJ3OWHYkZc+nSJVy+fBlhYWEqertZWVl4+vQpgoKC1P7+AwcO4I8//kBOTg6AwszMxIkT1TaxaYuyfnNBQQHi4uJACEGzZs14mxPHjRsHPz8/NpOWnp6OmTNnch7lSsmQSWXDhg2YOnUqPD091f6cy5VQClJeb3Z2dmxAqWkj9ykhk8lw4cKFYidP2qL8PP7yyy/o168fHBwciv1MCOnp6ahRowavVwSDmLrvvLw8hISEqFwjtra2nBlzqQwcOBABAQFqA9vRo0dzBuBubm747rvvVPTuHzx4wKu5TgjB2bNnWZfYTp06oU+fPto9kDKGSZydOXMGKSkpbI/QqVOnULduXcyfP1/jWEIIXr16pVFHXx2a3q8YhLxvnTlzBrdv3wZQeCrzsf8NPiVoeUwF4uHDhwgJCUF4eDgaN27MaWENSDvmVyYjI4MNojIzMyX/Hk0IVVQpKQoKCmBgYAC5XI6IiAgEBwcjMTERLi4usLW1xa1bt/DLL78gPDxcqzEMDRo0QNu2bXHhwgUVdZlq1apxvjEPHz4cw4cPF13molAoEBUVxVlXWxQ3Nzc2UJwxYwY2btwoeGxaWprK0XfNmjXx7t07zjEODg46y5Ax1/7kyZOLlR8kJCQI+h0fPnzgVd5hkPJ6ExoYlgS3b99Gp06dJL/umMbCd+/esc2Cmpr+lJHL5bh69SpOnjyJv//+G506dSrxoP2zzz7DxYsX0aBBA/z7779YsWIFgMLXL5dSx6ZNm2BtbY3mzZsjLy8PEyZMwKNHj6Cvr4+1a9eiW7duGsc+fvwYc+fOVan79vHxQcuWLTWOMTIywuDBg6U/UBEUreFWhu+6W7lyJTZu3IgpU6YAADp16sTZ08QgVuVMKrGxsWjevDmr3lWUkjSFY/olfHx8EBwczN7eu3dvdmOoCT09Pfzyyy+ikl3aJhMSEhJgYWHBZuRzc3Px8uVLNGnSRKvfSykhSk9NklIeePbsGdm4cSOxsrIiw4YNI/7+/qRnz56lPm9ISAjp2bMnmTt3LvHw8CC9evXitFW+f/8+5z91MFq1s2fPlrTG0NBQQbcVna93797E09NTrZ5wUS1iKWOKkpmZSQoKCtjvCwoKSkU3nRD1evJC7y92rL29vYqW9cuXLwXpD+sadWviMlEihJDbt28Ta2trYmFhQQghJCYmhnh7e5f42jp16sQawyh/LcYAR+i1xDxmqX8jS0tL8vTpU8H3v3HjBlm0aBExNzcn7u7upFu3bqV23T979oy4uLiQgQMHkiNHjrC3X758maxatUrjuP79+xOFQkEIISQwMJCMGjWKFBQUkKdPn5LBgwdzzunk5KRieHb9+nXi5OSk5SMpX2RmZpKsrCzB97eysmKfT0IIkcvlnP4GUj43CCFk4cKFhBDxpnAFBQWcnhZc9OvXr5jBFddjY/Dw8CB3794VPd/bt2+Jp6cnGT9+PCGEkCdPnpBDhw7xjrO3t1fx9ZDJZMTBwUH0/JTSgWbaP3Gsra3RuXNnbN++nS3BUCcJWNIMGDAApqamiI6Ohp6eHmbPns3ZCObj46PxZ5okEfPz8xESEoI7d+6orTvmq937448/imXs1N3GQP6XcTpx4oTGo+yFCxdqPaYoLi4u2L17Nzs+NzcX48eP523qkoKZmRnCw8PRt29fQVlc5fuIzfpOnz4dI0aMQJcuXUAIwe3bt7F06VLB45kjXD09PXTu3BmWlpZq78enMaypWTA2NhZPnz5FZmamyvWVlZXFK3G4atUq7Ny5E5MmTQJQqHV969YtzjFS2LJlC/u1WNnCf//9FwsXLkROTg4iIiLw6NEjBAYGapQPNDAwwKJFi/D69WssX7682M/5ruO6desKbsI2NzdHo0aNMGzYMHh4eKB69ero3bu34FOLuLg47Ny5E0lJSSgoKGBv1ySt2qxZM7VlWT169ECPHj00zmNoaMhe91evXoWNjQ309fXRvHlzyOVyzjXm5OSwjZoA0LVrV7akrSTRJPPKUBoli8qnCEChChDfKQIgXuVMyucGAFZedceOHcVKi7he2/r6+mjWrJlKWaBQPD094ezsrKJCJeT97u7duwgJCUGjRo1Urn++v5sUGV6g8GRL+STNyMhIkPcDRTfQoP0TZ9OmTTh16hRGjx6NHj16wMbGRlQneFhYmFrlEiHH01FRUWxQJZfLOevipKgALF68GCEhIcjMzMTFixeL/VxT0M7UihcNPrKysjhlGVNTUzkDQHXBn5QxRZHJZMVk7/gkAsWWuTAEBgZi9+7d0NfXR+XKlXlLGLhkN/lKH8zNzREcHIy7d+8CAObPny+4AW3x4sUqx+gHDhzAtWvX1B6j88lkaiIuLg4RERHFrq9q1aqp1VQvStE6VD4JTGWEltUUlSoUg9iNxbZt2xAZGYmrV69KKh9o27Ytpk+fDktLS5WgQN3r1MrKCufPn0dYWBj09fVZ9RihTJs2DcOGDcPQoUNFPe9iMTIywn///Yd69erhxo0bKs16XK9RoFBxZvPmzSp131wqMFIp6UZHIXh7exdTj/Hy8tKYaJCqcqatotGwYcOK9YGou02ZjIwM2NjYoF27diqvUb7n2dzcXJQK1cSJE+Ht7S1KrlEZKTK8AFCnTh2cP3+eNd06d+6cIP8Bim6gQfsnjqWlJSwtLZGTk4Pz589j7969SE1Nhbe3N/r06cM6impCbDaaoWhQxVebqEmhg0HdB3vnzp3RuXNntG3bVpB0H4PUWnGFQiE6AJQypijGxsZ48OCBimJEUTMpZSpVqoSlS5eKap5jEKNbDEiX3WTQ19dH3bp1IZPJEBsbi9jYWI2KRsqIMQuTquDBvHbu3LkjWD+eoWHDhvj333+hp6eH/Px8+Pv7C8oyi81+a4uYjUWdOnVgY2OD5s2bS1IFys7OhrGxMa5du6Zyu7rX9oIFCzB//nzcuHEDp06dwm+//YbMzEyEhobCwsKCt2nTwMCgVBqv1a1z6tSpSEtLw5gxY9ig+9KlS/juu+84x4qt+5aaMWey1rpE7CkC1ymR0M3af//9h6dPn6p4dKgz7AKAt2/f4vXr18jNzVWpa8/KyuLdbE2bNk3QeoqSn5+PwMBAdmNsamoKJycnjQ37Dg4OGD9+POzs7DBhwgRBrsPKSJHhBQr7CmbPno1ly5aBEIKGDRsK8i+h6AaqHlMBSU9Px+nTpxEaGoq9e/eqvY9U5RKGfv36qQRVCoUCNjY2GvXFpXS8Swn0lcnPzxf1RihFnaMkFD3u3buHmTNnwsTEBIQQpKSkYP369ZyW4b6+vmjfvr3gMhcGQghOnDiBly9fws3NDcnJyXj79i1ntksqhw8fhr+/P169eoVWrVrh7t27aN++Pac7LIOrq6uKe2tiYiKWLVumNtulrpRDGb6yjrlz52LBggUqKjc+Pj6cDV+pqalYsWIFIiMjWd3kBQsW8GasHB0dsWHDBkyaNInddA0YMID1OyhJpk6dirFjx2LZsmU4dOgQ/P39cf/+fY3GLcuWLeO8lvieR23Iz89nm1GvXr2KGzducN5/48aNqFOnDvr06aOSzSxJdSFdk5iYyPlzTcF5UddPBr7TMG2UmqSqxxRFiMoZUHiifOPGDcTGxsLCwgKXL19Gp06dsGHDBrX3P3r0KIKDg3H//n18//337O3VqlWDvb19icq5MixYsAAFBQXsRuLEiROoVKkS2/SsjuzsbGzZsgVXrlzBoEGDVDbVfKe02srwinWzpegGmmmvgNSsWRNOTk5wcnLSeB+p2WgGsbWJUjre1ZXEKMP3xnv16lX4+fmxda98H2JS9rclsSdu164dwsLCWMdPIXKKYstcGBYvXoxKlSrh+vXrcHNzQ9WqVbFkyRIcOXJE68dRFH9/fwQFBWHo0KEICAhAbGwsp9OfMkWP0aOjo9G2bVv2mF05eNdWCeLx48fFVG74Thjq1KmDtWvXSppPF2U1QOHfesWKFXj9+jXMzc3RvXt3eHl5abw/1yaRiz///BMTJ07UGPQLCfYNDQ3Rq1cv9OrVi1PNhYHZKCuXFnCpC0nte5CCVN1uqRlzsadnDMpKTcnJyexrICMjAw0bNuQ0G1I+RWCkG4WoxwDiVc6AQqOu48ePw87ODqtWrUJKSgrmzJmj8f5paWns9QQUXhu1a9dGp06deEuUoqKisGzZMjx79gz5+fmQy+UwNjbmfW+Njo5Wkck0MzNj5R81YWhoCGNjY+Tl5SE7O1vUe0GbNm2wb98+UTK8ylSrVg2urq7Yvn274DGU0ocG7RS1tGrVCq1atcKAAQNEH8sB4oIqZTSZlagrcdBW2or5YPn2228FZaOlNPCWRNPvhw8fsHv3biQlJWH58uV4/vw54uLi2A8cdUj9oL537x6OHj3KZoNq1qxZak1IRkZGbBNYXl4emjdvzm5M+BAjjahsNy4FhUKB9PR01pnw/fv3vE2G6rL71atXR9u2bTU2zAK6LasRu7GQ+jwy65ca9BeFqzSMQax7JZNVjIuLQ3R0NOvefPHiRZVMbEkQFRWFhg0bwsbGBj/88IPgjb3UjHlR3r17p9JsqamhknkOFy5ciD59+rBOrJcuXdK4+ZHJZDhw4ADi4+PRsmVLzJ07V9DnR1xcHE6dOoWTJ0+idu3a6N+/PwghgmvWK1eujEqVKsHAwABZWVmoW7cukpOTNd5fXalOYmIitm3bhilTpmgstQOApUuXYv369Zg2bRqOHDmCY8eO4fnz57xr1NfXR3x8PL744gsAhdKKXD1Uly9fho+PD3r37o2jR48K3oxrOoFm1ijmFOH169eC70vRDTRop3AiNhvNIFXfXdmiWSaTISIiAl9//TXvuIiICDx58kTlw4ivlvnzzz9Hy5YtBZePSDlaL4njeE9PT7Rp0wZRUVEACk9Bpk2bxhm0Sy1zYTTlmeckNTW11Br5Pv/8c2RkZMDS0hLjxo1DjRo1BCsymJqaIjExES9evEC3bt2Qm5uLgoICTk16Z2dntX9rvnIcFxcXODk5oV+/fqyrJ1+2VCaT4dmzZ+jXrx+Awg/SJk2a4NGjR7hx4wYWLFigdpzY7DeDFLUaqRuL1NRU/Pnnn3j69KnK603T88gEwFWqVFHb1F4aMBvd5ORkLFu2jHejy7xXjBw5EsHBwex15O7uLshlVp12vSY9+2vXruHatWtskGphYYEBAwagRYsWnHNI3YgznD9/Hr6+vnjz5g3q1KmDpKQkNG/enHWC1cTdu3dVrhULCwusWbNG7X3nzp0LAwMDdO7cGZcvX0ZsbKzGa10ZbVXO2rZti4yMDDg6OsLBwQFVq1bl7EPR9Nnw/v17jBs3jjNoBwpPkuVyOfT19TF48GDY2dlh1qxZnGM8PDwwevRoFfUYrtOHbdu2wc/Pj/e6KIq2J9DKtG7dWtTcFB2gG2VJSnkhMzOTpKWlsf/4sLS0JDExMSrauUJ48uRJsduuX78u6ncQUqgRO2rUKM77LFq0iMyZM4eYm5uTjRs3kgEDBhBPT0/e33337l3i4uJCtm3bRnbt2sX+K28w+tjKOui2tracY7y8vMjixYtZHeD3798L0to9fvw4cXV1JT169CDr1q0jffv25dTXLylu3LhBzp07p6IPzMXBgweJg4MD+fnnnwkhhMTFxZHRo0dzjomOjmb/3bp1i6xcuZL4+voKmu+///4jAQEBJCAgQO21XRRHR0cVbf38/HwydOhQUlBQQKytrQXNKYYhQ4YQQsRdIwsXLiQjRowg/v7+xN/fn4waNYrMmzePuLq6kuXLl2scN27cOHLo0CHSr18/cuPGDTJv3jyyevVq3jWq03cvLV3+adOmkT/++IPY2NgQQgq16AcOHMg7rm/fvsU0qvv27cs7Tupjk8lk5MiRI6Rr164kICCA9/7KpKSkkMTERPYfH7a2tiQ1NZW9RiIjIwW9T7q4uJDNmzeThIQEkpCQQLZs2UJcXFzU3nfAgAHs1/n5+YL/vmfPniXTp08n5ubmZMGCBeTvv/8mvXr1EjS2KAkJCSQmJkbSWEL4/SZGjBhBZDIZmTNnDvH19SW7d+/mfa0xyGQyEhMTQ2JiYgS/1+malJSUYrfFxsaWwUoo6qCZ9gpCYGAgNm7cqKJJK8RBUmw2mmH69OkYNGgQJkyYAJlMht9++w3379/HwYMHRf2eDx8+4NWrV5z3uXPnDkJCQmBrawt3d3eMGzcOEydO5P3dv//+O6pWrQqZTFaudWiNjIyQm5vL/g3i4+N5HSmllrkMHDgQbdq0wfXr10EIwZYtWwRrawtFXYMbo9+ck5MjyG1z//79OHz4MIYOHQqgUIM4NTWVc0zR8oxOnTphyJAhgtb89ddfo0aNGmxZDJ9Oc3p6OnJycli1hg8fPuD9+/fQ19fnfHy6LKt5/PgxDhw4wB7RDx8+HCNHjsRff/3FqVTy/v17ODo6wt/fH6ampjA1NeV06ZQqsQqI11tniI+Px++//85mkY2NjQWVodjZ2WHIkCGsPO25c+c4y4KUVUgePnzIzsGnQpKXl4eIiAicPHkSiYmJcHZ2FmwVLzVjbmBggNq1a0OhUEChUODHH38UVGe+du1abNq0Ce7u7qwngqayKgMDA7Vf86GtytmYMWNYUQXGuVP5NqFcv35dpX9FHatXrwYhBF5eXtizZw+Sk5MFOUHL5XJcuXIFiYmJkMvliIyMBFCy/RJFkXICPWLECEybNo0VoNi1axeCgoIQGhpaauukCIcG7RWEXbt2ISQkRLAONsOcOXMwceJEmJqaqgQbfG80hw4dwpo1azBs2DBkZ2fD1tYWBw4c4J1POVhQKBRITU2Fm5sb5ximxtXY2BivX79G7dq18fbtW9653rx5I0mVQ4odu1QLdwCYMmUKJkyYgOTkZMyaNQt37tzhreeXWuYyZ84c/PbbbyoBH3NbSaHc4FYUIRtJoHAjo3w9Kgd0mlDeLCgUCjx48ACZmZm84wICArBp0ybUq1dP5TnkMjeZMGECBg0ahK5du4IQgn/++Qe//vorcnJyYGZmpnGcLstqpG4smGDMxMQEERERMDExYU101KFNU7tUvXUpG10AmDRpEnr06IHbt28DKCw74pJuvHr1KoKDg/Hq1SuV12S1atUwc+ZMtWM8PDzw5MkTmJubw93dnddwqCh+fn44ePAgxo0bh2PHjuH69esqDY6aqFGjBrKzs9GlSxfMnj0bderUUSlH1EStWrXYfgm++zO+DQBUvBuEvt9VrVoVtra2sLW1ZVXO/vzzT41Bu0wmw4cPH5CWlob09HSVTRNXPba6TWl6ejpMTEzg6+vLucbGjRsjNzcXb968ESUn++uvv6Jy5cpo2bJlqXoHMHh5eSE3Nxc3btyAo6MjwsPDBfVnBAQEwMvLC6dPn8a7d+/QvHlzHD58uNTXSxFImeT3KTrHxcVFkgX4uHHjiJubG/Hz8yMbN25k//Ehk8mIj48PGThwILG0tCQnT54UNN/Lly/Zf69evSL5+fm8YzZt2kTS09PJ6dOnSbdu3Uj37t3J+vXrecf5+vqSK1euCFqXMmLt2KWOUSY1NZVcvHiRXLhwgbx79473/lLLXIoeZ5dWOYe2+Pr6kq1btxIrKyty9epVMnnyZLJu3TrOMb169WL/9enTh4wbN478888/vHNZWlqS1NRU0Wt8/fo1OXv2LDl79ix59eqVoDG6LKs5dOgQ6dWrF5k3bx6ZO3cu6d27Nzl06BDJzs4mPj4+GsdduHCBZGRkkMePH5NRo0YRe3t7cu7cOd758vLyRK+RKQ0Ty9WrV8nIkSNJ165dycyZM0mvXr0El+cVFBSQV69eiSo9OX36tOC1ffvtt6R9+/akffv2pEOHDuw/5ns+mOfE1taWyOVy9ms+srOziVwuJ/n5+SQ4OJjs3btX0HV9+/ZtYm1tTSwsLAghhMTExBBvb2/ecbpgz549pFevXqRNmzYqr29bW1vOciPlz5mXL1+SxMREkp2dLWjO8+fPk759+7LlOw8fPiSurq6845RLh3QBMx/zf1ZWFhk+fLigsfv27SM9evQgFhYW5Pbt26W2Rop4qE57BeHhw4fw9PTEDz/8oJJx4pNbk6oRPXDgQPz888+YPHky0tLS4O3tDUNDQ426uS4uLti1axcAYPv27YKav9SRl5cHmUwmyESiQ4cO+PDhA4yMjGBgYCA4GzRs2DCNzn4lOUbZ9EMdfFKGsbGxbJmLmZkZZ7nE9u3bsW3bNshkMvbkghACIyMjODo6Yvbs2aLWLpQzZ86wrrmdO3fmLAFRhhCCw4cP4+rVqwCAn376CY6OjmrLuKRYjivj7OyM3bt3izruBwozdy9evFA5muYzjrKyskJQUBB7/WZmZmLIkCEIDw+HnZ2dRsMsqWU1b968wb179wAA33//PRo0aMD3sCTz/PlzrFu3rlgDK9fJijZ662lpabh79y4IIfjhhx8EnTJKOVUBCmUQN2/ejH/++QdAYaO0m5uboPchsYwdOxabN2/GunXrkJaWhjp16uD+/fuc7y9yuRxjx46V5CCqS+8AqQQEBMDZ2Vknczk4OGDv3r1wdnZmnw9bW1vea+S3336DmZkZb6lPSeHo6MiWEG7cuBG1atXCgAEDcPbsWc5xY8eOhYmJCRYuXIjk5GQsWLAAXbp0wdy5c3Wybgo3tDymguDl5YUff/xR9NGcubk5rl69KvqNZsWKFexRnImJCbZu3crp0Klcj3z69GlBQbu25kpS1RjE2LFrM8bHx0fjz/T09DjresWWubi6usLV1RVr167lVUEoKYq65h44cADXrl3jNVKRy+WwsbHB6dOn2Zp2Ltzc3Fjd7ilTpgiqP1WmadOmcHZ2Rs+ePQWXiEk1jtJ1WU3lypVhYmICmUyG+Ph4xMfHa9xYaGuu5OnpialTp2LlypXw9/dHcHAwFAoF5xixeuvK5OXlsX0IQt12/f39cfr0adG27QsWLECLFi3g5+cHADh+/Dg8PT01Sthqw5YtW1ClShV4enoiJCQEmZmZvCWE+vr6qFSpEjIzMyVtJLTxDtAFTk5O8Pf3F+w2qg0GBgaSnsP27dvD3d0dCoVCVJJIKj179kRGRgYmTJjA9pwI6eEZNWoUu9GvUaMGDh48qFGimaJ7aNBeQSgoKBBkilSUAwcOYNeuXYKz0ZGRkTAzM8P333+PhIQEFaMKrnpIsY2ugKq01YULF1hpOQa+oP327dto3bo1qlatiuPHj+Phw4cYM2YMb1ZWjB27NmOkZMUYnj59qvK9XC7nzdwDYDWElcdt3bpVVO2mUK5fv67immtvb88rtQYUBiDNmjUTnEFXPkxMSEgQvc5GjRqhUaNGyM/PF9ywLNU4ytHRERYWFmz2e8aMGWz2myvTJaWpVOzGQrmRlzHOEYNMJmM3Ho0bN8aUKVPg4ODAaQsvVm+d4bfffkNYWBi++eYblQCTL2j//PPPJQVk8fHxKptBd3d31g20JJHL5XB1dUVAQAAqVaokSjufqRfv1q2bynsx32ZLqneAFHJyclClShVUqlQJcXFxePbsGczNzXmD7yVLlqCgoADDhw8HUOg2yvR5lBQTJ06El5cXvvnmG4SEhEAul+P58+cICAjglJdkWLVqFQIDAwX7gkjl3r17aNiwIbuRy8nJQcuWLfH1119j7NixvOMtLS1x/vx5lQ0Q36aQojto0F5BMDc3x8GDB9GrVy9Rx8xis9GrV69ms2NTp05lvwaArVu3agxSExISWO1r5a8Z1O30lRu/GCc8MSxevBgnTpzAo0ePsHv3bjg6OsLDwwP79u3jHCfF1EnKGMZJEijUs1bWuF63bp3aRjflMhflhjCmzIWP69ev48yZM1ixYgXev38PT09PmJqail67EMS65iqTkZEBGxsbtGvXTsV0RN11ovwBKeXDUsqGRRvjKDHZbwYpTaViNxbKAeLevXtFmy0ZGRlBoVDgyy+/xL59+9CgQQPW1EgTYvXWGc6dO4fTp08Laj5VRsqpClDYDH/r1i107twZQGFCQIgJlFi0yZj37dtXlEY3g1TvACmMGjUK+/fvR0ZGBsaPH4+2bdsiNDRUo1pNQUEBDAwMJLmNisXBwQETJkzAwIED8eTJExgZGWHWrFn46aefBAW1DRs2lKTEJhZvb2/W4feff/7BmjVrsGjRIsTExMDLy0tjiSrD2rVrce/ePXaz7+/vjzt37mhsrKboFhq0VxCY+kNlS2Ihx8xis9HKWc2i7RJc7RNbtmxhv3ZxceFckzqkvBEaGBhAT08P586dw8iRI+Ho6IigoCCN95dix66NhXtoaCgbtP/xxx8qQfuVK1fUvolqW+aydu1ahIaGwtbWFlWrVsWaNWvQqVMn0b9HCFJdcwFwZmeLwihaECU1C0C4k6QUUyapxlG6LKvRZmMh5fU2f/58fPjwAQsXLoSfnx9u3LjBq9TBGIsxyQMhxmJAYfCdn58vOmiXcqoCFGZ6PTw8kJWVBaCwrICrvE0bpGbM7e3tkZubi6SkJEGGdcqIcc7VBkIIjI2NERQUhOHDh2PixImcJxaOjo44evSoaLdRKVhbW8Pc3BxbtmzBlStXMGjQIPZ1sH//ft6NHbMhNDc3F7UhFItcLmeTcaGhoXBycoKVlRWsrKwEnf5ERETg+PHj7AmVvb097OzsaNBeTqBBewVB6jGz2Gw0V1aT64O+tLK5XFSrVg3bt29HSEgI9u3bB4VCwSkd+M033wAQZ8cuZQyD1A0QIL3M5fnz5/D394eVlRViY2Nx/PhxfPfdd4IttMUg1TUXEHe9xMTESJ4HUC1LkclkOHPmDG9AsHnzZgCFNfRdu3ZFZmYmevTowTuXLstqtHGklQKzOatUqZLgkyexeuvM5tjY2Bh2dnYwMzMT1XgvtQysVatWOHHiBBu0V69eHXv27EGrVq0k/T4upGbML1y4AF9fX+Tn5+PChQuIiYmBn58fb73y8OHD0bhxY1hbW8PKyopXx1wbCCGs7wZT2sLV98BcC8puowCQmJgoSINeLIaGhjA2NkZeXh5ycnJEbV6bNGmCJk2aiN4QioX5HDMwMEBkZCSWLVvG/ozxmeAjIyODDfyFyOJSdAcN2isI+fn5OHDggOhGHbHZaK4yl5cvX5bAI/l/lH+30JIaZdavX4+TJ09ixYoVqF+/PpKSkjB+/HiN9w8PD0evXr1gb2+Po0ePCioPkDKGQeoGCJBe5vLrr7/C29sbZmZmIIRg9+7dGDJkCK9xixRMTU2RmJiIFy9eoFu3bsjNzUVBQQFrIa+O4cOH48CBA+jQoYPKc1CaTV1iTZmUG2UBcRsMXZbViN1YKD/nubm5ok8s7ty5gwULFiAnJwcRERF49OgRAgMDsXjxYo1jxOqtM3+rNm3aFOtxEUJqair+/PPPYgo3fCcdDMrX7p49ewTVEItFasZ806ZNCAoKYlVWWrduLeg9OTw8HPfu3cOpU6ewbds2fPPNN+jfv3+p1OzPnz8f27dvh6WlJVq0aIGEhAR07dpV4/1TU1PZUhAnJyc2KNXX10dMTAx+/PHHElvb5cuX4ePjg969e+Po0aOiExnMhvDDhw+lkgRhsLGxwahRo1C7dm1UqVKFLdl68eIF53srg6urK+zt7VVO7UpLPYwiHhq0VxAWL14sqVFHbDaaq8xFStkLF8q/T8rvrl+/Pns0mZqaioYNG7IOoup4/Pgx+7W/v7+gAFzKGAauso68vDzOsVLLXIKCgtg3dj09Pbi4uPCWIkjl0KFDOHjwINLT03Hu3Dm8evUK3t7enC6Ga9asASBd+UcKYk2ZxDbKKqOrshopGwttn/OVK1di586dmDRpEoDC7DSTRNCEWGMx5vWVk5ODypUrsycicrmc9zUDALNnz4a1tTUiIiKwZMkSHD16VLQhHUNpqSlLzZirUz0Rmilu164d2rVrB1dXV/j4+GDevHmlErQzDrsMTZs25TwdUSgUavsi5HI5b7+EWLZt2wY/Pz+0aNFC0ngpm1YpTJo0CWZmZnj79i26d+/O/o0VCgUWLVrEO37AgAEwNTVFdHQ09PT0MHv2bNSvX79E10iRDg3aKwhSG3XEZqO1LXMp2nCp6TZt5oqKisLatWtRs2ZNTJ48GR4eHkhLS4NCoYCvry/Mzc0l/d6SRpuyDrFlLkztffXq1Ys930ePHi2Vesb9+/ezOsIA8NVXX6lIf6rD3d1dK/lGKTg4OLBfGxgYoEmTJrybXTGNssroqqxGm42FNoiVDuzevTu+++47Vm99wYIFgoLosWPHYvfu3ahWrRqAwpOB8ePH83olvH//Ho6OjvD392cDSEYuTyyl1XAoNWMuVfUkKysLZ8+exalTp5CQkABLS8tSc8iMjo7G9u3bkZiYqJIc0qSBXr9+/VJRtlLHX3/9pdV4KZtWqbRv377Ybc2aNRM8PioqivXPkMvl6NOnTwmujqINNGivIEht1BGbjdaWog2Xmm7ThqVLl2LmzJnIzMzEmDFj8Oeff6J9+/aIjY3FrFmzNAbtr169wvLly0EIYb9WRl1GSMqYkkBsmYuUpldtMTIyUil14DrBYdBWvlEMTEArpR9ETKMsg67LaqRuLKQiVTpQit66TCZjA3ag8MTww4cPvHMxBlomJiaIiIiAiYkJ0tPTNd6/aJkWA3M6VhpIzZgvWrQI27ZtU1E9mTx5Mu+4gQMHwtLSEm5uboKCfG2YPXs2PDw8BPuJfGzekOVd7x4o7p8RGBiIv//+m9c/g6IbaNBeQVBu1CGEICkpibNRR9fZ6EuXLuHy5ct4/fq1SmCblZVV4ioAcrmcNYvasGEDm5XgCyA8PDzYr4U2lkoZUxKILXPRpulVKl26dMG2bduQm5uLa9eu4a+//uKtQ9ZWvlEM2pgySTkF0nVZjZSNhTZIkQ6UqrdubGyMBw8esK7B9+/fFyTBOGnSJGRmZmLu3LlYtmwZsrOzMX/+fI3312WZFoPUjPmzZ88wY8YMzJgxQ9R858+fL/XXGkOdOnXw888/C77/nj17Sm8xJYwu9e61Qap/BkU30KC9gmBmZoYzZ87g2bNnAICvv/6as6FLajaaQUyZC1Ao5da2bVtcuHCB/aAFCjNkfKZQYudS/vAv+kHO9eHE1Mtqmq+kxmiD1DIXbZpepTJnzhwcPnwYLVu2xMGDB2FhYcGrJa+tfKMYtMnqR0VFYdmyZXj27Bny8/Mhl8thbGzMuz5dltXoWrGpTp06oqUDpeqtz58/H9OmTYOJiQkIIUhJScG6det4xzEb288++4w1NytvgaHUjLmPjw9SUlJgZWWF/v37o2XLloLmS0tL06o5VwxTp07FggULiqn+aFLL4fMZKU+o27SWx+y1Nv4ZlNJHj3xs50sUSYhVjxk0aBCOHz8OoFCfVjnAtLOzw7FjxzjnY9RS+G5Tt06x1tNi52rdujUrHSeTydjAnWnw5HMOlfLYpD4fYlH+nUV/f2k+J2IpWgpSHuF6LvlwcHDA+vXrMW3aNBw5cgTHjh3D8+fPebXzb968qfZ2rgBb6nMpdWMhFk0eBQxcJWITJkyAn5+fSqmLEPLy8qCnp8eWCDVr1ow1GRNLz549ERERIXpcaaF8giCWt2/fIiwsDKGhocjOzoa1tTVvwO/i4gJra2vs2rVLpTl3zpw5ktbAxezZs/Hs2TO0aNFCJbkixZyuvJOeno6//vqLrXEvaxj1taysLERHR7MSrffu3UO7du20cuimlBw0015BEKseIzUbrW2Zy9WrV+Hn54ekpCQUFBRwZlClziW1wVPKfLos+wGkl7loq2UulrJqhBSDtln9L7/8EnK5HPr6+hg8eDDs7Ox4g3ZdltUsXbpU7caipFEuC9u4cSOmTJnCO0ZbvXUnJyccPXpUJZssdZNc3vJaUjPmQGGP0ujRo9G1a1fs2LEDW7Zs4Q3aS7I5l4/o6GiEh4eXyu8uK5KTk7Flyxa8efMGlpaWsLGxwcaNG3Hs2LFyVXZS0upulNKBBu0VBLHqMVLlBrUpcwEKO+w3btyIb7/9lrcsQ9u5xCJlPl2vsSzKXKSi60ZIsWizkWEMWFq3bo3Vq1fDxMSE0ySGQddlNVI2FmJRljndu3evINlTqXrrb9++xevXr5Gbm4uHDx+yAXdWVpagRlR1lLfXTUBAAJsx9/LyEpwxj42NRWhoKMLDw1G7dm1YW1tj3rx5vPOJbc7Vho4dO+Lp06esKd2ngIeHB0xNTdG3b19cuXIFgwcPRuvWrXHixIlyJaXYpUsX3mudSVhQyg5aHlNBsLe3h5+fn4p6zNSpU0u8PINBSpkLUGgZv3fvXlFd9VLnkoqU+XS1Rl2XuWiDlFKQj4XExETUq1cP+fn52LNnDzIzMzFixAje2lBdltWMHDkSu3fvxsKFC1GvXj2YmJggODhYZXNf0ojNdmvSW9ckXXr06FEEBwfj/v37Khn+atWqwcHBQWNtNJ8KzMOHDwWvWZc8fvwYO3bsQFhYGO7fv895XycnJ/Tv3x/9+vVj3XKFcPHiRXTu3BnJyclsc66bm5uohlGhWFtbIyEhAY0bN1Y5WdEk+fgxMHDgQJXXlLm5OSIiIsqdcoyzszP69u2Ln3/+WeXELi8vD7dv38axY8fQtWtXFQlciu6hQXsFITIyEp6ensXUY0rSMU6ZixcvCi5zUebevXvw8/ODqampyps2IztZknNJRcp8ul4j5ePEwcEBwcHBsLW1ZQMVIT0kUpC6sdAGsUH70KFDVfTWs7OzBemth4eHw8rKSqu1llfUZcytrKxQt25dznG5ubmIj48HUHjCwkiEakImk+HAgQOIj49Hy5YtMWTIEDbrXlokJiaqvZ1pivwYGThwIAICAthTn9GjR6t8X16aaWUyGYKCghASEoKXL1+iRo0ayM3NBSEE3bt3x4gRI/Ddd9+V9TIrPDRorwDI5XIEBARgxIgRgtVjtKVPnz6Cy1yUcXFxQdWqVYvp9HIZaEidSypS5tP1Gsszw4cPx4EDB4plNz+Fjcy5c+fw+vVrjBw5EgDg6OjIGkbNmTMH/fr14xwvNfutq6ZSKSj/nXNzc1VOf/j+3soN8Vy3MRw/fhyDBg3Crl271L7OuDb/HwtiM+YFBQVYt24dgoOD0ahRIxBCkJycDAcHB8yYMUPjCeD06dNhYGCAzp074/Lly2jUqFGp+UpoIiMjA/v37y83zZpS6N27N/T09NT2Rujp6eH8+fNlsCpu8vPzkZaWhipVqqBGjRplvRyKErSmvQKgr6+PkydPYuzYsWjVqpVO5vz888/RsmVL0QHqmzdvcPLkSZ3MJRUp8+l6jeWZNWvWACgbjevSZseOHSpOpHl5eQgKCsKHDx/g6enJG7SvXr0ahBB4eXlhz549SE5OFqQPL6apVNuNhVi0+TuL1Vtn6tZzcnIkz1ne2bt3L+Lj45Geno5atWrxZsxXr16N7OxsnDt3jvVuyMrKgq+vL3x9fTUG4rGxsexpz5AhQ3jlWLVBXbPmhg0bcPz48XLVrCkFKeZsZY2hoSFMTEzKehkUNdCgvYLQsWNHLF26FP3791epB5UqHcbHnDlzMHHiRFFlLkBhvd/Vq1dZ86PSnEsqUubT9RrLM+7u7pJNi8o7+fn5Kq6HnTp1Qu3atVG7dm1BjZBMGUDlypVF27MLbSrVdmOhS8TqrVtYWABQfzJ38eLFUlunLpCaMY+IiEB4eLhKwqB69epYvHgxp9O0cilMaZfFfCzNmhRKWUOD9goCo4Th5+fH3qanp1cqBhkA8Pvvv6Nq1aqQyWTIz88XPO7AgQPYtWsXjIyMYGBgIOgIXepcUpEyn67XWJ7RxrSovJORkaHyvbLjJ5PNVoe22W8xajXabix0SatWrRAWFlZMb10T48aNw44dO9CkSROV248cOYKtW7dyugKXd6RmzPX09NSe8Onr63Oe/DEKYgBUVMRKo4wtPT2dlQLt0aMHzM3NsWbNmnLXrEmhlDU0aK8g6NoYQUqZCyDtKF3qXFKRMp+u11ie4ZKl/Nhp164dDh06hKFDh6rcHhgYyJqVqEOXZTVSNxZlgVi9dU9PT4wfPx7bt2/HV199BQDYvn07Tp48iX379uliyaWG1Ix58+bNcezYMdjZ2ancfvz4cTRr1kzjOF17N6Snp6s0Z2ZmZpa7Zs2KQmJiIl68eIFu3bohNzcXBQUF7EaRUrbQoP0TZ/fu3Zw/L63yDCllLgBw+/ZttG7dGlWrVsXx48fx8OFDjBkzhtM0RupcUpEyn67XWJ7R1rSoPDN//ny4ubkhJCSELT178OAB8vLysHnzZo3jdFlWI3VjoUuk6q1bWFjAyMgIEydOxObNm3H48GFER0dj3759qFmzpq6WXypIzZh7e3vD3d0dR44cUekNyM3N5bwmdUlWVhYcHBxUTlEYPf/y2qwpho/BAZrh0KFDOHjwINLT03Hu3Dm8evUK3t7e2Lt3b1kvjQKqHvPJs2nTJgBAXFwcoqOjWaOSixcv4vvvv2ebAkuaDh064MOHD6LKXADA1tYWJ06cwOPHjzFv3jw4OjoiLCyMM0smdS6pSJlP12uklC2RkZF4+vQpAOCbb76BmZkZ5/379OmDs2fPqv2ZpaUlzp07p/ZnUspq3r17Bzc3NxgaGqrdWNSrV0/YgyxFpOqtM9y6dQtubm7o0KED/Pz8eJs1PwYmT56Mvn37qs2Yh4WF8Rppib0mKSXLpEmTsGjRonLrAM0waNAgHD58GEOHDmWlZpUlaCllCw3aKwgjR47E9u3bVWohXV1dsX///jJemSrM0femTZvQoEEDODo6SrYfp1A+FmbNmoWuXbuqzX7fvHlTY/PlsGHDsH79ejZLP2jQIOzZs4ctq+HKjn0MQZxYvXVGXpIQgvz8fBgYGKBSpUqfxCb59evXcHd3R5UqVdRmzMUYJpVXxowZU+yaVXfbx8jIkSPx8OHDcusAzeDo6IjDhw+z/hAFBQWwt7enQXs5gZbHVBBSUlJUVEuMjIyQkpJSavNJKXMBCjNp27dvR0hICPbt2weFQoGCgoJSmUsqUubT9RopHxdlUVZjZmZWLgN14P/11hMTE9WW+Gkq6/sUZUQZGjRogMOHD6tstiwsLMrt31AMMpkMOTk5SEtLU6ltz8rKwuvXr8t4dSXDtGnTynoJgujSpQu2bduG3NxcXLt2DX/99Rd7Qk8pe2imvYKwdetWhIWFoU+fPgAKj9Wtra3x66+/lsp8UspcgMJa1pMnT+L7779H586dkZSUhJs3bxY7Ei6JuaQiZT5dr5HycaKrspryTmBgIIYNG8aW9xVFrBwmpXyzd+9e7N27F2/evFHRB69evTqGDh2KUaNGleHqKhYKhQJBQUG4evUqAOCnn36Co6PjJyca8LFCM+0VhEmTJsHc3By3bt0CAKxatapULYkNDAygp6eHc+fOYeTIkXB0dERQUBDvuPr167NZtNTUVDRs2JAzYNdmLqlImU/Xa6R8nIjNfn8MTaVS+JT11inFGTNmDMaMGYOAgAA4OzuX9XJKhfLsWqxMbm4uBg8ezL6nyOVy5ObmqpT0UMoOKoJagfjw4QOqV6+OMWPG4PPPPy9VjWzlMpeePXvylrlERUXB2dkZ7u7uePjwIQYMGABbW1t069YNly9fLtG5tEXKfLpeI6ViMH/+fAQHB8PZ2Rk+Pj7w8fGBs7Mzjh49ivnz55f18iQzbtw4vHz5stjtR44cwYoVK8pgRRRd4OTkBH9/f0ydOhVTp07Fvn37Phlfi6VLl2LdunX48ssvcffuXSxfvpxtIC9PjB07Frm5uez3ubm5FdIEsLxCg/YKwqZNm7Bjxw788ccfAAprYefMmVNq861fvx5GRkZYsWIF6tevj1evXmH8+PEa77906VK4urrCxsYGY8aMwfLly3Ht2jXs27eP0wFRylzaImU+Xa+RUjGoW7cuAgMDMXnyZDRu3BiNGzfG5MmTcfDgwXKhAiMVRm/9+fPn7G3bt2/Hnj17aEnZJ8ySJUvw4MEDDB8+HMOHD8eDBw+wePHisl5WiVHUtfjKlStlvaRiyGQyVKtWjf2+WrVq5c50rSJDy2MqCGfPnsWxY8dY7dsGDRogOzu71OYTW+Yil8tZDfMNGzagffv2AAqNQUp6Lm2RMp+u10ipWJTnplIpfMp665TiFBQUwMDAANHR0Thx4gR7u5mZGQYOHFiGKys5xLgWlyXGxsZ48OCBikJRlSpVynhVFAaaaa8gGBoaqphz5OTklMo8UstclO2qi75BaGqA0aakRgpS5tP1GimUTwUzMzOsWrUKzs7OSEhIwN69e2nA/oni6OgIoNAoKj4+nr09ISEB+vr6ZbWsEkXZtbhq1aqcrsVlyfz58zFt2jSMGDECw4cPx4wZM7Bo0aKyXhblf1D1mArCzp078eLFC1y7dg2urq44cuQIBgwYUOJNPw4ODpg5cyYyMzPh5eWFP//8E+3bt0dsbCxmzZrFmjUUpXXr1jA2NmZdMpnAnRCCvLw8PHjwoMTm0uVj0/UaKZRPgU9Zb51SHEYTPDIyEp6enmjatCkAIDExEStXrsSPP/5YxissGXJzc5GUlISvv/66rJfCSX5+PuLi4gAAzZo1g6GhYRmviMJAy2MqCOPHj8e1a9dQrVo1xMXFYerUqejevXuJzyO1zCUmJkZnc0lFyny6XiOF8inwKeutU4qTmprK6vE7OTlBLpcDKMy8x8TEfBJB+4ULF+Dr64v8/HxcuHABMTEx8PPzKzfmSpGRkTAzM8OZM2dUbmf6SvhciCm6gQbtFYju3buje/fuSE1NRe3atUtlDillLh/DXFLn0/UaKRQK5WNDoVCo7bGSy+Wl2nulSzZt2oSgoCD2dLt169ZITEws41X9P//88w/MzMw0SqrSoL18QIP2T5yoqCisXbsWNWvWxOTJk+Hh4YG0tDQoFAr4+vrC3Ny8ROd79OgROnbsyJa5dOzYEcD/l7l8rHNJnU/Xa6RQKJSPjfr163/yhlkGBgb47LPPynoZGpk6dSoUCgV69OiB/v37l/VyKBqgQfsnztKlS9ma6jFjxhSrqS7poF1KmcvHMJfU+XS9RgqFQvnY+JRb6yZOnAgvLy988803CAkJgVwux/PnzxEQEIAOHTqU9fJUqFSpEnbs2EGD9nIMVY/5xGFqqq2trVGvXj1aU02hUCiUcsWePXvKegmlhoODAyZMmIDGjRvjyZMnMDIywqxZs1C9enUsXLiwrJdXjG7dumHnzp1ITk7G+/fv2X+U8gHNtH/i0JpqCoVCoZRnatWqVdZLKDWsra1hbm6OLVu24MqVKxg0aBD72bt///5y5zYaGhoKoHBtDHp6ejh//nxZLYmiBA3aP3FoTTWFQqFQKGWHoaEha66Uk5NTrhNmFy5cKOslUDigOu0UCoVCoVAopcDly5fh4+OD3r17w83NDcbGxmW9JLXcvXsXixYtQkJCAlq2bImVK1fSMtpyCA3aKRQKhUKhUEqBESNGYMmSJWjRokVZL4UTBwcHzJo1C126dMH58+cRFBSEnTt3lvWyKEWgjagUCoVCoVAopcBff/1V7gN2oLBktnv37jAyMoK1tTVSU1PLekkUNdCadgqFQqFQKJQKTEZGhoobatHvqblS+YCWx1AoFAqFQqFUYDw9PTl/vmrVKh2thMIFDdopFAqFQqFQKJRyDq1pp1AoFAqFQqEgJSUF8+fPx4QJEwAAT58+xeHDh8t4VRQGGrRTKBQKhUKhUDBv3jz89NNPePPmDQDgq6++gr+/fxmvisJAg3YKhUKhUCgUCtLS0tC/f3/WTd3AwEDFWZ1SttC/BIVCoVAoFAoFVatWRVpaGuvaGhUVhc8++6yMV0VhoI2oFAqFQqFQKBQ8ePAAy5Ytw5MnT9CiRQukpaXBz88PrVq1KuulUUCDdgqFQqFQKBTK/ygoKEBcXBwIIWjWrBkMDQ3LekmU/0GDdgqFQqFQKJQKjLKRkjqouVL5gDqiUigUCoVCoVRgLl68yPlzGrSXD2imnUKhUCgUCoVCKefQTDuFQqFQKBQKBQAQERGBJ0+eQCaTsbe5u7uX4YooDFTykUKhUCgUCoUCLy8vhIaGYt++fQCA8PBwJCUllfGqKAw0aKdQKBQKhUKh4M6dO1i9ejVq1KgBd3d3BAYG4vnz52W9LMr/oEE7hUKhUCgUCgVVqlQBABgbG+P169cwNDTE27dvy3hVFAZa006hUCgUCoVCQc+ePZGRkYHx48fDwcEBenp6cHR0LOtlUf4HVY+hUCgUCoVCoaiQl5cHmUyGzz77rKyXQvkftDyGQqFQKBQKpQJz7949lTKYY8eOYdq0afDz88P79+/LbmEUFWjQTqFQKBQKhVKB8fb2hqGhIQDgn3/+wZo1a2BnZ4fq1avDy8urjFdHYaBBO4VCoVAoFEoFRi6Xo1atWgCA0NBQODk5wcrKCtOnT8eLFy/KdnEUFhq0UygUCoVCoVRgFAoFCgoKAACRkZH48ccf2Z/J5fKyWhalCFQ9hkKhUCgUCqUCY2Njg1GjRqF27dqoUqUKOnfuDAB48eIFqlevXsarozBQ9RgKhUKhUCiUCk5UVBTevn2L7t27o2rVqgCAuLg45OTkoE2bNmW8OgpAg3YKhUKhUCgUCqXcQ2vaKRQKhUKhUCiUcg4N2ikUCoVCoVAolHIODdopFAqFQqFQKJRyDg3aKRQKhUKhUCiUcg4N2ikUCoVCoVAolHLO/wE2PENMvUdFvgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_correlation(spearman, \"Spearman's Rank Correlation\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Predictors weakly or strongly correlated with a target variable are collected." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "spearman_weakly_correlated = set()\n", + "spearman_strongly_correlated = set()\n", + "spearman_uncorrelated = set()\n", + "# Iterate over the raw and transformed target.\n", + "for target in TARGET_VARIABLES:\n", + " corrs = spearman.loc[target].drop(TARGET_VARIABLES).abs()\n", + " spearman_weakly_correlated |= set(corrs[(weak < corrs) & (corrs <= strong)].index)\n", + " spearman_strongly_correlated |= set(corrs[(strong < corrs)].index)\n", + " spearman_uncorrelated |= set(corrs[(corrs < uncorrelated)].index)\n", + "# Show that no contradiction exists between the classifications.\n", + "assert spearman_weakly_correlated & spearman_strongly_correlated == set()\n", + "assert spearman_weakly_correlated & spearman_uncorrelated == set()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Show the discrete and ordinal variables that are weakly and strongly correlated with the sales price or uncorrelated." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Bsmt Half Bath Basement half bathrooms\n", + "BsmtFin Type 2 Rating of basement finished area (if multiple types)\n", + "Exter Cond Evaluates the present condition of the material on the exterior\n", + "Land Slope Slope of property\n", + "Mo Sold Month Sold (MM)\n", + "Pool QC Pool quality\n", + "Utilities Type of utilities available\n", + "Yr Sold Year Sold (YYYY)\n" + ] + } + ], + "source": [ + "print_column_list(spearman_uncorrelated)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Bsmt Exposure Refers to walkout or garden level walls\n", + "BsmtFin Type 1 Rating of basement finished area\n", + "Fireplace Qu Fireplace quality\n", + "Fireplaces Number of fireplaces\n", + "Full Bath Full bathrooms above grade\n", + "Garage Cond Garage condition\n", + "Garage Finish Interior finish of the garage\n", + "Garage Qual Garage quality\n", + "Half Bath Half baths above grade\n", + "Heating QC Heating quality and condition\n", + "Lot Shape General shape of property\n", + "Paved Drive Paved driveway\n", + "TotRms AbvGrd Total rooms above grade (does not include bathrooms)\n", + "Year Remod/Add Remodel date (same as construction date if no remodeling or additions)\n" + ] + } + ], + "source": [ + "print_column_list(spearman_weakly_correlated)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Bsmt Qual Evaluates the height of the basement\n", + "Exter Qual Evaluates the quality of the material on the exterior\n", + "Garage Cars Size of garage in car capacity\n", + "Kitchen Qual Kitchen quality\n", + "Overall Qual Rates the overall material and finish of the house\n", + "Total Bath\n", + "Year Built Original construction date\n" + ] + } + ], + "source": [ + "print_column_list(spearman_strongly_correlated)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Save the Results" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Save the weakly and strongly correlated Variables\n", + "\n", + "The subset of variables that have a correlation with the house price are saved in a simple JSON file for easy re-use." + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "with open(\"data/correlated_variables.json\", \"w\") as file:\n", + " file.write(json.dumps({\n", + " \"uncorrelated\": sorted(\n", + " list(pearson_uncorrelated) + list(spearman_uncorrelated)\n", + " ),\n", + " \"weakly_correlated\": sorted(\n", + " list(pearson_weakly_correlated) + list(spearman_weakly_correlated)\n", + " ),\n", + " \"strongly_correlated\": sorted(\n", + " list(pearson_strongly_correlated) + list(spearman_strongly_correlated)\n", + " ),\n", + " }))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Save the Data\n", + "\n", + "Sort the new variables into the unprocessed `cleaned_df` DataFrame with the targets at the end. This \"restores\" the ordinal labels again for storage." + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "for column in new_variables:\n", + " cleaned_df[column] = df[column]\n", + "for target in set(TARGET_VARIABLES) & set(new_variables):\n", + " new_variables.remove(target)\n", + "cleaned_df = cleaned_df[sorted(ALL_VARIABLES + new_variables) + TARGET_VARIABLES]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In totality, this notebook added two new linear combinations and one Box-Cox transformation to the previous 78 columns." + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(2898, 86)" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cleaned_df.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
1st Flr SF1st Flr SF (box-cox-0)2nd Flr SF3Ssn PorchAlleyBedroom AbvGrBldg TypeBsmt CondBsmt ExposureBsmt Full BathBsmt Half BathBsmt QualBsmt Unf SFBsmtFin SF 1BsmtFin SF 2BsmtFin Type 1BsmtFin Type 2Central AirCondition 1Condition 2ElectricalEnclosed PorchExter CondExter QualExterior 1stExterior 2ndFenceFireplace QuFireplacesFoundationFull BathFunctionalGarage AreaGarage CarsGarage CondGarage FinishGarage QualGarage TypeGr Liv AreaGr Liv Area (box-cox-0)Half BathHeatingHeating QCHouse StyleKitchen AbvGrKitchen QualLand ContourLand SlopeLot AreaLot Area (box-cox-0.1)Lot ConfigLot ShapeLow Qual Fin SFMS SubClassMS ZoningMas Vnr AreaMas Vnr TypeMisc FeatureMisc ValMo SoldNeighborhoodOpen Porch SFOverall CondOverall QualPaved DrivePool AreaPool QCRoof MatlRoof StyleSale ConditionSale TypeScreen PorchStreetTotRms AbvGrdTotal BathTotal Bsmt SFTotal Porch SFTotal SFTotal SF (box-cox-0.2)UtilitiesWood Deck SFYear BuiltYear Remod/AddYr SoldSalePriceSalePrice (box-cox-0)
OrderPID
15263011001656.07.4121600.00.0NA31FamGdGd10TA441.0639.00.0BLQUnfYNormNormSBrkr0.0TATABrkFacePlywoodNAGd2CBlock1Typ528.02TAFinTAAttchd1656.07.4121600GasAFa1Story1TALvlGtl31770.018.196923CornerIR10.0020RL112.0StoneNA0.05Names62.056P0.0NACompShgHipNormalWD0.0Pave72.01080.0272.02736.019.344072AllPub210.0196019602010215000.012.278393
2526350040896.06.7979400.00.0NA21FamTANo00TA270.0468.0144.0RecLwQYFeedrNormSBrkr0.0TATAVinylSdVinylSdMnPrvNA0CBlock1Typ730.01TAUnfTAAttchd896.06.7979400GasATA1Story1TALvlGtl11622.015.499290InsideReg0.0020RH0.0NoneNA0.06Names0.065Y0.0NACompShgGableNormalWD120.0Pave51.0882.0260.01778.017.333478AllPub140.0196119612010105000.011.561716
35263510101329.07.1921820.00.0NA31FamTANo00TA406.0923.00.0ALQUnfYNormNormSBrkr0.0TATAWd SdngWd SdngNANA0CBlock1Typ312.01TAUnfTAAttchd1329.07.1921821GasATA1Story1GdLvlGtl14267.016.027549CornerIR10.0020RL108.0BrkFaceGar212500.06Names36.066Y0.0NACompShgHipNormalWD0.0Pave61.51329.0429.02658.019.203658AllPub393.0195819582010172000.012.055250
45263530302110.07.6544430.00.0NA31FamTANo10TA1045.01065.00.0ALQUnfYNormNormSBrkr0.0TAGdBrkFaceBrkFaceNATA2CBlock2Typ522.02TAFinTAAttchd2110.07.6544431GasAEx1Story1ExLvlGtl11160.015.396064CornerReg0.0020RL0.0NoneNA0.04Names0.057Y0.0NACompShgHipNormalWD0.0Pave83.52110.00.04220.021.548042AllPub0.0196819682010244000.012.404924
5527105010928.06.833032701.00.0NA31FamTANo00Gd137.0791.00.0GLQUnfYNormNormSBrkr0.0TATAVinylSdVinylSdMnPrvTA1PConc2Typ482.02TAFinTAAttchd1629.07.3957221GasAGd2Story1TALvlGtl13830.015.946705InsideIR10.0060RL0.0NoneNA0.03Gilbert34.055Y0.0NACompShgGableNormalWD0.0Pave62.5928.0246.02557.019.016856AllPub212.0199719982010189900.012.154253
\n", + "
" + ], + "text/plain": [ + " 1st Flr SF 1st Flr SF (box-cox-0) 2nd Flr SF 3Ssn Porch \\\n", + "Order PID \n", + "1 526301100 1656.0 7.412160 0.0 0.0 \n", + "2 526350040 896.0 6.797940 0.0 0.0 \n", + "3 526351010 1329.0 7.192182 0.0 0.0 \n", + "4 526353030 2110.0 7.654443 0.0 0.0 \n", + "5 527105010 928.0 6.833032 701.0 0.0 \n", + "\n", + " Alley Bedroom AbvGr Bldg Type Bsmt Cond Bsmt Exposure \\\n", + "Order PID \n", + "1 526301100 NA 3 1Fam Gd Gd \n", + "2 526350040 NA 2 1Fam TA No \n", + "3 526351010 NA 3 1Fam TA No \n", + "4 526353030 NA 3 1Fam TA No \n", + "5 527105010 NA 3 1Fam TA No \n", + "\n", + " Bsmt Full Bath Bsmt Half Bath Bsmt Qual Bsmt Unf SF \\\n", + "Order PID \n", + "1 526301100 1 0 TA 441.0 \n", + "2 526350040 0 0 TA 270.0 \n", + "3 526351010 0 0 TA 406.0 \n", + "4 526353030 1 0 TA 1045.0 \n", + "5 527105010 0 0 Gd 137.0 \n", + "\n", + " BsmtFin SF 1 BsmtFin SF 2 BsmtFin Type 1 BsmtFin Type 2 \\\n", + "Order PID \n", + "1 526301100 639.0 0.0 BLQ Unf \n", + "2 526350040 468.0 144.0 Rec LwQ \n", + "3 526351010 923.0 0.0 ALQ Unf \n", + "4 526353030 1065.0 0.0 ALQ Unf \n", + "5 527105010 791.0 0.0 GLQ Unf \n", + "\n", + " Central Air Condition 1 Condition 2 Electrical \\\n", + "Order PID \n", + "1 526301100 Y Norm Norm SBrkr \n", + "2 526350040 Y Feedr Norm SBrkr \n", + "3 526351010 Y Norm Norm SBrkr \n", + "4 526353030 Y Norm Norm SBrkr \n", + "5 527105010 Y Norm Norm SBrkr \n", + "\n", + " Enclosed Porch Exter Cond Exter Qual Exterior 1st \\\n", + "Order PID \n", + "1 526301100 0.0 TA TA BrkFace \n", + "2 526350040 0.0 TA TA VinylSd \n", + "3 526351010 0.0 TA TA Wd Sdng \n", + "4 526353030 0.0 TA Gd BrkFace \n", + "5 527105010 0.0 TA TA VinylSd \n", + "\n", + " Exterior 2nd Fence Fireplace Qu Fireplaces Foundation \\\n", + "Order PID \n", + "1 526301100 Plywood NA Gd 2 CBlock \n", + "2 526350040 VinylSd MnPrv NA 0 CBlock \n", + "3 526351010 Wd Sdng NA NA 0 CBlock \n", + "4 526353030 BrkFace NA TA 2 CBlock \n", + "5 527105010 VinylSd MnPrv TA 1 PConc \n", + "\n", + " Full Bath Functional Garage Area Garage Cars Garage Cond \\\n", + "Order PID \n", + "1 526301100 1 Typ 528.0 2 TA \n", + "2 526350040 1 Typ 730.0 1 TA \n", + "3 526351010 1 Typ 312.0 1 TA \n", + "4 526353030 2 Typ 522.0 2 TA \n", + "5 527105010 2 Typ 482.0 2 TA \n", + "\n", + " Garage Finish Garage Qual Garage Type Gr Liv Area \\\n", + "Order PID \n", + "1 526301100 Fin TA Attchd 1656.0 \n", + "2 526350040 Unf TA Attchd 896.0 \n", + "3 526351010 Unf TA Attchd 1329.0 \n", + "4 526353030 Fin TA Attchd 2110.0 \n", + "5 527105010 Fin TA Attchd 1629.0 \n", + "\n", + " Gr Liv Area (box-cox-0) Half Bath Heating Heating QC \\\n", + "Order PID \n", + "1 526301100 7.412160 0 GasA Fa \n", + "2 526350040 6.797940 0 GasA TA \n", + "3 526351010 7.192182 1 GasA TA \n", + "4 526353030 7.654443 1 GasA Ex \n", + "5 527105010 7.395722 1 GasA Gd \n", + "\n", + " House Style Kitchen AbvGr Kitchen Qual Land Contour \\\n", + "Order PID \n", + "1 526301100 1Story 1 TA Lvl \n", + "2 526350040 1Story 1 TA Lvl \n", + "3 526351010 1Story 1 Gd Lvl \n", + "4 526353030 1Story 1 Ex Lvl \n", + "5 527105010 2Story 1 TA Lvl \n", + "\n", + " Land Slope Lot Area Lot Area (box-cox-0.1) Lot Config \\\n", + "Order PID \n", + "1 526301100 Gtl 31770.0 18.196923 Corner \n", + "2 526350040 Gtl 11622.0 15.499290 Inside \n", + "3 526351010 Gtl 14267.0 16.027549 Corner \n", + "4 526353030 Gtl 11160.0 15.396064 Corner \n", + "5 527105010 Gtl 13830.0 15.946705 Inside \n", + "\n", + " Lot Shape Low Qual Fin SF MS SubClass MS Zoning \\\n", + "Order PID \n", + "1 526301100 IR1 0.0 020 RL \n", + "2 526350040 Reg 0.0 020 RH \n", + "3 526351010 IR1 0.0 020 RL \n", + "4 526353030 Reg 0.0 020 RL \n", + "5 527105010 IR1 0.0 060 RL \n", + "\n", + " Mas Vnr Area Mas Vnr Type Misc Feature Misc Val Mo Sold \\\n", + "Order PID \n", + "1 526301100 112.0 Stone NA 0.0 5 \n", + "2 526350040 0.0 None NA 0.0 6 \n", + "3 526351010 108.0 BrkFace Gar2 12500.0 6 \n", + "4 526353030 0.0 None NA 0.0 4 \n", + "5 527105010 0.0 None NA 0.0 3 \n", + "\n", + " Neighborhood Open Porch SF Overall Cond Overall Qual \\\n", + "Order PID \n", + "1 526301100 Names 62.0 5 6 \n", + "2 526350040 Names 0.0 6 5 \n", + "3 526351010 Names 36.0 6 6 \n", + "4 526353030 Names 0.0 5 7 \n", + "5 527105010 Gilbert 34.0 5 5 \n", + "\n", + " Paved Drive Pool Area Pool QC Roof Matl Roof Style \\\n", + "Order PID \n", + "1 526301100 P 0.0 NA CompShg Hip \n", + "2 526350040 Y 0.0 NA CompShg Gable \n", + "3 526351010 Y 0.0 NA CompShg Hip \n", + "4 526353030 Y 0.0 NA CompShg Hip \n", + "5 527105010 Y 0.0 NA CompShg Gable \n", + "\n", + " Sale Condition Sale Type Screen Porch Street TotRms AbvGrd \\\n", + "Order PID \n", + "1 526301100 Normal WD 0.0 Pave 7 \n", + "2 526350040 Normal WD 120.0 Pave 5 \n", + "3 526351010 Normal WD 0.0 Pave 6 \n", + "4 526353030 Normal WD 0.0 Pave 8 \n", + "5 527105010 Normal WD 0.0 Pave 6 \n", + "\n", + " Total Bath Total Bsmt SF Total Porch SF Total SF \\\n", + "Order PID \n", + "1 526301100 2.0 1080.0 272.0 2736.0 \n", + "2 526350040 1.0 882.0 260.0 1778.0 \n", + "3 526351010 1.5 1329.0 429.0 2658.0 \n", + "4 526353030 3.5 2110.0 0.0 4220.0 \n", + "5 527105010 2.5 928.0 246.0 2557.0 \n", + "\n", + " Total SF (box-cox-0.2) Utilities Wood Deck SF Year Built \\\n", + "Order PID \n", + "1 526301100 19.344072 AllPub 210.0 1960 \n", + "2 526350040 17.333478 AllPub 140.0 1961 \n", + "3 526351010 19.203658 AllPub 393.0 1958 \n", + "4 526353030 21.548042 AllPub 0.0 1968 \n", + "5 527105010 19.016856 AllPub 212.0 1997 \n", + "\n", + " Year Remod/Add Yr Sold SalePrice SalePrice (box-cox-0) \n", + "Order PID \n", + "1 526301100 1960 2010 215000.0 12.278393 \n", + "2 526350040 1961 2010 105000.0 11.561716 \n", + "3 526351010 1958 2010 172000.0 12.055250 \n", + "4 526353030 1968 2010 244000.0 12.404924 \n", + "5 527105010 1998 2010 189900.0 12.154253 " + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cleaned_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "cleaned_df.to_csv(\"data/data_clean_with_transformations.csv\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/2_pairwise_correlations.ipynb b/2_pairwise_correlations.ipynb deleted file mode 100644 index 22ad2c2..0000000 --- a/2_pairwise_correlations.ipynb +++ /dev/null @@ -1,2426 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Pair-wise Correlations\n", - "\n", - "The purpose is to identify predictor variables strongly correlated with the sales price and with each other to get an idea of what variables could be good predictors and potential issues with collinearity.\n", - "\n", - "Furthermore, Box-Cox transformations and linear combinations of variables are added where applicable or useful." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## \"Housekeeping\"" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "import json\n", - "\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import pandas as pd\n", - "import seaborn as sns\n", - "\n", - "from sklearn.preprocessing import PowerTransformer\n", - "from tabulate import tabulate\n", - "\n", - "from utils import (\n", - " ALL_VARIABLES,\n", - " CONTINUOUS_VARIABLES,\n", - " DISCRETE_VARIABLES,\n", - " NUMERIC_VARIABLES,\n", - " ORDINAL_VARIABLES,\n", - " TARGET_VARIABLES,\n", - " encode_ordinals,\n", - " load_clean_data,\n", - " print_column_list,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "pd.set_option(\"display.max_columns\", 100)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "sns.set_style(\"white\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Load the Data\n", - "\n", - "Only a subset of the previously cleaned data is used in this analysis. In particular, it does not make sense to calculate correlations involving nominal variables.\n", - "\n", - "Furthermore, ordinal variables are encoded as integers (with greater values indicating a higher sales price by \"guts feeling\"; refer to the [data documentation](https://www.amstat.org/publications/jse/v19n3/decock/DataDocumentation.txt) to see the un-encoded values) and take part in the analysis.\n", - "\n", - "A `cleaned_df` DataFrame with the original data from the previous notebook is kept so as to restore the encoded ordinal labels again at the end of this notebook for correct storage." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "cleaned_df = load_clean_data()" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "df = cleaned_df[NUMERIC_VARIABLES + ORDINAL_VARIABLES + TARGET_VARIABLES]\n", - "df = encode_ordinals(df)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1st Flr SF2nd Flr SF3Ssn PorchBedroom AbvGrBsmt Full BathBsmt Half BathBsmt Unf SFBsmtFin SF 1BsmtFin SF 2Enclosed PorchFireplacesFull BathGarage AreaGarage CarsGr Liv AreaHalf BathKitchen AbvGrLot AreaLow Qual Fin SFMas Vnr AreaMisc ValMo SoldOpen Porch SFPool AreaScreen PorchTotRms AbvGrdTotal Bsmt SFWood Deck SFYear BuiltYear Remod/AddYr Sold
OrderPID
15263011001656.00.00.0310441.0639.00.00.021528.021656.00131770.00.0112.00.0562.00.00.071080.0210.0196019602010
2526350040896.00.00.0200270.0468.0144.00.001730.01896.00111622.00.00.00.060.00.0120.05882.0140.0196119612010
35263510101329.00.00.0300406.0923.00.00.001312.011329.01114267.00.0108.012500.0636.00.00.061329.0393.0195819582010
45263530302110.00.00.03101045.01065.00.00.022522.022110.01111160.00.00.00.040.00.00.082110.00.0196819682010
5527105010928.0701.00.0300137.0791.00.00.012482.021629.01113830.00.00.00.0334.00.00.06928.0212.0199719982010
\n", - "
" - ], - "text/plain": [ - " 1st Flr SF 2nd Flr SF 3Ssn Porch Bedroom AbvGr \\\n", - "Order PID \n", - "1 526301100 1656.0 0.0 0.0 3 \n", - "2 526350040 896.0 0.0 0.0 2 \n", - "3 526351010 1329.0 0.0 0.0 3 \n", - "4 526353030 2110.0 0.0 0.0 3 \n", - "5 527105010 928.0 701.0 0.0 3 \n", - "\n", - " Bsmt Full Bath Bsmt Half Bath Bsmt Unf SF BsmtFin SF 1 \\\n", - "Order PID \n", - "1 526301100 1 0 441.0 639.0 \n", - "2 526350040 0 0 270.0 468.0 \n", - "3 526351010 0 0 406.0 923.0 \n", - "4 526353030 1 0 1045.0 1065.0 \n", - "5 527105010 0 0 137.0 791.0 \n", - "\n", - " BsmtFin SF 2 Enclosed Porch Fireplaces Full Bath \\\n", - "Order PID \n", - "1 526301100 0.0 0.0 2 1 \n", - "2 526350040 144.0 0.0 0 1 \n", - "3 526351010 0.0 0.0 0 1 \n", - "4 526353030 0.0 0.0 2 2 \n", - "5 527105010 0.0 0.0 1 2 \n", - "\n", - " Garage Area Garage Cars Gr Liv Area Half Bath \\\n", - "Order PID \n", - "1 526301100 528.0 2 1656.0 0 \n", - "2 526350040 730.0 1 896.0 0 \n", - "3 526351010 312.0 1 1329.0 1 \n", - "4 526353030 522.0 2 2110.0 1 \n", - "5 527105010 482.0 2 1629.0 1 \n", - "\n", - " Kitchen AbvGr Lot Area Low Qual Fin SF Mas Vnr Area \\\n", - "Order PID \n", - "1 526301100 1 31770.0 0.0 112.0 \n", - "2 526350040 1 11622.0 0.0 0.0 \n", - "3 526351010 1 14267.0 0.0 108.0 \n", - "4 526353030 1 11160.0 0.0 0.0 \n", - "5 527105010 1 13830.0 0.0 0.0 \n", - "\n", - " Misc Val Mo Sold Open Porch SF Pool Area Screen Porch \\\n", - "Order PID \n", - "1 526301100 0.0 5 62.0 0.0 0.0 \n", - "2 526350040 0.0 6 0.0 0.0 120.0 \n", - "3 526351010 12500.0 6 36.0 0.0 0.0 \n", - "4 526353030 0.0 4 0.0 0.0 0.0 \n", - "5 527105010 0.0 3 34.0 0.0 0.0 \n", - "\n", - " TotRms AbvGrd Total Bsmt SF Wood Deck SF Year Built \\\n", - "Order PID \n", - "1 526301100 7 1080.0 210.0 1960 \n", - "2 526350040 5 882.0 140.0 1961 \n", - "3 526351010 6 1329.0 393.0 1958 \n", - "4 526353030 8 2110.0 0.0 1968 \n", - "5 527105010 6 928.0 212.0 1997 \n", - "\n", - " Year Remod/Add Yr Sold \n", - "Order PID \n", - "1 526301100 1960 2010 \n", - "2 526350040 1961 2010 \n", - "3 526351010 1958 2010 \n", - "4 526353030 1968 2010 \n", - "5 527105010 1998 2010 " - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df[NUMERIC_VARIABLES].head()" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Bsmt CondBsmt ExposureBsmt QualBsmtFin Type 1BsmtFin Type 2ElectricalExter CondExter QualFenceFireplace QuFunctionalGarage CondGarage FinishGarage QualHeating QCKitchen QualLand SlopeLot ShapeOverall CondOverall QualPaved DrivePool QCUtilities
OrderPID
152630110044341422047333122245103
252635004031332422307313222354203
352635101031351422007313232255203
452635303031351423037333442346203
552710501031461422337333322244203
\n", - "
" - ], - "text/plain": [ - " Bsmt Cond Bsmt Exposure Bsmt Qual BsmtFin Type 1 \\\n", - "Order PID \n", - "1 526301100 4 4 3 4 \n", - "2 526350040 3 1 3 3 \n", - "3 526351010 3 1 3 5 \n", - "4 526353030 3 1 3 5 \n", - "5 527105010 3 1 4 6 \n", - "\n", - " BsmtFin Type 2 Electrical Exter Cond Exter Qual Fence \\\n", - "Order PID \n", - "1 526301100 1 4 2 2 0 \n", - "2 526350040 2 4 2 2 3 \n", - "3 526351010 1 4 2 2 0 \n", - "4 526353030 1 4 2 3 0 \n", - "5 527105010 1 4 2 2 3 \n", - "\n", - " Fireplace Qu Functional Garage Cond Garage Finish \\\n", - "Order PID \n", - "1 526301100 4 7 3 3 \n", - "2 526350040 0 7 3 1 \n", - "3 526351010 0 7 3 1 \n", - "4 526353030 3 7 3 3 \n", - "5 527105010 3 7 3 3 \n", - "\n", - " Garage Qual Heating QC Kitchen Qual Land Slope Lot Shape \\\n", - "Order PID \n", - "1 526301100 3 1 2 2 2 \n", - "2 526350040 3 2 2 2 3 \n", - "3 526351010 3 2 3 2 2 \n", - "4 526353030 3 4 4 2 3 \n", - "5 527105010 3 3 2 2 2 \n", - "\n", - " Overall Cond Overall Qual Paved Drive Pool QC Utilities \n", - "Order PID \n", - "1 526301100 4 5 1 0 3 \n", - "2 526350040 5 4 2 0 3 \n", - "3 526351010 5 5 2 0 3 \n", - "4 526353030 4 6 2 0 3 \n", - "5 527105010 4 4 2 0 3 " - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df[ORDINAL_VARIABLES].head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Linearly \"dependent\" Features" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The \"above grade (ground) living area\" (= *Gr Liv Area*) can be split into 1st and 2nd floor living area plus some undefined rest." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "assert not (\n", - " df[\"Gr Liv Area\"]\n", - " != (df[\"1st Flr SF\"] + df[\"2nd Flr SF\"] + df[\"Low Qual Fin SF\"])\n", - ").any()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The various basement areas also add up." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "assert not (\n", - " df[\"Total Bsmt SF\"]\n", - " != (df[\"BsmtFin SF 1\"] + df[\"BsmtFin SF 2\"] + df[\"Bsmt Unf SF\"])\n", - ").any()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Calculate a variable for the total living area *Total SF* as this is the number communicated most often in housing ads." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "df[\"Total SF\"] = df[\"Gr Liv Area\"] + df[\"Total Bsmt SF\"]\n", - "new_variables = [\"Total SF\"]\n", - "CONTINUOUS_VARIABLES.append(\"Total SF\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The different porch areas are unified into a new variable *Total Porch SF*. This potentially helps making the presence of a porch in general relevant in the prediction." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "df[\"Total Porch SF\"] = (\n", - " df[\"3Ssn Porch\"] + df[\"Enclosed Porch\"] + df[\"Open Porch SF\"]\n", - " + df[\"Screen Porch\"] + df[\"Wood Deck SF\"]\n", - ")\n", - "new_variables.append(\"Total Porch SF\")\n", - "CONTINUOUS_VARIABLES.append(\"Total Porch SF\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The various types of rooms \"above grade\" (i.e., *TotRms AbvGrd*, *Bedroom AbvGr*, *Kitchen AbvGr*, and *Full Bath*) do not add up (only in 29% of the cases they do). Therefore, no single unified variable can be used as a predictor." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "29" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "round(\n", - " 100\n", - " * (\n", - " df[\"TotRms AbvGrd\"]\n", - " == (df[\"Bedroom AbvGr\"] + df[\"Kitchen AbvGr\"] + df[\"Full Bath\"])\n", - " ).sum()\n", - " / df.shape[0]\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Unify the number of various types of bathrooms into a single variable. Note that \"half\" bathrooms are counted as such." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "df[\"Total Bath\"] = (\n", - " df[\"Full Bath\"] + 0.5 * df[\"Half Bath\"]\n", - " + df[\"Bsmt Full Bath\"] + 0.5 * df[\"Bsmt Half Bath\"]\n", - ")\n", - "new_variables.append(\"Total Bath\")\n", - "DISCRETE_VARIABLES.append(\"Total Bath\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Box-Cox Transformations\n", - "\n", - "Only numeric columns with non-negative values are eligable for a Box-Cox transformation." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1st Flr SF First Floor square feet\n", - "Gr Liv Area Above grade (ground) living area square feet\n", - "Lot Area Lot size in square feet\n", - "SalePrice\n", - "Total SF\n" - ] - } - ], - "source": [ - "columns = CONTINUOUS_VARIABLES + TARGET_VARIABLES\n", - "transforms = df[columns].describe().T\n", - "transforms = list(transforms[transforms['min'] > 0].index)\n", - "print_column_list(transforms)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A common convention is to use Box-Cox transformations only if the found lambda value (estimated with Maximum Likelyhood Estimation) is in the range from -3 to +3.\n", - "\n", - "Consequently, the only applicable transformation are for *SalePrice* and the new variable *Total SF*." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1st Flr SF: use lambda of -0.0\n", - "Gr Liv Area: use lambda of -0.0\n", - "Lot Area: use lambda of 0.1\n", - "SalePrice: use lambda of 0.0\n", - "Total SF: use lambda of 0.2\n" - ] - } - ], - "source": [ - "# Check the Box-Cox tranformations for each column seperately\n", - "# to decide if the optimal lambda value is in an acceptable range.\n", - "output = []\n", - "transformed_columns = []\n", - "for column in transforms:\n", - " X = df[[column]] # 2D array needed!\n", - " pt = PowerTransformer(method=\"box-cox\", standardize=False)\n", - " # Suppress a weird but harmless warning from scipy\n", - " with warnings.catch_warnings():\n", - " warnings.simplefilter(\"ignore\")\n", - " pt.fit(X)\n", - " # Check if the optimal lambda is ok.\n", - " lambda_ = pt.lambdas_[0].round(1)\n", - " if -3 <= lambda_ <= 3:\n", - " lambda_label = 0 if lambda_ <= 0.01 else lambda_ # to avoid -0.0\n", - " new_column = f\"{column} (box-cox-{lambda_label})\"\n", - " df[new_column] = (\n", - " np.log(X) if lambda_ <= 0.001 else (((X ** lambda_) - 1) / lambda_)\n", - " )\n", - " # Track the new column in the appropiate list.\n", - " new_variables.append(new_column)\n", - " if column in TARGET_VARIABLES:\n", - " TARGET_VARIABLES.append(new_column)\n", - " else:\n", - " CONTINUOUS_VARIABLES.append(new_column)\n", - " # To show only the transformed columns below.\n", - " transformed_columns.append(column)\n", - " transformed_columns.append(new_column)\n", - " output.append((\n", - " f\"{column}:\",\n", - " f\"use lambda of {lambda_}\",\n", - " ))\n", - " else:\n", - " output.append((\n", - " f\"{column}:\",\n", - " f\"lambda of {lambda_} not in realistic range\",\n", - " ))\n", - "print(tabulate(sorted(output), tablefmt=\"plain\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1st Flr SF1st Flr SF (box-cox-0)Gr Liv AreaGr Liv Area (box-cox-0)Lot AreaLot Area (box-cox-0.1)Total SFTotal SF (box-cox-0.2)SalePriceSalePrice (box-cox-0)
OrderPID
15263011001656.07.4121601656.07.41216031770.018.1969232736.019.344072215000.012.278393
2526350040896.06.797940896.06.79794011622.015.4992901778.017.333478105000.011.561716
35263510101329.07.1921821329.07.19218214267.016.0275492658.019.203658172000.012.055250
45263530302110.07.6544432110.07.65444311160.015.3960644220.021.548042244000.012.404924
5527105010928.06.8330321629.07.39572213830.015.9467052557.019.016856189900.012.154253
\n", - "
" - ], - "text/plain": [ - " 1st Flr SF 1st Flr SF (box-cox-0) Gr Liv Area \\\n", - "Order PID \n", - "1 526301100 1656.0 7.412160 1656.0 \n", - "2 526350040 896.0 6.797940 896.0 \n", - "3 526351010 1329.0 7.192182 1329.0 \n", - "4 526353030 2110.0 7.654443 2110.0 \n", - "5 527105010 928.0 6.833032 1629.0 \n", - "\n", - " Gr Liv Area (box-cox-0) Lot Area Lot Area (box-cox-0.1) \\\n", - "Order PID \n", - "1 526301100 7.412160 31770.0 18.196923 \n", - "2 526350040 6.797940 11622.0 15.499290 \n", - "3 526351010 7.192182 14267.0 16.027549 \n", - "4 526353030 7.654443 11160.0 15.396064 \n", - "5 527105010 7.395722 13830.0 15.946705 \n", - "\n", - " Total SF Total SF (box-cox-0.2) SalePrice \\\n", - "Order PID \n", - "1 526301100 2736.0 19.344072 215000.0 \n", - "2 526350040 1778.0 17.333478 105000.0 \n", - "3 526351010 2658.0 19.203658 172000.0 \n", - "4 526353030 4220.0 21.548042 244000.0 \n", - "5 527105010 2557.0 19.016856 189900.0 \n", - "\n", - " SalePrice (box-cox-0) \n", - "Order PID \n", - "1 526301100 12.278393 \n", - "2 526350040 11.561716 \n", - "3 526351010 12.055250 \n", - "4 526353030 12.404924 \n", - "5 527105010 12.154253 " - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df[transformed_columns].head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Correlations\n", - "\n", - "The pair-wise correlations are calculated based on the type of the variables:\n", - "- **continuous** variables are assumed to be linearly related with the target and each other or not: use **Pearson's correlation coefficient**\n", - "- **discrete** (because of the low number of distinct realizations as seen in the data cleaning notebook) and **ordinal** (low number of distinct realizations as well) variables are assumed to be related in a monotonic way with the target and each other or not: use **Spearman's rank correlation coefficient**\n", - "\n", - "Furthermore, for a **naive feature selection** a \"rule of thumb\" classification in *weak* and *strong* correlation is applied to the predictor variables. The identified variables will be used in the prediction modelling part to speed up the feature selection. A correlation between 0.33 and 0.66 is considered *weak* while a correlation above 0.66 is considered *strong* (these thresholds refer to the absolute value of the correlation). Correlations are calculated for **each** target variable (i.e., raw \"SalePrice\" and Box-Cox transformation thereof). Correlations below 0.1 are considered \"uncorrelated\"." - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "strong = 0.66\n", - "weak = 0.33\n", - "uncorrelated = 0.1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Two heatmaps below (implemented in the reusable `plot_correlation` function) help visualize the correlations.\n", - "\n", - "Obviously, many variables are pair-wise correlated. This could yield regression coefficients *inprecise* and not usable / interpretable. At the same time, this does not lower the predictive power of a model as a whole. In contrast to the pair-wise correlations, *multi-collinearity* is not checked here." - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "def plot_correlation(data, title):\n", - " \"\"\"Visualize a correlation matrix in a nice heatmap.\"\"\"\n", - " fig, ax = plt.subplots(figsize=(12, 12))\n", - " ax.set_title(title, fontsize=24)\n", - " # Blank out the upper triangular part of the matrix.\n", - " mask = np.zeros_like(data, dtype=np.bool)\n", - " mask[np.triu_indices_from(mask)] = True\n", - " # Use a diverging color map.\n", - " cmap = sns.diverging_palette(240, 0, as_cmap=True)\n", - " # Adjust the labels' font size.\n", - " labels = data.columns\n", - " ax.set_xticklabels(labels, fontsize=10)\n", - " ax.set_yticklabels(labels, fontsize=10)\n", - " # Plot it.\n", - " sns.heatmap(\n", - " data, vmin=-1, vmax=1, cmap=cmap, center=0, linewidths=.5,\n", - " cbar_kws={\"shrink\": .5}, square=True, mask=mask, ax=ax\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Pearson\n", - "\n", - "Pearson's correlation coefficient shows a linear relationship between two variables." - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "columns = CONTINUOUS_VARIABLES + TARGET_VARIABLES\n", - "pearson = df[columns].corr(method=\"pearson\")" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvcAAAK4CAYAAADwcdICAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXRN5/7H8fc5GWQQwkWoalUrqqamjaKUihiaqphVrxiql4s2bVFBf6JcqRqqaqjWNV7qVi+JtELVXIoEdVsh5lKJIakQmYeT8/vDyrnSJIQcNCef11pnLWfv/Xz3s3eOtb7nOd/n2Qaz2WxGRERERERKPeOD7oCIiIiIiFiHknsRERERERuh5F5ERERExEYouRcRERERsRFK7kVEREREbISSexERERERG6HkXkRE5DbGjh1LvXr1mDt37n0/d0BAAPXq1SM0NPS+n1tESh/7B90BESm9xo4dS1hYWIHtrq6u1KpVi+eff54BAwZQvXr1B9A72xYaGsq4cePo1q0bH3300X07b3p6OmFhYfzwww8cO3aMq1evYjAYqFy5Mg0bNqRdu3Z07NgRJyen+9an0io2NpawsDDc3NwYOHDgg+6OiNgIJfciUmIODg5UrFgRALPZTGJiIseOHePYsWOsWbOGBQsW4O3t/YB7KSW1bds2goODSUhIsGxzcXHBYDAQFxdHXFwcmzZtYubMmUyfPp0WLVo8wN7++cXFxTFv3jxq1qx5y+S+Ro0aPPbYY7i5ud2/zolIqaXkXkRKzMvLixUrVljep6ens2nTJkJCQrh+/TrvvPMOW7Zs0WhuKRYaGsr7779Pbm4ujz32GMOGDaN169ZUqlQJgOTkZPbs2cPKlSuJioriwIEDSu6tZPr06Q+6CyJSiii5FxGrc3Z2pmvXrgAEBQWRkJDAli1b6Ny58wPumdyNY8eOMXHiRHJzc2nTpg1z5swp8EXNzc2Njh070rFjRzZs2MClS5ceUG9FRMo2Jfcics/4+fkxbtw4cnNzOXLkSL7kPjc3l2+++Ybw8HBiYmJISUnB3d0db29vBg0aRJMmTQrEM5lM7N69m61btxIdHc2lS5e4fv067u7uNGnShH79+hU5WhwQEEBUVBRTp07F19eXL774gq1bt3Lx4kUcHBw4cOAAAFlZWfz73/9m48aNnDp1ivT0dCpWrEiVKlV49tln6dKlC15eXgXi//777yxatIgdO3Zw8eJF7O3teeyxx/Dz86Nfv344OjoWaJM3Z+HNN99k+PDhrFixgtDQUM6dO0e5cuXw8vLizTffpFGjRnd031NSUli+fDlbt27l119/JTs7G3d3d6pVq0azZs3o1q0bnp6exY43e/ZssrKy8PDw4OOPP77tLzB+fn6YzeYC27Oysvjyyy/ZsGEDZ86cITs7mxo1avDiiy/yxhtvULVq1QJt8uYWPPfcc6xYsYJvvvmGr7/+mpMnT3Lt2jXmz5+Pr68vPj4+xMXF8a9//YvatWuzYMECdu3axeXLl3n88ccJDw+3xExNTWXFihVs3ryZs2fPkpWVRY0aNWjdujWDBw+mRo0axb43AL/++isRERFERUURGxtLQkIC5cqVo06dOnTq1InXXnutwD3L6y/cKM+pV69evv1Tp06le/fuQP7Pbt62m6WkpLB06VI2b97M+fPnAXj44Ydp3749gwYNKrScZ+7cucybN88yZyMsLIxVq1Zx6tQpDAYDDRo04O9//zstW7a8o3shIg+eknsRuWccHR2pVKkSV65cISUlxbI9JSWFt956iz179gBgMBhwdXUlISGBjRs3smnTJt5//3369euXL97p06cZMmSI5X358uVxcHCw/DKwZcsWRo4cydChQ4vsU2JiIt27d+f8+fM4Ojri4OBg2ZeTk8PgwYOJioqy9MvNzY1r165x5coVjh8/zrVr1wok97/88gt/+9vfuHbtGnBjQnF2djaHDx/m8OHDhIeHs2TJEv7yl78U2qecnByGDBnC7t27cXBwwMHBgaSkJHbs2MHevXtZvnx5oV8oCpOcnMyrr77KqVOnADAajbi5uXHlyhUSEhI4cuQIdnZ2jB49uljxLl++zI4dO4AbSWZx674NBkO+94mJiQwePJijR48CWO792bNnWbZsGWFhYSxcuJCnn366yJhTpkxhxYoVlmsyGgsu+Hb27Fnefvttrl69irOzc76/L9z4DP3tb3+zJNb29vY4Ojpy7tw5y5eHBQsW8OyzzxbrOgFGjRrFkSNHAChXrhwuLi4kJSXx888/8/PPPxMREcHy5cspX768pU2lSpVISUkhKSkJo9FI5cqV88UsbgnbuXPnGDRokOV6nJ2dAThx4gQnTpwgLCyMpUuXUrt27SJjvP/++6xZswY7OzucnZ1JSUmxlFbNnj2bjh07FvteiMiDp+ReRO6ZjIwMEhMTAfIlhUFBQezZs4cGDRowcuRImjZtSrly5UhKSmLVqlXMnz+fkJAQ6tevny/JcnBwoEePHvj5+fH0009bkqUrV66wevVq5s2bxyeffELz5s0LHfkHmD9/PhUrVuSf//wnrVq1wmg0cu7cOQDWr19PVFQUzs7OTJo0iU6dOlGuXDlMJhOXL19m+/bt+b6kACQlJTF8+HCuXbuGp6cnISEhNG7cGJPJxObNmwkODubYsWOMHj2apUuXFtqnVatWYTQa+eSTT/D19cXR0ZFjx47x3nvvceLECUJCQlizZk2x7vny5cs5deoUlStXZurUqbRq1Qp7e3uys7OJi4vj+++/x93dvVixACIjIy2j8D4+PsVu90djxozh6NGjVKxYkUmTJtGhQwfs7Ow4fPgw48eP58SJE4wYMYJvv/22QKILEB0dzf79+3nrrbfo378/FSpUICUlhczMzHzHffTRRzz88MN89tlnPPPMMwCWv29ycrIlse/UqRPDhg2jbt262NnZcf78eWbPns369esJDAxk48aNVKhQoVjX1qRJE/r27cvzzz9PzZo1gRu/UuzevZtp06YRHR3Nxx9/zMSJEy1t1q5dS2RkJP3796dGjRps27btju9pVlYWb731FnFxcdSoUYOQkBCef/55APbt28f48eO5cOECb775JqGhoYX+erR161YyMzP54IMP6Nq1K87Ozpw/f55x48axf/9+/vGPf9CuXTvs7ZUuiJQaZhGRuxQUFGT29PQ09+vXr9D9K1asMHt6epo9PT3N3333ndlsNpt//PFHs6enp7ljx47m69evF9ruiy++MHt6epqHDBlyR/2ZN2+e2dPT0zx27NgC+/r162f29PQ0N2jQwHz8+PFC20+cONHs6elpDg4OvuNzent7m+Pj4wvs37Vrl+Ue7NmzJ9++vPvn6elp3r9/f4G2hw8ftuyPi4srVn/eeOMNs6enp/mLL74o9jXcyqxZs8yenp7mhg0bmnNzc+8qxv79+y3X8cMPPxTYn5CQYG7atKnZ09PTPHv27Hz71q5da2n78ccfF3mOtm3bWv4OCQkJt7yWkSNHFhln8ODBZk9PT/OiRYvybc/7W82ZM+dWl1rAb7/9Zn7qqafMTZo0MaelpeXbt2/fPrOnp6e5bdu2t4yR99ldu3Ztvu1hYWG3/EyfOHHC3KBBA7Onp6f5P//5T759c+bMsdzX8PDwAm0vXbpkaRsVFVXcyxWRPwE9xEpErMpsNhMbG8vixYuZMWMGADVr1qRt27YAlnXxe/fuXWSJxyuvvALcGDU2mUzFPnfeyPJPP/1U5DEvvPBCkfXmeb8E3LzU4+1s2rQJgJ49exZaM96qVStLSc3GjRsLjeHt7V3oUqENGza0PCPg5MmTxerP3VzDreSVGlWsWLFAqU1xfffdd8CN63nhhRcK7K9SpQqvvvoqUPQ9srOzK9Za8P7+/lSpUqXQfevWrQNg0KBBRbbPmxeSVzJWUrVq1eKJJ54gPT2dmJgYq8TMk/fZ8/HxKfQzXbduXUtJTVH39aGHHrL8f7uZh4cHjRs3Bm6U+IhI6aHf2USkxKKiogpMCMxTtWpV5s+fbykJOHToEAALFixg8eLFt4ybnp7OtWvX8tWqZ2Rk8NVXX7F161ZOnTrF9evXycnJydcuPj6+yJi3ql1v3bo1//znP9m6dSt///vf6d69O02bNrUs9/hHWVlZlqS7efPmRcZt1qwZhw4dstSb/9GtJsx6eHhw6dIlkpKSijzmZm3atGHDhg2sWLGCa9eu0blzZ5599tl89d73W951N2vWrMhjmjdvzhdffMHZs2dJS0vDxcUl3/5HHnmk0HKdPyrq73vx4kXLCj5Dhgwp8otKdna25fg78eOPP7J27Vp++eUXEhISyMjIKHDMrT6Xd6O493X9+vVFfvYaNmxY5L3w8PAA4Pr16yXsqYjcT0ruRaTEbn6IlcFgwNnZ2fKE2l69eln2wf9GlIubMKSnp1v+HR8fT0BAAGfPnrVsc3FxoUKFChiNRkwmE1evXiUtLa3IeEUl6gDPPfccgYGBfPbZZ2zfvp3t27cDUKdOHV588UX69OmTb2JiUlISubm5wP8SocLkjb7nzT/4I1dX1yLblitXDqDAF5iidO3alZ9++onVq1fzzTff8M0332A0GqlXrx5t27alb9++VKtWrVixAEt9flJSEmaz+a5G7/Ou+1b3KG+f2Wzm6tWrBZL74iT2tzru5l8yrly5cts4hSXnRcmb6JvHwcEBd3d3S516UlIS2dnZ+T7L1nAn9/XatWuF/v2s+dkTkT8HJfciUmJ/fIjVreQlw3lLGN6JDz/8kLNnz1KrVi3GjBlDs2bN8n1x+O2332jfvv0tY9jZ2d1y/4gRI+jSpQsbN24kMjKS//73v5w5c4YzZ87wr3/9i5CQEMsa/jf748TOB2ny5MkEBASwceNG9u/fzy+//EJMTAwxMTEsW7aMefPmFXuJw8cffxy48SvFmTNnLO/vRknu0e3+bnkKW0EH/ve5A9i/f3+xJ8vezs6dO1mxYgV2dnYMHz6cLl26UKtWrXxJ9GuvvcbBgwcLXR7UGrKysu5JXBEpnVRzLyL3VV499IULF+6oXVZWFlu3bgVg5syZdOjQIV9iDzfWmreGWrVqMWTIEBYvXkxUVBT/+te/aNq0KTk5OUyaNMky8luxYkVLMnmr68krBynu6LM11K1bl8DAQFasWMH+/fv5/PPP8fT0JC0tjaCgIEv5ye0899xzlkT1blZ0gf9d961KXS5fvgzc+OXnVr+u3K2bS7vu9LN3K3nzCXr27Mmbb77JI488UmB0vDi/FNyNvPt6q+vJu6/u7u53PWdCREoXJfcicl/lrWP+ww8/3FG7q1evWkYon3rqqUKPsdYkyJvZ2dnRrFkzPv/8cxwcHEhLSyM6Ohq4sVZ73bp1gRuTf4uSt6+oft9rjo6OtG3blk8//RS4UaKStzzk7VSvXp02bdoAsHLlygJLgRbl5lHqvOvev39/kaPX+/btA6B27doFSnKsoVatWpYvlnf62buVvOS5qL9tXFxckfc674vh3Y7o553zVp+9vPv6oD57InL/KbkXkfuqW7duAOzevfu2SdbNk0hdXV0tI4/Hjx8vcGx8fDwrV64sUd9uVd7g6OhoScZuPi5vNZKwsLBCJ0zu3r3bMon4pZdeKlH/iuNW13Dzg5HupJTjnXfewdHRkUuXLjFq1Kjbltds2LAh35r+nTp1Am6s+JP368vNfv/9d7766ivg3t6jvM/ekiVLLEl5Ycxmc7HnhORNVC5qRZlZs2YVmbzntU1OTi7Wuf4o77P3ww8/FDph9uTJk5YVde7HZ09E/hyU3IvIfdW6dWs6dOiA2WzmzTffZNGiRfkmml67do0tW7bw97//nY8++siyvXz58pZR//Hjx1uWFczNzWXv3r0EBASUuKY5KCiIcePGsWvXrnwj1LGxsQQFBZGZmYmTk1O+B2v169ePqlWrkpGRwRtvvMHhw4cBMJlMbNq0iZEjRwLw/PPP06JFixL1rzgGDRrElClT2L9/f75JoSdPnmTs2LHAjRWMiloOtDD169cnODgYg8HAjh076Nq1K+Hh4ZZlMuFGgvr9998TEBDAu+++S2pqqmWft7e3ZQnM8ePH891331mWOI2Ojub1118nKSmJKlWq0L9//xJd/60MGTKEWrVqcfXqVV599VU2bNiQ7x5duHCB1atX061bN7Zs2VKsmHlzF1avXs2aNWssX5ouXLhAUFAQERERBcrH8jz66KM4ODiQnJxsScLvhJ+fn2WVqhEjRrBnzx7L/4G9e/cyZMgQsrOzqVu3Ll26dLnj+CJSOmlCrYjcd9OmTSM3N5ctW7YwY8YMZs6ciZubGyaTKV9S2L1793ztxo0bR//+/Tlx4gRdu3bFxcWF3NxcMjIycHd3JyQkhBEjRtx1vzIzM9mwYQOhoaEYDAbc3NzyrXJiZ2fHpEmT8tXOV6xYkc8++4w33niD48eP07NnT1xdXcnJybGMcNerV4+ZM2fedb/uREpKCitWrGDFihUYjUbc3NzIyMiw9MXZ2ZkZM2bc8RNHe/XqRaVKlQgODubMmTOMGTMGuLFakcFgyPd3q1mzZoGlQadPn87rr79OTEwMb7/9NuXKlcPe3t7SrmLFisybN++e1NvnqVChAosXL2bYsGGcPn2ad999Fzs7O8s9ujnRL259erdu3QgNDeW///0v77//PsHBwbi6ulpG/gMDA9m3bx9RUVEF2rq4uPDyyy+zbt06AgMDcXNzs0z0HTNmjOUXj6I4Ojoyd+5cBg0aRFxcHIMGDcLZ2Rn43ypTDz30EHPnzi306bQiYpuU3IvIfefi4sL8+fPZsWMHa9eu5eeffyYxMRGj0cijjz7KU089RevWrS1lB3maNGnC6tWrmTt3Lvv37yctLY1q1arRqlUrhg0bdkcPvCrMqFGjeOaZZ9i3bx/nzp0jISEBk8nEI488gre3NwMGDODJJ58s0K5x48ZERESwaNEiduzYwcWLF7Gzs6Nhw4b4+fnRr18/y7KC99qUKVPYuXMnUVFRxMbGWiYZ16lTh+eff56BAwdSq1atu4rt6+vL888/T1hYGDt37uT48eNcvXoVg8FAzZo1adiwIR06dKBDhw4FksnKlSuzevVqvvzySyIiIvj111/Jzs6mdu3atGnThjfeeOOOlui8W48++ijr1q1jzZo1fPfdd5w4cYLk5GTKlStHvXr1ePrpp2nXrh2tWrUqVjxHR0eWLl3KggUL2LhxI5cuXcLOzo6WLVsSEBBA27ZtLXXvhZk0aRIeHh5s3ryZuLg44uLiAG65nOsfryc8PJylS5eyefNmzp8/D4Cnpye+vr68/vrrRT4sTkRsk8F8r9bmEhERERGR+0o19yIiIiIiNkLJvYiIiIiIjVByLyIiIiJiI5Tci4iIiIjYCCX3IiIiIiI2Qsm9iIiIiIiNUHIvIiIiImIjlNyLiIiIiNgIJfciIiIiIjZCyb2IiIiIiI1Qci8iIiIiYiOU3IuIiIiI2Aj7B92B0mbcuHHs2LGDv/zlL6xfv/6Wx0ZGRuLg4MAzzzxTYF9oaCjTp0/Hw8MDgHr16jF9+nTGjh3Liy++SKdOnW4Z+8yZM0ycOJHr16+TlZWFt7c3//jHP4iMjGT48OE8/PDDAFSqVIlly5bd3cWKiIiISKmi5P4Ode/enX79+hEUFHTbY6OionBxcSk0uQfw8/MjODi4WOc1mUzY2dlZ3oeEhDBgwAB8fX0BOH78uGWft7c3X3zxRbHiioiIiIjtUFnOHWratCkVK1YssP1f//oXfn5+vPLKK7z77rvExsby1VdfsWzZMvz9/Tlw4MAdn8vHx4cZM2bQrVs3vvvuu3z74uPjqV69uuV9vXr17vxiRERERMSmaOTeShYuXMi2bdtwdHTk+vXrVKhQgVdffRUXFxcGDx5caJsNGzZw8OBBAPr370+PHj0KHOPu7k5YWFiB7QMHDmTAgAF4eXnRqlUrunfvToUKFQA4cOAA/v7+AHTq1Ilhw4ZZ6zJFRERE5E9Myb2V1KtXj9GjR9OuXTtLqcztFKcsx8/Pr9DtPXr0oFWrVuzatYutW7fy1Vdf8c033wAqyxEREREpq1SWYyULFy7ktdde4+jRo/Ts2ZOcnByrxHV2di5yn4eHBz179mTBggXY29tz4sQJq5xTREREREonJfdWkJuby8WLF2nevDmjR48mOTmZtLQ0XF1dSU1NvSfn/OGHH8jOzgYgISGBa9euWVbeEREREZGySWU5d2jkyJFERUVx9epVWrduzVtvvUXXrl157733SElJwWw2079/fypUqEDbtm0JDAxk69atTJgwAW9vb6v148cffyQkJIRy5coB8N5771G1alXOnDljtXOIiIiISOliMJvN5gfdCRERERERKTmV5YiIiIiI2Agl9yIiIiIiNkLJvYiIiIiIjVByLyIiIiJiI5Tci4iIiIjYCC2FKQBEnrxktVjN6la3WiwRERERKT6N3IuIiIiI2Agl9yIiIiIiNkLJvYiIiIiIjVByLyIiIiJiI5Tci4iIiIjYCK2WcxsXL15kzJgxXLlyBYPBQO/evRkwYMAdxQgICGDMmDE0atSowPb4+HicnJwAGDZsGJ06dcLLy4tDhw7dNu6aNWtYvnw5AGazmXfeeQdfX1/Gjh1LVFQUbm5uAPTo0YP+/fvfUZ9FREREpPRRcn8bdnZ2jB07lgYNGpCSkkKPHj1o2bIlTzzxhFXiz5w5s0DSX5icnBzs7f/357p06RKff/45YWFhuLm5kZqaSmJiomX/mDFj6NSpk1X6KCIiIiKlg5L726hWrRrVqlUDoHz58tSpU4fLly/zxBNPEBAQQOPGjYmMjCQ5OZmQkBC8vb3JyMhg3LhxHDt2jDp16pCRkXFX546MjOTTTz+lQoUK/Prrr2zatMmy78qVK7i6uuLi4gKAq6srrq6uJb9gERERESm1lNzfgdjYWGJiYmjSpIllm8lkYs2aNezcuZN58+axbNky/v3vf+Pk5MTGjRs5duwY3bt3LzLm6NGjLWU5y5Yto1KlSvn2Hz16lG+//ZZatWrl2/7kk09SpUoV2rVrR4sWLWjfvj0+Pj6W/dOnT2fBggWWf9erV6/E1y8iIiIif25K7ospNTWVwMBAxo8fT/ny5S3b27dvD0CDBg2Ii4sDYP/+/QQEBAA3kvBbJda3K8tp1KhRgcQebpQLLVq0iMOHD7N3716mTp3KkSNHeOuttwCV5YiIiIiURVotpxiys7MJDAzklVdeoUOHDvn2OTo6AmA0GjGZTFY/d17ZTWEMBgONGzdm6NChzJo1i++//97q5xcRERGR0kPJ/W2YzWbef/996tSpw6BBg4rVpmnTpqxfvx6AEydOcPz4cav36/Llyxw5csTy/tixYzz00ENWP4+IiIiIlB4qy7mNgwcPEh4ejqenJ/7+/gCMHDmSNm3aFNmmb9++jBs3jpdeeonHH3+cBg0aWL1fOTk5TJs2jfj4eMqVK0flypWZNGmS1c8jIiIiIqWHwWw2mx90J+TBizx5yWqxmtWtbrVYIiIiIlJ8KssREREREbERSu5FRERERGyEknsRERERERuh5F5ERERExEZoQq2IiIiIiI3QUpgCQHbCNavFcqjqTnJystXiubm5WS2WiIiIiC1TWY6IiIiIiI1Qci8iIiIiYiOU3IuIiIiI2Agl9yIiIiIiNkLJvYiIiIiIjVByLyIiIiJiI7QU5k0yMzP561//SlZWFiaTiY4dOxIYGAjA9u3b+fTTT8nNzSUnJ4f+/fvz6quvluh8AQEBxMfHU65cOVxcXPjwww+pU6dOiWL6+PiwZs0aKleuXKI4IiIiIlL6KLm/iaOjI8uXL8fV1ZXs7Gxee+01WrduTYMGDZgwYQJr1qyhevXqZGVlERsba5Vzzpw5k0aNGrF69WqmT5/O559/fts2OTk52NvrTyciIiIi+SlDvInBYMDV1RW4kUDn5ORgMBhITU3FZDLh7u4O3PgSkDfCvnHjRubPn4/RaMTNzY0vv/yS0NBQtm3bRnp6OufPn8fX15cxY8bc8tze3t4sX74cs9nM9OnT2bVrFwaDgWHDhuHn50dkZCSffvopFSpU4Ndff2XDhg3MnDnTclzv3r0JCAgAYOXKlWzfvp2cnBxmz57N448/fg/vmoiIiIj8WSi5/wOTyUT37t357bffeO2112jSpAlwo9ylbdu2tGjRghdffJHOnTtjNBr57LPPWLx4MR4eHly/ft0SJyYmhnXr1uHo6EinTp0ICAigRo0aRZ53+/bteHp68v3333Ps2DHCw8O5evUqPXv2xNvbG4CjR4/y7bffUqtWLVatWkVcXBzr1q3D3t6ea9f+94TZSpUqERYWxpdffsmSJUsICQm5R3dLRERERP5MNKH2D+zs7AgPD2fnzp388ssvnDhxAoCQkBCWLVtG48aNWbJkCePHjwfAy8uLsWPH8vXXX2MymSxxWrRogZubG+XKlePxxx8nLi6u0PONHj0af39/fvrpJ4KCgjh48CAvv/wydnZ2VKlShaZNm3L48GEAGjVqRK1atQDYu3cvffr0sZTn5P2qANChQwcAGjZsWOR5RURERMT2aOS+CBUqVKBZs2bs2rULT09PAOrVq0e9evXo0qUL7dq146OPPmLy5Mn8/PPP7Nixgx49erB27VrgRulOHjs7u3yJ/83yau6Lw8XFpVjHOTg4AGA0Gos8r4iIiIjYHo3c3yQxMdFSWpORkcGePXuoU6cOqampREZGWo47duwYNWvWBOC3336jSZMmvP3221SqVIlLly6VqA/e3t5s3LgRk8lEYmIiBw4coHHjxgWOe/7551m9ejU5OTkA+cpyRERERKRs0sj9TeLj4xk7diwmkwmz2UynTp1o27YtKSkpLFq0iODgYJycnHB2dmbq1KkATJ8+nXPnzmE2m2nevDlPPvkkMTExd92H9u3bc+jQIfz9/TEYDLz33ntUrVqVM2fO5DuuV69enD17li5dumBvb0/v3r3p169fia5fREREREo3g9lsNj/oTsiDl51gvZF/h6ruJCcnWy2em5ub1WKJiIiI2DKV5YiIiIiI2Agl9yIiIiIiNkLJvYiIiIiIjVDNvYiIiNEPA/0AACAASURBVIiIjdDIvYiIiIiIjdBSmAJA0pYDVotV0df7nqyWoxV4RERERG5NI/ciIiIiIjZCyb2IiIiIiI1Qci8iIiIiYiOU3IuIiIiI2Agl9yIiIiIiNqLMJvf169fH39+fLl260K1bN3766acSx4yJiWHnzp2F7gsNDWXy5Mn5tgUEBHD48OFbxkxMTKRXr1507dqVAwfyr2izfft2unbtSpcuXfDz8+Orr74CYO7cubzwwgv4+/vj7+/PzJkzS3BVIiIiIlJalNmlMJ2cnAgPDwdg165dzJo1i5UrV5YoZkxMDNHR0bRp08YaXQRg7969eHp6EhISkm97dnY2EyZMYM2aNVSvXp2srCxiY2Mt+wcOHMjgwYOt1g8RERER+fMrsyP3N0tJSaFChQoAxMfH89e//hV/f386d+5sGS338vJi2rRpvPzyywwcOJBffvmFgIAA2rVrx9atW8nKymLOnDls2LABf39/NmzYcEd98PLy4pNPPqFLly707t2b33//nZiYGGbMmMHWrVvx9/cnIyPDcnxqaiomkwl3d3cAHB0dqVOnjpXuiIiIiIiURmU2uc/IyMDf359OnTrxf//3fwwfPhyA9evX06pVK8LDwwkPD+fJJ58EIC0tjebNmxMREYGrqyuzZ89myZIlzJ8/nzlz5uDo6EhgYCB+fn6Eh4fj5+d3R/1JS0ujSZMmfPPNN3h7e/P1119Tv379fDGdnJwsx7u7u+Pj40Pbtm0ZOXIk33zzDbm5uZb9y5Yts5Tl7Nq1ywp3TERERET+7FSWAxw6dIigoCDWr19Po0aNGD9+PDk5Ofj6+lK/fn0AHBwcaN26NQCenp44Ojri4OCAp6cncXFxtz2fwWC45XYHBwfatm0LQMOGDfnxxx9vGzMkJITjx4+zd+9elixZwp49e/joo48AleWIiIiIlEVlduT+Zl5eXly9epXExESaNm3KypUr8fDwYOzYsaxbtw64kXznJeJGoxFHR0fLv00m023P4e7uTlJSUr5t165do1KlSoXGL05MgHr16jFw4ECWLFnCpk2binfBIiIiImKTlNwDp0+fttSvx8XFUaVKFXr37k2vXr04cuRIseO4urqSmppa6L5GjRpx6NAhEhISADh8+DBZWVnUqFHjrvqcmppKZGSk5f2xY8eoWbPmXcUSEREREdtQZsty8mruAcxmM9OmTcPOzo6oqCgWL16Mvb09Li4uTJs2rdgxmzVrxsKFC/H392fo0KH56u6rVKnC+PHjGTJkCLm5ubi4uDBr1iyMxrv7fmU2m1m0aBHBwcE4OTnh7OzM1KlT7yqWiIiIiNgGg9lsNj/oTsiDl7TlwO0PKqaKvt4kJydbLZ6bmxvAPYkpIiIiYktUliMiIiIiYiOU3IuIiIiI2Agl9yIiIiIiNkLJvYiIiIiIjdCEWhERERERG6GRexERERERG1Fm17mX/BKWRFgtVtXXX+b4hatWi1fvoRtP8c2Ot15Mh2o3Yi7dFm21mIN8GlotloiIiMjd0Mi9iIiIiIiNUHIvIiIiImIjlNyLiIiIiNgIJfciIiIiIjZCyb2IiIiIiI0oM6vl1K9fH09PT8xmM3Z2dkyYMIFnnnmmRDFjYmKIj4+nTZs2AISGhjJ9+nQ8PDwAqFevHh07duT06dMMGTKk2HEXLFjA+vXrMRqNGI1GJk+eTJMmTQgICCA+Ph4nJycAhg0bRqdOnfK1/eSTT1i3bh3Xr1/n0KFDJbo+ERERESldykxy7+TkRHh4OAC7du1i1qxZrFy5skQxY2JiiI6OtiT3AH5+fgQHB+c7rl27dsWOeejQIXbs2EFYWBiOjo4kJiaSnZ1t2T9z5kwaNWpUZPu2bdvy17/+lY4dO97BlYiIiIiILSgzyf3NUlJSqFChAgDx8fG8++67pKSkYDKZ+OCDD/D29sbLy4tXX32VH374gapVqzJy5EhmzJjBhQsXGD9+PC+88AJz5swhIyODgwcPMnTo0ELPFRoaSnR0NMHBwYwdO5by5csTHR1NQkIC7733XoGR94SEBCpVqoSjoyMAlStXvqNre/rpp+/ijoiIiIiILSgzyX1GRgb+/v5kZmaSkJDA8uXLAVi/fj2tWrVi2LBhmEwm0tPTAUhLS6N58+YEBQUxYsQIZs+ezZIlSzh9+jRBQUG0a9eOwMBAS+IONxL5DRs2cPDgQQD69++PwWDI14/4+HhWrVrFmTNnCi2radmyJfPnz6djx460aNECPz8/nnvuOcv+0aNHW8pyli1bRqVKle7NDRMRERGRUqfMJPc3l+UcOnSIoKAg1q9fT6NGjRg/fjw5OTn4+vpSv359ABwcHGjdujUAnp6eODo64uDggKenJ3FxcUWe549lOaGhofn2+/r6YjQaeeKJJ/j9998LtHd1dSU0NJQDBw4QGRnJu+++y6hRo+jevTtw+7IcERERESm7yuRqOV5eXly9epXExESaNm3KypUr8fDwYOzYsaxbtw64kdznjbobjUZLmYzRaMRkMt31ufPi3IqdnR3NmjUjMDCQCRMm8P3339/1+URERESk7CiTyf3p06cxmUy4u7sTFxdHlSpV6N27N7169eLIkSPFjuPq6kpqaqpV+3bmzBnOnj1reR8TE8NDDz1k1XOIiIiIiG0qM2U5eTX3AGazmWnTpmFnZ0dUVBSLFy/G3t4eFxcXpk2bVuyYzZo1Y+HChfj7+xc5ofZOpaWlMWXKFK5fv46dnR2PPvookydPLnb76dOns379etLT02ndujW9evXirbfeskrfREREROTPzWA2m80PuhPy4CUsibBarKqvv8zxC1etFq/eQzcmDWfHWy+mQ7UbMZdui7ZazEE+Da0WS0RERORulMmyHBERERERW6TkXkRERETERii5FxERERGxEUruRURERETu0rhx42jRogWdO3cudL/ZbGbKlCm0b9+eV155Jd/KjGFhYXTo0IEOHToQFhZmlf5oQq2IiIiIyF3av38/Li4ulgek/tHOnTtZsWIF//znP/n5558JCQnhP//5D9euXaNHjx6sXbsWg8FA9+7dCQ0NpWLFiiXqT5lZClNuLet8vNViOdaqRmxiitXiPVy5PADJyclWi+nm5gbA/lOXrBaz6RPVSbieYbV4VSs4WS2WiIiI3BtNmzYlNja2yP1bt26la9euGAwGnn76aa5fv058fDxRUVG0bNkSd3d3AFq2bMmuXbuK/AWguJTci4iIiIhNOtp6eInaHx7RhtWrV1ve9+nThz59+txRjMuXL1O9enXL++rVq3P58uUC2z08PLh8+XKJ+gtK7kVERERECnU3yfyDpgm1IiIiImKbDIaSvazAw8ODS5f+VwZ86dIlPDw8Cmy/fPkyHh4eJT6fknsRERERsU0GY8leVuDj48O6deswm83897//xc3NjWrVqtGqVSt2795NUlISSUlJ7N69m1atWpX4fCrLERERERGbZDBaZ/T9VkaOHElUVBRXr16ldevWvPXWW+Tk5ADQt29f2rRpw86dO2nfvj3Ozs58+OGHALi7uzN8+HB69uwJwIgRIyyTa0tCS2EKoNVyrEGr5YiIiPy5xPgElqh9/W1zrNST+6fMjNzXr18fT09PzGYzdnZ2TJgwgWeeeaZEMWNiYoiPj6dNmzYAhIaGMn36dEu9VL169ejYsSOnT59myJAhxY67YMEC1q9fj9FoxGg0MnnyZJo0aUJAQADx8fE4Od1I+oYNG0anTp0s7dLT03n77bf57bffsLOzo23btowePbpE1ygiIiJSalmpbr40KTPJvZOTE+Hh4QDs2rWLWbNmsXLlyhLFjImJITo62pLcA/j5+REcHJzvuHbt2hU75qFDh9ixYwdhYWE4OjqSmJhIdna2Zf/MmTNp1KhRke1ff/11mjdvTlZWFgMHDmTnzp35+iciIiJSZii5LxtSUlKoUKECAPHx8bz77rukpKRgMpn44IMP8Pb2xsvLi1dffZUffviBqlWrMnLkSGbMmMGFCxcYP348L7zwAnPmzCEjI4ODBw8ydOjQQs8VGhpKdHQ0wcHBjB07lvLlyxMdHU1CQgLvvfdevpF3gISEBCpVqoSjoyMAlStXLvZ1OTs707x5cwAcHR156qmnrLJeqoiIiEipdB9q7v9sykxyn5GRgb+/P5mZmSQkJLB8+XIA1q9fT6tWrRg2bBgmk4n09HQA0tLSaN68OUFBQYwYMYLZs2ezZMkSTp8+TVBQEO3atSMwMNCSuMONRH7Dhg0cPHgQgP79+2P4wzfG+Ph4Vq1axZkzZwqU1cCNp5PNnz+fjh070qJFC/z8/Hjuuecs+0ePHm0py1m2bBmVKlUq9HqvX7/O9u3bGTBggBXunoiIiIiUBmUmub+5LOfQoUMEBQWxfv16GjVqxPjx48nJycHX15f69esD4ODgQOvWrQHw9PTE0dERBwcHPD09iYuLK/I8fyzLCQ0Nzbff19cXo9HIE088we+//16gvaurK6GhoRw4cIDIyEjeffddRo0aRffu3YHbl+UA5OTkMHLkSAICAqhVq1Yx7o6IiIiI7fnjIGtZUCbXuffy8uLq1askJibStGlTVq5ciYeHB2PHjmXdunXAjeQ+7wNhNBotZTJGoxGTyXTX586Lcyt2dnY0a9aMwMBAJkyYwPfff39H55gwYQK1a9dm4MCBd9lLERERERvwJ3iI1f1WZkbub3b69GlMJhPu7u7ExcVRvXp1evfuTVZWFkeOHKFr167FiuPq6kpqaqpV+3bmzBmMRiO1a9cGbkzafeihh4rd/pNPPiElJYWQkBCr9ktERESk1FHNve3Kq7kHMJvNTJs2DTs7O6Kioli8eDH29va4uLgwbdq0Ysds1qwZCxcuxN/fv8gJtXcqLS2NKVOmcP36dezs7Hj00UeZPHlysdpeunSJzz//nDp16tCtWzcA+vXrR69evazSNxEREZHSpCyW5eghVgLoIVbWoIdYiYiI/Lkcf/m9ErWvFzHDSj25f8rMyL2IiIiIlDEqyxERERERsRFK7kVEREREbIPBUPYWhlRyL8CNOnlryquTt6a8OnlravpEdavGU528iIjIn0gZnFBb9r7OiIiIiIjYKI3cCwCXrqVZLVZ1dxeyLyVaLZ5D9crAvVktx9oxz1+x3ipBtf5y71YJEhERKRNUcy8iIiIiYhvK4jr3Su5FRERExDaVweReNfciIiIiIjZCI/ciIiIiYptUcy8iIiIiYiNUllP61K9fH39/f8tr4cKFdxXHx8eHxETrrfBys9jYWDp37lzo9saNG+Pv74+fnx/BwcHk5uaW6FyRkZEMHTq0RDFEREREbIHBYCjRqzQq9SP3Tk5OhIeHP+hu3LVHHnmE8PBwcnJyGDBgAFu2bKFDhw63bZeTk4O9fan/84mIiIjcO3alM0EvCZvNDn18fOjatSvbt28nJyeH2bNn8/jjj5OamsqUKVOIjo4G4M0336Rjx4752i5dupS1a9cC0LNnTwYOHEhaWhrvvPMOly5dIjc3l+HDh+Pn50d0dDQfffQRaWlpVKpUialTp1KtWjWio6MZP348AC1btrxtf+3t7fHy8uLcuXPExsYyfvx4rl69SuXKlZk6dSoPPfQQY8eOxdHRkZiYGJ555hlee+01Jk6cSGJiInZ2dnz66acApKWlERgYyIkTJ2jQoAEzZ84std8+RURERKT4Sn1yn5GRgb+/v+X90KFD8fPzA6BSpUqEhYXx5ZdfsmTJEkJCQvjss88oX7483377LQBJSUn54kVHRxMaGsrXX3+N2Wymd+/ePPfcc5w/f55q1apZyn6Sk5PJzs5mypQpfPbZZ1SuXJkNGzbwySefMHXqVMaNG0dwcDBNmzZl2rRpt72O9PR09u7dS2BgIFOmTKFbt25069aNNWvWWM4BcPnyZb766ivs7Ozo1asXQ4YMoX379mRmZpKbm8vFixc5evQoERERVKtWjb59+3Lw4EG8vb2tcr9FRERESo0yOLhZ6pP7W5Xl5JW3NGzYkM2bNwOwd+9eZs2aZTmmYsWK+docPHgQX19fXFxcAGjfvj0HDhzghRdeYNq0acyYMYO2bdvi7e3NiRMnOHHiBIMGDQIgNzeXqlWrcv36dZKTk2natCkA/v7+7Nq1q9A+/vbbb/j7+2MwGGjXrh1t2rRhzJgxzJ0719J2xowZluM7deqEnZ0dKSkpXL58mfbt2wNQrlw5yzGNGzemevXqADz55JPExcUpuRcREZEyx2Ao9dNL71ipT+5vxcHBAQCj0YjJZCpRrMcee4zQ0FB27tzJ7Nmzad68Oe3bt6du3bqsXr0637HXr18vdty8mvvicnZ2vu0xjo6Oln/b2dmV+NpFRERESqUyuBRmmfs68/zzz/Pll19a3v+xLMfb25stW7aQnp5OWloaW7Zswdvbm8uXL+Ps7Iy/vz+DBw/m6NGjPPbYYyQmJnLo0CEAsrOzOXnyJBUqVMDNzY0DBw4AWEqAisvLy4uIiAhL28JG3cuXL0/16tXZsmULAFlZWaSnp9/ReURERERsmsFQslcpVOpH7v9Yc//CCy8wevToIo8fNmwYkydPpnPnzhiNRt588818q9M0aNCA7t2706tXL+DGhNqnnnqKXbt2MX36dIxGI/b29nzwwQc4OjoyZ84cpkyZQnJyMiaTiQEDBlC3bl2mTp3K+PHjMRgMxZpQe7MJEyYwbtw4Fi9ebJlQW5jp06cTHBzMp59+ioODg2VCrYiIiIiUTQaz2Wx+0J2QB+/StTSrxaru7kL2Jes9M8ChemXgxiRma3Fzc7snMc9fSbFavFp/KQ/cm+sWEREpC868XvgAaXHVWTLOSj25f0r9yL2IiIiISKHKYM29knsRERERsU2ltG6+JMrchFoREREREVulkXsRERERsUmG+zBy/8MPPxASEkJubq7lAaM3+/DDD4mMjARuLARz5coVy4qK9evXx9PTE4AaNWrw+eefl7g/Su4FuDEJ1pryJsFa072YDGrtmHmTYK1Jk2BFRETu0j2uuTeZTEyePJmlS5fi4eFBz5498fHx4YknnrAcM378eMu/V6xYwdGjRy3vb/Uw1rul5F4AiP/Ceh+sakP9yTgZa7V4TnUfBu7NqjHpR89aLabzU7VJ2rzfavEqtr/xhOPSsKKPiIjIn9I9Tu5/+eUXHn30UWrVqgXAyy+/zNatW/Ml9zeLiIjgrbfeuqd9UnIvIiIiIjappGU5q1evZvXq1Zb3ffr0oU+fPpb3ly9fpnr16pb3Hh4e/PLLL4XGiouLIzY2lubNm1u2ZWZm0r17d+zt7RkyZAi+vr4l6i8ouRcRERERKdQfk/mSiIiIoGPHjtjZ2Vm2bd++HQ8PD86fP8+AAQPw9PTkkUceKdF5tFqOiIiIiNgmo7Fkr9vw8PDg0qVLlveXL1/Gw8Oj0GM3bNjAyy+/XKA9QK1atXjuuefy1ePfLSX3IiIiImKbDIaSvW6jUaNGnD17lvPnz5OVlUVERAQ+Pj4Fjjt9+jTXr1/Hy8vLsi0pKYmsrCwAEhMT+emnn4qs1b8TKssREREREdt0j5fCtLe3Jzg4mDfeeAOTyUSPHj2oW7cun376KQ0bNqRdu3bAjVF7Pz+/fHMATp8+zcSJEzEYDJjNZv72t78puRcRERERKYrhHq+WA9CmTRvatGmTb9vbb7+d731hK+Q888wzfPvtt1bvT5kry/n9998ZNWoU7dq1o3v37vTp04fNmzc/6G7lExISwgsvvEBubu6D7oqIiIiIlCJlKrk3m82MGDECb29vtm7dSmhoKLNmzco3EeJ2cnJy7mEPITc3ly1btlCjRg2ioqIeSB9EREREbMI9rrn/MypTZTn79u3DwcGBvn37WrbVrFmTgIAAAGJjYxkzZgzp6ekATJgwgWeeeYbIyEg+/fRTKlSowK+//sqmTZsYPnw4ly5dIjMzk/79+1uWSfrPf/7DokWLcHNz48knn8TR0ZHg4GASExOZOHEiFy5cAG48rezZZ58t0MfIyEieeOIJ/Pz8iIiIsKyFOnfuXH777TfOnz/PQw89xP/93/8VGu+XX34hJCSEzMxMnJyc+PDDD6lTp869u6kiIiIif1alNEEviTKV3J88eZKnnnqqyP1/+ctfWLp0KeXKlePs2bOMHDmS0NBQAI4ePcq3335reQLZhx9+iLu7OxkZGfTs2ZMOHTqQlZXFggULCA0NxdXVlQEDBvDkk08CN0ptBgwYgLe3NxcuXGDw4MFs3LixQB8iIiJ4+eWX8fX1ZdasWWRnZ+Pg4ADcmHixatUqnJycGDVqVKHx6tSpw5dffom9vT179uzhk08+Ye7cuda+lSIiIiJ/evej5v7Ppkwl9380adIkDh48iIODA2vXriUnJ4fJkydz7NgxjEYjZ8+etRzbqFEjS2IPsGLFCkut/sWLFzl37hy///47TZs2xd3dHYBOnTpZYuzZs4dTp05Z2qekpJCamoqrq6tlW1ZWFjt37mTs2LGUL1+eJk2asHv3btq2bQuAj48PTk5Ot4yXnJxMUFAQ586dw2AwkJ2dbd2bJiIiIiJ/WmUqua9bty7ff/+95f3EiRNJTEykZ8+eACxbtowqVaoQHh5Obm4ujRs3thzr4uJi+XdkZCR79uxh9erVODs7ExAQQGZm5i3PnZuby9dff025cuWKPGb37t0kJyfTpUsXANLT0ylXrpwluXd2dr5tvH/84x80a9aM+fPnExsbS//+/W93W0RERERsUxksyylTE2qbN29OZmYmq1atsmzLyMiw/Ds5OZmqVatiNBoJDw/HZDIVGic5OZmKFSvi7OzM6dOn+e9//wvcGN3fv38/SUlJ5OTk5Psi0apVK1asWGF5HxMTUyBuREQEU6ZMYdu2bWzbto2tW7eyZ88eyxyAmxUVLzk52fK0s7CwsGLdFxERERGbZDSU7FUKlank3mAwMH/+fPbv34+Pjw89e/YkKCiI0aNHA/Daa68RFhZGly5dOHPmTL7R+pu1bt2anJwcXnrpJT7++GOefvpp4MYjhIcOHUqvXr3o27cvNWvWxM3NDYD333+f6OhoXnnlFfz8/Pj3v/+dL2Z6ejq7du3ixRdftGxzcXHh2WefZfv27QX6UFS8N954g1mzZtG1a1etqiMiIiJlmsFgKNGrNDKYzWbzg+6ELcmro8/JyeHNN9+kR48etG/f/kF367bivwi3WqxqQ/3JOBlrtXhOdR8GbvwqYS15X7rSj561Wkznp2qTtHm/1eJVbN8UsP51n7+SYrV4tf5S3mqxRERErO38+wtL1L5WyBAr9eT+KVM19/fDvHnz2LNnD5mZmbRq1QpfX98H3SURERERKSOU3FtZUFDQg+6CiIiIiECZnFCr5F5EREREbFJZXOdeNfciIiIiYpNiJy4uUfuHJw22Uk/unzK1Wo6IiIiIiC1TWY4AcPHjr6wWq8aoV0s8O/1meTPV78VqOSn7jlgtZvnmDUg9cMxq8Vy9nwSsf9334j7GL/zGajGrDelitVgiIlLGqeZeRERERMRGlMGaeyX3IiIiImKTSuuDqEpCyb2IiIiI2KYymNxrQq2IiIiIiI3QyL2IiIiI2KSyuM69Ru7/4Pfff2fUqFG0a9eO7t2706dPHzZv3lystl5eXgW2/fvf/2bdunV31IecnByaN2/OzJkz76idiIiIiNzEaCjZqxTSyP1NzGYzI0aMoGvXrnz88ccAxMXFsW3btgLH5uTkYG9/+9vXt2/fO+7Hjz/+SO3atfnuu+8YNWpUoZNBTCYTdnZ2dxxbREREpMwwlL1x7LJ3xbewb98+HBwc8iXkNWvWJCAgAIDQ0FD+/ve/079/fwYOHFismHPnzmXx4sWcPn2anj17WrbHxsbyyiuvFNomIiKC/v37U6NGDQ4dOmTZ7uPjw4wZM+jWrRvfffcdu3fvpk+fPnTr1o3AwEBSU1MBmDdvHj169KBz585MmDABPYRYREREyiSDoWSvUkjJ/U1OnjzJU089dctjjh49ypw5c1i5cuUdxX788cfJzs7m/PnzAGzYsIGXXnqpwHGZmZns2bMHHx8fOnfuTERERL797u7uhIWF0aJFCxYsWMDSpUsJCwujYcOGLF26FIB+/fqxdu1a1q9fT0ZGBtu3b7+jvoqIiIhI6aTk/hYmTZpEly5d6NGjh2Vby5YtcXd3v6t4L730Ehs3bgRg48aN+Pn5FThm+/btNGvWDCcnJzp06MCWLVswmUyW/Xltfv75Z06dOkXfvn3x9/dn3bp1XLhwAYDIyEh69erFK6+8wr59+zh16tRd9VdERESkNDMYDSV6lUaqub9J3bp1+f777y3vJ06cSGJiYr5yGmdn57uO7+fnx9tvv0379u0xGAzUrl27wDEREREcPHgQHx8fAK5du8a+ffto2bJlvvObzWZatmzJrFmz8rXPzMxk0qRJrF27lho1ajB37lwyMzPvus8iIiIipVYpLa0pCY3c36R58+ZkZmayatUqy7aMjAyrxX/kkUcwGo189tlnhZbkpKSkcODAAXbs2MG2bdvYtm0bwcHBrF+/vsCxTz/9ND/99BPnzp0DIC0tjV9//dWSyFeqVInU1FQ2bdpktf6LiIiIlCpaLadsMxgMzJ8/n6lTp7Jo0SIqV66Ms7Mzo0ePLlb79PR0WrdubXk/aNCgAsf4+fkxffp0tm7dWmDf5s2bad68OY6OjpZt7dq1Y8aMGWRlZeU7tnLlykydOpWRI0da9r3zzjs89thj9OrVi86dO1OlShUaNWpUrL6LiIiISOlnMGspFQEufvyV1WLVGPUq599faLV4tUKGAJCcnGy1mG5ubgCk7DtitZjlmzcg9cAxq8Vz9X4SsP5134v7GL/wm/9n787jqizz/4+/DiiCiiwqWIJmJbnhvmZlgrsguFLTqEw69rXMbcyl0kbGMs1v1ljZ8DXXFlcWkTFL0bHUa0M6jAAAIABJREFUbDRLzSWXVEBlUVFAZD2/P/hxJga3PDcq57yfj8d5PDz3ue7Pfd33nLGP1/lc12VYTK9R/QyLJSIi9u38e6utOr/O+CEG9eTu0ci9iIiIiNgmO6y5V3IvIiIiIrapgtbNW0MTakVERETENt2FTay2b99Oz5496d69O5GRZcuSo6Ki6NixIyEhIYSEhLBmzRrLZ9HR0fTo0YMePXoQHR1tyC1r5F5ERERE5A4UFhYSERHBkiVL8Pb2ZtCgQQQEBPDoo4+WatenTx9mzJhR6lhGRgYffPAB69atw2QyMWDAAAICAnBzc7OqT0ruBSieBGukkkmwRiqZvGmk6h2bGhqvZBKskYy+7/J4jpoEKyIi96Py3ohq//791K9fH19fXwD69u3Lli1byiT31/Ptt9+W2hy1c+fOfPPNNwQFBVnVJ5XliIiIiIhtMjlY97qFlJQU6tSpY3nv7e1NSkpKmXZfffUVwcHBjB07lnPnzv2uc38vjdwLABlf7jYslnuvDuWy3GJFiHn1p2OGxavaoiEAeUlphsV08qldLs+xPJYAvfKvfYbFrNGllWGxRESk4rB25H7VqlWsWrXK8j4sLIywsLDfFaNr164EBQXh5OTEypUrmTJlCsuXL7eqXzej5F5EREREbJOVS2HeKpn39vbm/PnzlvcpKSl4e3uXauPh4WH58+DBg3nnnXcs537//felzm3fvr1V/QWV5YiIiIiI3BF/f39OnTpFYmIieXl5xMfHExAQUKpNamqq5c8JCQk88sgjADzxxBN8++23XL58mcuXL/Ptt9/yxBNPWN0njdyLiIiIiG0q502sKlWqxIwZMxg5ciSFhYUMHDiQhg0b8v7779OsWTMCAwNZsWIFCQkJODo64ubmxuzZswFwd3fnxRdfZNCgQQC89NJLlsm11jCZzWaz1VGkwlPNvTExVXNvPdXci4iIUVI/2WDV+V4jrFu55l7QyL2IiIiI2CRTOY/c349Uc2+QVq1uf2QwKirqpksdFRQU0LFjR+bNm2dE10RERETETii5vweio6NLTa74bzt27OChhx7iyy+/5EZVU4WFheXVPRERERHb4GCy7lUBqSynHB0+fJg33niDnJwc6tWrx1tvvcWuXbs4ePAgkyZNwtnZmVWrVuHs7FzqvPj4eIYNG8YXX3zBvn37aN26NQABAQH07t2bnTt3MnLkSNzc3FiwYAF5eXn4+voye/ZsqlWrxgcffMDWrVvJzc2lVatWRERE2OXPUiIiImLn7DD/0ch9OZo8eTKTJk0iLi4OPz8/PvjgA3r16kWzZs2YN28esbGxZRL73Nxcdu7cSUBAAEFBQcTHx5f63N3dnejoaDp16sTChQtZsmQJ0dHRNGvWjCVLlgDwxz/+kXXr1rFhwwauXbvG1q1b79o9i4iIiNwvTCaTVa+KSMl9OcnMzCQzM9OyGUH//v3Zs2fPLc/bunUrHTp0wNnZmR49erB58+ZSJTh9+vQB4KeffuL48eM8++yzhISEEBMTw9mzZwHYvXs3gwcPJjg4mO+++47jx4+Xwx2KiIiI3OdUliP3Wnx8PHv37rVsgJCRkcF3331H586dAXBxcQHAbDbTuXNn3n333VLn5+bmMnPmTNatW8cDDzzAggULyM3Nvbs3ISIiIiL3hEbuy4mrqys1atSwjNbHxsbSrl07AKpVq0Z2dnaZc7KystizZw/btm0jISGBhIQEZsyYwYYNZddobdmyJT/88AOnT58G4OrVq/z666+WRN7Dw4Ps7Gw2bdpUXrcoIiIicn/TyL3cqZycHJ566inL+z/96U/MmTPHMqG2ZMIrFJfovPHGG2Um1H799dd07NgRJycnS5zAwEDeeecd8vLySl3P09OT2bNnM3HiRMtn48ePp0GDBgwePJigoCBq1aqFv79/ed+6iIiIyH3JZLK/cWztUCuAdqg1KqZ2qLWedqgVERGjXFi5xarzaz4TaFBP7h6N3IuIiIiIbaqgpTXWsL/fKkREREREbJRG7kVERETEJlXUteqtoeReRERERGyTHSb3mlArIiIiIjbpYtS/rDrfc0AXg3py92jkXgDjV42pCCvbAOSnXjIsZmUvD1Iv5xgWz8uteMMyo+87LzHVsHhOvl4ApGdeMyxmLdfipWFzz6QYFrNKPe9y+f6IiIjcb5Tci4iIiIhtssOyHCX3IiIiImKTTHa4FKaSexERERGxTUruRURERERshB2W5WgTKxERERERG6GRexERERGxSSaT/Y1jV8g7btWqVbnF3rx5M8HBwfTq1YugoCC+/PLLO46VlJREUFDQdY83b96ckJAQy+vs2bOMHTv2d8XfunUroaGh9OvXjz59+rBy5UoAFixYwJNPPmmJPW/evDu+BxEREZEKy8Fk3asC0sj9bxw5coQ5c+awePFifH19SUxM5E9/+hM+Pj40a9bM0GvVq1eP2NjYUsf+/ve/3/b5+fn5TJ8+nbVr11KnTh3y8vJISkqyfB4eHs6IESMM66+IiIhIhaOa+4rr8OHDDBkyhODgYF566SUuX77MhQsXGDBgAFCcuD/22GOcPXsWgG7dupGTU3rDoU8++YQXXngBX19fAHx9fXnhhRdYsmQJAEOHDuXAgQMAXLx4kYCAAKB4JP4Pf/gD/fv3p3///vzwww+/u/+/HeWPiopizJgxjBgxgh49ejB37twy7bOzsyksLMTd3R0AJycnHn744d99XRERERFbZTKZrHpVRDaT3E+ePJlJkyYRFxeHn58fH3zwATVr1iQ3N5esrCz27NlDs2bN2LNnD8nJydSsWRMXF5dSMY4fP15mhN7f35/jx4/f9No1a9ZkyZIlREdHM3/+fGbNmnXL/p45c8ZSNjNz5swynx8+fJj33nuPuLg4Nm7cyLlz50p97u7uTkBAAF27dmXixImsX7+eoqIiy+dLly61xP/mm29u2R8RERERqfhsoiwnMzOTzMxM2rdvD0D//v0ZN24cUFyfv3fvXv7973/zP//zP3zzzTeYzWbatGlj2PULCgqIiIjgyJEjODg4cOrUqVue899lOb8tqQHo1KmTZYv7Rx55hOTkZB544IFSbd58802OHj3Krl27WLx4MTt37uTtt98GVJYjIiIiUlHr5q1hMyP3N9K2bVv27t3L2bNnCQwM5MiRI+zdu5e2bduWafvII49w8ODBUscOHjxoGc13dHTEbDYDkJeXZ2mzdOlSatWqRWxsLOvWrSM/P9/qfjs5OVn+7OjoSGFh4XXbPfbYY4SHh7N48WI2bdpk9XVFREREbIbJZN2rArKJ5N7V1ZUaNWqwZ88eAGJjY2nXrh1QnNyvX7+e+vXr4+DggJubG9u3b7/uyP2IESOIjIy0jKInJSWxbNkyywh43bp1Lcn/b1fRyczMpHbt2jg4OBAbG3vDRNxI2dnZ7N692/L+yJEj1K1bt9yvKyIiIlJR2GPNfYUsy8nJyeGpp56yvP/Tn/7EnDlzeOONN8jJycHX15fZs2cD4OPjg9lstiT7bdq04fz587i5uZWJ27hxYyZNmsTo0aPJy8sjOTmZZcuWWSaqPv/884wfP57Vq1fTpUsXy3l/+MMfePnll4mJieHJJ5+katWq5Xn7AJjNZhYtWsSMGTNwdnbGxcXFcs8iIiIiYp9M5pI6Eylj3rx5/PTTT3zyySelymRsUWZmpmGxXF1dDY8HxvcRID/1kmExK3t5kHo559YNb5OXW/GEb6PvOy8x1bB4Tr5eAKRnXjMsZi1XZwByz6QYFrNKPe9y+f6IiMj97crW37+C4W/V6NraoJ7cPRVy5P5umTRp0r3ugoiIiIjcKTucUKvkXkRERERs0t2om9++fTtvvvkmRUVFDB48mFGjRpX6fMmSJaxZswZHR0c8PT156623LPMkGzdujJ+fHwAPPPAAH3/8sdX9UXIvIiIiIrbJoXzXjiksLCQiIoIlS5bg7e3NoEGDCAgI4NFHH7W0ady4MevWrcPFxYXPP/+cd955h/feew8AZ2fnUkujG0HJvQDG1xCXR01yecSs7OVhaLySOnkjGX3fJXXyRiqpkzdSlXrehsZTnbyIiBht//791K9fH19fXwD69u3Lli1bSiX3HTt2tPy5ZcuWrF+/vlz7pOReRERERGyTlWU5q1atYtWqVZb3YWFhhIWFWd6npKRQp04dy3tvb2/2799/w3hr164tteJjbm4uAwYMoFKlSowaNYpu3bpZ1V9Qci//34XVCYbFqjkkgGsnkg2L5/xIcV1aeax2YvTKMZc37zEsnlu34o3WjL7vM+nGxatXq/g5XozeblhMz/7Ff+ldWLnFsJg1nwnk2rGkWze8Tc4NfQBIu2LcKkG1axj/64eIiN2zMrn/72TeGrGxsRw8eJBPP/3Ucmzr1q14e3uTmJjI8OHD8fPzo169elZdR8m9iIiIiNgkUzmvluPt7c358+ct71NSUvD2LltWunPnTj7++GM+/fTTUsurl7T19fWlffv2HDp0yOrk3iZ2qBURERERKcNksu51C/7+/pw6dYrExETy8vKIj48nICCgVJtDhw4xY8YMFi5cSM2aNS3HL1++TF5eHgAXL17khx9+KFWrf6c0ci8iIiIicgcqVarEjBkzGDlyJIWFhQwcOJCGDRvy/vvv06xZMwIDA5k7dy5Xr15l3LhxwH+WvDxx4gRvvPEGJpMJs9nMn//8ZyX3IiIiIiI3dBfWue/SpQtdunQpdawkkQdYunTpdc9r3bo1cXFxhvdHyb2IiIiI2KTyrrm/H9l8zf1jjz3GpEmTLO8LCgro2LEjL7zwglVxp02bxsqVK0sd27x5MyNHjrQqLsCLL77IkCFDrI4jIiIiYtfKueb+fmTzyX3VqlU5duwY164VL1m3Y8eO685i/r369u1LfHx8qWPx8fEEBQXddoyCgoIyx65cucLPP/9MZmYmiYmJt32eiIiIiIjNJ/dQXAu1bds2oDgB79u3r+Wz/fv3ExYWRmhoKM888wwnT54E4NixYwwaNIiQkBCCg4M5depUqZidOnXi119/JTW1eJ30q1evsnPnTrp160ZSUhK9e/fm9ddfp2/fvjz//POWf1wMHTqUN998kwEDBrB8+fIyff3qq6/o2rVrmX88TJ06lRkzZjB48GDeeecdzpw5w4gRIxgwYAB/+MMfOHHiBAAJCQkMHjyY0NBQwsPDSU9PN+w5ioiIiFQoDibrXhWQXST3ffr04Z///Ce5ubkcPXqUFi1aWD57+OGH+eyzz4iJiWHs2LHMnz8fgJUrVzJs2DBiY2NZt25dqd3HABwdHenRowcbN24Eijch6NChA9WrVwfg9OnTPPfcc8THx+Pq6sqmTZss5+bn5xMVFcXzzz9fpq8lo//X+2UgJSWFlStXMm3aNKZPn8706dOJiopiypQpzJw5E4A2bdqwevVqYmJi6Nu3L4sWLTLgCYqIiIhUPCYHk1WvisguJtQ2atSIpKQkNmzYUGY2c2ZmJlOmTOH06dOYTCby8/MBaNmyJR9//DHnz5+nR48ePPTQQ2Xi9u3bl7lz5zJ8+HDi4+MJCQmxfObj40Pjxo0BaNq0KcnJ/9mxtU+fPtftZ3p6OqdPn6ZNmzaYTCYqVarEL7/8gp+fHwC9evXC0dGR7Oxs9u3bV2omdsk6qefPn2fChAmkpaWRl5eHj4/PHTwxERERERtgsotx7FLsIrkHCAgIYO7cuSxfvpyMjAzL8ffff58OHTrw4YcfkpSUxLBhwwAIDg6mRYsWbNu2jVGjRjFz5kw6depUKmbr1q1JS0vjyJEj7Nu3zzLqD5TafczR0ZHc3FzLexcXl+v2cePGjVy+fJnAwEAAsrKyiI+PtyT3JeeZzWZq1KhBbGxsmRizZs0iPDycwMBAdu/ezQcffPC7npOIiIiIzaigk2KtYTf/nBk0aBAvvfQSjz32WKnjmZmZlgm20dHRluOJiYn4+voybNgwAgMDOXr0aJmYJpOJ3r17M2XKFJ566imqVKliVR/j4+NZtGgRCQkJJCQksG7dujKlOQDVq1fHx8fHUhJkNps5cuRImfuJiYmxqj8iIiIiUrHYTXJfp04dy6j8b40cOZJ3332X0NDQUqvQbNy4kaCgIEJCQvjll18IDQ29btygoCCOHDlSapLunUhKSiI5OZmWLVtajvn6+uLq6spPP/1Upv0777zD2rVr6devH3379mXz5s0AjBkzhnHjxjFgwADc3d2t6pOIiIhIRWaPNfcms9lsvtedkHvvwuoEw2LVHBLAtRPJt254m5wfqQsU/yphFFdXVwDyElMNi+nk68XlzXsMi+fWrS1g/H2fSTcuXr1axc/xYvR2w2J69n8KgAsrtxgWs+YzgVw7lmRYPOeGxXNZ0q5cMyxm7RrOhsUSEZFiOYdOWXW+S5OHDOnH3WQ3NfciIiIiYmdUcy8iIiIiIhWVRu5FRERExDZV0Lp5ayi5FxERERGbZLLDshxNqBURERERm2TtYgolCyhUJBq5FwByz6QYFqtKPe9yWdmmIsQ0+jmC8X2sCM8RIP/cBcNiVn6gpuHxwPj7zk/LuHXD21S5tpbCFRGxx7IcTagVEREREbERGrkXEREREZtUUTeisoaSexERERGxTSb7K1JRci8iIiIitkkj9yIiIiIitsEel8K0v98qRERERERslJJ7gzz22GNMmjTJ8r6goICOHTvywgsvALBlyxYiIyPvOH50dDQTJ04sdezixYt07NiRvLy8654TFRVFRETEHV9TREREpEIzmax7VUBK7g1StWpVjh07xrVr1wDYsWMH3t7els8DAwMZNWrUHcfv3r07O3bsICcnx3Js06ZNdO3aFScnpzvvuIiIiIitcjBZ96qAlNwbqEuXLmzbtg2A+Ph4+vbta/nst6PoGzduJCgoiH79+vHcc88BUFhYyJw5cwgKCiI4OJgVK1aUil29enXat2/P1q1bLcf++c9/EhQUREJCAoMHDyY0NJTw8HDS09PL+U5FRERE7n8mk8mqV0WkCbUG6tOnDx999BFdu3bl6NGjDBw4kL1795Zp99FHH/HJJ5/g7e3NlStXAFi1ahXJycnExMRQqVIlMjLK7lTZt29f4uLi6NOnDykpKfz666907NiRrKwsVq9ejclkYs2aNSxatIipU6eW+/2KiIiIyP1Fyb2BGjVqRFJSEhs2bKBLly43bNeqVSumTp1K79696d69OwC7du3imWeeoVKl4v9J3N3Lbh3/9NNPM3PmTLKysti4cSM9e/bE0dGR8+fPM2HCBNLS0sjLy8PHx6d8blBERESkIqmgo+/WUFmOwQICApg7d26pkpz/FhERwfjx4zl37hwDBw7k0qVLtxXb2dmZJ598kq+//pp//vOflmvMmjWL5557jri4OCIiIm44wVZERETErqjmXqw1aNAgXnrpJR577LEbtjlz5gwtWrRg3LhxeHh4cP78eR5//HFWrVpFQUEBwHXLcqC4NGfJkiWkp6fTqlUrADIzMy2Td2NiYgy+IxEREZEKyg5Xy1FZjsHq1KnDsGHDbtpm7ty5nD59GrPZTMeOHWnUqBENGzbk1KlT9OvXj0qVKjFkyBD++Mc/ljm3c+fOTJkyhUGDBlkmeowZM4Zx48bh5uZGhw4dSEpKKpd7ExEREalIrjk7WnV+ZYP6cTeZzGaz+V53Qu693DMphsWqUs+bzMxMw+K5uroCVIiYRj9HML6PFeE5AuSfu2BYzMoP1DQ8Hhh/3/lp1//F7k5Url123o6IiL2x9u/pkv8mVSQqyxERERERsRFK7kVERERE7tD27dvp2bMn3bt3JzIysszneXl5jB8/nu7duzN48OBS5dP/+Mc/6N69Oz179uSbb74xpD9K7kVERERE7kBhYSEREREsWrSI+Ph4NmzYwPHjx0u1WbNmDTVq1ODrr78mPDycefPmAXD8+HHi4+OJj49n0aJFzJw5k8LCQqv7pAm1Avynvtso5VGjVhFiGv0cwfg+VoTnCP+pa79f44Hx9606eRGRimX//v3Ur18fX19foHhVwy1btvDoo49a2iQkJDBmzBgAevbsSUREBGazmS1bttC3b1+cnJzw9fWlfv367N+/37Ia4p1Sci8iIiIich2rVq1i1apVlvdhYWGEhYVZ3qekpFCnTh3Le29vb/bv318qRkpKCg888AAAlSpVwtXVlUuXLpGSkkKLFi1KnZuSYv3CHEruBYCs3YcMi1W9QxOu/nTMsHhVWzQEymdFlmsnkg2L6fxIXa4dM24ZUueGxTsNG33faVeuGRavdg1nwPjvD0BG/C7DYrr37VQhVjLKOXrGsHguj9UDIC8pzbCYTj61DYslIlIR/HcyXxGo5l5ERERE5A54e3tz/vx5y/uUlBTLxqK/bXPu3DkACgoKyMzMxMPD47bOvRNK7kVERERE7oC/vz+nTp0iMTGRvLw84uPjCQgIKNUmICCA6OhoADZt2kTHjh0xmUwEBAQQHx9PXl4eiYmJnDp1iubNm1vdJ5XliIiIiIjcgUqVKjFjxgxGjhxJYWEhAwcOpGHDhrz//vs0a9aMwMBABg0axCuvvEL37t1xc3Nj/vz5ADRs2JDevXvTp08fHB0dmTFjBo6O1u2oC0ruRURERETuWJcuXejSpUupY+PGjbP8uUqVKvz973+/7rmjR49m9OjRhvZHZTkiIiIiIjbCpkbuz58/z8yZMzlx4gRFRUU8/fTTTJ48GScnp3K7ZlRUFHPnzsXb25v8/HzCw8MZMmSIVTEXLFhA1apVGTFixE3brV27lmXLlgFgNpsZP3483bp1Y+rUqXz//feWFWEGDhzIsGHDrOqTiIiISEWTbyq/HPB+ZTPJvdlsZsyYMTz77LMsXLiQwsJCpk+fzvz585kyZUq5XrtPnz7MmDGDCxcu0LdvXwICAqhVq9YtzyssLLzj2qrz58/z8ccfEx0djaurK9nZ2Vy8eNHy+eTJk+nVq9cdxRYRERGxBUVm873uwl1nM8n9d999R5UqVRg4cCAAjo6OvPrqqwQGBjJ27Fg2btzI119/TVZWFikpKfTr18+yW1hsbCwrVqwgPz+fFi1a8MYbb+Do6EirVq0YNmwYW7duxdnZmY8++uimSXvNmjWpV68eZ8+e5dixY8yZM4fCwkKaNWvGzJkzcXJyIiAggN69e7Nz505GjhyJq6sr8+fPp7CwEA8PD8tI/PHjxxk6dChnz55l+PDhZUbeL1y4QLVq1ahatSoA1apVo1q1auXxaEVERESkgrCZmvtjx47RtGnTUseqV6/OAw88wOnTpwE4cOAAf//731m/fj1ffvklBw4c4MSJE2zcuJEvvviC2NhYHBwciIuLA+Dq1au0aNGC9evX07ZtW1avXn3TPiQmJpKYmIi3tzdTp05l/vz5xMXFUVhYyOeff25p5+7uTnR0NJ06dWL69OmWPr3//vuWNr/++iuffPIJa9as4cMPPyQ/P7/UtRo1akStWrUIDAxk2rRpJCQklPp87ty5hISEEBISwtGjR3//AxURERGp4Mxm614Vkc2M3N+Oxx9/HA8PDwC6d+/O3r17qVSpEgcPHmTQoEEAXLt2jZo1awJQuXJlunbtCkCzZs3YsWPHdeP+85//ZO/evTg5OREREcGlS5fw8fGhQYMGAPTv35/PPvuM8PBwoLiMB+DHH3+kbdu2+Pr6AsVJf4kuXbrg5OSEp6cnnp6eXLhwodT2xo6OjixatIgDBw6wa9cuZs+ezc8//8zLL78MqCxHRERExFxRM3Qr2Exy/+ijj7Jp06ZSx7Kysjh37hz169fn0KFDmEymUp+bTCbMZjP9+/fnL3/5S5mYlStXtpzj4OBAYWHhda9dUnNf4siRIzftq4uLyy3v57eTgB0dHSkoKCjTxmQy0bx5c5o3b87jjz/Oq6++aknuRUREROydPdbc20xZTqdOncjJySEmJgYonqz69ttv079/f0syvWPHDjIyMrh27RqbN2+mdevWdOrUiU2bNnHhwgUAMjIySE5OtqovDRo0IDk52VIOFBsbS7t27cq0a9myJXv27CExMdFy7duVkpLCzz//bHl/5MgRHnzwQav6LSIiImJLVJZTgZlMJj788ENmzpzJRx99RFFREV26dGHixImWNs2bN+fll1+2TKj19/cHYPz48Tz//PMUFRVRuXJlZsyYQd26de+4L1WqVGH27NmMGzfOMqH22WefLdPO09OTiIgIXn75ZYqKiqhZsyZLliy5rWsUFBQwZ84cUlNTqVKlCp6ensycOfOO+ywiIiIiFZ/JbCfFSFFRURw8eLBU+Yz8R9buQ4bFqt6hCVd/OmZYvKotGgKQmZlpWMySPQCunbDuV5rfcn6kLteOJRkXr6EPYPx9p125Zli82jWcAeO/PwAZ8bsMi+netxO5Z1IMi1elnjdg/P82OUfPGBbP5bF6AOQlpRkW08mntmGxRETuhrOXsq06/0GPircSoc2M3IuIiIiI/JY91tzbTXI/YMAABgwYcK+7ISIiIiJ3iR3m9rYzoVZERERExN7Zzci9iIiIiNgXO5laWordTKgVEREREftyKs26hQ8equ1qUE/uHo3ci4iIiIhNKiqyvzFsJfcCGL8kZH7a7W/IdSuVa7sD5bMUptExy2PZQaOfZV5iqmHxnHy9AMhPvWRYzMpeHgBc+yXRsJjOfr4VYinMivAdB8g/d8GwmJUfqGlYLBGR/2aPBSqaUCsiIiIiYiM0ci8iIiIiNsmM/Y3cK7kXEREREZtkhyX3Su5FRERExDbZY829knsRERERsUlFSu7lVho3boyfnx+FhYU8/PDDzJkzBxcXl98VIyoqioMHDzJjxozrfv7iiy+Snp7O6tWrjeiyiIiIiNgJrZbzOzk7OxMbG8uGDRuoXLkyK1euNDT+lStX+Pnnn8nMzCQx8fpLARYUFBh6TRERERFbZDZb96qINHIzJZ+nAAAgAElEQVRvhbZt23L06FEyMjJ49dVXSUxMxMXFhYiICBo1anTD4zfz1Vdf0bVrV2rVqkV8fDz/8z//A8DUqVNxcnLi8OHDtG7dmueee46ZM2dy6dIlnJ2d+dvf/sYjjzxCQkICCxcuJD8/H3d3d+bNm0etWrXuxuMQERERua/YY829Ru7vUEFBAdu3b8fPz48FCxbQpEkT4uLimDBhAlOmTAG44fGbiY+PJygoiL59+xIfH1/qs5SUFFauXMm0adOYPn0606dPJyoqiilTpjBz5kwA2rRpw+rVq4mJiaFv374sWrTI+JsXERERqQCKzNa9KiKN3P9O165dIyQkBCgeuR80aBBDhgxhwYIFAHTq1ImMjAyysrLYu3fvdY/fSHp6OqdPn6ZNmzaYTCYqVarEL7/8gp+fHwC9evXC0dGR7Oxs9u3bx7hx4yzn5uXlAXD+/HkmTJhAWloaeXl5+Pj4lMtzEBEREZH7j5L736mk5r48bNy4kcuXLxMYGAhAVlYW8fHxluS+ZOKu2WymRo0a1+3HrFmzCA8PJzAwkN27d/PBBx+US19FRERE7ncqy5E70rZtW9avXw/A7t278fDwoHr16jc8fiPx8fEsWrSIhIQEEhISWLduXZnSHIDq1avj4+PDxo0bgeIv7pEjRwDIzMzE29sbgJiYGEPvU0RERKQiKTKbrXpVRBq5N8CYMWN49dVXCQ4OxsXFhbfffvumx68nKSmJ5ORkWrZsaTnm6+uLq6srP/30U5n277zzDn/9619ZuHAhBQUF9OnTh0aNGjFmzBjGjRuHm5sbHTp0ICkpyfgbFhEREakA7HHk3mS2x7uWMq6dSDYslvMjdclPyzAsXuXa7kDxrxJGcXV1LZeYeUlphsVz8qkNYPizzEtMNSyek68XAPmplwyLWdnLA4Brv1x/Kdg74eznS+6ZFMPiValX/OuY0d+fivAdB8g/d8GwmJUfqGlYLBGR/7b3pHX/zWvzsJdBPbl7VJYjIiIiImIjVJYjIiIiIjbpXheoZGRkMGHCBJKTk6lbty7vvfcebm5updocPnyYv/71r2RlZeHg4MDo0aPp06cPULzP0ffff2/55fTtt9+mcePGN72mknsRERERsUn3OrmPjIykU6dOjBo1isjISCIjI3nllVdKtXF2dmbOnDk89NBDpKSkMHDgQJ544glq1KgBwOTJk+nVq9dtX1NlOSIiIiJik+71JlZbtmwhNDQUgNDQUDZv3lymTYMGDXjooYcA8Pb2xtPTk4sXL97xNTVyL0DxJFgjlUyCNVLJT1L3c8ySSbBGMvpZlkyCNVLJJFgjOfv5GhqvZBKskYz+/lSE7zhoEqyIVBzWjtyvWrWKVatWWd6HhYURFhZ22+dfuHABL6/i/+7Wrl2bCxduviDB/v37yc/Pp169epZj8+fP58MPP6RTp05MmjQJJyenm8ZQci8Ahq8kUlFW/UjPvGZYzFquzuWyIovRK5OkXs4xLJ6XW/HGauWxeorRq/rkn7/zUZD/VrmOJ2D8d7I8nmO5rJZj8OpI5dFHEREj3E4yHx4eTnp6epnj48ePL/XeZDJhMpluGCc1NZVXXnmFOXPm4OBQXFwzceJEateuTX5+PtOnTycyMpIxY8bctD9K7kVERETEJt2NkvulS5fe8LOaNWuSmpqKl5cXqampeHp6XrddVlYWL7zwAhMmTCi151HJqL+TkxMDBgxg8eLFt+yPau5FRERExCbd6x1qAwICiImJASAmJobAwMAybfLy8njppZcICQkpM3E2NbX4V2yz2czmzZtp2LDhLa+p5F5EREREbJLZbLbqZa1Ro0axY8cOevTowc6dOxk1ahQABw4c4LXXXgNg48aN7Nmzh+joaEJCQggJCeHw4cMATJo0ieDgYIKDg7l06RKjR4++5TVVliMiIiIiUg48PDxYtmxZmeP+/v74+/sDWBL661m+fPnvvqaSexERERGxSUaU1lQ0Su5FRERExCbZYW5vPzX3CxcupG/fvgQHBxMSEsJPP/10r7vE1KlTCQgIICQkhP79+7Nv3z6rYw4dOpQDBw4Y0DsRERGRiu1eT6i9F+xi5H7fvn1s27aN6OhonJycuHjxIvn5+bd1bkFBAZUqld9jKtlS+Ntvv2XGjBnExcXd8pySSR4la6CKiIiISFlGTIqtaOwiuU9LS8PDw8Oyo9dv1xjdv38/b731FlevXsXJyYmlS5fy1Vdf8dVXX3H16lWKioqIjIzkb3/7G8eOHaOgoIAxY8bQrVs3CgsLmTdvHt9//z15eXk899xzPPPMM+zevZsPPvgADw8PfvnlF5o2bcq8efNuunFBu3btOHPmDABLlixh3bp1AAwaNIjw8HCSkpIYMWIELVq04OeffyYyMpL4+Hji4uIwmUw89dRTTJo0CYAvv/ySmTNnkpmZyZtvvknbtm3L69GKiIiIyH3ELpL7zp078+GHH9KzZ086depEnz59aN++PXl5eUyYMIH58+fTvHlzsrKycHZ2BuDQoUOsX78ed3d33n33XTp27Mjs2bO5cuUKgwcP5vHHHycuLg5XV1fWrVtHXl4ezzzzDJ07d7acHx8fj5eXF88++yx79+69aZKdkJCAn58fBw8eJCoqitWrV2M2mxkyZAjt27enRo0anD59mjlz5tCyZUv+9a9/kZCQwOrVq3FxcSEjI8MSq7CwkLVr1/Kvf/2LDz744KabK4iIiIjYKjscuLeP5L5atWpERUWxZ88edu/ezYQJE/jLX/5C06ZNqV27Ns2bNwegevXqlnM6d+6Mu7s7AN9++y0JCQmWXcFyc3M5d+4cO3bs4OjRo2zatAko3ub99OnTVK5cmebNm1OnTh0AGjVqRHJy8nWT+7lz57Jw4UI8PT1588032bVrF926daNq1aoAdO/enT179hAQEMCDDz5o2bVs165dDBgwABcXFwBLX0vOAWjatCnJycnGPUgRERGRCqSi1s1bwy6SewBHR0c6dOhAhw4d8PPzIyYmhqZNm96wfUnSXOLvf/87Dz/8cKljZrOZ119/nSeffLLU8d27d1tKgEquXVhYeN3rlNTcl9i1a9cN+1SS8N9KybUdHBxueF0RERERW2eHub19rJZz8uRJTp06ZXl/+PBhHnzwQRo0aEBaWhr79+8HICsri4KCgjLnP/HEE3z66aeWSRmHDh2yHP/iiy8sk3N//fVXrl69alVf27Zty+bNm8nJyeHq1ats3rz5uiP+jz/+OFFRUeTk5ACUKssRERERkXu/Q+29YBcj91evXmXWrFlcuXIFR0dH6tevT0REBE5OTsyfP59Zs2Zx7do1nJ2dWbJkSZnzX3zxRd566y369etHUVERPj4+/OMf/2Dw4MEkJyczYMAAzGYzHh4efPTRR1b1tWnTpgwYMIDBgwcDxRNqmzRpQlJSUql2Tz31FEeOHGHgwIFUrlyZLl26MHHiRKuuLSIiIiIVm8lcUf9ZIobKPZNiWKwq9bzJzMw0LJ6rqytAucRMz7xmWMxars6GP0eA/HMXDItZ+YGapF7OMSyel1tx+ZrRfQTIS0w1LKaTrxf55y8aFq9yneIVt4z+TpbHcyyP/9/kp14yLGZlL49y6aOICMDGH3616vzerRsY1JO7xy5G7kVERETE/tjjELaSexERERGxSfa4Wo5dTKgVEREREbEHqrkXEREREZsU9+8TVp0f3O4Rg3py96gsR0RERERskj2W5Si5FwBODJtlWKxHlr/O/tPphsVrXr8WUD6rflxYucWwmDWfCeT8+2sMi1dnXPFyqEavGnP2UrZh8R70qAZAauR6w2J6jeoHQNqyjYbFrD28N5nf7jcsnusTxbtaG/2dvLhmq2HxPAd3BSAvKc2wmE4+tQHI3HHAsJiunf3JO2vc3xdODxb/fVEeMUWk4rHD3F7JvYiIiIjYJnusPteEWhERERERG6GRexERERGxSUX2N3Cv5F5EREREbJM9luUouRcRERERm6TVcmzMpUuXCA8PByA9PR0HBwc8PT0BWLNmDU5OTpa2S5cuJSwsDBcXl5vGHDp0KJMnT8bf37/M8dTUVJydncnLyyM8PJywsDCr+n/lyhXi4uJ47rnnrvv5woUL2bBhAw4ODjg4OBAREUGLFi1K9QVg9OjR9OrVy6q+iIiIiMj9z6aTew8PD2JjYwFYsGABVatWZcSIEddtu3z5cvr163fL5P5m5s2bh7+/PxkZGXTv3p3+/fuX+gfE73XlyhW++OKL6yb3+/btY9u2bURHR+Pk5MTFixfJz88v0xcRERERe2V/4/Y2ntxfz65du5gzZw6FhYU0a9aMmTNnsnLlSlJTUxk+fDju7u6sWLGCN954gwMHDpCbm0vPnj0ZO3bsbV/j6tWruLi44OjoSGFhIa+99hoHDx7EZDIxcOBAwsPDGTp0KI0bN2bPnj3k5OQwZ84cIiMj+eWXX+jduzcTJkzgf//3fzlz5gwhISE8/vjjTJkyxXKNtLQ0PDw8LP94KPlFQkRERESKqebexuXm5jJ16lSWLl1KgwYNmDx5Mp9//jnh4eEsXbqUZcuWWZLkCRMm4O7uTmFhIeHh4Rw5coRGjRrdNP6kSZNwcnLi9OnTvPrqqzg6OnLw4EFSUlLYsGEDUDwaX6Jy5cpERUWxbNkyXnzxRaKionB3d6dbt26Eh4fzl7/8hWPHjll+ffitzp078+GHH9KzZ086depEnz59aN++fam+lJTlLF26FA8PD6ufn4iIiEhFUmSHy+XY1Tr3RUVF+Pj40KBBAwD69+/Pnj17rtt248aN9O/fn9DQUI4dO8aJEyduGX/evHnExcWxbds2Fi9eTHJyMr6+viQmJvK3v/2N7du3U716dUv7gIAAAPz8/GjYsCFeXl44OTnh6+vL+fPnb3qtatWqERUVRUREBJ6enkyYMIGoqKhSfYmNjSU2NlaJvYiIiNilIrN1r4rIrpL725WYmMjixYtZunQpcXFxPP300+Tm5t72+Z6enjRp0oSffvoJNzc3YmNjad++PStXruS1116ztCspqXFwcChVm+/g4EBBQcEtr+Po6EiHDh0YO3Ys06dP56uvvvoddykiIiIitsauknsHBweSk5M5ffo0ALGxsbRr1w4oHgnPzs4GIDs7GxcXF1xdXUlPT2f79u2/6zo5OTkcPnyYevXqcfHiRcxmMz179mT8+PEcOnTotuP8tk//7eTJk5w6dcry/vDhwzz44IO/q58iIiIitsxsNlv1qojsqua+SpUqzJ49m3Hjxlkm1D777LMADBkyhJEjR+Ll5cWKFSto0qQJvXv3pk6dOrRu3fq24pfUuefl5dG/f3+aNWvGkSNHmDZtGkVFRQBMnDjxtvvr4eFB69atCQoK4sknnyw1ofbq1avMmjWLK1eu4OjoSP369YmIiPgdT0NERETEtlXUBN0aJrM93rWUcWLYLMNiPbL8dfafTjcsXvP6tQDIzMw0LKarqysAF1ZuMSxmzWcCOf/+GsPi1Rk3GIC8xFTDYjr5enH20vV/DboTD3pUAyA1cr1hMb1G9QMgbdlGw2LWHt6bzG/3GxbP9YnmgPHfyYtrthoWz3NwVwDyktIMi+nkUxuAzB0HDIvp2tmfvLPG/X3h9GDx3xflEVNEKp6lCT9bdX54QFODenL32NXIvYiIiIjYD7MdrnSv5F5EREREpBxkZGQwYcIEkpOTqVu3Lu+99x5ubm5l2jVu3Bg/Pz8AHnjgAT7++GOgeJGXiRMnkpGRQdOmTZk7d+4tN0i1qwm1IiIiImI/7vWE2sjISDp16sRXX31Fp06diIyMvG47Z2dnyxLmJYk9FC9tHh4eztdff02NGjVYu3btLa+p5F5EREREbNK9Xud+y5YthIaGAhAaGsrmzZtv+1yz2cx3331Hz549geL9mbZsufVcQU2oFRERERGb9H9fW7eYQo2Lh1m1apXlfVhYGGFhYbd9ftu2bS0bpprNZtq1a3fdDVSbNGlCo0aNqFSpEqNGjaJbt25cvHiRsLAwvv76awDOnTvHn//8ZzZs2HDTa6rmXgDI2n376+/fSvUOTQxf4QXKZ7Uco2NmfX/YsHjV2zcGIPdMimExq9Tz5lSacff8UO3i55j1nXWrEfxW9Y7FKxMYvSJLzqFThsVzafIQYPz3J+fnXw2L59K0eCfu/PMXDYtZuY5nccy0DONi1nY3/DsOkJ55zbCYtVydy+U7LiL3v9tJ5sPDw0lPL7tC1/jx40u9N5lMmEym68bYunUr3t7eJCYmMnz4cPz8/Khevfod9VnJvYiIiIjYpLtRoLJ06dIbflazZk1SU1Px8vIiNTUVT0/P67bz9i4emPD19aV9+/YcOnSInj17cuXKFQoKCqhUqRLnz5+3tLsZ1dyLiIiIiE261zX3AQEBxMTEABATE0NgYGCZNpcvXyYvLw+Aixcv8sMPP/Doo49iMpno0KEDmzZtAiA6OpqAgIBbXlPJvYiIiIjYpKIis1Uva40aNYodO3bQo0cPdu7cyahRowA4cOAAr732GgAnTpxg4MCB9OvXj+HDh/PnP/+ZRx99FIBXXnmFJUuW0L17dzIyMhg8ePAtr6myHBERERGxSfd6EysPDw+WLVtW5ri/vz/+/v4AtG7dmri4uOue7+vre1vLX/6WRu5FRERERGyERu5FRERExCbZ44LvNjVy/9Zbb5WasTxixAhLPRPA22+/zZIlS6y6xu7du3nhhReue7xNmzaEhobSs2dPnnvuObZu3XrH12nVqtUt2yxcuJC+ffsSHBxMSEgIP/30EwBDhw6lZ8+ehISEEBISwpdffnnH/RARERGpqIrMZqteFZFNjdy3bt2ajRs3Eh4eTlFREZcuXSIrK8vy+b59+5g2bVq5Xb9t27b84x//AODw4cO89NJLODs706lTJ8OvtW/fPrZt20Z0dDROTk5cvHiR/Px8y+fz5s2z1HKJiIiI2CN73KvVpkbuW7VqxY8//gjAsWPHaNiwIdWqVbMsMXTixAmaNGnCrl27CA0NJTg4mGnTplmWH7rR8e3bt9OrVy/69+9v2SXsVho3bsyLL77Ip59+ChQvbfTyyy8zcOBABg4cyN69ewHIzs5m2rRpBAcHExwcbFnuqETJ7mTbtm0rdTwtLQ0PDw+cnJwA8PT0vK21T0VERETshdls3asisqnk3tvbG0dHR86ePcu+ffto2bIlzZs358cff+TAgQP4+flhNpuZOnUq8+fPJy4ujsLCQj7//HNyc3NveHz69Ol8/PHHREVFkZaWdtv9adq0KSdPngTgzTffZPjw4axbt44FCxbw+uuvA/DRRx9RvXp14uLiiIuLo2PHjpbz09PTeeGFFxg7dixPP/10qdidO3fm3Llz9OzZk7/+9a98//33pT6fNGmSpSzn0qVLd/hERURERKQisamyHCgevd+3bx/79u3jT3/6EykpKfzwww+4urrSunVrfv31V3x8fGjQoHhr9v79+/PZZ5/RsWPH6x7v0KEDPj4+PPTQQwD069eP1atX31ZffvtT0M6dOzl+/LjlfVZWFtnZ2ezatYt3333XctzNzQ2A/Px8wsPDmTFjBu3bty8Tu1q1akRFRbFnzx52797NhAkT+Mtf/sKAAQMAleWIiIiIVNS6eWvYXHLfunVr9u3bxy+//ELDhg2pU6cOixcvpnr16pbE9245dOgQjzzyCABFRUWsXr2aKlWq3Na5lSpVomnTpnz77bfXTe4BHB0d6dChAx06dMDPz4+YmJi7fo8iIiIi9yvV3NuA1q1bs3XrVtzc3HB0dMTd3Z3MzEx+/PFHWrVqRYMGDUhOTub06dMAxMbG0q5duxsef/jhh0lOTubMmTMAxMfH31Y/jhw5wkcffcRzzz0HwBNPPMGKFSssnx8+fBiAxx9/nM8++8xy/PLlywCYTCbeeustTp48SWRkZJn4J0+e5NSpU6XiPfjgg7f7mERERERsnj3W3NvcyL2fnx+XLl0iKCio1LHs7Gw8PT0BmD17NuPGjaOwsJBmzZrx7LPP4uTkdMPjERERjBo1ChcXF9q0aUN2dvZ1r71nzx5CQ0PJycmhZs2avP7665aVcl577TUiIiIIDg6msLCQtm3bEhERwejRo4mIiCAoKAgHBwfGjBlDjx49gOKR+XfffZfRo0dTrVo1yz8UAK5evcqsWbO4cuUKjo6O1K9fn4iIiPJ6rCIiIiJSAZjM9vh7hZSRtfuQYbGqd2hCXmKqYfGcfL0AyMzMNCymq6trucTM+v6wYfGqt28MQO6ZFMNiVqnnzak04+75odrFzzHru58Ni1m9Y1MAMnccMCyma2d/cg6dMiyeS5OHAOO/Pzk//2pYPJemxfOH8s9fNCxm5TrFAyT5aRnGxaztbvh3HCA985phMWu5OpfLd1xEyt/c6O9v3egmJve/fmn0/czmRu5FREREREATakVEREREbIYd5vZK7kVERETENtlj9blq7kVERETEJr219jurzn91UMdbN7rPaOReRERERGySau7Fbp18frZhsR5ePI3Lm/cYFs+tW1ugfFbLuRi93bCYnv2fIv3zrwyLV+sPxUuiGn3fRq8iAnBu3heGxXxg0rMAHBv0umExG66dxeVN1q2Y8FtuPYtXT8hPvWRYzMpeHqR+ssGweF4jipcDLo+Vqy5t2GFYTI+gzlw7lmRYPOeGPoDxq0wd/+NMw+I9+ukbAFzZ+oNhMWt0bW1YLBFbYoe5vZJ7EREREbFN9lh9ruReRERERGxSkf3l9jjc6w6IiIiIiIgxNHIvIiIiIjZJZTkiIiIiIjZCyb1Y7dKlS4SHhwOQnp6Og4MDnp6eAKxZswYnJydL26VLlxIWFoaLi8tNYw4dOpTJkyfj7+9f6vjWrVt5//33KSoqoqCggGHDhvHMM8+wYMECVq9ebbnuk08+yaRJkwy8SxEREZH7nz3W3Cu5N5iHhwexsbEALFiwgKpVqzJixIjrtl2+fDn9+vW7ZXJ/Pfn5+UyfPp21a9dSp04d8vLySEr6z3Jy4eHhN7yuiIiIiNgmJfd3wa5du5gzZw6FhYU0a9aMmTNnsnLlSlJTUxk+fDju7u6sWLGCN954gwMHDpCbm0vPnj0ZO3bsDWNmZ2dTWFiIu7s7AE5OTjz88MN365ZERERE7nv2uImVVsspZ7m5uUydOpX58+cTFxdHYWEhn3/+OcOGDcPLy4tly5axYsUKACZMmEBUVBTr16/n3//+N0eOHLlhXHd3dwICAujatSsTJ05k/fr1FBUVWT5funQpISEhhISE8M0335T7fYqIiIjcb8xms1Wvikgj9+WsqKgIHx8fGjRoAED//v357LPPLHX5v7Vx40ZWr15NQUEBaWlpnDhxgkaNGt0w9ptvvsnRo0fZtWsXixcvZufOnbz99tuAynJERERENHIv90xiYiKLFy9m6dKlxMXF8fTTT5Obm3vL8x577DHCw8NZvHgxmzZtugs9FREREakYzGbrXhWRkvty5uDgQHJyMqdPnwYgNjaWdu3aAVCtWjWys7OB4hp6FxcXXF1dSU9PZ/v27TeNm52dze7duy3vjxw5Qt26dcvpLkRERESkIlBZTjmrUqUKs2fPZty4cZYJtc8++ywAQ4YMYeTIkXh5ebFixQqaNGlC7969qVOnDq1bt75pXLPZzKJFi5gxYwbOzs64uLgwe/bsu3FLIiIiIhVCRa2bt4aS+3L08ssvW/4cExNT5vOhQ4cydOhQy/uSevn/VjLh9reqV6/O//3f/93yuiIiIiL2Suvci4iIiIjYiHs9cp+RkcGECRNITk6mbt26vPfee7i5uZVq891335Wqvjh58iTz58+nW7duTJ06le+//x5XV1egeCC4cePGN72mknsRERERsUn3OrmPjIykU6dOjBo1isjISCIjI3nllVdKtenYsaNlA9SMjAx69OhB586dLZ9PnjyZXr163fY1NaFWRERERKQcbNmyhdDQUABCQ0PZvHnzTdtv2rSJJ598EhcXlzu+ppJ7EREREbFJRWbrXta6cOECXl5eANSuXZsLFy7ctH18fDxBQUGljs2fP5/g4GDeeust8vLybnlNk/le/14hIiIiIlIOxi7aYtX5nV3TWbVqleV9WFgYYWFhpdqEh4eTnp5e5tzx48czdepU9uzZYznWrl07/v3vf1/3WqmpqfTr149vvvmGypUrW47Vrl2b/Px8pk+fjq+vL2PGjLlpn1VzLyIiIiI2qcjK4ffrJfP/benSpTf8rGbNmqSmpuLl5UVqaiqenp43bLtx40a6d+9uSewBy6i/k5MTAwYMYPHixbfss5J7AeDKlr2GxaoR2Iacn381LJ5L0wYAXDuWZFhM54Y+AGRmZhoW09XVlazdhwyLV71DEwByT503LGaVh+qQueOAYfFcO/sDkLn9R+NiPtUSgIvRN9/I7ffw7P8U2ft+MSxetVZ+gPHfn6sHThoWr6r/wwDkJaUZFtPJpzYA6cu/NCxmrWG9yDl6xrB4Lo/VA+Dy5j23aHn73Lq15crWHwyLV6Nr8T4mp16eb1jMhxZMAODimq2GxfQc3NWwWCL2KiAggJiYGEaNGkVMTAyBgYE3bBsfH8/EiRNLHSv5h4HZbGbz5s00bNjwltdUzb2IiIiI2CSz2WzVy1qjRo1ix44d9OjRg507dzJq1CgADhw4wGuvvWZpl5SUxLlz52jfvn2p8ydNmkRwcDDBwcFcunSJ0aNH3/KaGrkXEREREZt0rzex8vDwYNmyZWWO+/v74+/vb3nv4+PDN998U6bd8uXLf/c1ldyLiIiIiE2yx3VjlNyLiIiIiE2yw9xeNfciIiIiIrbCJkfuL126RHh4OADp6ek4ODhYlh5as2YNTk5OlrZLly4lLCzsljuBDR06lMmTJ5eqjyo5npqaSpUqVahatSpvvfUWDz/8sFX9DwgIYO3atTddLiknJ4fXX1FJkdwAACAASURBVH+dX375BbPZjKurK4sWLaJatWo0btwYPz8/S9sPP/wQHx8fq/okIiIiUtEU2eHQvU0m9x4eHsTGxgKwYMECqlatyogRI67bdvny5fTr18+qbX7nzZuHv78/q1atYu7cuXz88ce3PKegoIBKle788S9fvpxatWrxv//7vwCcPHnSsi6qs7Oz5f5FRERE7JUZ+0vu7aYsZ9euXYSGhhIcHMy0adPIy8tj+fLlpKamMnz4cIYOHQrAG2+8wYABA/4fe3ceV1W1/3/8hSBDAgIpaGpOYeVAWuCEqaGICkcmcch56NbN1MARC4dEccxbevVbmpJpjoiIOIummUOihZXmBIoTYsgsh2n//uDHudJBBdxo4uf5ePh4cPbZ+73W2Rz1c9ZZe23c3d358ssvy9SGo6MjV69eRVEU5s6di4eHBxqNhh07dgBw/Phx3n33XT744APc3d3Jz88vtt93332ny1qzZg3e3t5oNBouXbqk11ZSUhJ2dna6x40aNSr2jYQQQgghxPNOUR7vz7OoUo7c/51Wq2Xy5MmEhobSsGFDJk6cyPfff8/QoUMJDQ3l22+/1U2B8ff3x8rKivz8fIYOHcq5c+d47bXXStXOgQMHaNKkCXv27OHcuXNERERw9+5devfujaOjIwB//PEHkZGR1KtXj++//57r16+zdetWjIyMSElJ0WVZW1sTHh7O2rVrWblyJbNmzSrWlq+vL8OHD2f37t20bdsWb29vGjRoAEB2djaenp5A4dJK//3vfx/3FAohhBBCPHOex2k5z8XIfUFBAXXr1qVhw8I7nXp7e3PyZMl3L9y5cyfe3t54eXlx4cKFEkfN/278+PF4enpy6tQpJk2aRExMDO7u7hgaGlKjRg2cnJw4c6bwrqAtWrSgXr16QOG3CX379tVNz7GystJlduvWDYDmzZtz/fp1vTZff/119u3bx4gRI0hNTaV37966vhZNy4mIiJDCXgghhBDiOfJcjNyXVkJCAitXrmTz5s1Ur16dyZMno9VqH3lc0Zz70njhhRdKtV/R/PkqVaqQn59f4j7VqlWjW7dudOvWjSpVqvDDDz/QuHHjUuULIYQQQlR2z+M698/FyH2VKlW4fv06V65cASAiIgInJyegsEDOzMwEIDMzEzMzMywsLLhz5w6HDh0qV3uOjo7s3LmT/Px8kpOTOXnyJA4ODnr7tW/fng0bNpCXlwdQbFrOo8TExJCamgpATk4OFy9e5KWXXipXf4UQQgghKqOCAuWx/jyLnouRexMTE0JCQhg7diz5+fk0b96c/v37A9CnTx9GjhyJra0t3333HU2bNqVHjx7UqlWLN998s1ztubq6cvr0aTw9PTEwMGDChAnUrFmTy5cvF9vPz8+P+Ph4evXqhZGREX369GHgwIGlaiMhIYHp06cDhdOOOnXqhJubW7n6K4QQQghRGT2HA/cYKM/j9xVCT9r+GNWyLLu8xb3f41TLM2tWeK1E9oVrqmWa2heu+5+enq5apoWFBRnH/1Atz7xNUwC08bdUyzRpUIv0I2dUy7NwLpyOln7oF/UyO7YEIDm8fN+clcTGuyOZp8+rlletVeF9JNR+/2SdufzoHUvphRaF99vIuZakWqZx3ZoA3Fm9S7XMGoO7c+/Pq6rlmb36MgCp+0q+rqo8qnd1JO3AKdXyLN8pHDiKH71ItcwGi/0BSN50QLVMG793VMsS4mkZtCjqsY7/zt9dpZ48Oc/FyL0QQgghhHj+PI+r5UhxL4QQQgghKqXnr7SX4l4IIYQQQlRSz+PscynuhRBCCCFEpfQ8TsuRC2qFEEIIIUSl1HfBtsc6fsP4Xir15MmRkXsBwFmXMaplvR79JcfO31Qtr22T2gDk3r6rWmZVW2tA/RU1/lq3T7W8F/t3BSAn4bZqmcb1bLmVkqVaXi2rwpuy3f768f7xvJ/tvwr/Ib21eLNqmbVG9yZ178+q5VV3LbxPhtqr5dzdfkS1PGsPZwByk0p//4xHqVqz8C7amTF/qpZZ7a1XVX+PA2jjbqiWadLwJS6/N1e1vEbLJwGQceKsapnmrV8HIO7DBaplNlw6vkJWCRLiSXoeh7CluBdCCCGEEJXS8zhBRYp7IYQQQghRKT2Pc+6luBdCCCGEEJXSc1jbU+Vpd0AIIYQQQgihDhm5F0IIIYQQlZJMyxFCCCGEEKKSeB6Le1Wm5QQGBtKuXTs8PDweue/x48c5darkpbW2bNlC27Zt8fT0xNPTk4kTJwIwefJkdu3a9cjsy5cvM2jQIDw9PenRowdBQUG6Nt966y1d7tChQ0s8ft++fSxZsqRMbf4TfPXVV7i6uuLm5sbhw4cByMnJYcCAAeTl5T3l3gkhhBBCPB2K8nh/nkWqjNz7+PgwcOBAJk2a9Mh9T5w4wQsvvMCbb5a83m3Pnj2ZOnVqqdrNz8/H0NBQ93jWrFkMGTKErl0L1wf/88//rcXs6OjIV1999dC8FStWsHTp0lK1/U9x8eJFoqKiiIqKIjExkWHDhrF7926MjY1p164dO3bsoFevZ+8GDEIIIYQQouxUGbl3cnKievXqettXr15Nz5490Wg0+Pv7c+3aNdavX09oaCienp6cPFn2Gwi5uLgwf/58vL299UbWb9++Ta1atXSPX3311VLnxsXFUbVqVWxsbHTbfvrpJ3x8fHBzc+PAgQMAaLVaAgMD0Wg0eHl5cezYMQD+/e9/s3XrVgDWr1/PuHHjSmxn69ataDQaevXqxYQJEwC4du0agwcPRqPRMGTIEG7cuEF6ejpubm5cvnwZgICAADZu3KiXt3//ftzd3TE2NqZevXrUr1+f2NhYALp27UpkZGSpz4EQQgghRGWiKMpj/XkWVeic+6+//pro6GiMjY1JS0vD0tKSfv368cILLzBixIgSj9mxYwcxMTEADB48GF9fX719rKysCA8P19s+dOhQhgwZQqtWrejQoQM+Pj5YWloCcPLkSTw9PQHo3r07//73v4sde+rUKZo1a1Zs2/Xr19m8eTNXr15l8ODBtG/fnrVr1wIQGRnJpUuXGDFiBLt372bmzJn079+funXrsmrVKjZs2KDXvwsXLrBs2TLWrVuHjY0NKSmFd44MDg7G29sbb29vNm/eTHBwMEuXLmXq1KkEBgYyePBgUlNT6dOnj15mYmIib7zxhu6xnZ0diYmJANjb23PmzJkSz7MQQgghRGX3PM65r9Di/tVXX2X8+PF06dJFN1XmUUozLadnz54lbvf19aVDhw4cPnyY/fv3s379erZt2wY8elpOUlJSsVF7gB49elClShUaNGhAvXr1uHz5MjExMQwcOBCAxo0b89JLLxEXF8drr73GmDFjGDx4MEuWLMHKykqvjWPHjtG9e3ddO0X7nD59msWLFwPg6enJ/PnzAXB2dmbXrl189tlnREREPPSclMTQ0JCqVauSkZGBubl5mY8XQgghhHiWPYe1fcWuc//111/z7rvv8scff9C7d2/VLu40MzN74HN2dnb07t2bZcuWYWRkxPnz50uVaWpqilarLbbNwMDgoY//7vz581hZWXH79m0Abt68qbuId926daXqx/0KCgq4dOkSpqampKamArB3715d5pkzZ7Czs+PWrVu6YxITE7Gzs9M9zsnJwcTEpMxtCyGEEEI8657HaTkVVtwXFBRw8+ZN2rZty/jx40lPTycrK4tq1aqRmZlZIW0eOnSI3NxcoHAkPiUlpVih+zCNGjXiypUrxbbt2rWLgoICrl69SkJCAg0bNsTR0VE3jz0uLo6bN2/SqFEjYmNjOXToEOHh4axcuZKEhARq165NREQEERER9O/fn7Zt27Jr1y7u3r0LoJuW06pVK6KiooDC6T6Ojo4AhIaG0rhxYxYuXEhgYCC5ubm4urrqMlu0aIGLiwtRUVHk5OSQkJBAfHw8Dg4OANy9exdra2uqVq36mGdWCCGEEEI8C1SZlhMQEMCJEye4e/cuHTt2ZPTo0Xh5eTFhwgQyMjJQFIXBgwdjaWnJO++8w5gxY9i/fz9BQUG6QlYNR44cYdasWbqR6gkTJlCzZk3dRakP4+TkxNy5c1EURTdCX7t2bXr37k1mZiYzZszAxMSEd999l+nTp6PRaDA0NCQkJASATz/9lJCQEOzs7Jg0aRJTpkxh9erVxUb77e3t+eCDDxg0aBBVqlShadOmzJkzh6CgIAIDA/nmm2+wsbEhJCSEy5cvs2nTJjZt2oS5uTlOTk4sW7aMMWPGFOu3vb09PXr0oGfPnhgaGjJ16lTdCkLHjx+nc+fOapxaIYQQQohnzvM4595AeVa/c6gAwcHBuLi40L59+6fdFVV89NFHjBs3joYNGz5y37MuYx65T2m9Hv0lx87fVC2vbZPaAOTevqtaZlVbawBS95V9xaYHqd7Vkb/W7VMt78X+hdep5CTcVi3TuJ4tt1KyVMurZfUCALe/3qZapu2/CpduvbV4s2qZtUb3JnXvz6rlVXd1AiA9PV21TAsLC+5uP6JanrWHMwC5SSmqZVatWXidUGbMn4/Ys/SqvfWq6u9xAG3cDdUyTRq+xOX35qqW12h54bLRGSfOqpZp3vp1AOI+XKBaZsOl40k7UPJ9acrD8p2Sl8AWoiK5TtNfabAs9s7QX8ykLHbu3MmSJUu4dOkSmzZtokWLFiXud+jQIWbNmkVBQQF+fn7861//AiAhIYGAgABSUlJo1qwZ8+bNw9jY+KFtVuic+2fNBx98wL179552N1SRk5ND165dS1XYCyGEEEJURk97zn2TJk1YvHgxTk5OD9wnPz+fzz77jBUrVhAVFcX27du5ePEiAAsWLGDo0KHs3bsXS0tLNm9+9MCXFPf3qVGjBl26dHna3VCFsbExXl5eT7sbQgghhBDPrcaNG9OoUaOH7hMbG0v9+vWpV68exsbGuLu7s3//fhRF4dixY7i5uQHg7e3N/v37H9lmhS6FKYQQQgghxNOy77O+j3X8hg0bit27qG/fvvTt+3iZf5eYmFjsJqx2dnbExsZy9+5dLC0tMTIqLNdr1aqlu5fRw0hxL4DCefJqKponr6aiefJqqt5VvQu64X/z5NVUNIdYLUXz5NVUNE9eTbVG91Y1r2ievJosLCxUzSuaJ6+monnyaqr2Vunv/l0aar/HoXCevJqK5smrqWievJoaLh2vap7MkxfPu9IU80OHDuXOnTt62z/++ONS3+dJTVLcCyGEEEIIUU6hoaGPdfyD7llkbW1NWloaeXl5GBkZcevWrVIt8S7FvQDg5qINj96plGr79+XatG9Uy6s7YwSg/sokAOk/xqqX2cGBrNhLquW94NAYUP91V8R5rIjVctRewUnt3zVAzrUk1TKN69YkecsPquXZ+HQCKubvTcqu46plWnVvg/bqo79mLi2Tlwv/41N7BZ47q3eplldjcHcAMo79rlqmedtmAFzoN021TPv1M7gbcVi1PGvPtwG49Z/HW73kfrU+fryVTIT4J2jRogXx8fEkJCRgZ2dHVFQUCxcuxMDAgDZt2rB7927c3d0JDw/HxcXlkXlyQa0QQgghhBAVYO/evXTs2JHTp0/z/vvvM2JE4YBlYmIi7733HgBGRkZMnTqVkSNH0rNnT3r06IG9vT1QeM+mVatW4erqSkpKCn5+fo9sU0buhRBCCCGEqACurq64urrqbbezs2P58uW6x506daJTp056+9WrV69Uy1/eT0buhRBCCCGEqCSkuBdCCCGEEKKSkOJeCCGEEEKISkKKeyGEEEIIISqJRxb3d+7cYdy4cXTp0gUfHx/69u3L3r17SxXeqlUrvW3r1q1j69atZepkXl4ebdu2ZcGCBWU6rqxCQ0N1fRs0aBBnzpyp0PbUoCgKwcHBuLq6otFo+P33wqXVkpOTdVdkCyGEEEKI58NDi3tFURg1ahSOjo7s37+fLVu28PnnnxdbaL9IXl5eqRrs378/Xl5eZerkkSNHaNCgAbt27UJRlBL3yc/PL1Pm3+Xl5REWFoaHh8dj5Txphw4dIj4+nj179jBz5kymT58OgI2NDba2tsTExDzdDgohhBBCiCfmocX9sWPHqFq1Kv3799dtq1OnDoMGDQJgy5YtfPDBBwwePJihQ4eWqsHFixfzzTffcOnSJXr3/t/t5a9du4ZGoynxmKioKAYPHkzt2rU5ffq0bruLiwvz58/H29ubXbt28eOPP9K3b1+8vb0ZM2YMmZmZACxZsgRfX188PDwICgoq8QPCsWPHaNasGUZG/1sdNCIiAk9PTzw8PIiNLbwBTkpKCh9++CEajYY+ffpw7tw58vLy8PX15fjxwhu7LFy4kEWLFpX4Wr7++ms0Gg29evXSfRNx9uxZ+vTpg0ajYdSoUaSmpnL9+nW6detGcnIyBQUFvPvuu/z44496efv378fLywsDAwNatmxJWloat28X3rylS5cuREZGPviXIYQQQgghKpWHFvcXLlygadOmDw34448/+PLLL1mzZk2ZGm7cuDG5ubkkJCQAsGPHDnr06KG3n1ar5aeffsLFxQUPDw+ioqKKPW9lZUV4eDjt2rVj2bJlrFq1ivDwcJo3b86qVasAGDhwIGFhYWzfvp3s7GwOHDig186pU6do1qxZsW3Z2dlEREQwbdo0pkyZAhR+OGnatCmRkZH4+/szadIkjIyMmDNnDtOnT+enn37i8OHDjBo1Sq+NH374gejoaDZu3Mi2bdsYOXIkABMnTmT8+PFERkbSpEkTlixZQp06dXjvvfeYPn06K1eu5JVXXqFDhw56mYmJidSqVUv3uFatWiQmFt7tsUWLFjJyL4QQQgjxHCnTBbUzZsygV69e+Pr66rY5OztjZWVVrsZ79OjBzp07Adi5cyc9e/bU2+fAgQO0adMGU1NTunXrxr59+4pNwSk65tdff+XixYv0798fT09Ptm7dyo0bNwA4fvw4fn5+aDQajh07xsWLF/XaSUpKwsbGptg2d3d3AJycnMjIyCAtLY2YmBg8PT0BaNeuHSkpKWRkZGBvb4+npyfvv/8+s2fPxtjYWK+No0eP4uPjg5mZGVD4wSQ9PZ309HRat24NgLe3NydPngTAz8+PzMxM1q9fz8SJE8twZgvZ2NjoRvGFEEIIIUTl99A71Nrb27Nnzx7d42nTppGcnFxsOk1RoVoePXv2ZOzYsbi6umJgYECDBg309omKiiImJgYXFxegcFrMsWPHcHZ2Lta+oig4Ozvz+eefFzteq9UyY8YMwsLCqF27NosXL0ar1eq1Y2JiorfdwMDgoY//7vz581haWvLXX38BhR84pk6dCsCYMWMeemxJ7t27p7u+ISsrC3Nzc9auXcvGjRuBwik+dnZ2xa6BuHXrFnZ2dkDhazcxMSlzu0IIIYQQ4tn00JH7tm3botVq+f7773XbsrOzVWv85ZdfpkqVKixdurTEKTkZGRmcPHmSgwcPEh0dTXR0NFOnTmX79u16+7Zs2ZJTp05x5coVoLAYjouL0xXs1tbWZGZmsnv37hL70rhxY92xRXbs2AHAyZMnsbCwwMLCAkdHR7Zt2wYUfiNgbW2Nubk5e/bsITU1lTVr1hAcHExaWhpvvPEGERERRERE0KVLF9q3b8+WLVu4d+8eUPhBxcLCAktLS91ofUREBE5OTgAsWLAAjUbDmDFjCAoKAmDAgAG6TDs7O1xcXNi6dSuKovDLL79gYWGBra0tAPHx8djb25fhNyKEEEIIIZ5lDx25NzAw4L///S8hISGsWLECGxsbzMzMGD9+fKnC7927R8eOHXWPhw0bprdPz549mTdvHvv379d7bu/evbRt27bYFJcuXbowf/58cnJyiu1rY2NDSEgIAQEBuuc+/vhjGjZsiJ+fHx4eHtSoUYMWLVqU2NeOHTvqTX0xMTHBy8uLvLw8Zs+eDcBHH33ElClT0Gg0mJmZMWfOHJKTk1m4cCGhoaHUrl2bAQMGMGvWLObOnavXxrlz5/D19aVq1ap06tSJgIAA5s6dy7Rp07h37x716tUjJCSEEydOcObMGdatW4ehoSF79uwhLCys2JQogE6dOvHDDz/g6uqKmZmZrp9Q+OGjc+fOJb5eIYQQQghR+RgoD1pb8jk0atQoJkyYUOL0oGfRgAEDWLp0KdWrV3/kvjcXbVCt3dr+fbk27RvV8urOKFyvPz09XbVMCwuLwswfY9XL7OBAVuwl1fJecGgMqP+6K+I83v56m2qZtv/qBcBZl7JPZXuQ16O/VP13DZBzLUm1TOO6NUne8oNqeTY+nYCK+XuTsuu4aplW3dugvZqoWp7Jy4XTEnMS1LveyLieLXdW71Itr8bg7gBkHPtdtUzztoULQlzoN021TPv1M7gbcVi1PGvPtwG49Z+NqmXW+riPallCVBZyh9r7jBs3jqQk9f6zfpqSk5MZNmxYqQp7IYQQQghROTx0Ws7zplGjRjRq1Ohpd0MVNjY2dO3a9Wl3QwghhBBCPEEyci+EEEIIIUQlIXPuhRBCCCGEqCRkWo4AIOnbnapl1RzSg9ykFNXyqtYsvElaRVwYqPZFd5kxf6qWV+2tVwH1L9rMvX1XtbyqttaA+hdYAqpfXBr34QLV8houLVwxTO335L0/r6qWZ/bqywDk3LijWqbxSzUAVO9nRVxQq3ZmStRR1fKs3NsBVMgF+H+t26da5ov9u5J+6BfV8iw6tgTg9jf6y1mXl+0Ijwq56FeIZ5lMyxFCCCGEEKKSkOJeCCGEEEKISkKKeyGEEEIIISoJKe6FEEIIIYSoJKS4F0IIIYQQopKQ4l4IIYQQQohKolzFfatWrUq975YtW0hMfPCSZHl5ebRt25YFC9Rbpq4koaGhbN26FYBBgwZx5syZCm1PDYqiEBwcjKurKxqNht9//73E/RYtWkSnTp30fi9r1qxh8+bNT6KrQgghhBDiH6DCR+7Dw8O5ffvBa4kfOXKEBg0asGvXLh50P638/PzH6kNeXh5hYWF4eHg8Vs6TdujQIeLj49mzZw8zZ85k+vTpJe73zjvvsGnTJr3tvr6+rFmzpoJ7KYQQQggh/ilUK+7Pnj1Lnz590Gg0jBo1itTUVHbt2sVvv/3G+PHj8fT0JDs7W++4qKgoBg8eTO3atTl9+rRuu4uLC/Pnz8fb25tdu3bx448/0rdvX7y9vRkzZgyZmZkALFmyBF9fXzw8PAgKCirxA8KxY8do1qwZRkb/u2dXREQEnp6eeHh4EBsbC0BKSgoffvghGo2GPn36cO7cOfLy8vD19eX48cKb9CxcuJBFixaVeA6+/vprNBoNvXr10n0TUdJ5uX79Ot26dSM5OZmCggLeffddfvzxR728/fv34+XlhYGBAS1btiQtLa3ED0otW7bE1tZWb7uZmRl16tTRvT4hhBBCCFG5qVbcT5w4kfHjxxMZGUmTJk1YsmQJ3bt3p3nz5ixYsICIiAhMTU2LHaPVavnpp59wcXHBw8ODqKioYs9bWVkRHh5Ou3btWLZsGatWrSI8PJzmzZuzatUqAAYOHEhYWBjbt28nOzubAwcO6PXt1KlTNGvWrNi27OxsIiIimDZtGlOmTAFg8eLFNG3alMjISPz9/Zk0aRJGRkbMmTOH6dOn89NPP3H48GFGjRql18YPP/xAdHQ0GzduZNu2bYwcOfKB56VOnTq89957TJ8+nZUrV/LKK6/QoUMHvczExERq1aqle1yrVq2HTnEqSfPmzTl58mSZjhFCCCGEEM8mVYr79PR00tPTad26NQDe3t6lKigPHDhAmzZtMDU1pVu3buzbt6/YFJyePXsC8Ouvv3Lx4kX69++Pp6cnW7du5caNGwAcP34cPz8/NBoNx44d4+LFi3rtJCUlYWNjU2ybu7s7AE5OTmRkZJCWlkZMTAyenp4AtGvXjpSUFDIyMrC3t8fT05P333+f2bNnY2xsrNfG0aNH8fHxwczMDCj8YPKw8+Ln50dmZibr169n4sSJjzxX5fXiiy8+dFqUEEIIIYSoPIwevUvFiYqKIiYmBhcXF6BwWsyxY8dwdnYG0BXKiqLg7OzM559/Xux4rVbLjBkzCAsLo3bt2ixevBitVqvXjomJid52AwODhz7+u/Pnz2Npaclff/0FFH7gmDp1KgBjxowp7UvWuXfvHrdu3QIgKysLc3Nz1q5dy8aNG4HCKT52dna6fQBu3bqFnZ1dmdrRarWYmJiUuX9CCCGEEOLZo8rIvYWFBZaWlrpR6YiICJycnACoVq2abn78/TIyMjh58iQHDx4kOjqa6Ohopk6dyvbt2/X2bdmyJadOneLKlStAYTEcFxenK9itra3JzMxk9+7dJfavcePGumOL7NixA4CTJ09iYWGBhYUFjo6ObNu2DSj8RsDa2hpzc3P27NlDamoqa9asITg4mLS0NN544w0iIiKIiIigS5cutG/fni1btnDv3j2g8IPKw87LggUL0Gg0jBkzhqCgIAAGDBigy7Szs8PFxYWtW7eiKAq//PILFhYWJc6tf5j4+HiaNGlSpmOEEEIIIcSzqVwj9/fu3aNjx466x8OGDWPu3LlMmzaNe/fuUa9ePUJCQoDCqSjTpk3D1NSUDRs26Obd7927l7Zt2xab4tKlSxfmz59PTk5OsfZsbGwICQkhICBA99zHH39Mw4YN8fPzw8PDgxo1atCiRYsS+9uxY0e9qS8mJiZ4eXmRl5fH7NmzAfjoo4+YMmUKGo0GMzMz5syZQ3JyMgsXLiQ0NJTatWszYMAAZs2axdy5c/XaOHfuHL6+vlStWpVOnToREBBQ4nk5ceIEZ86cYd26dRgaGrJnzx7CwsLw9fUtltmpUyd++OEHXF1dMTMz0/UTwNPTk4iICADmzZvH9u3bdb8XPz8/Ro8eDRReb/DRRx897NcphBBCCCEqCQPlQetPVjKjRo1iwoQJNGjQ4Gl35Yn5448/WLVqFfPnz3/kvknf7lSt3ZpDepCblKJaXtWah7o8AQAAIABJREFUVkDhtR1qsbCwACAnQb3rEYzr2ZIZ86dqedXeehWAnGtJqmUa161J7u27quVVtbUGIGXXcdUyrbq3ASB5yw+qZdr4dCLuQ/XupdFw6XhA/ffkvT+vqpZn9urLAOTcuKNapvFLNQBU76f2atkWCngYk5cLpy6qnZkSdVS1PCv3dgBkxV5SLfMFh8YA/LVun2qZL/bvSvqhX1TLs+jYEoDb3+h/Q19etiM8uBtxWLU8a8+3VcsS4ml5bu5QO27cOJKS1CuSngV3795l7NixT7sbQgghhBDiCXmqF9Q+SY0aNaJRo0ZPuxtPVNGFyUIIIYQQ4vnw3IzcCyGEEEIIUdk9N3PuhRBCCCGEqOxk5F4IIYQQQohK4rmZcy8eTu2VRFL3/qxaXnXXwnsDVMRqOcmbDqiWaeP3DsmbD6qX17szgOorD91Jz1Ytr4ZF4dK2NxesUy2z9vj+AFzoN021TPv1M0jbH6NanmWXt4AK+N2sKfleHeVRY6AboH4fAVJ2HlMt06pHW9VXrQLQxt96xJ6lZ9KgFpcGB6uW13j1pwCk/XBatUzLTq0AOOtS9psqPsjr0V+qvmoVqP//zQW/INXy7DfNBOCv9ftVy3yxXxfVsoQoDRm5F0IIIYQQopKQ4l4IIYQQQohKQop7IYQQQgghKgkp7oUQQgghhKgkpLgXQgghhBCikpDiXgghhBBCiErisYr7u3fv4unpiaenJ87Ozrz99tu6xzk5OcX2DQ0N5d69e4/MHDRoEGfOnNHbfuDAAby8vOjVqxc9e/Zk/fr1ACxevLhYuwsWlLzE1qxZs/j558LlGV1cXEhOTi7ry33icnJy+Pjjj3F1dcXPz49r167p7XPz5k0GDRpEz549cXd359tvv9U9N3fuXI4ePfokuyyEEEIIIZ6ix1rn3tramoiICKCwyH7hhRcYMWJEifuuXr2aXr16YWZmVuZ2cnNzCQoKYvPmzdSqVYucnJxihe7QoUMf2C4Ufgj59ddf+eSTT8rc9tO0adMmLC0t2bt3L1FRUSxYsID//Oc/xfYxNDRk8uTJNGvWjIyMDHx9fXF2duaVV15h4MCBBAUF0a5du6f0CoQQQgghxJOk+rSco0eP4uXlhUajITAwkJycHFavXs3t27cZMmQIgwYNAmDatGn4+Pjg7u7Ol19++dDMzMxM8vPzsbIqvIGKsbExjRo1KnWf9uzZw9tvv11s24oVK9BoNPTu3ZsrV64AcO3aNQYPHoxGo2HIkCHcuHGD9PR03NzcuHz5MgABAQFs3LhRr438/Hzmzp2Lh4cHGo2G77777oHnIzY2Fo1Gg1arJSsrC3d3d86fP6+XGR0djbe3NwBubm4cPXoURVGK7WNra0uzZs0AMDc3p1GjRiQmJgJQp04dUlJSSEpKKvW5EkIIIYQQzy5Vi3utVsvkyZNZtGgRkZGR5Ofn8/333zN48GBsbW359ttvdUWvv78/W7ZsYdu2bfz888+cO3fugblWVla4uLjwzjvvEBAQwLZt2ygoKNA9HxoaqpuWc/jwYb3jT506pSuAi1hYWBAZGcnAgQOZPXs2AMHBwXh7exMZGYlGoyE4OBgLCwumTp1KYGAgUVFRpKam0qdPH702NmzYwPXr19m6davu+AedDwcHB1xcXPjPf/7D/Pnz6dWrF02aNNHLTExMpHbt2gAYGRlhYWHB3bt3H3ierl27xtmzZ3njjTd025o2bcqpU6ceeIwQQgghhKg8VC3uCwoKqFu3Lg0bNgTA29ubkydPlrjvzp078fb2xsvLiwsXLnDp0qWHZs+aNYvQ0FAcHBxYuXIlU6ZM0T03dOhQIiIiiIiI0BuhB0hKSsLGxqbYNg8PDwDc3d355ZdfADh9+rRuu6enJzExhberd3Z2pkmTJnz22WfMmjWrxP4dPXqUvn37YmRUONPJysqKuLi4B56PUaNGceTIEX777TdGjhz50NdeGpmZmYwZM4YpU6Zgbm6u2/7iiy9y+7Z6t3YXQgghhBD/XE9ltZyEhARWrlxJaGgokZGRdO7cGa1W+8jjXn31VYYOHcrKlSvZvXt3qdszMTEpVf6DFBQUcOnSJUxNTUlNTQVg7969um8LSroA+FFSUlLIysoiMzNT17dFixbpMgHs7Oy4efMmAHl5eaSnp2Ntba2XlZuby5gxY9BoNHTr1q3Yc1qtFlNT0zL3TwghhBBCPHtULe6rVKnC9evXdXPYIyIicHJyAqBatWpkZmYChaPMZmZmWFhYcOfOHQ4dOvTQ3MzMTI4fP657fO7cOerUqVPqfjVu3JirV68W27Zz504AduzYQatWrQBo1aoVUVFRAERGRuLo6AgUTvtp3LgxCxcuJDAwkNzcXFxdXXXfFrRo0YL27duzYcMG8vLygMLivWHDhg88H1OnTmXs2LFoNBrdCj/+/v66TChc1Sc8PByA3bt307ZtWwwMDIq9DkVR+OSTT2jUqBHDhg3Te+3x8fHY29uX+lwJIYQQQohn12OtlvN3JiYmhISEMHbsWPLz82nevDn9+/cHoE+fPowcORJbW1u+++47mjZtSo8ePahVqxZvvvnmQ3MVRWHFihVMnToVU1NTzMzMCAkJKXW/OnfuzPr16/Hz89NtS01NRaPRYGxszOeffw5AUFAQgYGBfPPNN9jY2BASEsLly5fZtGkTmzZtwtzcHCcnJ5YtW8aYMWOKteHn50d8fDy9evXCyMiIPn36MHDgwBLPx9atW6latSoajYb8/Hz69evH0aNH9Va16d27NxMmTMDV1ZXq1auzaNEioHAu/qeffsry5cuJiYkhIiKCJk2a6Eb8AwIC6NSpE7m5uVy5coXmzZuX+lwJIYQQQohnl2rF/ejRo3U/b926Ve/5QYMG6VbKAZgzZ06JOUUX3N7P3Nyc5cuXP7LdB3F0dGThwoWkpaVhaWlJdHQ0ABMmTCi2X506dVi9erXe8UWj/ACBgYEltmFkZERgYKDe8+3atdM7H15eXnh5eQGFS1lu2rSpxEwTE5MSVxKys7PTnQ9HR0f+/PPPEo8/ePAgbm5uuusAhBBCCCFE5fbc3KF28uTJ3Lhx42l344nKy8tj+PDhT7sbQgghhBDiCXluhnTvXx7yedGjR4+n3QUhhBBCCPEEPTcj90IIIYQQQlR2Bsrfb3kqhBBCCCGEeCbJyL0QQgghhBCVxHMz51483LXpK1XLqjt9OOmHflEtz6JjSwDS09PVy7SwACAr9uF3Ri6LFxwac2dN6W+u9ig1BroB6r/uy4lpquU1srME4Nq0b1TLrDtjBABXAharlln/89HPxHsycekW1fLsPvQBKubvTeren1XLrO7qRO7Nv1TLq1r7RQC0ceotoGDS8KUKeY+n7DymWqZVj7YAXB5e+mWiH6XRykCSNx9ULc+md2cArgd/q1pmnU+HcGXcEtXy6i/8CIDk8Ifff6csbLw7AnD5vbmqZTZaPkm1LFH5yMi9EEIIIYQQlYQU90IIIYQQQlQSUtwLIYQQQghRSUhxL4QQQgghRCUhxb0QQgghhBCVhBT35bRs2TLc3d3RaDR4enry66+/PnDfyZMns2vXrofmTZ48GRcXFzw9PfH29ub06dMl7vfFF1/w008/PVbfhRBCCCFE5SRLYZbD6dOnOXjwIOHh4RgbG5OcnExubu5j506cOJHu3bvz448/MnXqVCIjI4s9n5+fz9ixYx+7HSGEEEIIUTlJcV8OSUlJWFtbY2xsDICNjQ0AS5Ys4cCBA2i1Wlq1asVnn32GgYFBsWN/++035syZQ1ZWFtbW1oSEhGBra1tsHycnJ65evQqAi4sLPXr04KeffmLkyJEcPnyYzp070717d2JjY5k9ezZZWVkYGxsTGhqKmZkZCxYs4MSJE+Tk5DBgwAD69ev3BM6KEEIIIYR42mRaTjk4Oztz8+ZN3NzcmD59OidOnABg4MCBhIWFsX37drKzszlw4ECx43JzcwkODubLL79ky5Yt+Pr6smjRIr386OhomjRpontsZWVFeHg47u7uum05OTn4+/szZcoUtm3bRmhoKKampmzevBkLCwvCwsIICwtj48aNJCQkVNCZEEIIIYQQ/yQycl8O1apVY8uWLZw8eZLjx4/j7+/PuHHjqFatGitWrCA7O5uUlBTs7e1xcXHRHRcXF8f58+cZNmwYAAUFBdSsWVP3/Lx581i2bBk2NjbMmjVLt71nz556fYiLi6NmzZo4ODgAYG5uDsCRI0f4888/2b278E6p6enpXLlyhXr16ql/IoQQQgghxD+KFPflZGhoSJs2bWjTpg1NmjRhw4YN/Pnnn4SFhVG7dm0WL16MVqstdoyiKNjb27Nhw4YSM4vm3P+dmZlZqfulKAqffvopb7/9dtlekBBCCCGEeObJtJxyuHz5MvHx8brHZ8+epWHDhgBYW1uTmZmpGzm/X8OGDUlOTtathJObm8uFCxfK1YeGDRuSlJREbGwsABkZGeTl5dGhQwfWrVunu8A3Li6OrKyscrUhhBBCCCGeLTJyXw5ZWVkEBweTlpaGoaEh9evX57PPPsPCwgIPDw9q1KhBixYt9I4zNjbmyy+/JDg4mPT0dPLz8xkyZAj29vZl7oOxsTGLFi0iODiY7OxsTE1NWbVqFX5+fly/fh0fHx8URcHa2pqlS5eq8bKFEEIIIcQ/nBT35dC8eXPWr1+vt93f3x9/f3+97XPmzNH9/Prrr7N27dqH7nO/6OjoB+7n4ODAxo0b9Y4JCAggICDgwS9ACCGEEEJUSjItRwghhBBCiEpCinshhBBCCCEqCSnuhRBCCCGEqCSkuBdCCCGEEKKSMFAURXnanRBCCCGEEEI8PlktRwBwPfhb1bLqfDqEtB9Oq5Zn2akVALlJKaplVq1pBUDWr+W7z0BJXnjDnr/W71ct78V+XYDCuwyrxcLCgou31DuPr9QqPI8Jny5XLbNe8HsAXBm3RLXM+gs/Iv3IGdXyLJwLl7pNztA+Ys/SszE3Ienbnarl1RzSA1D//QOQuvuEapnV3VqTeytZtbyqtWwA0MbdUC3TpOFLXJu+UrW8utOHA5ASdVS1TCv3dgBcfm+uapmNlk8iefNB1fJsencG4PrMUNUy6wQNJX7sF6rlNfhiLADJ4YdUy7Tx7gjApaGzHrFn6TUO/YSz3fRX5yuv1/csUi1LPH0yLUcIIYQQQohKQop7IYQQQgghKgkp7oUQQgghhKgkpLgXQgghhBCikpDiXgghhBBCiEpCinshhBBCCCEqCdWK+2XLluHu7o5Go8HT05Nff/31oftPnjyZXbt2PXIfFxcXPD098fb25vTpkpdX/OKLL/jpp5/K3fci2dnZDBw4kPz8fI4fP87777//2JlPwm+//YZGo8HV1ZXg4GCKbl0wd+5cjh5Vb6k1IYQQQgjxz6bKOvenT5/m4MGDhIeHY2xsTHJyMrm5uWpEM3HiRLp3786PP/7I1KlTiYyMLPZ8fn4+Y8eOVaWtsLAwXF1dMTQ0VCXvSZk+fTozZ87kjTfe4L333uPQoUN06tSJgQMHEhQURLt27Z52F4UQQgghxBOgysh9UlIS1tbWGBsbA2BjY4OdnR0AS5YswdfXFw8PD4KCgijphri//fYbAwcOxMfHhxEjRnD79m29fZycnLh69SoALi4uzJ8/H29vb3bt2lXsW4DY2Fj69etHr1696N27NxkZGeTn5zN37lx8fX3RaDSsX7++xNcRGRlJly5ddI8zMjL417/+hZubG1OnTqWgoACA7du3o9Fo8PDwYP78+QDs3buXIUOGoCgKt2/fxs3NjaSkJL02rly5wtChQ+nVqxfe3t5cvXoVRVGYO3cuHh4eaDQaduzYAUBwcDBLlhTeyOfw4cMMGDBA14cit2/fJiMjg5YtW2JgYICXlxf79xfeSKlOnTqkpKSU2A8hhBBCCFH5qDJy7+zszH//+1/c3Nxo164dPXv2pHXr1gAMHDiQjz76CIAJEyZw4MABXFxcdMfm5uYSHBzM0qVLsbGxYceOHSxatIiQkJBibURHR9OkSRPdYysrK8LDw4HCwhcgJycHf39/Fi1ahIODAxkZGZiamrJ582YsLCwICwsjJyeHfv364ezsTL169XR5OTk5JCQkULduXd222NhYduzYwUsvvcTIkSPZs2cPrVq1YsGCBWzZsgVLS0uGDx/Ovn37cHV1Zffu3axdu5bDhw8zevRoatasqXeuxo8fz7/+9S9cXV3RarUUFBSwZ88ezp07R0REBHfv3qV37944Ojoybtw43c/BwcEsX76cKlWKfx5LTEykVq1ause1atUiMTFR97hp06acOnUKNze3Uv42hRBCCCHEs0qV4r5atWps2bKFkydPcvz4cfz9/Rk3bhw+Pj4cP36cFStWkJ2dTUpKCvb29sWK+7i4OM6fP8+wYcMAKCgoKFYUz5s3j2XLlmFjY8OsWf+7dXPPnj31+hEXF0fNmjVxcHAAwNzcHIAjR47w559/snv3bqDwduxXrlwpVtzfvXtXd2v1Ig4ODrp93N3diYmJwcjIiNatW2NjU3iLc41Gw88//0zXrl0JCgrCw8ODli1b4uHhode/jIwMEhMTcXV1BcDExASAmJgY3N3dMTQ0pEaNGjg5OXHmzBm6dOnCzJkzGThwIIGBgbz88sul+n3c78UXXyzxmxAhhBBCCFH5qFLcAxgaGtKmTRvatGlDkyZN2Lp1K+7u7syYMYOwsDBq167N4sWL0Wq1xY5TFAV7e3s2bNhQYm7RnPu/MzMzK3XfFEXh008/5e23337gPqampuTk5BTbZmBg8NDHf3fr1i2qVKnCnTt3KCgooEqVKgQGBvLHH39ga2vLokWLSt3nIufPn8fKykpXoOfn5+Pj4wMUTk/q378/t27dKtaHoilRAFqtFlNT0zK3K4QQQgghnj2qzLm/fPky8fHxusdnz57lpZde0hXy1tbWZGZm6kbO79ewYUOSk5N1K+Hk5uZy4cKFcvWjYcOGJCUlERsbCxSOlOfl5dGhQwfWrVunu8g3Li6OrKysYsdWr16d/Pz8Yh8+YmNjSUhIoKCggJ07d/LWW2/h4ODAzz//THJyMvn5+URFReHk5EReXh5Tpkxh4cKFNG7cmFWrVgEQEhJCREQEy5cvx9zcnFq1arFv3z6gcCrQvXv3cHR0ZOfOneTn55OcnMzJkydxcHDg+vXrrFq1ivDwcA4dOsSvv/6KoaEhERERREREMHbsWGxtbTE3N+eXX35BURS2bt1a7LqB+Ph47O3ty3U+hRBCCCHEs0WVkfusrCyCg4NJS0vD0NCQ+vXr89lnn2FpaYmfnx8eHh7UqFGDFi1a6B1rbGzMl19+SXBwMOnp6eTn5zNkyJByFaTGxsYsWrSI4OBgsrOzMTU1ZdWqVfj5+XH9+nV8fHxQFAVra2uWLl2qd7yzszMxMTG0b98egBYtWjBz5kyuXLlCmzZtcHV1pUqVKowbN0538WynTp3o2rUrS5YswdHREUdHR1577TV69+5N586dady4cbE25s2bx9SpU/niiy+oWrUqX3zxBa6urpw+fRpPT08MDAyYMGECNWrUYNiwYUycOBE7OztmzZpFYGAgmzdv1k3nKTJt2jQCAwPJzs6mY8eOdOzYESj8oHTlyhWaN29e5nMphBBCCCGePaoU982bN3/gCjT+/v74+/vrbZ8zZ47u59dff521a9c+dJ/7RUdHP3A/BwcHNm7cqHdMQEAAAQEBJb+A/2/AgAGEhobSvn172rRpU2KfADw8PPTm1BddNAyFc/0ftIZ/gwYNWL16td72SZMmMWnSpGLbQkNDdT83b95cbxnQIi1atGD79u162w8ePIibmxtGRqrNvhJCCCGEEP9gcofa+zRr1ow2bdqQn5//tLuiiry8PIYPH/60uyGEEEIIIZ4QGdL9m969ez/tLqimR48eT7sLQgghhBDiCZKReyGEEEIIISoJA6WkW8YKIYQQQgghnjkyci+EEEIIIUQlIcW9EEIIIYQQlYQU90IIIYQQQlQSUtwLIYQQQghRSUhxL4QQQgghRCUhxb0QQgghhBCVhBT3QgghhBBCVBJS3AshhBBCCFFJSHEvhBBCCCFEJWH0tDsg/nmGDx/OypUrAfjqq694//33HztzzZo1DBw4EIALFy5gb2//2Jlq+/zzzwkICADgyJEjODs7V2h7S5Ys4aOPPirzcYcPH+bWrVu0a9eOunXr6rZv3ryZ3r17P1afTp06xfXr18nPz9dt8/LyeqxMtR08eJALFy6g1Wp128pzHtXOfNLvn/KYOXMmBgYGD3z+008/LXPms/B3uyLs2bOHbt26AZCamkr16tX/cZkV8Z68ceMGL7300mPnPExWVhYmJiYYGhpWaDvlcebMGWJiYkhMTMTU1BR7e3ucnZ0f63f1119/cerUKW7fvo2JiQlNmjShefPmVKnyzxl/fRb6KP5HinuhJzk5Wffzrl27VCnuw8LCdAXAxIkTCQ8Pf+xMgLi4OL755htu3LhBXl6ebvvq1avLnHX48GHdf4QLFiyo8OJs8+bN5SogY2JiaNq0KV999RVDhgxh0KBBAKxdu/axivsJEyaQkJDAa6+9pvtP1cDAoNzFfXx8PJ9//jkXL14sVjTv37+/3H2cOnUq2dnZHD9+HD8/P3bv3k2LFi3KnadmZkW+f5KTk1m+fLneuSzr+7x58+aq9alIRf3dBvVed5GYmBiWLFmi+/dCURQMDAzK9Z5ctmyZrhAfOnSoKq9b7cyKeE+OGjVK16/Ro0ezePHix84sKCggKiqKyMhIzpw5g7GxMTk5OVhbW9OpUyf69etH/fr1y5R5+vRptm3bxsmTJ0lKStIV4p07d6ZXr15YWFiUKS8sLIw1a9ZQt25dmjVrRqNGjdBqtZw6dYoVK1Zgb2/P2LFjy/TB59ixYyxfvpyUlBSaNm2KjY0NOTk57Nu3j4SEBNzc3Bg+fDjm5uZl6ivA9evXuXLlCu3btyc7O5u8vLxy5VRkH0XFkeJe6HnYyJ4aFEVRLWvs2LH069ePPn36/CNHEN58880StyuKUqxYKa0DBw4QHh6OkZERo0ePZty4cSQkJDBlypTHPq+//fYbO3bsUO33HxgYyJgxY5g9ezarV69my5YtFBQUPFbm6dOniYyMRKPR8NFHHzFs2DDee++9f1ym2saPH0+PHj04ePAgM2bMIDw8HBsbmzLneHt7V0Dv/kfNv9ug3usu8sknnxAYGKjKiOP9r1Wt110RmWq7v18JCQmqZA4ePJh27doREBBAkyZNdL+blJQUjh8/zoIFC+jatSuenp6lyhs5ciS2trZ06dKFDz74gBdffBGtVkt8fDzHjx/nww8/ZOjQoXTp0qXUfczOzmbdunWYmpqW+PzZs2e5cuVKmYr7H374gZkzZ5Z4TF5eHgcPHuTIkSO4ubmVOhNg48aNbNiwgdTUVPbt28etW7eYNm0a3377bZlyKrKPomJJcS/0JCQk8MEHH+j9XOT//u//ypyZlpbG3r17KSgoICMjgz179hR7vmi0qqyMjIx49913y3Xs3/3111+sWrUKRVF0P99v2LBhZc60tLRk8+bN1KhRQ++5Tp06lTkvLy8PIyMjXfb//d//ERQUxJgxY8jNzS1z3v3s7e1JSkrC1tb2sXKKaLVa2rVrB0CdOnUYPXo0Pj4+jB07ttyZRf+xmpmZkZiYiLW1NUlJSY/VT7UyK+L9UyQlJQU/Pz9Wr15N69atad26Nb6+vuXOU3NEvKL+boP6r9vCwqJcf+9Kkp2dzR9//EFBQQFarZY//vijWOHbrFmzp55ZEe/J+z/8qzUQsGrVKqpWraq33crKCjc3N9zc3Mr079u8efP0PgQaGRnRrFkzmjVrxvDhw4t9Q10aAwYMeOjzr7/+epnyACZNmvTA54yMjOjatWuZM6HwW9xNmzbRp08fABo0aFDm11vRfRQVS4p7oWfp0qW6n4cPH65KZuvWrYmOjgbAycmJAwcOFHu+rAVASkoKAO+88w5r167F1dUVY2Nj3fNWVlZl7mOfPn3IzMzU+/lxeHp6cuPGjRKLew8PjzLnvfzyy5w4cYLWrVsDYGhoyOzZs1m0aJFeUVVaRR/eMjMzcXd3x8HBodh/tOX5MAdgbGxMQUEB9evXZ82aNdjZ2T32Oe3cuTNpaWmMGDECHx8fDAwMHvs6A7UyK+L9U6ToA52trS0HDx7E1taW1NTUcuepOSKu9t/t+6n1un///XcA2rRpw9y5c+nWrVuxfy/KU4jXrFmTkJAQAGrUqKH7GQqL3vJ8UFI7syLek+fOnePNN9/UfftY9HNRH0+dOlXmzKpVq6IoCrGxsSQmJgJgZ2eHg4OD7gNEScX/gxS9l+/cuVMs7/5/hx/nG6C/K+/1UwCXLl3i9u3bODg4UK1aNd32Q4cO0bFjx3JlGhsbF3t/3z9ltTwOHz7Mvn37ip3LLl26lLt/ouIZKP/U7/7EP0Zubi4XLlzAzs6OF1988Wl3BwAXFxcMDAxK/Oq6vHNonwXZ2dkAJX41nJiYiJ2dXZkzT5w48dDniz5IlFVsbCyNGzcmPT2dL774goyMDEaMGEHLli3Llfd3OTk5aLXaMs+dfdKZajhw4ACOjo7cvHmTmTNnkpmZyahRo8o0reB+Pj4+bNmyBY1GQ2RkJAC+vr6EhYWp2e3HptbrLroupSTlLcSFen788UdmzJhB/fr1df+G3bp1i6tXrzJt2jQ6dOhQpryzZ88ybdo00tPTi+VZWloybdq0cn2Ye5jOnTtz8ODBMh+3evVq1q5dS+PGjTl37hxTpkzRjYR7e3uX+5qLefPmYWlpydatWwkKCuL777/nlVdewd/fv8xZs2bNIj4+Hi8vL925TExMZOvWrdSvX79cF+GLJ0AR4m+CgoKU8+fPK4qiKGlpaUqPHj0UDw8PpUOHDkpkZGS5MveiyV7fAAAgAElEQVTv369cu3ZN93jx4sWKRqNR3n//feXq1auq9PtxbdiwQYmLi1MURVEKCgqUyZMnK2+++abi4eGh/P7770+3c0/A1atXlezsbN3je/fuKQkJCY+dm5WV9dgZ92ctWbJE+eSTTxRFUZS4uDglOjr6H5H5LL1//Pz8FEVRlOHDhysHDhxQfv/9d6VLly7lynoW/m5XhF9//VW5ffu27nF4eLjywQcfKDNnzlTu3r37j8isiPdkVlaWkpOTo3t86dIlZdWqVcqePXvKlacoitK9e/cS/625evWq0r179zLn9erVS/nll1/0tp8+fVrRaDTl6mOrVq1K/NOyZUvl9ddfL1emh4eHkpGRoSiKoiQkJCje3t5KaGiooiiK4unpWa5MRVGU/Px8ZcOGDcro0aOV0aNHKxs2bFAKCgrKldWtW7cStxcUFCiurq7l7qOoWFLcCz09e/bU/bxq1Srl3//+t6IoinL79u1y/4Pj4eGhK/Kio6OVbt26KWfOnFE2btyoDB8+vNx9XbNmjZKamqp7nJKSoqxZs6ZcWe7u7rr/tLZt26Z4e3srycnJypEjR5T+/fuXu4/PCm9vb0Wr1eoea7Va5f+xd+ZhNebvH38fZclexj4MYyQmjbSYijJ9ES3atFgSEWZkm0wpSkqIZCyDYWzZKyntTYhBthYGWQYpRYtoX8/5/P44v/N8Oyoz51mmfD2v65rr6jxnevc5zjnPcz/3577vt5WVFW29tLQ0MmXKFGJgYEAIISQzM5OsXbuW0RqXLVtG9u3bR0xMTAgh4kBj6tSprUKTy8/Ps2fPyOzZs6k1ZmZmkl9++UVmHcn6Lly4QEpLS8mjR4/IrFmziKWlJUlKSqK1Nq6+24Sw97olbN26tdH5IigoiJaWhYUFFXDfvHmT6Onpkfj4eLJt2zayZMmSVqHJxWdyxowZ1A1DVlYW0dLSIr6+vmT27Nlky5YttDQnTpxI6urqGh2vqakhEyZMoKXXHHT0CCHEwMCAFBYWNvmcvr4+Lc2G11pCCCkvLydOTk5kw4YNjM5rFRUVpL6+nnpcX19PO8liampK7ty50+j4nTt3iKmpKe018nBL6xsvwtPiNKxtvHbtGrVN2LNnT9qaAoEACgoKAMSznK2traGqqgobGxvajT6AeCpA165dqcfdunVDaGgoLS05OTnqtScnJ8Pc3ByKiorQ1dVFVVUV7TV+LAiFQqk6zXbt2jFq0t2wYQMOHDhA9T+oqKjg9u3bjNaYnZ0NZ2dnqhZbQUGB8VQRtjS5/Px4eXnB1dWVWqOKigpiY2Nl1tHX18fq1avRoUMHdO7cGcrKyjh69CjCw8Npl/hw9d0G2HvdEi5fvtzofHH58mVaWkKhkPpsx8bGws7ODkZGRli+fDlevHjRKjS5+EyWlpZi0KBBAICzZ8/CxMQEXl5e2L9/Py5dukRL09raGtOmTcO+ffsQFRWFqKgo7Nu3D7a2trT6X/T19bFgwQLExsYiLS0NaWlpiI2NxYIFCzBu3Dhaa5T0TzUFnf4pAOjRowcyMzOpx506dcKvv/6Kt2/f4vHjx7Q0AfEYVUkJJyAu56Tb0L9p0yb4+fnB2NgYTk5OcHJywpQpU7B+/XqpnhCe1gXfUMvTiC5duuDixYvo3bs30tLS4O/vD0DclNPwhCELhBBUVFRAQUEB169fl5pwQ2ckpASRSETNqgbEF0e6AWmbNm1QUFCAbt26ISUlRWpKEN3XzbYpDRfGORKUlJRw/vx5KshLSkqCoqIiI82+fftKPWY6frBdu3aorq6m3u/s7GypG5KW1OTi8yOhqqoKampqUsfoGPzExsYiISEBu3fvhru7OyZNmgRTU1NGfRBcfbcB9l63BKFQiNraWur9ra6uRm1tLS0tkUhETa9KSUmBn5+f1N9pDZpcfiYB8Qz0+fPnAxB/j+hOz1m4cCEmTJiA8+fPIyMjA4C4aTMwMBBfffWVzHpr1qzBpUuXcP78eRQUFAAQN2XPnDmT9rSkD9Wr//TTT7Q0N2/e3OjzLC8vj82bN8POzo6WJiD+3jVszu3UqRPtm7mvv/4aoaGhKCwslGqoZZLs4+EePrjnaYSvry/Wr1+PoqIieHp6Ul/ilJQUjB8/npamo6MjLCws0LlzZ3z55ZeUSdCDBw8YnSTGjh2L5cuXw97eHgBw6tQp2pmZpUuXwtraGiKRCIaGhpTT5s2bNzFgwABammyb0nBhnCNh3bp1WLlyJRVQ9OnTB5s3b6at17dvX6SlpUEgEKCurg7BwcEYMmQIozUuWbIE8+fPx6tXr+Dq6or09HTG2SO2NLn4/EhQVFREdnY2FTzFx8fT+t4oKirC3t4e9vb2yM/PR3x8PDZu3Ig3b97AxMSEVsMdV99tyXrZeN0SzMzM4OjoCCsrKwBAeHg4bZM2ExMTzJo1C4qKiujQoQM0NTUBAC9evKBt6MO2JhefyWHDhiEgIAC9e/dGdnY2ZYxVWlpKS0/CkCFDpM4P9+/fpxXYSzAwMJAK5AsLC1tdQNqnT59mn9PQ0KCtq6CggPv371ONw/fu3Wt2Pv8/pWfPntS/386dO7FkyRJGejzcwk/L4fnXyM/Px5s3b6CiokJlcAsKClBfX0/bzpwQglOnTiElJQUAoKurCxsbG9rZvfr6elRUVEhlxCsrK0EIkcqE/FMsLCwQERHR6Ge6sK0nQSgUIjAwEO7u7tS4PDqvtyHFxcXw9/dHSkoKCCHQ09PD6tWrae8GiEQixMfHQ0dHB3fu3AEhBN988w2jkXZsa7L9+ZGQk5MDLy8vpKeno2vXrvj8888RGBiI/v3709YExONPf//9dxw6dAiFhYW4du0aLR0uvtsAu6+bEILXr1/jyZMnUucLuskAAMjIyEBhYSH09PTQsWNHAGLX7MrKStoTWdjWZPszWV1djeDgYBQUFGDatGlQUVEBAKSlpSE7O5v2zdL7MJkW82/oca29cOFC/Prrr7R+9+7du/jxxx/Rq1cvEEJQVFSEbdu2seZQzeW/JQ9L/Ptl/jw87FBfX0+MjIxaehkfxMjIiNy/f5/8+eefZPLkyeT+/fvk3r171H8trdcQyQQVNqivryc//vgja3oSLC0tPwpNNqmvryebNm0ihIgb5crKyhjpVVdXk9jYWLJ48WKiq6tL3N3dyaVLl6Qa8FoDbL9uQgjfAPgRwWRazL+hxzX5+fmMfr+2tpY8evSIPHr0SGq6ERt8bP+WnyJ8WQ7PR4ucnBwGDx6MvLw8RtlBLmHblIYL4xwJw4cPx6JFizB58mQqYwjQMyGSk5NDXl6eVH0zG+jq6uLAgQMwNjammjgBeqZlXGqyiZycHFJTUwFA6n2hg6urK65duwYtLS2YmZlh69ataN++PRvLZB02X7eEESNG4O7du43q+HlaH3RNoZrDxsaGFZ0PGWMxQWLMKDnv0HEKT0lJgY6OTiNDw6ysLADMDOUaEh4eDgCsn9952IMvy+FpEkm5grGxcUsv5YPMnDkTDx48gJqamlRgRsdVNTU1FRoaGp/sCcvDw6PJ43Rr2t3c3PD06VMYGhpKBWd0pzYAYvOy92FqWsaFJtusXbsW+fn5jG+8IiIiMGHCBNo14f82bL1uCZMnT0Z2djb69esndb6QGHnxtCyhoaFSQbhQKMSePXtoB/rXrl2Drq6u1LGzZ8/C0tJSZi0ujLHy8vKwZcsWpKSkoGvXriCEoLy8HN9++y1cXV3x+eefy6S3Y8cOLF26lPVzOSA2gtu4cSO1prt372LNmjU4d+4cbU0e7uCDe55mkbhYsoVQKISJiQni4+NZ02zOXZWOq6rk9bJZT3j37l307duXakSKiIhAQkIC+vfvDxcXF5mzw2zrccmuXbuaPM52Ro6LmzGmmvn5+cjNzZWacKKlpUVbj4uLNRcIhUIUFRVJvW4mu2psv+7c3NwmjzPpXdiyZUujaSlNHZOFS5cuNZrqcvLkSUyfPl0mnfv373/webadWpni6uqK0tJS+Pv7o6SkBKtWrYK2tjbc3d1p6c2cORNfffUV3N3dUVlZiTVr1qBdu3bYsWOHzFrm5ubw9fXFN998I3U8IyMD3t7etIJcOzs7ODo6wsjIiOoTEwqFiI+Px5EjRxASEiKzJleJuT/++AP+/v5wcHBAQUEBLl++jPXr17e6zxCPGD6452mWwMBAKCoqslqu8P3338PLy4vVMpqioiL8+eefAAA1NTX06NGDlo6trS2GDRuG8+fPN3lipGOzbWlpiUOHDqF79+64desWVqxYAS8vL2RmZuLZs2cyX2TY1mvI69ev4efnh7S0NACApqYmVq9e/cGJDrJQU1ODCxcuYMqUKYy1CCG4fv06oqKikJycTLsRlAvNLVu2IC4uDkOGDJFq7Kazm/QhWlt5ydGjR7Fr1y589tlnUiNP2c6KM33dDx8+pPwWNDU1qYZQujSVDDAzM2P0uu3t7bFs2TLo6OgAAPbv348bN27gt99+k0nHwcGh2eeYlvE9f/4cBw4cQF5eHurr66njTDQB8bjWdevWoWPHjggMDGQ0NYYQgoMHD+L06dMAxNOD6M6knzRpUqNyFwkTJ07E77//zqrmh577O9hOzEm4ceMGnJycoKioiLNnz7a66UM8/4WvuedpFolZzPHjx6ljTMsVSktLYWJiwkoZjWSNW7Zsgba2Nggh8PPzg5ubGyZPniyz1t69e5GSkoIrV66wlo1ozpTGyMgI5ubmLa7XEA8PD5iammL79u0AgHPnzsHDwwOHDh2irSkUCnHlyhVER0fj2rVr0NDQYBTcZ2RkIDo6GklJSSgpKYG3tzftrB5XmklJSYiPj+ektOuvv/5CdHQ0YmJi0KVLF04u4HQJDg5GfHw8Y2+EpmDrdR85cgShoaGYOHEiAPF8cltb2w8Gwc1x4sQJnDx5Ejk5OTAzM6OOV1RUQF1dndb6JOzevRuLFi1C27Zt8ccff+DZs2fYvXu3zDpHjx5ltI4PsWzZMtjb28PW1paxf4WErKwsBAcHw8jICE+fPkVkZCRGjBghda2QhZKSEty9excDBgxAfn4+8vLypHxRZEFijGVhYUElPF6/fo2IiAjaE5e+/vpr+Pj4wNLSUkrz7NmzGD58OC1NgJs+ol9++QXx8fE4duwYHj16BAcHB6xatYr2eGwebuGDe55muXDhAuuay5YtY1Vv7969CAsLo7L1xcXFmDNnDq3gXklJCSYmJhgyZAjjbJ4Etk1puDDOkVBcXAxra2vqsZWVFY4cOUJL6+bNm4iOjsalS5egpqaGtLQ0JCUl0b5IBwUFIT4+Hn379oWpqSkWL14Ma2trWrWzXGoCwIABA1BXV8dacP/y5UvExMQgOjoabdu2RW5uLs6cOSNzPW5Djh8/DjMzM8qttaSkBNHR0Zg5cyZtzT59+qBLly60f/99uHjdYWFhCAkJoer3nZ2dYWdnRyu4NzMzg76+PoKCguDq6kod79SpE+PyOCUlJezZswdz5syBqqoqduzYQdsgSsLjx4/x119/SZl2MRlbKS8vL2VYxgaLFi2Ct7c3dHV1QQjBoUOHMG3aNMTExNDSs7Ozg7OzM6ZNm4bq6moEBgZi+vTpOHXqlMxaXBhjBQQEICwsDDt27JDSNDQ0ZNQAzEVi7t27dwgNDUWHDh2grq6OcePGYc2aNXxw30rhg3ueRvzdViCTjns6tfAfghAiVYbTvXt3MK0069WrF/bu3Yvc3Fyp7WY6db5sm9JwYZwjoXv37oiMjKS2raOjo2kFKfr6+ujXrx/s7e3h5uaGzp07w9DQkHZgD4gb7QYNGoTp06fD0NCQkRsml5qA2EDGwsICOjo6UgE+nbIuOzs7lJeXw9jYGDt37sSgQYNgaGjIKMAFgJCQEKlAvlu3bggNDaUV3Et2dgYMGAAHBweMHz9e6nXTaaDm6nUD0g63TNxuu3Tpgi5duiAoKAglJSV49eoVhEIh3r17h9zcXFq7f+rq6hAIBFR2ua6uDi9fvkR8fDwEAgFVMicru3btwo0bN/D06VMYGBjg8uXL0NDQoBXcS6a6fPfddzh+/DgmTpwo9X4zubEJCwujzmMCgQBOTk747rvvaOsdOnSIKgHt0KED1qxZg1u3btHWY9sYq127dpgxYwbrN0lcJOZWr16NoqIiyiNCTU2N0a4uD7fwwT1PIy5evPjB5+kE95KL1vtILmJ0L1pjx47FvHnzYGJiAkCcsdDX16elJeGHH36AhoYGdHR0GF38AXGPgY6ODmVKI/k3EIlE8PLyanG9hmzYsAF+fn7YuHEjBAIB1NXVad3QGBkZ4fz584iLi4OcnBz+85//MA6ar1y5gqtXryImJgYbNmzAmDFjUFNTQ+1itBZNQDx9p6kJPHTo0aMHZRBVXFyMQYMGsXIDIhKJpMoThEIh6urqaGlJTM/69euHfv36oa6ujraWBK5et5WVFWxsbKiynKSkJKndKjps374d4eHhGDhwIHWMbj17eno6o7U0R0JCAiIjI2FhYYGNGzeiqKiIdsOvlZUVdQMCAAcOHKCeY5odLi8vh7u7O1JTUyEQCKi+H7p06dIFGzdupAJ6bW1tLF68mLbe+yxYsIB1MycmAx3u3LkDLy8v5OTkQFlZGRs2bGDsCi4hLi4OmzdvZqUElod7+IZano+exMREah62pqYmdeGmi7m5OSIjI9lY2kdDUlISXrx4AWVlZUaOnRIIIbhx4wZiYmJw6dIllJWVwd/fHwYGBoydb2tra3Hx4kXExMTg9u3b0NHRwdatW1udJluUlZUhMTERMTExyMrKQllZGQ4cOMCoqTQgIAB5eXmwt7cHAJw6dQp9+/bFqlWr2Fo2Y7h43YB4gkzD88WIESMY6RkZGSEqKorVHovff/8d3377LVXmVFpaips3b2LChAm09KZNm4awsDBYWVkhODgYnTp1wpQpU1idXMYGc+fOhampKdU/dO7cOURFRdHOEC9ZsgRDhw6lSu0iIyPx8OHDZid5yQqbLuFsaFpZWcHV1RVaWlo4f/48wsLCpG6+mDB16lQcOnSoUQksPwqzlfIvGmbxfCS4u7tTP4eHh7OimZCQQP387t07xnrPnz8nixYtIiYmJmTFihXk9evXjDUlBAUFkeTkZNb0Wjtr164lM2fOJIGBgcTa2prs2rWLVf3a2lpy4cIF8uOPPxJtbW1WtcvKysjZs2dbhebSpUsJIWIX1Kb+Y4OioiJy9OhRYmdnR/T19WnrCIVCcuLECbJkyRKyZMkScvLkScYOtXPmzCElJSXU43fv3hEnJydGmhKYvu6MjAxiZmZGRo0aRWxtbcmTJ09YWRchhLi4uJCioiLW9AghZOrUqY2OMXEFXbt2LSkpKSEnTpwgEydOJObm5mTVqlVMlkiOHTvW6P0+duwYI82mXndTx1pK732Yvt6mCAoKov27FhYWH3zMhPfPYUKhkHd8bsXwwT1PIxpeRNg6OTTUYUNz+vTp5PTp0+Tp06fkt99+I4sXL2asKWHUqFFk2LBhZOTIkURdXZ2MGjWKqKurs6bf2jAxMaECu8rKSmJpacnZ36qqquJMu6XJy8sjhBDy8uXLJv9jG7Y03759SzIzMxnrsB2QNged121paUmuXLlCampqSGxsLGs3HYQQcvfuXTJ27Fji5OREFi5cSP3HhKaCJrYCqZycnFb7fs+ePZtERESQ+vp6Ul9fTyIiIsjs2bNp69na2pJbt25Rj2/fvk1sbW0ZrfHq1auNjjFNgjV1s3n9+nWZdQwNDUlCQgL13/uPmbBp0ybi5OREzpw5Q86cOUPmzZtHAgICGGnycAdfc8/TCDZqW9+HNKj+IixUglVUVMDW1hYA8OWXXzKecNIQrupeWytt27alegsUFBRYeX+ao0OHDpxptzQ//PADzp49i/79+8PPz49xD8TfwcR4ycHBAXv27EF9fT2srKzQo0cPqKurw9PTk7amnJwc8vLyqAbG3NxcTs4ldF43IQR6enoAgClTpmDfvn2srWfVqlVwdnaGsrIyayMhVVVVsXHjRqrB+fjx44zG8zo6OlKTryRNyQ2P0YHNvg0JbPX9SPDx8YG7uzvKy8sBAF27dsWmTZsYrfGXX35BQkJCI2MsJteg5cuXY+rUqXB2dkZNTQ22bNmCe/fuUfP5/yna2tpSPXPvP2YyDMPd3V2qBNbOzo5xCSwPd/DBPU8jXr9+jfXr14MQQv3cEDpTP6qrq/HgwQOIRCLU1NTgwYMHUkGkrBeu9zUk+pLHdC6E77s5CgQCKCoqom/fvjJrvU9iYiICAwPx5s0bEPGOGaNGYjb1nj17JjWnOzs7W+ox2yZErY2m3GjpONQ2/DzTfV//LcrKytC5c2eEhobCwsICS5culXrP6bBixQrMmDEDWlpaIIQgNTUVvr6+LK2YGaWlpVJTwN5/zCTo6dChA2bPns1ofe/j5eWF3bt3Y/ny5RAIBNDT04O3t7fMOjU1NaiqqsLbt29RUlJCfUbLy8uRn5/PaI1jx47F8uXLpfo2mPbr9O/fn1Wzt+HDh+PcuXNUcM90ohgAHDt2DAcPHqQmDTExxpIQEhKCwMBA2Nvbo6KiAmZmZjh58qTMOlw6Vufk5MDAwID6rlRXV+Ply5esTLDiYR8+uOdphJubG/WzqqoqK5o9e/akTjyfffaZ1EmIzmSJhnrva9KdVNFURqekpAR1dXUICgpiZCqyZcsW7N27l7XJBWzqSWYic0VVVRWjMZgNMTMzg4mJCYyNjaWmkzDBzs6u0XSKpo79HVxkqQFxRvTo0aOYM2cOq5oFBQWIi4vD8uXLGeuJRCKUlZUhPDwcd+7cAQB4enpCSUmJsTYbcJnR1NTUxNatW6lxqhKYZNo7duyIlStXorKykprJT4dTp07hyJEjKCgokMosd+7cGbNmzaKtC4ivE6dOnaKCUF1dXUaz2QFxdnj16tVS/gubNm2iHbQGBQVh/vz5UnoHDx7EihUraK+RTWMsCfLy8mjfvj2qq6tRU1ODzz//nNEuUFFREYKCglBQUIDffvsNf/31F9LT0xm9P8uWLZPyB2jTpg2WLVuGM2fO0Nbk4Q4+uOdpBJslLhLYdkrkwnmxOc0///wT69evlzIEkZUePXqwFtizrcekvONDpKWlYc2aNaisrERycjIePnyIU6dOwcfHh7bm3r17ERsbS2U0jY2NMWXKFKoURBYKCwuRn5/faNenvLwcVVVVMus13AF5f/cDoL8DIicnh+joaFaD+x9++AHz5s2DhoYG1NTUkJOTg0GDBtHWa9OmDX777TcYGxszmksuwc/P74PBkqy7h1xmNB88eABA7HQsgW6CQQJb3x1HR0c4Ojri6NGjtIy6mkMoFMLExATx8fGYPn06a7qPHj2iAnFA7L+QmZlJW+/y5cv48ccfpfQuX77MKLhn0xhLwrRp0/Cf//wHYWFhePv2LdauXYuEhATs2LGDlt6qVatgZWVF7YIMGjQIK1asYBTcC4VCqZvXdu3aMS7D4uEOPrjn4fkbRo4cicrKSkYaqqqqWL58OSZMmCB1gqSbMWRbjws2btyIAwcO4PvvvwcAqKio4Pbt24w0+/fvD2dnZzg7OyMrKwu7d+9GYGAgrQDgypUrCA8Px+vXr6WCv06dOkkFBP8ULndARo8eDV9f30Z28nSzw1OmTMGUKVOoxwMGDMDOnTsZrZFNy3u2dgz/DbhINLD93bGzs0NwcDCloa2tDTs7O7Rt25aWnpycHAYPHizVY8EGIpEIJSUl6NatGwCxYRYT522hUChVYlddXS3l0EsHto2xAMDf3x8jR44EIDZR3LNnD6MRm2/fvoWxsTHVWyIvL8+4H0RJSQnnz5/Hf/7zHwDi8cmKioqMNHm4gw/ueXj+hqKiIsYlFxUVFVBQUMDVq1eljtMNxtnW44r3+xXYaDjMzc1FbGws4uLi0KZNG9pmPJaWlrC0tERCQgKMjIwYr4urHRAA1M3L9u3bqWN0ssP79++Hs7Nzs5lxOv00Eti0vH9/91BilMXUI4ELjhw5Amtra3Tq1Alr1qzBgwcP4OrqirFjxzLSZfO7s27dOtTX11NZ9nPnzsHHxwf+/v60NUtLS2FiYgI1NTWpmzkmNfNOTk6ws7PD5MmTQQhBQkICFi1aRFvPzMwMjo6OsLKyAgCEh4fTcuVtCBfGWCoqKk3efNGlY8eOePv2LfUdz8jIoDwT6LJu3TqsXLkSfn5+IISgb9++2Lx5MyNNHu7gg3ueZklNTYWGhsbfHvtfoamA5927d0hPT2fkkgiwXxbAZZkBW/Tt2xdpaWkQCASoq6tDcHAw41IiGxsb1NfXY/Lkydi+fTsGDBjAeJ06OjpNXqyZXgzZhK3ssOTfn4vMOBeW948fP4abmxvVDKqkpISAgAAMHTqU9b9FlzNnzsDR0RF//PEH3r17h82bN8PNzY1RcM/Wd0fitvznn39KmQ3p6Ohg6tSptNcHiGuw2cbCwgKqqqq4fv06AGDXrl346quvaOstWLAAKioqSElJASAuR2Pa9Ovp6YmhQ4dSN9qRkZHw8PBgZIzl4+PT6OZr3bp1jYZZ/FNWrVqF77//HtnZ2bC3t8fbt2+lEgN0GDhwIEJCQlr1jTbPf+EdanmapSkbbLrW2O9PonkfJs1n+fn5yM3Nldq+1dLSklnn/dclEAjQvXt3jBw5knLlkxW2M6VcZF7/bkoK3Vrx4uJi+Pv7IyUlhRpFuHr1akZbuc+ePcOXX35J+/ebgmsXSzaora1FQkICcnNzUV9fTx13cXFpwVVJU1dXh5MnT7JW+gEA9vb2WL58Ob799lsAwI0bN7Bt2zZG9c1paWmNzhdMsrlmZmaIiorC+vXrMWbMGEycOJGxcylb3x3J+drS0hLbt2+nmtBzcnKwdOlSWufyhhQVFeHPP/8EAKipqdE+TzbF6dOnGWWv3+fixYus9IM05WDO1HALItwAACAASURBVNV86tSpjZxemzomC/X19Xj+/DkIIRg8eDCj7+H7LFy4EL/++itrejzsw2fueRqRnp6O9PR0FBcXS9l+l5eX065/lEyiqa2txb179zBs2DAA4gYqVVVVmef5StiyZQvi4uIwZMgQalY7QC+456KRWJJ1YitTyrYe8N9tdEk5hcT6nekITCUlJWzdupXZ4v6fyMhImJub49KlS7h06VKj5+fOnUtbOzs7W6re3MXFhfo3aC18//336NKlC77++muZR3Q25O9KHJiUVDSVfWRa+lFZWUkF9gAwZswYRv0vP/30E3JycqCiokKdLwQCAaPgXlVVFU5OTnj58iVcXV1RXl7OSn0zG98dSe7Ozc0Ns2fPpna6cnNzsWHDBkbasbGx2LJlC7S1tUEIgZ+fH9zc3DB58mTG6wbEk37YDO537NjBSnDfoUMH3L59G5qamgDEu9lM/Tvk5OSQnZ0tdfPV8Hr2T2k43rUhWVlZANgr22Q6RpWHe/jgnqcRdXV1qKyshFAopLbgAPH4NLrd+5KyAhcXF4SHh1PB/ePHjxllSJOSkhAfH88o4OGShIQEfPfdd1IZtNakB/y3VvzatWtS2cZhw4bB0tISK1eupKXb1JZy586doaqqigkTJsikJZle0/DzyBZsXay52gEBxBfTAwcO0P59CRkZGejbty9MTEzwzTffsGpYxkXpx4ABA/DLL79QN1vnzp1jVIp17949xMbGsjq21N/fH5mZmRgwYAAUFBTw9u1bRoHz9evXcezYMTx//hyAuJRq5syZGDNmjMxaDRM0dnZ2VHJGTk4OmZmZUjdOsrJ3716EhYVR2fri4mLMmTOHteCe7aICtvS4MMZqePNFCEFeXh6tz1DD8a5NwVZwz2QsNM+/Ax/c8zRCW1sb2trasLS0pAI/kUiEyspKxiYgz58/pwJ7AFBWVsbTp09p6w0YMAB1dXWtNrh/9OgR9XNwcDDjYJxtvYZIjIckPRVpaWkQiUS09WpqavDs2TPqYp+YmIjPP/8cDx8+xI0bN2TqY5AY5TRVhnL48GHaawTEjWJubm6ML9Zsmu+8j7q6Oh49eiT13aHD1atXcfXqVcTExCA6OhoGBgYwNTVlpYadrexjQzZs2ICdO3diyZIlAAANDQ1GgfPQoUNRWFiIXr16MVqXhPr6esjJyeHrr7/Gq1evcO3aNQwcOBAjRoygpZecnAxfX18sXrwYLi4uIITg/v378PT0hLe3NwwMDGTSE4lETd4Qv5+4oQMhRKoMp3v37qwG5Gx/n9gyVOPCGEtHRweJiYl49uwZALHrOp1rGpe9WG/evKHeb8nf4aJMkocd+OCep1mCgoKwbt06tGnTBtOmTUN5eTlmz56N+fPn09YcNmwYVq9eTWX0oqKiGAUsCgoKsLCwgI6OjtTJkMnUj7i4OKkxgc0d+1/D398fnp6e1EWrS5cujAKpR48e4eTJk1SAN336dMycORMnTpxg7IbakMOHDzOaAa+iotLoYn348GGoqKjIpMPltJzU1FScPXsW/fv3l/qcy7obICcnB319fejr66O2thbR0dFwcHCAi4sLK6ZGbGQfG9KtWzesWbMG5eXlEAgEjJv43r59S014aViDTCeQlLiKduzYET/88AMOHDiAESNG4MGDB7C2tsaCBQtk1jxw4AB2794t9dkbPnw4VFVVsX79epmD+549e3LWlzF27FjMmzcPJiYmAMRlOvr6+ow0f/rpJ3h7e6NLly7o06cPcnNz4enpiSNHjtDS+/nnn+Hi4gJ5eXmoqamhvLwc/v7+jIJgLoyxjh8/DjMzM+p9LykpQWhoKGbOnElbMzk5GU+ePEFNTQ11jMlnYcaMGVi2bBmMjY0BAAcPHkRYWBjnJog89OCDe55m+euvv9C5c2ecO3cO+vr6cHV1hZWVFaPgfuPGjTh58iQ1wk9LS4uRCYqhoSEMDQ1p/35T7Nu3r1Eg39Sxf8Lr16+xfv16EEKonxsi600I23oNUVVVxblz51BWVgYAjKfFlJSUoLKyktKpqqrCu3fvICcnx+pOC1vZwoYZOCY3DBkZGfDz88OzZ89QV1cHoVAIBQUFpKWl0V7b/v37af/u+9TW1iI5ORnR0dHIzc2Fg4MDJk6cyEizuLgYnTt3RmhoKN68eQOAfvaxIY8ePYK7uztKSkoAAIqKiti0aROUlZVp6Ul2ANjgyJEj+P3331FRUQFjY2NcuHABSkpKqKqqwrRp02gF94WFhU3eVKqoqKCoqEhmPS7nZbi7uyMxMRGpqakAxGU/TD9HGhoasLGxgYeHB1WK5u7uTltPKBTC1tYWGzZswJs3b+Dr68vYzIsLY6yQkBCpQL5bt26Mgntvb29UV1fjxo0bsLGxQUJCAjVHny5Hjx6Ft7c34uPj8ebNGwwZMgShoaGMNHm4gw/ueZqlvr4edXV1SEpKwqxZs9C2bVvGtart27fHnDlzWHPbbFiWUlJSglevXsmccZVw6dIlXL58Gfn5+VJBc3l5Oe3yAjc3N+pnNppg2dZrCNuW5fPnz4e5uTnGjBkDQghu3bqFRYsWobKyEjo6Oqytm836aQlMgiJfX19s27aNsmaPiIigGtpkxdnZGaamppgwYQIro+fc3Nzw5MkT6Ovrw8XFhXaQ3JDQ0FAEBQVh4MCBePnyJXx9fSmjG6asXbsWq1atkpqW4+3tTXtajra2NnJzc/HixQvo6uqiqqqK9pCAtm3bolu3bujWrRsGDhwIJSUlAOLdRLqTSTp27EjrueZgWrLWFFlZWQgICEBOTg6UlZXh7u6O3r17s6Jtb2+Pr776Co6OjlBUVMTZs2fRs2dP2nqurq7Q1dWFra0tunbtiuPHj+OLL75gtEYujLFEIhEIIdS5TCgUMnJ/TU9PR1RUFMzMzODi4oK5c+fC2dmZ0Rp79eqFcePG4ddff0WbNm3g6urKj8NsxfDBPU+z2NnZwdDQECoqKtDS0kJubi7j+sLU1FTs2rULeXl5UiP96BjdAICDgwP27NmD+vp6WFlZoUePHhg9ejQ8PDxk1urduzdUVVVx4cIFqdGcnTp1oqUH/Pfmo7lSn5bWawjbluU2NjYwMDDA3bt3AQArVqygggBZs3Hq6upNBvGEEKltZ7ZgesPwxRdfQCgUQk5ODtbW1rCwsICrq6vMOnZ2doiNjcWmTZugra0NU1NTGBgY0M6Inzt3DgoKCsjKypKanS8JLOjsLhw5cgQxMTFQUlJCTk4OVq5cyVpwz/a0nJCQEJw+fRolJSVISkpCfn4+1q5dS6vso7q6Gg8ePIBIJEJdXR0ePHgAQgijz2R2dnazE41ycnJk1qPjDvx3eHp6wsLCApqamrh48SL8/PxYGxsbERGBPXv2ICAgAI8ePcKCBQuwceNG2gmbW7duYf369Vi8eDEeP34MPz8/+Pv7M7oZ4cIYa+zYsVi+fDnVW3Tq1ClG8/glAwEUFBSQn5+P7t27o7CwkNEa58yZg169eiE6OhqvXr3C6tWroaWlxWhnhYc7+OCep1lmz56N2bNnU4/79esnsyPm+6xevRoeHh5QVVVlxa20rKyMKgewsLDA0qVLaddzq6ioQEVFBaampqzOBAbYLfXhQg/gxrK8ffv26NWrF2pqapCdnY3s7GxaY0rT09MZraMpuLphUFBQQG1tLYYPH47NmzejV69etBuTJ0yYgAkTJqCqqgoXL15EREQEfHx8oK+vD1NTU+jp6cmk9/DhQ1rr+BBt27alstYDBgxgnMVsCNvTco4fP47Q0FDY2toCEN/AFhcX09Lq2bMnVbv92WefSdVxf/bZZ7Q0d+/e3exzTk5OtDTZpqKigvr3+/LLL1lt6k9MTMSJEyfQo0cPmJqaYuLEiVi1ahVtz4CAgABs376dGiGcmJgIR0dHxMfH014jF8ZYP/30E06fPo2TJ08CAHR1dWknVQBg/PjxKC0txfz582FtbQ0AmDZtGqM1zpo1i5py1rVrV5w+fZrTIQI8zOCDe55/jEAgQGRkJHWyoEOXLl1kbgr7EEKhEAUFBYiLi8Py5ctZ0bxy5Qq2b99O7S4wyWqyXerDRemQBLYty0NDQxEcHIzXr19DRUUFd+7cwahRoxjfILIFFzcMALB582aIRCJ4e3vj8OHDePXqldQcfTooKCjA2NgYxsbGePjwIRXwZGZmsrRq+rzf+/H+YyZ9IA2n5QgEAsbTctq1aye169Fw91BW2HINboi2tjbrmmxTU1ND7VIA/93BkDxmYki4e/du1NbW4vHjxwDEzcQhISG09U6fPg05OTlqMtCkSZNoJRfeR9KUfvHiRcaBPQC0adMG06dPx/Tp03H//n3a/4Z3795F3759sXjxYgDinS9lZWV8+eWXjEthJ0yYgPPnz0uZ1En+Dk/rg3eo5ZGJ8ePHIzk5mfbvBwYGQigUYtKkSVIXWbons7i4OOzevRsaGhrw8fFBTk4ONm/ezCiYmjhxInbu3Ilhw4YxLs94+PAhMjMzsWPHDixdupQ63qlTJ4wZMwbdunVrUb2G3L9/H35+fnjy5AmGDh1KWZbT3RI3MzNDWFgYbG1tERkZiadPn2Lbtm2tyvn1Y6GoqAhxcXGIiYlBYWEhpkyZAlNTU9rvDZv8ncspncxuTU0NTp48iezsbCgrK8Pa2pqV3bTNmzeja9euiIiIgJeXF06cOIGvvvqKUTPkp8aHGlIFAgGjm/ebN2/C3d0d/fv3ByEEr169QkBAAO2A/PHjx3Bzc0NJSQkIIVBSUkJAQAAro18B+o7tXGlaWlri0KFD6N69O27duoUVK1bAy8sLmZmZePbsGW2fGgDYunUr7t69S+2Mx8TEYOTIkVLNxTytBz6452nEh8panj9/jnv37tHWburCwPSCwDYODg44cuQIK2VDEurq6lgt9WFbTwKbluXW1tY4c+YMzM3NERoainbt2sHExAQxMTEsrrj1YWho2ORNIZ2+kpCQEERHR+P58+cwMjKCsbExRo8ezcYyWzXLly+HvLw8NDU1cfnyZfTv318mX4TmEIlECAsLw5UrVwCIa51tbGw4acrmkR0rKysEBgZSs9OfP38OV1dXhIeH09Kzt7fH8uXLpRqyt23bRrsh+30sLCxolwxxoTl16lTKSG7dunVQUlKiJkSZm5sjMjKS9rrMzMwQGRlJXReFQiEsLCwYO5nzcANflsPTiDdv3uDAgQPUHF8JhBCq4YcubG1lh4SEQFtbG4MGDQIhBJ6enkhISED//v0REBBA20QGENc/Ojs7Q1tbW2p3Ye7cubQ12Sz14UIPEO+CjBs3DkOHDsXu3bvx4MEDfP/997R3Vfr06YPS0lJMmDABc+fORdeuXdGvXz/a6xMKhZgzZw4n5RBscubMGern2tpaxMXFUaMcZSU9PR0LFy6Ejo4OqzebrZ2nT59SQcO0adMY1R83pE2bNpg6dSo0NTV5851WSF1dndT7MnjwYEZTY9huyH4ftoyxGsJkFr1IJEJ9fT3k5eWRkpICPz8/6jm6U6EaUlpaSjVpS0Ym87RO+OCepxHjx49HRUVFkxbTdCzQJTx9+hQFBQVQU1OTGqF1+fJlmc1PGrqzRkdH49GjRzh//jwyMzOxfv16nDhxgvY6f/75Z3Ts2BE1NTWMLiwNkdQOs1Hqw4UeIK53nTJlCm7fvo2UlBTMmzcPPj4+tGcZ//LLLwDEs8XHjBmDsrIyRvWpcnJyaNOmDcrKyhjP4OcSRUVFqcdz5syBlZUVli1bJrMWl46TrRl5efkmf2bK+fPnsXnzZtTV1eHChQvIzMzE9u3baTUG3r9//4PP07kpbm5SjoT/9QZGVVXVRiaHTEb+st2QDXBjjBUaGkrdwE6YMAFCoRB79uyROdA3MTHBrFmzoKioiA4dOkBTUxMA8OLFC8aT7hYuXAhLS0up0cYrV65kpMnDHXxwz9OIDzWsbd26lZZmcHAwjh8/jiFDhuDhw4fw9PSkOu+3bdsmc3AvJydHlYwkJyfD3NwcioqK0NXVxZYtW2itUUJBQQGio6MZabxPnz59oKyszFogzrYeAKoh99KlS7C1tcX48ePx888/09ISCoUwMTGhplKw1SjYsWNHmJmZQVdXV2ruN5OmTbZpGPSJRCLcu3ePUePmp8jDhw+p8iPJ9KLRo0cz3qH65ZdfEBYWRpUHDh8+HLm5ubS0Nm3a1OxzdEsNJRNxEhMTUVRURAW5MTEx6NGjB611fkysW7cOx48fp3bnNDU1MWPGDNp6DRuyATBuyAa4Mca6fv06EhMT4e/vj5KSEqxatYrWOfP777+Hjo4OCgsLoaenR10fRCIRvLy8GK3R1NQU2tra+PPPPyEQCLBy5UpGHgQ83MIH9zz/CqGhoQgPD0enTp3w8uVLLF26FLm5uXB0dKRlGNSmTRsUFBSgW7duSElJkcp4VVdXM1qrvr4+rly5grFjxzLSaQjbpT5clA717t0b3t7euHr1KpydnVFbW0t7hKOcnBwGDx6MvLw8RqU47zNp0iRMmjSJNT0uaBj0ycvLo3///rRvkj4miouLERISgtzcXKmbGToZTa6mAMnLy7O268PltJxNmzZJ1ZkbGhpSc9VbGi52LCS0a9cOM2fOhI6ODgQCAQYPHszI5bhbt25Ys2YNysrKIBAIGGevAW6MsbZu3YrY2FiYmZmhY8eOCAwMhIaGBi2tUaNGNTo2ePBgRuuTkJGRgdTUVAgEAgiFQsaOxDzcwQf3PP8KIpGIKsX5/PPPcfToUSxduhR5eXm0gvulS5fC2toaIpEIhoaG1PSDmzdvMt52PXnyJA4ePIh27dpBXl6elXp2tkt9uCgd+vnnn/HHH3/AyckJXbt2RUFBgZQjrqyUlpbCxMQEampqUFBQoI4zKS1gc6Y2V3AR9GVnZ6NPnz5o164dbty4gUePHsHCwqJRX0xL8sMPP0BDQwM6OjqMx7JyxVdffYWoqCgIhULKyEtdXZ2x7uPHj/HXX39JzfhnYmxUVVWFnJwc6lyWk5ODqqoqxutkAy52LCQkJydj7dq1GDhwIAghePnyJdatW0d7fPLdu3exevVqahRm586dsWHDBkalPlwYY2VlZSE4OBhGRkZ4+vQpIiMjMWLECKnzZkvj4+OD7OxsmJiYABAbbV27dg1r165t4ZXxNAnh4fkXcHBwIA8ePJA6VldXR3766SeioqJCS7Ouro68e/dO6lhFRQUpLy+nvU6uMDExadV6EjIzM8nRo0fJ0aNHSWZmJiOtGzduNPkfHX7//Xdy7Ngx6vG0adOIoaEhMTQ0JHFxcYzWySb3798nrq6uxMLCglhYWJA1a9aQrKwsQoj480qXqVOnkrq6OpKVlUUmTZpENm3aRObPn8/Wsllh6tSpLb2Ev6WyspIEBQURKysrYmVlRYKCgkh1dTUjzZ07d5JZs2YRHR0dsmrVKqKrq0uWLFnCSPPSpUvEwMCAzJo1i8ycOZN899135I8//mCk+TFgZGREfV8IIeTFixfEyMiItp6pqSm5desW9fjWrVvE1NSU0Rqtra3JkydPqMcJCQmM1kiI+HVfvXqVEEKISCQiBw4cIMbGxow02cbIyIiIRCLqsVAoJJMnT27BFfF8CD645/lXePXqFSkoKGjyudu3b9PSvHPnDrlz5w4hhJAnT56QgwcPkuTkZNprbLieiooKQgghERERZMOGDSQ3N5eRZkBAAKsXZ7b1CCHk8OHDxMTEhPz888/k559/JqampiQ4OJjVv0EXOzs7kpeXRz2eOnUqKS4uJrm5uWT27NktuLL/Eh8fTyZMmEBCQ0NJZmYmyczMJKGhoWTq1KkkLS2N0TotLCwIIYTs37+fek/Mzc1ZWTdbBAUFsfL944r6+noya9Ys1nVNTU2JUCgkZmZmhBBCCgsLyZw5cxjr1tTUUJ+jmpoaxnpc8OjRIxITE0POnj1L/ccEKysrqccikajRMVlo6jsi+S7Rpb6+nhBCSHl5OZVIKi4uZqRZVlbW6NizZ88YabLNggULyMuXL6nHL1++JAsXLmzBFfF8CL4sh+dfoU+fPs0+R6e2cNeuXbh8+TLq6+uhp6eHO3fuYMyYMdi3bx81wpEuPj4+OHfuHB4+fIhDhw7BxsYGbm5uOHbsGG1Ntkt9uCgdCgsLQ0hICNWo6uzsDDs7O9rNYhkZGfDz88OzZ89QV1cHoVAIBQUFWmusq6tD3759qccaGhpQVFSEoqJiqylX2LVrFw4dOoTPP/+cOqaiooJvv/0WU6ZMYdQPIS8vj+joaERERGDPnj0AmLmrckFwcDB+/fVXtG3bFm3btmXlM8kmXE1bat++Pdq0aQN5eXmUl5ejR48eePXqFSPNuro6nDp1SsoN1M7OjhNvC7rs2rULN27cwNOnT2FgYIDLly9DQ0ODVjlSYmIiAPG0HGdnZ0yZMgUCgQDx8fEYOXKkzHqSvgAtLS14e3vDxMQEAoEAsbGxjJv7nz592qQx1vtTsmShvLwc7u7uVD27pqYmK74ObCDpZ6uoqICxsTHU1NQAiEueJD/ztD744J7noyQhIQERERGora2Fnp4eLl++jM6dO2PevHmwsbFhFNzLy8tDIBAgKSkJM2fOhI2NDcLCwhitNz09ndHvc60noWGtNNO6aV9fX2zbtg3Lli3DmTNnEBERgaysLFpapaWlUo+9vb2pn4uLi5kskzWEQqFUYC/h888/R79+/Rg5OW7cuBGnTp3CokWLMGDAAOTk5FCTVFoLXH0m2YSLaUuqqqooLS2FjY0NrKys0LFjR8Z1/D4+Pqivr8f06dMBiEc4+vj4wN/fn5EumyQkJCAyMhIWFhbYuHEjioqK8NNPP9HSunjxIvXzZ599hlu3bgEAlJSUUFNTI7Pe+30BDV2xmU4Y8/b2xqpVq6SMsby8vBgZY3l4eMDU1BTbt28HIH6/PTw8cOjQIUZrZQPJBCeejws+uOf5KJGTk4OcnBwUFBQwcOBAagpChw4dGJv9dOrUCb/++iuioqJw7NgxyhiECampqRg+fDg6duyIyMhIPHjwAI6OjrQnybCtB4jdIW1sbKgJCElJSbC2tqatBwBffPEFhEIh5OTkYG1tDQsLC7i6usqso6amhpCQENja2kodP3XqVKvJHsnLyzc5HSg3N5fRxA9A3AjaMAAdMGAAFixYwEiTbQghOHfuHF6+fInFixfj1atXKCwsbDXvD8DNtCUfHx8AwPTp0zFu3DiUl5dDRUWFkeaff/5JOY0CgI6OTqu7mWNzx4JtPwcuje64MMYqLi6WOtdaWVnhyJEjjDTZQktL629viCS7dDytBz645/koadu2LaqqqqCgoCA1Mq6srIxxcL9t2zZER0fD398fPXv2RF5eHubNm8dIk+1SHy5Kh+bOnQttbW2kpqYCEF9wmTj9KigooLa2FsOHD8fmzZvRq1cv2qM1PT09sXjxYkRFRVGj9u7fv4/a2lrKLKulWbp0KebOnYuFCxdSa7x37x727dtHO6MpISsrC0FBQfjrr7+kMpnnz59npMsmPj4+aNOmDa5fv47FixejY8eOWLdunZRjb0tjZGSE9u3bU7tSQqFQasINHRwdHalATLJz0/AYHeTk5JCdnY2BAwcCEE/LaW0TiNjcsdi9ezdmzpyJbt26Nfl8SkoKqqur8d133/0jvcjISEydOrXZgDM7OxsFBQWUyZMscGGM1b17d0RGRsLU1BSA2JhR4gTb0syePRuTJk3Cf/7zH6nERW1tLVJTUxEREYExY8a0mlGtPGIEhNCYQ8jD08LU1tY2mQ0tLi5GYWEhhg0bxsrfKS4uhqKiIuOshKWlJc6ePYtdu3ahd+/esLGxoY61tN67d+8++Dzdi0xubi4+++wz1NXV4fDhwygrK8OMGTMYzYROSUnBX3/9BUCczdbR0aGtxQUPHz7EwYMHpdbo5OTEOJM7ffp0LF26FBs2bMDevXsRHh4OkUhEy/WWKySfPwsLC0RERAAApk6dKpWBbmlsbW1x6NAhaixvRUUF5s2bR6ukoqamBlVVVZg9ezaOHj1KjfQtLy/H/PnzKQM3OqSkpMDDwwMDBgwAIQR5eXnYsGGDVMa4NfHy5UtGOxZJSUn47bff0L59e4wYMYIqx3nx4gUePnwIHR0dLFq0CEpKSv9I78iRIzhz5gy+/vprqKqqQlFREbW1tXjx4gVu3boFRUVFuLq6YtCgQTKvtaSkBDt37qSSIBoaGliyZEmzNyb/hNzcXPj5+SEjIwMAMHr0aKxZs4ZVjxC61NTUICwsDFFRUXj58iW6du2K6upqEEKgp6eHGTNmMEoC8XADH9zz8Pw/GRkZ2Lp1K7p164YffvgBbm5uePv2LUQiEQICAmR20W3IrFmzMG7cOISHh+PYsWPo0aMHzM3NERUV1eJ6hoaGEAgEVHAiuZGRbLW2puzwp4qVlRXCw8NhZmZGvceSY60FGxsbnDp1CtOmTcPZs2dRXFwMJycnKtBvDZibmyMyMvJvj/0Tjhw5giNHjqCgoAC9evWijnfu3Bm2traYNWsWo7XW1tbi2bNnAIAvv/yScWkX2zS1O8F0xyIrKwtpaWkoLCxE+/btMWTIEGhpaaFDhw4yawmFQly/fr2Rnr6+PitBM5vGWB8LdXV1ePv2LTp06NCqPDZ4GsOX5fDw/D++vr748ccfUVZWBkdHR+zfvx+jRo3C06dP4erqyii4Z7vUh029Cxcu0F5HUyQlJSE/Px8zZ84EIA76JE2vP/30EyZPnszq3/sUaNeuHUQiEb744gscO3YMvXv3pox5WgsODg5YvHgxioqKsG3bNsTHx2P58uUtvSwpFBQUcP/+famyKTqBIyAOZB0dHXH06FHaE6WaozVPy5HsWLx9+5aaGAOIdyzy8/MZaQ8aNIhWNr0p5OTkoKenBz09PVb0JHBhjJWTkwN/f39kZGRAIBBg1KhR8PT0ZFzuwzZt27aV2RHfdwAAGBZJREFUupHlab3wmXsenv+nYQZvypQpiIuLo55rWGrAFLZKfdjW+/333/Htt99SYwJLS0tx8+ZNTJgwQSYde3t7bNu2jRpdaW5ujsOHD6OqqgoeHh6tplHsY+Lu3bsYMmQIysrKsH37dpSVlWH+/PlNWs23JE+fPsX169cBAN9++y2GDBnSwiuS5u7du/jxxx/Rq1cvEEKoGxEmgVltbS3rgfjq1atRX19PjZU8d+4c2rRp0yqm5XC9Y9HaMTMzw9q1a6l6/du3b2PdunW0d2EBcbnYjBkzqJr7mJgYHDt2DKGhoaysmefTg8/c8/D8Pw0bcd/P5tENnNku9eGydGjXrl3UpBwA6Nq1K3bt2iVzcP8xzKTnkpqaGrRv355VTcnEmU6dOrE+WYRNqqurIRQKIRAIUF1d3dLLaYSamhri4uLw/PlzAMDgwYMZZ8PXrVvH+tjK1jwth8sdi48BOTk5qUZcTU1NyMszC6Wqqqqk/AHMzc1x4MABRpo8nzZ8cM/D8/88fPgQo0ePBiEENTU1GD16NABx7TndiRpsl/pwWTrU1CQboVAos87HMJOeS0xNTdGjRw9oampCU1MTGhoatE2TJAYyzbF3715aulywa9cuJCQkYNKkSSCEwMPDA5MnT8YPP/zQ0kvD3bt30bdvX/Ts2RNt27bFgwcPkJCQgP79+8PFxYVW03h9fT3k5eU5CcQ/hmk5dnZ2CA4ObpWlQ1zAhTGWZJiBvr4+9u3bB2NjY0rTwMCAtbWzRW5uLl68eAFdXV1UV1ejvr7+k+o5+Jjgg3senv8nMzOTdU2hUIixY8cCAHbs2EGVUdAtV2BbryGqqqrYuHEjVSt//PhxqjZZFj6GmfRc8vvvvyMvLw+3b99GcnIyfH190aVLF1pNmxkZGejbty9MTEzwzTffoDVXUUZFReHcuXPUrsWCBQtgbm7eKoL7tWvXUoZAt27dQmBgILy8vJCZmQlvb2/s2LFDZk0bGxucPXuWk0Dczc0Ns2fPbjQtpzXB5o6Fk5MTDh48CAD49ddfsXDhQtbWmZycjCdPnkiNkHVxcZFZhwtjLCsrK6lhBg2nNgkEAlqeIFwREhKC06dPo6SkBElJSXj9+jXWrl3Ll1m2UvjgnoeHQ9gu9eGidEiCl5cXdu/eTTVB6unpSWXd/ykfw0x6Lnn9+jXS0tJw+/ZtPHr0CF999RU0NDRoaV29ehVXr15FTEwMoqOjYWBgAFNTUwwdOpTlVTOnV69eUiVJtbW16N27dwuvSoxQKKSy87GxsbCzs4ORkRGMjIyoeeWyIgnIGgbigDi7STcQP3z4MEaPHg0tLS0kJia2ymk5XOxYNNzRi4+PZy249/b2RnV1NW7cuAEbGxskJCRg5MiRtLS4MMZie5gBlxw/fhyhoaFU0mbQoEGfxE7sxwof3PPwcAjbpT5clA5J6NixI1auXMlIAwB69OiBU6dOSc2kNzAwaHUz6bli/PjxGDlyJBYuXAhfX19GWnJyctDX14e+vj5qa2sRHR0NBwcHuLi4tLrGxS5dusDExAR6enoQCAS4evUq1NTUsH79egCQctj9t5G4TMvLyyMlJQV+fn7Uc3RKzwBxQCrZDbCzs6N05OTkkJmZSWsmfX5+PjZs2IBnz55BWVkZo0ePhrq6Ovr06dNqgnsudiy4cjdNT09HVFQUzMzM4OLigrlz58LZ2ZmWFhfGWLdv3/7g/19eXo68vDwoKyvLvF62adeundRnkKlrOw+38ME9Dw+HsF3qw0XpkITnz5/j4MGDyM3NlTpxBwcH09LT0dH5ZAL6hkRERCA1NRXR0dHYv38/vvjiC2hpacHGxoaWXm1tLZKTkxEdHY3c3Fw4ODhINT63FiZOnCi1Lrp1yFxgYmKCWbNmQVFRER06dKACqhcvXtCuGRaJRE2OIxUKhbTHlLq7uwMQv+f37t1Deno6wsPD4eXlha5duyI2NpaWLptwsWORk5ND9Zc0/FkC3d4Sye6mgoIC8vPzoaioiMLCQlpa7969g7m5+d8aY8lCYmIiAgMDMXbsWKiqqkqZd924cQN5eXnUZ6Kl0dLSwt69e1FdXY2rV6/ixIkTMDQ0bOll8TQDPwqTh4cHgNhN1N7eHqqqqlLlP0zGBH6qVFRUIDU1FampqVTpwsWLF2XWcXNzw5MnT6Cvrw8TE5NWkcFrDklQAgBffPEF6xODmJKRkYHCwkLo6emhY8eOAMQ3tJWVlbR6S5g4TP8dZWVlSE9PR1paGjIyMlBaWophw4a1iklJ+vr6mDt3LoD/TkcCxDsWHTp0oJ6ThZs3b37webo3ir/88gscHByQkpICX19fCAQCTJs2jbb/AhfGWO/evUNiYmIjTQMDA5l2AbhGJBIhLCwMV65cAQCMHTsWNjY2nO268DCDD+55eHgAtD7H048VKysr1NXVQV1dHRoaGtDU1ET//v1paamoqEBBQQGAdOmCxD04LS2NlTUzob6+HkFBQThz5gz69+8PQghevXoFKysrrFix4n92egqb3hcSvLy88OTJE3Tq1AnffPMNvvnmG4waNQrdunVj9e8wYezYsbC3t2/2eTrNqu9TV1eHJ0+eoHfv3ujRowdjPUC8G1JTU0N7ctWnTmVlJdq3b0+VXgmFQtTW1lLnJ57WBR/c8/DwAAB27twJJSUlTJw4Uaq2ks6YwE+Z4uJiKCkptfQy/jU2bNiAiooKeHh4UCUu5eXlCAgIQPv27Vu01p5L3r17x/p3Y968eXj79i2UlZWhrq6OUaNGQVlZuVVlR7nYsfD29oaDgwOGDh2KsrIy2NnZQU5ODu/evYO7uztl7iQrVVVVOHjwIF69eoX169cjKysLz58/x3fffcfq+j8FbG1tcejQIXTq1AmAeHdy3rx5UhN+eFoPfM09Dw8PAFAX7IbmKQKBAOfPn2+pJX2UtG3bFhs3bsStW7cAiEsKFi9e/D+bMUxOTkZCQoJUANq5c2f4+PhgypQpLbgybuHipvfAgQMghODJkydIT0/HoUOH8PjxY3Tv3h2jRo3C0qVLWf+bssJFPjA1NZVqPj9z5gwGDRqE3bt3o7CwEM7OzrSDew8PD3z99dfIyMgAAPTu3RvLli3jg3sa1NTUUIE9IDbU+xRMCT9W+OCeh4cHwMc1lq014+npiaFDh2L79u0AxFM2PDw8pOZi/y8hEAiazCzLycm1qozzx4JAIICysjK6du2KLl26oHPnzkhOTsbdu3dbRXB/+PBh1jUblm5du3YNkydPBgD07NmTkW52djZ+/vlnxMTEABA31vLFCvRQUFDA/fv3qf6Ue/fuNRrHzNN64IN7Hp5PnP3791Pj4eLi4qSyrUFBQfjxxx9bamkfJdnZ2di5cyf12MXFhfYs9Y+BIUOGICIiAhYWFlLHIyMjMXjw4BZa1cdJcHAw0tPTkZ6eDnl5eairq0NdXR3Tpk1rNc3UXOxYdOnSBRcvXkTv3r2RlpZGGWHV19ejurqatm67du1QXV1N3WRmZ2ezMlKULWOshufXq1evQk9Pj/HauMLT0xPLli1Dr169QAhBUVERtm3b1tLL4mkGPrjn4fnEiY2NpYL7ffv2SQX3f/zxBx/cy0iHDh2k5lenpqb+T2e41q5dCxcXF5w5c0Yqq1ddXf1JmJaxSW5uLiZPngwPDw/06tWrpZfzr+Hr64v169ejqKgInp6eVMY+JSUF48ePp627ZMkSzJ8/H69evYKrqyvS09MZTxxi0xir4fk1MDCwVQf3ampqiIuLw/PnzwEAgwcP/p9tlv9fgA/ueXg+cRpuU7+/Zc1vYcvOunXr4ObmhvLycgBA165dG1nX/y/Ru3dvhIaGfrKmZWzi4eHR0ktoEQYPHizV6yNh3LhxGDduHC1NkUiEkpIS7Ny5E3fu3AEhBKtXr2bc7M6mMdbHQEpKCnR0dJCYmCh1PCsrCwAwadKkFlgVz9/BB/c8PJ84Deui36+R5mumZUdFRQXnzp2jgvvOnTvj8OHDUFFRaeGVccunalrG0zpp06YNfvvtNxgbGzPK/r8Pm8ZYb968waFDh0AIoX5uCB3PALa5desWdHR0mvXp4IP71gkf3PPwfOI8fPgQo0ePBiEENTU1GD16NABx1r62traFV/fx0tD59PDhw5gzZ07LLYaH5xNEV1cXBw4cgLGxsdQ8diZ9A+PHj0dpaSnmzZsHKysryhiLDra2tpSbccOfWxNLly6FSCTCuHHjYGxs3NLL4fmH8HPueXh4eDjGwMAAly5daull8PC0WkQiEeLj41kNIA0NDRsdY3O876dkjMWbHH5c8Jl7Hh4eHo7hy5t4eD5MwzIatmhqvC/T3cj3jbHy8vJw+/ZtWrPzQ0JCoK2tjUGDBoEQAk9PTyQmJqJfv34ICAjAiBEjGK2VTbjYBeHhDj645+Hh4WEBdXX1JoN4SbkTD8//tXf/MVHXfxzAn9wBIZzoTf2DjGaljSbpHImdbcR0Ezs07o7drhaGln9kMOdqYE6lOY20jEZmc4YLYTpWTeGAK/Ict5aeCuysDZlJaRoVgjLpAO+4H/3hl8++5F16n/vA57qej7/4vD/j9Xn634uP78/7Rf9sohpIv9+PM2fOoLGxETabDadPnxZdS8rBWDU1NdDr9QCApqYmXLx4EVarFV1dXdi1axeOHj0qOqfULBYLAODIkSPCGoccRi4290REEnA4HHJHIPpXk7qBPH/+PJqammC1WnHr1i2UlZVh8+bNYWWUcjCWUqkUjpO02WzIy8uDWq3G0qVL8f7774eVU2occvjvwuaeiIiIZCdVA1lRUYGvv/4aKSkpWLVqFYqKipCfny+8JQ+HlIOxFAoFrl+/jmnTpsFut+O1114T7oUzvEtK33//PbZv345r167h8ccfR3l5OR577DG5Y9E9sLknIiIi2fz9DPW/C/W4xS+++AJz5szBiy++iGXLliE+Pl6y716kHIy1ceNG5Ofnw+fzYdmyZZg3bx4A4Ny5c0hNTZUkb7h27NiBzZs3Y/HixTh58iTKy8sDziSgyMLTcoiIiEg29xreFWrz7PV6cerUKTQ3N8Nut2PJkiWw2+2w2WyIjRX/TnPsRB+NRiMMxlq4cGFYg7E8Hg+GhoYwbdo0YW14eBh+vx9JSUmi60pFr9fj+PHjQa8pMrG5JyIioqjkdrvR2tqK5uZmtLe3Q6PR4IMPPhBd7792JOTy5cvHfaewZ8+ecdccYhWZ2NwTERGRbN566y3s3r0bAHD8+HFJ9sYH4nQ6YbVaodPpRNfYu3cv1Gr1f+ZISKn/V4UmB5t7IiIiko1Op0N9fT2AyN/2MdGDsYikwA9qiYiISDb/piFvUg7G6uzs/Mf78+fPF1V3IvT396OiogLXr19HVVUVuru74XA4YDQa5Y5GAfDNPREREclGo9EgNzcXfr8fFosFubm54+5v27ZNpmTBSTEYa82aNUHvxcTEoKamJpyIklq/fj0MBgMOHDgAs9kMj8cDvV6PxsZGuaNRAHxzT0RERLIpLS0Vfk5PT5es7urVq5GbmwutVouHH35YkppSDsaqra2VJNNkGBgYgFarxcGDBwEAsbGxUCgUMqeiYNjcExERkWwm6gPaAwcOwGKxYNOmTYiJiYFWq8Vzzz2HBx98MORaEzkYCwB+/PFHdHd3j9viE86Hv1JLTEzEwMCAsIXq/PnzmDp1qsypKBhuyyEiIqKoduXKFXzyySdobGxEV1dXyL+v0WgwZ84cFBYWCoOxli9fLsmHtB9//DHOnj2Ln376Cc8++yy+/fZbZGRk4KOPPgq7tlQ6Ozuxc+dOXLp0CfPmzcPAwAAqKyuRlpYmdzQKgM09ERERRaWenh5YLBZ89dVXUCgU0Gq1eOWVV0KuM1GDsYA724caGhqg0+lgNpvR39+PkpISfPbZZ2HVlZrH48Hly5fh9/vxyCOPIC4uTu5IFAS35RAREZHsOjo6kJGRcc+1+2U0GuHxeLBy5UpUVlYiNTVVdDalUomsrCxkZWUJg7FcLheysrLCHoz1wAMPQKFQIDY2Fk6nEzNmzMDvv/8uup6Uvvnmm4DrV65cAcAhVpGKzT0RERHJbteuXXedcR9o7X7t2bMHjz76qBTRxomPj0dOTg5ycnKEwVjhSE9Px+DgIIxGIwwGAxITE7Fo0SKJ0oantbX1H++zuY9M3JZDREREsnE4HHA4HDh8+DDWrl0rrDudTpw4cQJmszmkeg0NDcjLywu6rWXdunXhxJ1Qv/76K5xOJ/eyU1j45p6IiIhkMzo6iuHhYXi9XgwNDQnrKpVK1EelIyMjADCuViQrLCzE4cOHAQAPPfTQXWuRwmaz4dKlS3C5XMJacXGxjIkoGDb3REREJJvMzExkZmZCr9dj9uzZAACfz4fh4WGoVKqQ673wwgsAAjee1dXVYWV1u92Ij4+/59r9cLlcGBkZwcDAAG7duoWxjRROpxO9vb1h5ZRaWVkZbt++jbNnz8JoNKKlpQVPPvmk3LEoCE4gICIiItlVVFTA6XRieHgYq1atglarRVVVlaTPCLe5N5lM97V2P+rq6mAwGPDzzz9Dr9fDYDDAYDDg9ddfR0FBQVg5peZwOPDee+8hOTkZxcXFqKurEz6qpcjDN/dEREQku+7ubqhUKpjNZmRlZeHNN9+EwWDA+vXrJXuG2M8M+/r60Nvbi9u3b+PChQvj3rKPbQMKVWFhIQoLC1FbW4s1a9aIqjFZEhISAABTpkxBb28v1Go1+vr6ZE5FwbC5JyIiItl5PB6Mjo7CarWioKAAcXFxwkRUqYit99133+HYsWP4448/8O677wrrSUlJeOONN8LKZDKZUFNTg/b2dgB3timZTKaIOkc+Ozsbg4ODePXVV2EwGBATEwOj0Sh3LAqCp+UQERGR7GpqavDpp58iLS0NBw8exG+//YaSkhIcPXo0pDqLFi0K2MT7/X64XC5cuHBBdMaWlhbk5OSI/v1Atm7dCo/HA51OBwAwm81QKBR45513JH2OVNxuN1wuF6ZOnSp3FAqCzT0RERFFHL/fD6/XG/YEWCkNDg5i//79aGtrA3DnLXtRUZGoRtfj8SA2NhbPP//8Xcd9BlqTww8//ICUlBTMmjULAFBfX4+WlhbMnj0bxcXFmD59uswJKRB+UEtEREQRJyYmBg0NDXLHGGfr1q1ISkpCZWUlKisroVKpsGXLFlG1xra1KJVKXL16VVi/du0alEqlJHnD9fbbbwvbg9ra2rB3717odDqoVCqUlZXJnI6CiZw/h4mIiIj+z759+5Cfny93DMHVq1exb98+4bq4uBh5eXmiao1tnCgtLcXLL7+M1NRUAEBPTw/Ky8vDDysBr9crvJ23WCwwmUzCdF6x/26aeGzuiYiISDarV68Oeq+/v38Sk9xbQkIC2tvb8dRTTwEAOjo6hJNkQnXz5k1hiq7JZILX6wVw501+V1cXnn76aWlCh8Hn8wnbh+x2O3bu3CncG8tLkYfNPREREcnmxo0bOHToEJKTk8et+/1+YSBVqLxeL9auXYva2lopIgp27NiB0tJSOJ1OAEBycjJ2794tqpbP5ws4Rffvk3rllJubi4KCAqjVaiQkJAh/1Pzyyy+iBozR5GBzT0RERLLJzs7G0NAQnnjiibvuLVmyRFRNpVIJhUKBP//8U9JTXdLS0mA2m4XmXqVSobq6GmlpaSHXmjVrVsApupFkw4YN0Gg06OvrwzPPPCOcQuTz+bB9+3aZ01EwPC2HiIiIos6GDRvQ1dWFpUuXIjExUVjftm2bpM/Jzs6GzWYL+fd0Oh3q6+slzUIE8M09ERERRaEVK1ZgxYoVE/4cse9Iq6urpQ1C9D9s7omIiCjq6PX6SXmO2Km3PCOeJgqbeyIiIooaVqsVvb29eOmllwDcOU/+5s2bAICSkhKsXLky5Jr3mnpLFEnY3BMREVHUqKqqwocffihcu91ufPnllxgZGcGWLVtENfcOh0PKiEQTis09ERERRY3R0VGkpKQI1xkZGVCr1VCr1RgZGZExGdHkUMgdgIiIiEgqg4OD467LysqEn8e25xBFMzb3REREFDUWLFiAzz///K71uro6LFiwQIZERJOL59wTERFR1Lhx4waKiooQFxeH+fPnAwA6Ozvhdruxf/9+zJw5U+aERBOLzT0RERFFHbvdju7ubgDA3LlzodFoZE5ENDnY3BMRERERRQnuuSciIiIiihJs7omIiIiIogSbeyIiIiKiKMHmnoiIiIgoSvwFZMsEx48xftcAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plot_correlation(pearson, \"Pearson's Correlation\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Predictors weakly or strongly correlated with a target variable are collected." - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "pearson_weakly_correlated = set()\n", - "pearson_strongly_correlated = set()\n", - "pearson_uncorrelated = set()\n", - "# Iterate over the raw and transformed target.\n", - "for target in TARGET_VARIABLES:\n", - " corrs = pearson.loc[target].drop(TARGET_VARIABLES).abs()\n", - " pearson_weakly_correlated |= set(corrs[(weak < corrs) & (corrs <= strong)].index)\n", - " pearson_strongly_correlated |= set(corrs[(strong < corrs)].index)\n", - " pearson_uncorrelated |= set(corrs[(corrs < uncorrelated)].index)\n", - "# Show that no contradiction exists between the classifications.\n", - "assert pearson_weakly_correlated & pearson_strongly_correlated == set()\n", - "assert pearson_weakly_correlated & pearson_uncorrelated == set()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Show the continuous variables that are weakly and strongly correlated with the sales price or uncorrelated." - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "3Ssn Porch Three season porch area in square feet\n", - "BsmtFin SF 2 Type 2 finished square feet\n", - "Low Qual Fin SF Low quality finished square feet (all floors)\n", - "Misc Val $Value of miscellaneous feature\n", - "Pool Area Pool area in square feet\n" - ] - } - ], - "source": [ - "print_column_list(pearson_uncorrelated)" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1st Flr SF First Floor square feet\n", - "1st Flr SF (box-cox-0)\n", - "BsmtFin SF 1 Type 1 finished square feet\n", - "Garage Area Size of garage in square feet\n", - "Lot Area (box-cox-0.1)\n", - "Mas Vnr Area Masonry veneer area in square feet\n", - "Total Bsmt SF Total square feet of basement area\n", - "Total Porch SF\n", - "Wood Deck SF Wood deck area in square feet\n" - ] - } - ], - "source": [ - "print_column_list(pearson_weakly_correlated)" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Gr Liv Area Above grade (ground) living area square feet\n", - "Gr Liv Area (box-cox-0)\n", - "Total SF\n", - "Total SF (box-cox-0.2)\n" - ] - } - ], - "source": [ - "print_column_list(pearson_strongly_correlated)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Spearman\n", - "\n", - "Spearman's correlation coefficient shows an ordinal rank relationship between two variables." - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "columns = sorted(DISCRETE_VARIABLES + ORDINAL_VARIABLES) + TARGET_VARIABLES\n", - "spearman = df[columns].corr(method=\"spearman\")" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAu0AAAKvCAYAAADeLvEAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeVxVdf748RfLZRVEpKhJm8zmKiomCkmKOgluLF4wRRtEKUsTzCbNQEpnJhuN0UEHs9JxSYdWG5JERIVcW0DURJSxolQkFQkQ2eVyfn/wu+cLAsaiCfp+Ph4+Htxzzmc551zkfT/3fT4fI0VRFIQQQgghhBDtlvHt7oAQQgghhBDixiRoF0IIIYQQop2ToF0IIYQQQoh2ToJ2IYQQQggh2jkJ2oUQQgghhGjnJGgXQgghhBCinZOgXQghxC21evVqevXqRURExO3uyh1n5MiR9OrVi9TU1N+87V69etGrVy/Onz//m7ctxN3I9HZ3QIg7WXV1NZ9//jk7duzg9OnTFBUVYWlpiYODA927d8fV1RV3d3f69+9/u7sq2qBXr14AnD59+pa2k5qayrRp0xps12g0dOnShb59+6LT6Rg3btwt7Ud7dOnSJbZu3cpXX33FuXPnKCoqwtzcnPvvv59HH30UHx8fHn/8cYyMjG53V9u91NRU0tLScHJywsvL63Z3Rwjx/0nQLsQtUlBQwHPPPUdmZqa6zdzcHEVR+Omnn/jxxx/Zv38/NjY2pKen38aeio6oS5cumJiYAFBaWkpeXh55eXns3buXnTt3snLlSnX/nUxRFN555x3effddKisr1e22trZUVFTw/fff8/333/Ppp5/i7OzMW2+9xX333Xcbe9z+paWl8dZbbxEQEHDDoL1Hjx5A7YdGIcStJ0G7ELfIggULyMzMxNramtDQUHQ6Hffccw8AJSUlZGRksGfPHvbv33+beyo6ok8//ZRu3bqpr3NyclixYgVJSUns2rWLjz76iKCgoNvYw9/Gq6++yn//+18APDw8ePrpp3F1dcXCwgKACxcusHfvXjZt2sSJEyc4e/asBO03SVJS0u3ughB3FQnahbgFsrOzOXToEABLly5l7Nix9fZ36tSJIUOGMGTIkHqjg0K0Vvfu3VmxYgU//PADP/zwA/Hx8Xd80P7RRx+pAfsLL7zAnDlzGhxz//3386c//YnAwEBiYmIwNpZHuYQQHZME7ULcAt9995368xNPPHHDY83NzRtsW716tfr19NKlS9myZQtxcXGcO3cOc3NzXFxcCA0NvWEufE1NDZ9//jnx8fFkZWVRUlKCnZ0drq6uPP300zz66KMNyuj1eg4dOkRKSgqZmZlcvHiR4uJi7OzsePTRR5k6dSqPP/54o+0FBweTlpbGsmXL8PLyYu3ataSkpHDhwgU0Gg3p6elqTvYDDzzAF198wcGDB9mwYQOnTp2ipqYGZ2dn5s6di4uLCwBXr15l/fr1JCUlceHCBbp06YKvry8vvPCCOpJa18WLF9mxYwdfffUVOTk5XLp0CRMTEx588EFGjhxJSEgItra2Dcpd368jR46wbt06vv32W8rLy3nooYcIDAwkKCioxTnRycnJfPzxx5w8eZIrV65gbW2t5p97eXnh7e3dovpuRKPRMHjwYDVwb8zhw4fZtWsXx48f58KFCxQVFWFjY0OfPn2YNGlSgw+YBhEREXz22WfMmTOH0NBQ/vOf/xAXF8fZs2fV9+ScOXNwdnZucb/Xrl1LdHQ0ZmZmrFy5sll51JWVlcTExAC1v2ONBex1mZqaMm/ePBRFabAvPz+f9evXs2/fPi5cuICpqSk9evTA29ubqVOnYmZm1qBM3esxa9YsNmzYQGJiIufPn6esrIzDhw9TXFyMp6cnUPu8w7fffsvGjRs5evQov/zyC1OnTuXVV19V6zx//jybNm3i0KFDXLx4EWNjY3r06MHYsWOZOnUqVlZWv3pd6mrpvT5//rzaX4DPPvuMzz77rN4xKSkp6jc8hmc56m6r69y5c6xfv54vv/ySvLw8LCws0Gq1+Pv7M2HChEbTt+r+P+Lt7c2///1vEhISuHDhAtbW1ri7u/Piiy/y0EMPtehaCHEnkKBdiFvs0qVLPPjgg60qqygKc+fOZc+ePZiammJpaUlRURF79+7lwIEDrFixotGgr6SkhBdeeIGvvvoKACMjI6ytrbl8+TI7d+5k165dvPrqq0ydOrVeuezsbGbOnKm+7tSpExqNhsuXL5OcnExycjLz5s1j1qxZTfa5oKCACRMmkJOTg5mZWZP5ru+//z5LlizByMgIKysrSkpK+Oqrrzhy5AibNm2iR48eTJ8+ne+++w4rKytqamq4ePEi69ev54cffmDt2rUN6ly6dCm7du0CagNYa2triouLycrKIisri+3bt/Of//znhukRcXFxvPbaa9TU1NCpUycqKys5ffo0S5Ys4ezZs/WCrF+zcuVK3n33XfW1tbU1FRUVnDlzhjNnzpCamnpTg3ZADUpramoa7CstLa13z62trTE3N6egoIBDhw5x6NAhJk+ezOuvv95k/dXV1cycOZNDhw6h0WjQaDRcuXKFffv28fXXX7N582b1Q1dzLF++nPXr12NlZcXbb7/d5IfC6+3evZtffvkFgNDQ0Ga3d/2HroyMDJ577jmKioqA2mty7do1Tpw4wYkTJ4iPj2fjxo107dq10foqKysJCgoiIyMDjUbT6IdJgMTERBYsWEB1dTU2NjYNAtbdu3fz8ssvq9+8WVpacu3aNU6ePMnJkyfZvn07mzZtwsHBoVnn2Zp7bWJigoODA2VlZZSVlWFubo6NjU29epv7nMTevXt58cUX1fOxsbGhvLyc9PR00tPTSUxMZM2aNU1+ECkpKeGpp57i1KlTmJmZYWxsTEFBAYmJiXz11Vds3bq11f+vCtFhKUKIm+7cuXOKVqtVtFqt8swzzyi//PJLi8rHxMQoWq1WGTRokOLk5KRs2rRJKS8vVxRFUc6ePas8/fTTilarVfr376+cPXu2QfnQ0FBFq9UqAQEBysGDB5WKigpFURSlqKhIefvtt5W+ffsqvXv3VtLT0+uV+/HHH5WFCxcqBw8eVK5evapuz8/PV9asWaM4OTkpvXr1Ur799tsGbU6dOlXRarXKgAEDlBEjRij79+9X9Hq9oiiKcubMGUVRFOWbb75RtFqt8uijjyp9+/ZVoqOjlStXriiKoig5OTnK5MmTFa1Wqzz55JPKnDlzlDFjxiiHDx9WampqlMrKSuWTTz5R+vTpo2i1WmXfvn0N+rBy5Uply5Ytyk8//aS2XVVVpaSmpipPPvmkotVqleeee65Buev79frrryuXL19WFEVRrly5oixZskTRarVKr169lO+++65BecO9risnJ0fp3bu3otVqlX/+85/13gO//PKLkpSUpCxcuLBBXTdi6KdWq1VycnIa7K+qqlLGjRunaLVaxdfXt8H+srIy5YUXXlD27NmjFBYWqtuvXLmixMbGKgMGDFC0Wq2SmJjYoGx4eLii1WoVV1dX5bHHHlN27NihVFZWKoqiKFlZWYqvr696765neD+Hh4er2/R6vbJo0SK1zqNHj7boWrz66quKVqtVhgwZ0qJydRUVFSlDhw5Vr9fx48cVRVGU6upqZefOnYqbm5ui1WqVkJCQBmUN12PAgAGKq6trvetx/vx5paqqSsnJyVHv14ABA5QXXnhBvW/Xrl1Tfz5+/LjSt29fpU+fPkp0dLRy8eJFtR9Hjx5VJkyYoP5fcr0nnnhC0Wq1yjfffFNve1vudWP3qzFNvRfPnj2r1j916lQlOztbURRFqaysVD766COlX79+ilarVSIjIxvUafh/xNXVVXniiSeUAwcOKNXV1Yper1cOHz6sDB8+XNFqtcrcuXNv2Dch7kQStAtxi7zyyivqH7W+ffsq06dPV6Kjo5U9e/b8ahBv+KOp1WqVt99+u8H+iooKZcyYMY3+4fvyyy8VrVarjBkzRikuLm60/rVr1yparVaZOXNmi87prbfeUrRarRIREdFgn+GPbd++fZXTp083Wr5u0NlYHbm5uUqvXr3UegzBfl0LFy5ssvyNFBYWKu7u7kqvXr0aBBl1+/Xqq682Wt4QlK5evbpZ7e3YsUPRarXK2LFjW9TPG7lR0H7u3Dll7ty56v61a9e2uP7PPvtMDbSuZwhStVqtcvjw4Qb7T5w4oe7Pzc2tt+/6ILCqqkp56aWXFK1Wqzz++ONKVlZWi/s6ZcqUJgPZ5jK8n11dXZW8vLwG+w8ePKie01dffVVvX93rcfDgwUbrrxu0T5kyRf0g2dS5fPjhh43uLywsVD9cZGRk1NvXVND+a250r9satBt+R728vJSysrIG5T766CP1Q/D1v+OG/0f69+/f6O9/UlKSotVqlX79+qkfkoS4W8gTOULcIkuWLOHpp59Go9Fw7do1vv76a959913CwsJ4/PHHmThxIp9//nmjObYGlpaWTJ8+vcF2c3NznnnmGaD2a/W6dRhyUAMDAxt8tW3g5+cH1OZy6/X6Zp/TyJEjATh69GiTxwwbNgytVvurddVNwzH43e9+x+9//3sAxowZo/5clyF94vvvv29Wnw3s7OxwcXFBURSOHTvW5HFNpf4Ycn2b226nTp2A2rz88vLyFvW1OSZOnMjQoUMZOnQoAwYMwMvLS53NY9iwYYSEhLS4TsP9PX78eJPvC1dXV1xdXRts79evn5p2dKNrVFFRwZw5c9ixYwf3338/77//Pr17925xXw3pLJ07d25xWQNDKtXEiRPVmZ3q8vDwUFN9du7c2WgdvXr1wsPD41fbeuaZZxp9CPbcuXMcPXoUW1tbJk6c2GhZOzs7hg8fDqCmvLVVc+51ayiKwu7duwEICQnB0tKywTGTJk3C0dERRVHUe3C9pn7/R44ciZGREVVVVZw7d+6m9VuIjkBy2oW4RczMzIiIiOC5555jz549HD58mMzMTM6ePYuiKJw4cYIFCxaQkpLCypUrG/2D3q9fvyZzPt3c3AAoLi7m/PnzdO/eHUANSN955x02bNhwwz6Wl5dTVFRUL1+3oqKCjz76iJSUFH744QeKi4uprq6uVy4vL6/JOpuTz2xubt7kg2Rdu3blzJkzTQb+hpze4uLiRvdnZGTw4YcfcuzYMS5dukRZWVmDY5rqv52dnXodr+fo6HjDdq/36KOPYmdnx+XLl5k8eTJBQUEMGTKkyfpbqrCwsNHtc+bMISwsrMlZUqqrq/nss89ISkpSF/y6du1avWMqKyu5cuUK9vb2Dcrf6EFTR0dHLl68yJUrVxrdX1JSwrPPPsvhw4d56KGH2LRpE7/73e+arO9WqqqqUj9cuLu7N3nc4MGDOXbsGKdOnWp0/4ABA5rVXlPHGT4Al5WVMWLEiCbLG97HFy5caFZ70PZ73Ro5OTlcvXoVqL12jTE2Nuaxxx5j+/btnDx5stFjmnqfaTQaunbtSn5+fpPvMyHuVBK0C3GLde3alSlTpjBlyhSgdqaKvXv3smbNGi5cuEBSUhIDBw5sdETdECg2pu6+goICNRi8fPky0Pzgsu4ocF5eHsHBwZw5c0bdZmVlha2tLcbGxuj1egoLCxsNhA26dOnyq206ODg0OQuL4UG3xkY+ATUYvf6DBMCGDRtYvny5+s2DiYkJnTt3Vh+GvXr1KpWVlU2OfFtbWzfZZ8MsP42125jOnTvzj3/8gwULFnD69GkWL16sntfQoUN58skneeyxx5pVV2MMM3YoikJeXp66oNLatWvp379/owFgaWkpM2bMqPdNg4WFBTY2Nup1zc/PB7gl12jPnj1AbeC1fv36NgXsdnZ2AK0O3K5cuaI+rHuj3zPDtwcFBQWN7m9usNvUcYbf1+rqavXa30hFRUWz2rsZ97o16l6ntlzXm/m7KMSdQoJ2IX5jDg4OTJo0CU9PT/z8/MjPz+e///1vo0F7axgCkTVr1rR4CfKlS5dy5swZunfvziuvvMLgwYPrpR+cO3eOUaNG3bCO27UK5/fff8+KFStQFIWpU6fy1FNP0aNHj3r9WbBgwa+mJN1MI0aMICUlhZ07d6oz4+Tl5bFt2za2bdtGYGAgS5YsaVMbRkZGODo6EhISQteuXXn55ZdZsGAB27dvbxA0vf322xw7dowuXboQERHBsGHD6n3Lotfr6dOnD8AtuUZubm6cPXuWvLw8Xn31VdatW9fkbCu/pmfPnhw9epT//e9/be5XW9ZKaO77vanjDNe5d+/exMfHt7of17vd9xpqr2tTKXpCiJaTnHYhbhN7e3s1T7ruyHZdN0pDqbuv7iieIX3k559/blF/qqqqSElJAWDFihWMHj26Qb5wc0YCb5ddu3ZRU1ODh4cHixYt4pFHHmkQKBmmCPwt2djYEBgYyKpVqzh48CA7duwgMDAQgE8++YR9+/bdtLb8/PxwdXXlypUrrFq1qsF+Q877okWL8Pf3bzCN4a2+v926deO9997DwcGB1NRUwsLCqKqqalVdhtSL/Px8MjIyWly+c+fO6ojzjX5XLl68CDR/RL2lDPfA0M7Ncrvudd3rdDuvqxB3IgnahbiNDA9pNTWXeWZmZpNfXR8+fBgAW1vbegubGHJnDxw40KK+FBYWqgGUYQTuejfrIbhb4dKlS0DTfS8rK+Pbb7/9LbvUqEceeYQlS5ao9yktLe2m1m+Ys3zbtm389NNP9fYZrpGTk1OjZb/++uub2pfG9OzZk02bNtGlSxcOHTrECy+80KrAfdSoUWrA9/bbbze7nGFU2czMjD/84Q9A7QPZTTHsa+p91VaG90FRURHHjx+/afW25V4bUtdaMwLfvXt3dQGzpq5rTU2N+r7v27dvi9sQ4m4lQbsQt0BOTs6vzmxQXl5OcnIy0PQf1rKyMrZs2dJge1VVFZs2bQJqZ1momx8eEBAAwKFDh341cK+bD2xtba3Wc/r06QbH5uXlERsbe8P6bifDbC11V6Ot691336W0tPQ368+vBaKGvNzWjjQ3ZejQofTu3ZuampoGC1Dd6BqVlpbyzjvv3NS+NEWr1bJp0yY6d+7Mvn37mDdvXovzky0sLHjhhRcA1GdEbqS6upro6GjS09PVbWPGjAFqZ1xq7FutQ4cOqTnh48aNa1H/mqtnz55q4L58+fIGD4rWVVFR0ez3S1vutaFsc5+LqcvIyEhNoduyZUujgw5bt27l0qVLGBkZNbkCrxCiIQnahbgFfvjhB8aOHcucOXNITEysFxCUlZXxxRdfEBQUxPnz5wGYNm1ao/XY2Njwr3/9i82bN6sPoOXk5DB79myys7MxNzdvMHXi8OHDGT16NIqiMGfOHNavX1/vYa+ioiKSk5N5/vnnefPNN9XtnTp1UoOHyMhIsrKygNpRsa+//prg4ODfLBe8NYYOHQrAvn37WLt2rRosFBQUEBUVxdq1a9WHF38LH374ITNmzGD79u317n9xcTHvvvuuOtI4bNiwm972jBkzANi+fTs5OTnqdsM1evPNN0lLS1PvZ0ZGBiEhIeo0ir8FJycnNmzYgI2NDXv27OHll19u8dSDf/rTn/D39wcgJiaGGTNm8OWXX9bLUb948SIffvgh3t7erF27tt5KsVOnTuWee+6hoqKCZ599lhMnTgC1+d67du1i3rx5AAwZMqTZK7W2xquvvoqZmRmHDx8mJCSE9PR0tZ96vZ7Tp0/z1ltv4eXldcOUubracq8N30AcPXq0ydS9G3n++eexsrIiLy+PmTNn8uOPPwK1H1A/+eQT3njjDaB2qk1Z1VSI5pMHUYW4BUxNTdHr9ezZs0edMcPCwgKNRqNOhwa1D6fNnTuX0aNHN1qPp6cnpaWlLF26lOXLl2NpaamOfpmYmLBs2bJG/+hFRUVRU1NDcnIyy5cvZ8WKFdjY2KDX6+uNNk+YMKFeuYULFzJt2jS+++47/P39sbKyoqamhoqKCuzs7Pj73/9OWFhYm6/PreDh4cHo0aPZvXs30dHRrFy5EltbW4qLi1EUhYkTJ6LX69V57G81RVHU5eKhdhYeU1PTeqOXkydPvuE0f63l7e3NqlWryM3N5d///re6VP2f//xnvvzySy5cuEBwcDDm5uaYmJhQVlaGhYUFa9asUQP+34KzszPr16/nmWeeYefOnZiZmfHmm282OV1lY9588026d+/O2rVr1ettZGSEra0tFRUV9QL4gQMH1ptqtHPnzrz99ts8++yznD59mokTJ2JtbU11dbVarlevXqxYseKmnXNj+vfvz1tvvcX8+fNJT08nKCgIMzMzrKysKC0trTf63tSsS9dry71+7LHHePDBBzl37hxjx46lS5cuairfBx98oM780pQHH3yQf/7zn/z5z38mLS2NcePGYWtrS3l5uXoujz/+OJGRkc06FyFELRlpF+IWGDZsGElJSYSHh+Pl5aUuElJWVoatrS19+/Zl+vTpxMfH8/zzzzdZj5GREf/6179YuHAhDz/8MNeuXaNz58488cQTfPTRR/j4+DRazsrKijVr1rB27VpGjx7NvffeS3l5OdXV1fz+979n3LhxLFu2jNdee61euUcffZSPP/4YLy8vOnfuzLVr1+jatSuTJ09m27ZtrVoE57e0cuVK5s+fT8+ePTE1NUVRFAYOHEhUVBR///vff9O++Pn58cYbb+Dt7a32p6ysjHvuuYeRI0fyzjvvqMH0zWZqaqrORhQXF6c+9Ne9e3e2bt3K+PHj6dq1KzU1NdjY2ODn58enn37arEWCbrYBAwawbt06rKysiI+P57XXXmvRNzpGRkbMmTOHPXv2MGfOHFxcXLC3t6esrAxTU1P+8Ic/EBgYyJYtW/jwww8bzKjTv39/duzYQUhICA899BDV1dWYmJjQr18/XnnlFbZu3drgIc5bYcSIEezatYvZs2fTt29fzMzMuHr1KtbW1ri4uDBz5kzi4uJ44IEHmlVfW+61RqPhvffeQ6fT4ejoSHFxMbm5ueTm5jY7jWnkyJFs376dwMBAHnjgAcrLy7GwsGDQoEEsWbKEDRs2NLkGhRCicUZKe/6+W4i71OrVq3nrrbcICAiol8IihBBCiLuTjLQLIYQQQgjRzknQLoQQQgghRDsnQbsQQgghhBDtnATtQgghhBBCtHPyIKoQQgghhBDtnIy0CyGEEEII0c5J0C6EEEIIIUQ7J0G7EEIIIYQQ7Vy7CtqdnJzQ6XSMHz+egIAAjh492qLyq1evZsOGDbeod82TnJxMr169yM7OVrelpqYya9asFtWTn5/P/Pnz8fT0ZMKECUyePJk9e/bc7O4KIYQQQogOoF0F7RYWFsTHx/P5558zb948oqOjb0q9zV12+WZISEhg0KBB7Nixo9V1KIpCWFgYrq6upKSkEBcXR3R0tLoUeV2/5bkJIYQQQojbw/R2d6ApJSUl2Nraqq/Xr1/Pzp07qaqqYtSoUcydOxeAd955h23btmFvb8/9999P3759AQgODqZ3794cOXIEX19fnJyciIqKQq/X069fP/72t79hZmbG119/3ej2kSNH4uPjw4EDBzAxMWHJkiVER0dz9uxZZsyYwVNPPdWgz6WlpRw5coQtW7bw/PPPq300nM/MmTM5e/YsgwcP5q9//Ssff/wx586dIzw8HIC4uDgyMzMZNWoUGo2mXhsPPPAAwcHB6nG7d++mrKyMmpoaYmNjb/4NEEIIIYQQ7Ua7GmmvqKhAp9MxduxYXnvtNUJDQwE4dOgQZ8+e5dNPPyU+Pp6TJ09y+PBhMjMzSUxMZNu2bfz73//mxIkT9eq7du0acXFxBAUFERERwcqVK9m+fTt6vZ4PPviAysrKRrcb3H///cTHx+Pq6kpERAT/+te/+OSTT1i9enWj/U9JSWHYsGH06NGDLl26kJmZqe7LyMhg0aJFJCYmkpOTw+7duxkzZgzJycnqMYmJiXh7e/P999/Tp0+fG16rU6dOERMTIwG7EEIIIcRdoF0F7Yb0mKSkJNavX094eDiKovDll1/y5Zdf4u/vT0BAAD/++CNnzpwhPT0dLy8vLC0t6dSpEyNHjqxXn7e3NwA//fQT3bp1o0ePHgAEBASQnp7e5HYDT09PALRaLY8++iidOnXC3t4eMzMziouLG/R/x44d+Pj4qG3XTZHp378/3bt3x8TEBB8fH44cOYK9vT3du3fn22+/pbCwkB9//JFBgwY1qPdvf/sb48eP58knn1S3DR06FDs7u1ZdZyGEEEII0bG02/QYFxcXCgsLKSgoQFEUZs6cyZQpU+od8957792wDktLyzb1QaPRAGBsbIyZmZm63djYuEEueVFREd988w3fffcdRkZG6PV6jIyMeOWVVwAwMjKqd7zhtbe3Nzt37uThhx9m1KhRGBkZ8Yc//IHdu3erx/7lL3+hoKCAiRMn3rRzE0IIIYQQHUe7GmmvKzs7G71ej52dHR4eHvz3v/+ltLQUgEuXLvHLL7/g5uZGcnIyFRUVlJSUsHfv3kbr6tGjB7m5uZw9exaA+Ph43NzcmtzeGrt27UKn07F3716++OIL9u/fT7du3dSR+4yMDHJycqipqWHnzp3qiPqoUaNISUkhISFBHaV3d3ensrKyXqpORUVFq/olhBBCCCE6vnY10m7IaYfaGVSioqIwMTHBw8OD7OxsdaTdysqK5cuX07dvX7y9vdHpdNjb2+Ps7Nxovebm5ixbtowXX3xRfeD0qaeewszMrNHtrZGQkMBzzz1Xb9vo0aNJSEjA29sbZ2dnlixZoj6IOmrUKAA6d+5Mz549+eGHH+jfvz9QOwq/Zs0ali1bxvr167G3t8fS0pKXX365VX0TQgghhBAdm5GiKMrt7oQQQgghhBCiae02PUYIIYQQQghRS4J2IYQQQggh2rl2ldMubr6rV6+26HgbG5tb1BMhhBBCCNFaMtIuhBBCCCFEOydBuxBCCCGEEO3cXZUe4+TkhFarRVEUTExMWLRoEQMHDmxTnVlZWeTl5TFixIhG92dkZBAVFUV+fj6Wlpb07duX1157rc2LI61evRorKytmzJjRpnqEEEIIIUT7d1cF7RYWFsTHxwNw8OBBoqOjiY2NbVOdWVlZZGZmNhq05+fn8+KLLxIdHaUINtgAACAASURBVI2LiwsASUlJlJaWyoqmQgghhBCi2e6qoL2ukpISbG1tAcjLy+Oll16ipKQEvV7PX//6V1xdXXFxcWHKlCkcOHCAe+65h3nz5rF8+XJ+/vlnIiMjGTZsGDExMVRUVHDkyBFmzZqFt7e32sb777+Pv7+/GrADjB07FoCioiIiIyPJycnB0tKS119/nd69e7N69Wp+/vlnzp8/z88//8z06dOZNm0aAO+88w7btm3D3t6e+++/n759+/6GV0wIIYQQQtwud1XQblhxtbKyksuXL7N582agdjVTDw8PZs+ejV6vp7y8HICysjLc3d0JDw8nLCyMVatWsXHjRrKzswkPD8fT05O5c+eSmZnJ4sWLG7T3/fff4+/v32hfVq9eTZ8+fXj77bf5+uuvCQ8PV78F+Omnn9iyZQslJSWMGzeOp556itOnT5OYmMi2bdvQ6/UEBARI0C6EEEIIcZe4q4L2uukxx44dIzw8nISEBJydnYmMjKS6uhovLy+cnJwA0Gg0DB8+HACtVouZmRkajQatVktubm6b+nLkyBFWr14NwOOPP05RURElJSUAjBgxAjMzM+zt7bG3t+eXX34hPT0dLy8vNa1m5MiRbWpfCCGEEEJ0HHft7DEuLi4UFhZSUFCAm5sbsbGxODo6EhERwbZt24DaoN3IyAgAY2NjzMzM1J/1ev2vtvHII49w8uTJFvfN0A6AiYkJ1dXVLa5DCCGEEELcOe7aoD07Oxu9Xo+dnR25ubk4ODgQGBjIpEmTWhRoW1tbU1pa2ui+qVOnsm3bNo4fP65u2717N/n5+bi6uvL5558DkJqaSpcuXejUqVOT7bi5uZGcnExFRQUlJSXs3bu32X0UQgghhBAd212VHmPIaQdQFIWoqChMTExIS0tjw4YNmJqaYmVlRVRUVLPrHDx4MOvWrUOn0zV4ENXBwYHo6GiioqL45ZdfMDY2xs3NjWHDhjFnzhwiIyPx8/PD0tKSN99884bt9O3bF29vb3Q6Hfb29jg7O7fuIgghhBBCiA7HSFEU5XZ3Qtw6V69ebdHxNjY2t6gnQgghhBCite7a9BghhBBCCCE6ChlpF0IIIYQQop27q3La70bnC0padHw3+9qHYa9+eaJF5WyGSo69EEIIIcStIukxQgghhBBCtHMStAshhBBCCNHOtev0GCcnJ7RaLYqiYGJiwqJFixg4cGCb6szKyiIvL48RI0Y02JeamkpoaCjdunVTt4WHhzNkyJA2tSmEEEIIIURbtOug3cLCgvj4eAAOHjxIdHQ0sbGxbaozKyuLzMzMRoN2AFdXV9auXdumNm6F6upqTE3b9e0SQgghhBC3SIdJjykpKcHW1haAvLw8goKC0Ol0+Pr6kp6eDoCLiwtRUVH4+PgQEhJCRkYGwcHBeHp6kpKSQlVVFTExMSQmJqLT6UhMTGxW2xkZGfj5+VFZWUlZWRk+Pj589913pKamEhQUxMyZMxkzZgyLFy+mpqYGgISEBPz8/PD19WX58uUA6PV6IiIi8PX1xc/Pj/feew+A4OBgTpyoffCzoKCAkSNHAhAXF8fzzz/PtGnTCAkJoaysjIULFzJx4kT8/f1JTk6+addXCCGEEEK0X+166NawgmllZSWXL19m8+bNQG1A7OHhwezZs9Hr9ZSXlwNQVlaGu7s74eHhhIWFsWrVKjZu3Eh2djbh4eF4enoyd+5cMjMzWbx4caNtpqenq6umAqxevZr+/fszcuRIVq1aRUVFBePHj0er1ZKamkpGRgaJiYn87ne/49lnn2X37t24uLiwYsUK4uLisLW15ZlnniE5OZn77ruPS5cukZCQAEBxcfGvXoNTp07x+eefY2dnR3R0NO7u7ixbtozi4mImTZrEkCFDsLKyauulFkIIIYQQ7Vi7DtrrpsccO3aM8PBwEhIScHZ2JjIykurqary8vHBycgJAo9EwfPhwALRaLWZmZmg0GrRaLbm5uc1qs6n0mLCwMCZOnIi5uTmvvfaaur1///50794dAB8fH44cOYKpqSmPPfYY9vb2APj5+XH48GFCQ0PJyclhyZIljBgxAg8Pj1/tz9ChQ7GzswPg0KFDfPHFF2zcuBGAyspKLly4QM+ePZt1bkIIIYQQomNq10F7XS4uLhQWFlJQUICbmxuxsbHs37+fiIgInn76afz9/dFoNBgZGQFgbGyMmZmZ+rNer29T+0VFRZSVlVFdXU1lZaU6um1oz+D613V17tyZ+Ph4Dh06xEcffcTOnTtZtmwZJiYmGNa4qqqqqlfG0tKy3uuYmBgefvjhNp2LEEIIIYToWDpMTnt2djZ6vR47Oztyc3NxcHAgMDCQSZMmcfLkyWbXY21tTWlpaYvbX7x4MS+++CJ+fn6sWLFC3Z6RkUFOTg41NTXs3LmTQYMG0b9/fw4fPkxBQQF6vZ4dO3bg5uZGQUEBiqIwZswY/vznP3Pq1CkAHnjgATIzMwFISkpqsg8eHh7ExsaqAb6hvBBCCCGEuLO165F2Q047gKIoREVFYWJiQlpaGhs2bMDU1BQrKyuioqKaXefgwYNZt24dOp2OWbNm4e3tXW//9Tnts2fPpqKiAo1Gg5+fH3q9nilTpvD1119jbGyMs7MzS5Ys4ezZswwePJhRo0ZhbGzM/PnzmT59OoqiMGLECLy8vPjf//7HwoUL1YdV582bB8AzzzzDn//8Zz755JMmZ7UBCA0NZenSpYwfP56amhq6devWLme6EUIIIYQQN5eRYhi2FS2WmprKxo0b23XgfL6gpEXHd7PvBMDVL0+0qJzNUOcWHS+EEEIIIZqvXY+0i7YzBOEtJUG4EEIIIUT7ISPtQgghhBBCtHMy0n6H++5CUYuO195fO71kedbZFpWzdPo9AEU7v2lRObtx7i06XgghhBDibtRhZo8RQgghhBDibtUhgnYnJyd0Oh3jx48nICCAo0ePtrnOrKws9u/f3+i+1NRUBg0ahE6nQ6fTERIScsO6IiIi1Kkag4ODOXGi4UOcwcHBjBkzBp1Ox7hx4/j4449/tY/vvfeeutor1M5VL4QQQggh7j4dIj2m7sqoBw8eJDo6mtjY2DbVmZWVRWZmZpNTLDa1MmpbrFixAmdnZ4qKihg1ahQBAQHqAlCN2bJlC+PHj2+wwJIQQgghhLi7dIiR9rpKSkqwtbUFIC8vj6CgIHQ6Hb6+vqSnpwO1I9JRUVH4+PgQEhJCRkYGwcHBeHp6kpKSQlVVFTExMSQmJqLT6UhMTPzVds+fP4+vr6/6esOGDaxevbpV51BWVoalpSUmJiYA/OUvf2HChAn4+PgQExMD1AbseXl5TJ8+neDgYLXsypUrGT9+PIGBgeTn57eqfSGEEEII0bF0iJF2wyJLlZWVXL58mc2bNwOQkJCAh4cHs2fPRq/Xq6kkZWVluLu7Ex4eTlhYGKtWrWLjxo1kZ2cTHh6Op6cnc+fOJTMzk8WLFzfaZt1FlsaOHYufn1+bz+Pll1/GzMyMs2fPEhkZqQbtL730EnZ2duj1ekJCQvjf//7HtGnTeO+999i8eTP29vbqeT366KO89NJL/OMf/+CTTz4hNDS0zf0SQgghhBDtW4cI2uumxxw7dozw8HASEhJwdnYmMjKS6upqvLy8cHJyAkCj0TB8+HAAtFotZmZmaDQatFotubm5zWrz+vSY8+fPt/k8DOkxBQUFTJkyhWHDhvHAAw+wc+dOPvnkE6qrq7l8+TLZ2dn07t27QXmNRsMTTzwBQL9+/fjyyy/b3CchhBBCCNH+dbj0GBcXFwoLCykoKMDNzY3Y2FgcHR2JiIhg27ZtQG1wa2RkBICxsbGaN25sbIxer29Vu6amptTU1KivKysrW30O9vb29OnTh+PHj5OTk8PGjRt577332L59O3/84x+brPv682rtuQghhBBCiI6lwwXt2dnZ6PV67OzsyM3NxcHBgcDAQCZNmsTJkyebXY+1tTWlpaXNPr5r16788ssvFBYWUlVVxb59+1rR+1rl5eVkZWXx4IMPUlpaiqWlJTY2NuTn53PgwIFW91EIIYQQQtyZOkR6jCGnHUBRFKKiojAxMSEtLY0NGzZgamqKlZUVUVFRza5z8ODBrFu3Dp1Ox6xZs/D29r7h8RqNhrCwMCZNmoSjoyMPP/xwi8/j5ZdfxsLCgqqqKgICAujXrx8Affr0Ydy4cdx3330MHDhQPT4wMJBnn32We++9l//85z8tbk8IIYQQQtwZjBRFUW53J8StIyuiCiGEEEJ0fB0uPUYIIYQQQoi7jYy0CyGEEEII0c7JSLsQQgghhBDtXId4EFW03tWrV1t0vI2NDQDX8gpbVE5zbxcAqn5u2SqtZr9zaHHePfxf7r0QQgghxN1ARtqFEEIIIYRo59pt0O7k5IROp2P8+PEEBARw9OjRNteZlZXF/v37G92XmprKrFmz6m2LiIggKSnphnXWPSY9PR0fHx90Oh0VFRX1jmvp+RQXF/P+++/fsH9CCCGEEOLu0G6DdgsLC+Lj4/n888+ZN28e0dHRba7zRkH7zfD5558zc+ZM4uPjsbCwqLevpedTXFzMhx9+eMv6KoQQQgghOo52G7TXVVJSgq2tLQB5eXkEBQWh0+nw9fUlPT0dABcXF6KiovDx8SEkJISMjAyCg4Px9PQkJSWFqqoqYmJiSExMRKfTkZiY2KI+vPXWWzz55JP4+vqyaNEirp90Z+vWrSQlJfGvf/2L+fPnN/t8SktLmT59OgEBAfj5+ZGcnAzAP//5T86dO4dOp1MXjSorK2Pu3LmMHTuW+fPnN+iDEEIIIYS4M7XbB1ENq6BWVlZy+fJlNm/eDEBCQgIeHh7Mnj0bvV5PeXk5UBvQuru7Ex4eTlhYGKtWrWLjxo1kZ2cTHh6Op6cnc+fOJTMzk8WLFzfaZnp6urryKsCFCxf44x//CMDUqVOZM2cOAAsWLGDv3r2MHDlSPXbSpEkcOXKEP/7xj4wdO7bZ52Nubs6aNWvo1KkTBQUFTJ48GU9PT+bPn8/3339PfHw8UJsec+rUKXbs2MG9997LU089xZEjR3B1dW3jlRZCCCGEEO1duw3aDekkAMeOHSM8PJyEhAScnZ2JjIykuroaLy8vnJycANBoNAwfPhwArVaLmZkZGo0GrVZLbm5us9p0dXVl7dq16uuIiAj159TUVNavX09FRQVFRUX84Q9/qBe0t/Z8FEUhOjqaw4cPY2xszKVLl8jPb3wGlv79+3PfffcB0Lt3b3JzcyVoF0IIIYS4C3SI9BgXFxcKCwspKCjAzc2N2NhYHB0diYiIYNu2bUBt0G5kZASAsbExZmZm6s96vb5N7VdWVvK3v/2NmJgYtm/fTmBgIJWVlTflfLZv305BQQFxcXHEx8fj4ODQZN2GcwIwMTFp83kJIYQQQoiOoUME7dnZ2ej1euzs7MjNzcXBwYHAwEAmTZrEyZMnm12PtbU1paWlLW7fEER36dKF0tJSdu3a1eI66qp7PlevXqVr165oNBq++eYb9VuB1vZVCCGEEELcedpteowhBxxAURSioqIwMTEhLS2NDRs2YGpqipWVlfqQZnMMHjyYdevWodPpmDVrFt7e3s0qZ2try6RJk/D19cXBwQFnZ+ebdj5+fn7Mnj0bPz8/+vXrx8MPPwzUfkAYOHAgvr6+DBs2TM2tF0IIIYQQdx8jRaYguaPJiqhCCCGEEB1fh0iPEUIIIYQQ4m4mI+1CCCGEEEK0c+02p13cHK1Nj7myK61F5TqPeQyA/A92t6icw59Gc/WrzBaVAbAZ0o+CkpbN4GPfybzF7QghhBBCtAeSHiOEEEIIIUQ7J0G7EEIIIYQQ7dxdG7Q7OTmh0+kYP348AQEBHD16tM11ZmVlsX///ib3p6enM3HiRMaOHcuYMWN4//3329Sei4tLm8oLIYQQQoiO4a7NabewsCA+Ph6AgwcPEh0dTWxsbJvqzMrKIjMzkxEjRjTYd/nyZV5++WXWrFlD3759KSgo4Nlnn+Xee+9l1KhRbWpXCCGEEELc2e7akfa6SkpKsLW1BSAvL4+goCB0Oh2+vr6kp6cDtaPaUVFR+Pj4EBISQkZGBsHBwXh6epKSkkJVVRUxMTEkJiai0+lITEys18b7779PQEAAffv2BcDe3p4FCxawYcMGACIiIkhKSlKPN4yil5aWMn36dAICAvDz8yM5OfmWXw8hhBBCCNG+3LUj7YYVSisrK7l8+TKbN28GICEhAQ8PD2bPno1er6e8vByAsrIy3N3dCQ8PJywsjFWrVrFx40ays7MJDw/H09OTuXPnkpmZyeLFixu098MPP+Dv719vW79+/fjhhx9u2E9zc3PWrFlDp06dKCgoYPLkyXh6emJkZHSTroQQQgghhGjv7tqgvW56zLFjxwgPDychIQFnZ2ciIyOprq7Gy8sLJycnADQaDcOHDwdAq9ViZmaGRqNBq9WSm5t7y/qpKArR0dEcPnwYY2NjLl26RH5+Pvfcc88ta1MIIYQQQrQvkh5DbSpKYWEhBQUFuLm5ERsbi6OjIxEREWzbtg2oDdoNo9vGxsaYmZmpP+v1+l9to2fPnpw8ebLetszMTPr16weAiYkJNTU1ANTU1HDt2jUAtm/fTkFBAXFxccTHx+Pg4EBlZcvmJxdCCCGEEB2bBO1AdnY2er0eOzs7cnNzcXBwIDAwkEmTJjUItG/E2tqa0tLSRvcFBQXx2WefkZWVBUBhYSGrVq0iNDQUgAceeEBt64svvlCD9qtXr9K1a1c0Gg3ffPPNLR3VF0IIIYQQ7dNdmx5jyGmH2hSUqKgoTExMSEtLY8OGDZiammJlZUVUVFSz6xw8eDDr1q1Dp9Mxa9YsvL291X333nsvy5cvZ9GiRVy9epXc3FzefPNNHnusdiXRwMBAQkNDGT9+PMOGDcPKygoAPz8/Zs+ejZ+fH/369ePhhx++iVdBCCGEEEJ0BEaKoii3uxN3o/fff5+PPvqI2NhYOnfufMvauXr1aouOt7GxAeDKrrQWles8pvbDR/4Hu1tUzuFPo7n6VWaLygDYDOlHQUnL0oTsO5m3uB0hhBBCiPbgrh1pv92CgoIICgq63d0QQgghhBAdgIy0CyGEEEII0c7JSPsd7szllqXHPHRPbXpM8f5jLSpnO6J2MaiCrXtbVM5+0hP8vHRLi8oA/C5yGlU/57eojNnvHIDWpfAIIYQQQtxOMnuMEEIIIYQQ7Vy7HWl3cnJCq9WiKAomJiYsWrSIgQMHtqnOrKws8vLyGDFiBABxcXH84x//wNHREYBevXoxZswYsrOzmTlz5q/WV1hYSEhICAD5+fkYGxtjb28PwNatW9W53G+WGTNmcPz4cQYNGsTatWtvat1CCCGEEKL9ardBe90VSw8ePEh0dDSxsbFtqjMrK4vMzEw1aAfw9vZm8eLF9Y7z9PRsVn1dunRR+7h69WqsrKyYMWNGm/p4I88++yzl5eV8/PHHt6wNIYQQQgjR/nSI9JiSkhJsbW0ByMvLIygoCJ1Oh6+vL+np6UDtqqZRUVH4+PgQEhJCRkYGwcHBeHp6kpKSQlVVFTExMSQmJqLT6UhMTGy0rbi4OF5//XUAIiIieOONN5gyZQqenp4kJSU1q68jR45UF0eq+zo4OJg33nhD7XtGRgYAZWVlLFy4kIkTJ+Lv709ycnKjdT/++ONYW1u37OIJIYQQQogOr92OtBsWP6qsrOTy5cts3rwZgISEBDw8PJg9ezZ6vZ7y8nKgNvB1d3cnPDycsLAwVq1axcaNG8nOziY8PBxPT0/mzp1LZmamOrIeFxdHYmIiR44cAWDatGkYGRnV60deXh4ffPABP/74I7Nnz2bs2LE37HenTp0YPHgw+/fvx8vLix07djB69Gg0Go16XvHx8Rw+fJjIyEgSEhJ49913cXd3Z9myZRQXFzNp0iSGDBmiLrAkhBBCCCHubu02aK+bHnPs2DHCw8NJSEjA2dmZyMhIqqur8fLywsnJCQCNRsPw4cMB0Gq1mJmZodFo0Gq15ObmNtnO9ekxcXFx9fZ7eXlhbGzMI488Qn5+82YrmThxIuvXr8fLy4u4uDiWLFmi7vPx8QHAzc2NkpISiouLOXToEF988QUbN24EoLKykgsXLtCzZ89mtSeEEEIIIe5sHSI9xsXFhcLCQgoKCnBzcyM2NhZHR0ciIiLYtm0bUBu0G0bJjY2N1YdAjY2N0ev1rW67NQ+TDho0iNzcXFJTU9Hr9Wi1WnXf9SP5htcxMTHEx8cTHx/Pvn37JGAXQgghhBCqDhG0Z2dno9frsbOzIzc3FwcHBwIDA5k0aRInT55sdj3W1taUlpbewp7+H39/f+bPn8+ECRPqbTfk0qenp2NjY4ONjQ0eHh7ExsZiWOfq1KlTv0kfhRBCCCFEx9Bu02MMOe0AiqIQFRWFiYkJaWlpbNiwAVNTU6ysrIiKimp2nYMHD2bdunXodDpmzZp1q7oOgJ+fH6tWrcLX17fednNzc/z9/amurmbp0qUAhIaGsnTpUsaPH09NTQ3dunVrdErHP/3pT/z444+UlZUxfPhw/v73vzNs2LBbeh5CCCGEEOL2M1IMw7vipkpKSiIlJYXly5er24KDg3nllVdwdnb+zfohK6L+H1kRVQghhBAdVbsdae/IlixZwoEDB1i3bt3t7ooQQgghhLgDyEi7EEIIIYQQ7VyHeBBVCCGEEEKIu5mkx9zhrl5tWU67jU1tTvuV5PQWlevs5QpA6bHvWlTO2kVL6ZHTLSoDYD2oFxXf5bSojIW2OwDXLha0qJzmPnsAyjKyW1TOqr9M2ymEEEKIm0NG2oUQQgghhGjn2u1Iu5OTE1qtFkVRMDExYdGiRQwcOLBNdWZlZZGXl8eIESOA2tVP//GPf+Do6AhAr169GDNmDNnZ2cycOfNX6yssLCQkJASA/Px8jI2NsbevHZXdunVrqxZmulHf//rXv1JSUoKxsTGzZ8/G29v7ptUvhBBCCCHar3YbtFtYWBAfHw/AwYMHiY6OJjY2tk11ZmVlkZmZqQbtAN7e3ixevLjecZ6ens2qr0uXLmofV69ejZWVFTNmzGhTH5tiYWFBVFQUDz30EJcuXeLJJ5/Ew8MDW1vbW9KeEEIIIYRoPzpEekxJSYkanObl5REUFIROp8PX15f09NrcaxcXF6KiovDx8SEkJISMjAyCg4Px9PQkJSWFqqoqYmJiSExMRKfTqSuTXi8uLo7XX38dgIiICN544w2mTJmCp6cnSUlJzerryJEjuXbtWoPXwcHBvPHGG2rfMzIyACgrK2PhwoVMnDgRf39/kpOTG9Tbo0cPHnroIQAcHR2xt7enoKBludlCCCGEEKJ5Fi5cyOOPP95goUwDRVF44403GDVqFH5+fpw8eVLd99lnnzF69GhGjx7NZ599dlP6025H2g0rolZWVnL58mU2b94MQEJCAh4eHsyePRu9Xk95eTlQG/i6u7sTHh5OWFgYq1atYuPGjWRnZxMeHo6npydz584lMzNTHVmPi4sjMTGRI0eOADBt2jSMjIzq9SMvL48PPviAH3/8kdmzZzN27Ngb9rtTp04MHjyY/fv34+XlxY4dOxg9ejQajUY9r/j4eA4fPkxkZCQJCQm8++67uLu7s2zZMoqLi5k0aRJDhgzBysqq0TYyMjK4du0aDz74YOsvsBBCCCGEaNKECROYOnUq4eHhje4/cOAAZ86cYffu3Rw/fpy//vWvbN26laKiIt566y3++9//YmRkxIQJExg5ciSdO3duU3/abdBeNz3m2LFjhIeHk5CQgLOzM5GRkVRXV+Pl5YWTkxMAGo2G4cOHA6DVajEzM0Oj0aDVasnNzW2ynevTY+Li4urt9/LywtjYmEceeYT8/OatwDlx4kTWr1+Pl5cXcXFxLFmyRN3n4+MDgJubGyUlJRQXF3Po0CG++OILNm7cCEBlZSUXLlygZ8+Gs4/k5eWxYMECoqKiMDbuEF+UCCGEEEJ0OG5ubpw/f77J/SkpKfj7+2NkZMSAAQMoLi4mLy+PtLQ0hg4dip2dHQBDhw7l4MGDTY7YN1eHiPpcXFwoLCykoKAANzc3YmNjcXR0JCIigm3btgG1QbthlNzY2Fh9CNTY2Bi9Xt/qtlvzMOmgQYPIzc0lNTUVvV6PVqtV910/km94HRMTQ3x8PPHx8ezbt6/RgL2kpIRZs2bx0ksvMWDAgBb3SwghhBBC3ByXLl3ivvvuU1/fd999XLp0qcF2R0dHLl261Ob22u1Ie13Z2dno9Xrs7OzIzc3lvvvuIzAwkKqqKk6ePIm/v3+z6rG2tqa0tPQW97aWv78/8+fPJzQ0tN72xMRE3N3dSU9Px8bGBhsbGzw8PIiNjWXRokUYGRlx6tQp+vTpU69cVVUVYWFh6HS6X03REUIIIYS4050aHvrrB93AibARfPzxx+rryZMnM3ny5LZ265Zpt0G7IacdahP9o6KiMDExIS0tjQ0bNmBqaoqVlRVRUVHNrnPw4MGsW7cOnU7HrFmzblXXAfDz82PVqlUNvgoxNzfH39+f6upqli5dCkBoaChLly5l/Pjx1NTU0K1bN9auXVuv3M6dO0lPT6eoqEh9oOHNN99U04OEEEIIIe4q12UvtFRbg3RHR0cuXryovr548SKOjo44OjqSlpambr906RKPPfZYm/oKYKQoitLmWkQDSUlJpKSksHz5cnVbcHAwr7zyCs7Ozr9ZP2RF1P8jK6IKIYQQd45TI8LaVL7P/jW/esz58+d5/vnnSUhIaLBv3759xMbG8u9//5vjx4/zxhtv8Omnn1JUVMSECRPUQdaAgADi4uLUHPfWarcj7R3ZkiVLOHDgAOvWrbvdXRFCCCGEuDMZ3dpHM+fNm0daWhqFhYUMHz6cF154gerqagCeeuopRowYwf79+xk1ahSWlpZqBoWdnR2hoaFMnDgRgLCwsDYH7CAj7UIIIYQQPEAYcQAAIABJREFUogPKGjm3TeWdvoi5ST35bchIuxBCCCGE6HjamNPe0UjQfodrbf52+akzLSpn2eehVperyG56Hv2mWPR8oNX5+sX7j7WonO0IFwBK0//XonLWrr2pyslrURkAs+73triMEEIIcde5y4L2DjFPuxBCCCGEEHczCdrrcHJyQqfTqf8MD5IGBwdz4sSJFteX9f/Yu/OwKMv98ePvYR8QQVwgFROVcsNcMD2JVrjgkgIKohZqXz1ZppnmKbXCJJWs1Mwt+6p43BIXlMxcMv3mKYxcMtxTDiCLoIjSADIww/z+4Mck4fYMaA7zeV3XXNc8M/fnfu7n8Vynz9x8nvs+e5Yffvjhjt+fPHmS2bNnmzRWU8ckhBBCCFEjWKmq9jIzUh5zCwcHB+Li4qqtv7Nnz3Lq1CmeffbZSt/pdDp8fHwe6vKPQgghhBA1xV93ma/pJGlX6Mcff2Tx4sUUFxfj6elJVFQUTk5OJCYmMnfuXAoLC7GzsyM6OprPP/+coqIijh07xrhx40hKSuLSpUukpaXRsGFDwsLCWL16NStWrKCgoIDZs2dz6tQpACZMmEBAQAAzZ87k5MmTaLVaAgICeOONqj0pLYQQQghRI0jSbrlu3YUVYNy4cfTv3994nJuby/Lly4mOjsbR0ZEvv/yS6OhoXnnlFSZPnszChQtp164d+fn5ODg48MYbb3Dq1CkiIiIAWLx4MUlJSWzcuBEHBwcSEhKMfS9btoxatWqxc+dOAPLy8gCYPHkyrq6u6PV6Ro8ezblz52jZsuXDuB1CCCGEEOIRIUn7Le5VHvPbb79x8eJFhg8fDkBJSQnt27cnOTmZ+vXr065dOwBq1ap1xz78/f1xcHCo9Pnhw4dZsGCB8djFxQWA3bt3s3nzZnQ6HVevXiUpKUmSdiGEEEIIM6xLrwpJ2hUwGAx069atQnINcP78+fvuQ61W33fbtLQ0Vq9ezdatW3FxcWHatGlotdr7jhdCCCGEqKksraZdVo9RoH379hw/fpzU1FQACgsLSU5OxsvLi6tXr5KYmAhAfn4+Op0OJycnCgoK7qvvZ555hg0bNhiP8/LyKCgoQK1W4+zsTE5ODocOHar+ixJCCCGEMEeyeozl+mtNe/fu3Zk6darx2M3NjaioKKZMmUJxcTEAb775Jl5eXixcuJDZs2dTVFSEg4MD0dHRdOnShS+//JLAwEDGjRt313O/9tprREZG8sILL2BlZcWECRPo06cPrVu3pl+/fnh4eNCxY8cHc+FCCCGEEObGDBPvqlAZDAbD3z0I8eDIjqh/kh1RhRBCiJrjfOA7VYp/Mm5eNY3k4ZCZdiGEEEIIYXZUKsuq8paZdiGEEEIIYXZ+D55Rpfgnts+tppE8HDLTXsOZWkJy8/wlRXHqJ5uYfD6lMeVxJVeuK4qxbVAHgCt5NxXFNXApW/HHlPNpU7IUxQDYN/VQHGff1EPxeYQQQgizZmE17Zb1dwUhhBBCCCHMkMy0CyGEEEIIsyPrtNdQrVq1IjAw0Pj68ssv79r+iy++qJbzrlq1ir59+xIYGMiQIUPYsWNHtfTr7+9Pbq6ylWGEEEIIIWoMlapqLzNjMTPtDg4OxMXF3Xf7FStW8Oqrryo6h16vx9ra2nj81VdfER8fz9atW6lVqxb5+fl89913ivoUQgghhBC3YWE17RaTtN+ORqMhJCSE5cuX06xZM6ZMmULXrl25dOmScaOlFi1aMH/+fOLi4li3bh0lJSU89dRTzJw5E2trazp06EBYWBjx8fFERETg6+tr7H/FihWsW7eOWrVqAVCrVi2Cg4MBOHz4MPPmzUOv19O2bVtmzZqFnZ0d/v7+BAUFcfDgQXQ6HZ999hnNmzfn+vXrvPXWW2RnZ9O+fXtk0R8hhBBCWDQznC2vCospjylPwstf3377Lc7OzkRERDB9+nR27dpFXl4eQ4cOZerUqcaZ+fnz55OUlMTu3bv56quviIuLw8rKip07dwJQWFhIu3bt+Prrrysk7Pn5+RQUFODp6VlpLFqtlmnTprFw4UJ27tyJXq9n48aNxu/r1KnD9u3bGTZsGKtXrwZg6dKldOzYkV27dtG7d28yMzMf8B0TQgghhBCPCouZab9TeUy3bt3Ys2cPkZGRdyyfOXz4MKdOnSIkJAQo+wFQt25dAKytrQkICFA0luTkZBo3boyXlxcAwcHBbNiwgdGjRwPQp08fANq2bWsspzly5AhLliwB4LnnnsPFxUXROYUQQgghahJLexDVYpL2OyktLSUpKQkHBwfy8vLw8Ki83rXBYCA4OJi33nqr0nf29vYV6tjL1apVC0dHR9LS0m472343tra2AFhZWaHX6xXFCiGEEEJYBGvLStotpjzmTtasWUPz5s2ZP38+06dPp6SkBAAbGxvj+3/84x/s3buXa9euAXDjxg0yMjLu2fcrr7zCrFmzyM/PB6CgoIAdO3bg5eVFRkYGqampAMTFxdG5c+e79tW5c2djSc4PP/xAXl6eaRcshBBCCFETyOoxNVN5TXu57t27M3jwYLZs2cKWLVuoVasWnTt3Zvny5bzxxhsMHTqUQYMG0bp1a+bPn8+bb77J//zP/1BaWoqtrS0RERE0atToruccMWIEhYWFDBkyBFtbW2xsbHj55Zext7cnKiqKSZMmGR9EHT58+F37ev3113nrrbcYMGAAHTp0oGHDhtVyX4QQQgghzJFKZVlzzyqDLENSo2k0GkXtnZ2dAbh5/pKiOPWTTUw+n9KY8riSK9cVxdg2qAPAlbybiuIauKgBTDqfNiVLUQyAfVMPxXH2TSuXdQkhhBA1WdLI2VWKb772vWoaycNhMTPtlqo8CVeqPAl/GOczdYzlSbhS5Un4wzifqcm0JOFCCCHEPcg67UIIIYQQQjzizLAuvSokaa/hTC2PKfztgqI4x6e8Afjj4HFFcbWf78jNs6mKYgDUrR4n60ahohgPV0cA0t77X0VxnrP/CZh2baaW/uT/fFpRTK2ubQDT/72FEEIIc2NpSz5aVgW/EEIIIYQQZsgik/ZWrVpV2B31yy+/vGv7L774osrnNBgMLFu2jD59+hAQEMBLL73EuXPnTO4vNjaWyMjIKo9LCCGEEMIsWamq9jIzFlkec6fdUe9kxYoVvPrqq4rOodfrK2y6tGHDBn799Vfi4uJQq9X8+OOPjB8/nm+++QZHR0dFfQshhBBCWDwpj7FMGo2GgIAA/vvf/wIwZcoUNm/ezKeffmpc4718R9S4uDhCQkIIDAwkIiLCuGtphw4d+Oijjxg0aBC//vprhf7/93//l4iICNTqspVL/Pz86NSpk3HDpA4dOhjb7tmzh2nTpgFw4MABQkNDCQoKYvTo0eTk5DzYGyGEEEIIYQZUKlWVXvfj0KFDBAQE0Lt379tWZsydO9dYuREQEICvr6/xu1srO5RO/t6ORc60/3WjpXHjxtG/f38iIiKYPn06I0eOJC8vj6FDhwJls+TlM/NJSUns3r2br776CltbWz744AN27txJUFAQhYWFtGvXzphwl8vPz+fmzZt4enpW+Lxt27ZcvHjxrmPt1KkTmzdvRqVSsWXLFlauXFmpfyGEEEIIi/OAS1z0ej2RkZFER0fj7u5OSEgI/v7+tGjRwthmxowZxvfr1q3jzJkzxmOllR33YpFJ+51uYrdu3dizZw+RkZF3vMmHDx/m1KlThISEAGU/AOrWrQuAtbU1AQEB1TrWrKwsJk+ezNWrVykuLqZx48bV2r8QQgghhKgsMTGRxx9/3DjpOmDAAL7//vsKSfutdu3axcSJEx/YeCwyab+T0tJSkpKScHBwIC8vDw+PyhvcGAwGgoODjaUyt7K3t69Qx16uVq1aqNVq0tLSKsy2nz59mm7dulVqr9Vqje9nz57N6NGj6dmzJwkJCSxZssTUyxNCCCGEqDmqONMeExNDTEyM8TgsLIywsDDjcXZ2doVc0N3dncTExNv2lZGRQXp6Ol27djV+ptVqGTx4MDY2Nrzyyiv06tWrSuOVmvZbrFmzhubNmzN//nymT59OSUkJADY2Nsb3//jHP9i7dy/Xrl0D4MaNG2RkZNyz7zFjxjB79myKiooAiI+P5+LFi/Tt2xeAevXqkZSURGlpKfv37zfGaTQa3N3dAdixY0f1XawQQgghhBmrak17WFgYsbGxxtetCbtSu3btIiAgoMLk7cGDB4mNjWX+/PnMnTuXS5cuVel6LXKm/a817d27d2fw4MFs2bKFLVu2UKtWLTp37szy5ct54403GDp0KIMGDaJ169bMnz+fN998k//5n/+htLQUW1tbIiIiaNSo0V3PGR4ezh9//MGgQYPQ6XQUFxfzzTffYG9vD8Bbb73FuHHjcHNzo23bthQWlm0cNGHCBCZNmoSLiwtdunQhPT39wd0YIYQQQghzYfVg557d3d3JysoyHmdnZxsnUv/q22+/JSIiolI8gKenJ08//TRnzpyhSZMmJo9HZTAYDCZHC5MUFBQwYcIEfHx8mDJlygM9l+yI+ifZEfX25xJCCCHMUcobn1Upvunnb971e51OR0BAAGvWrDE+iDp//ny8vb0rtEtKSuKf//wn33//vXFVmry8PNRqNXZ2duTm5jJs2DCWLVt2x3r4+2GRM+1/NycnJ6Kjo//uYQghhBBCiDuwsbEhIiKCsWPHotfrGTJkCN7e3ixatIi2bdvSs2dPoGyWvX///hWWkUxKSmLmzJmoVCoMBgP//Oc/q5Swg8y0CyGEEEIIM5QyaVGV4psumlRNI3k4ZKZdCCGEEEKYHdUDXqf9USNJew1nao2zqXGXryurM3+sjqPJdd8lWbmKYmw93AA49t8riuI6NWsAmHZPii4of3DYwbuxyfe/OE3Ztdl5ll3bz79fVhTX9YnHFLUXQgghqt197mpaU8iSj0IIIYQQQjziZKa9mrVq1YonnnjCeLx06VLZxVQIIYQQorpZ2Ey7JO3VzMHBgbi4uL97GEIIIYQQNZrUtItqd+rUKT766CMKCwupU6cOUVFRNGjQgPDwcNq1a0dCQgIajYY5c+bg6+uLXq/n008/5T//+Q8qlYqhQ4cSHh5+x36EEEIIISyOzLSLqrh1t9XGjRvz2WefMXv2bJYtW4abmxvffvstCxcuJCoqCgC9Xs/WrVv54YcfWLJkCWvWrCEmJoaMjAx27NiBjY0NN27coKSk5K79CCGEEEJYFJlpF1Xx1/KY33//nd9//52XX34ZgNLSUurXr2/8vnfv3gC0adOGjIwMAA4fPsywYcOwsSn753F1db1nP0IIIYQQouaSpP0BMxgMeHt7ExMTc9vv7ezsALCyskKv15vcjxBCCCGEJVFZWHmMLPn4gHl5eZGbm8uvv/4KQElJCRcuXLhrzDPPPENMTAw6nQ6AGzdumNSPEEIIIUSNZWVVtZeZkZn2B8zOzo7PP/+c2bNno9Fo0Ov1jBo1Cm9v7zvGhIaGkpKSwqBBg7CxsWHo0KG89NJLivsRQgghhKixLGymXWUwGAx/9yDEgyM7ov5JdkStTHZEFUIIYa7SI1ZWKb5x5NhqGsnDYX5/GxBCCCGEEMLCyEy7EEIIIYQwO+kzV1UpvvGsMdU0kodDatprOFPLJbQpWYri7Jt6AFBw7LyiOKdOT6JNzlQUA2Dv1dDkEpIbu39WFOfarysAN89fUhSnfrKJyaU/SstqHLwbA6aXNV3/5idFcXVe6EbWDWWlUAAero6KY4QQQojbsrCadknahRBCCCGE+bGwzZWkpl0IIYQQQohHXI1K2lu1akVgYKDxlZ6ezrBhw6qtf39/f3Jzla1YosSFCxcYOXIkAQEB9OrVi88//5zS0tIHdj4hhBBCCHOlUqmq9DI3Nao8xsHBgbi4uAqfbdq0qVI7nU6Hjc2jdelFRUW89tprfPDBB/j5+XHz5k0mTpzI2rVrGT169N89PCGEEEKIR4sZJt5VUaNm2m+nQ4cOACQkJDBixAheffVVBgwYgF6vZ968eQwZMoSBAwcak/uEhARefPFFXnnlFQICAoiIiLjtbPf48eMZPHgwAwYMICYmxvj5oUOHCA4OZtCgQYwaNQqAwsJCpk+fTkhICEFBQezfv79Sfzt37qRjx474+fkBoFariYiIYOXKsjVIFy9ezKpVfz4l/cILL5CernwNcCGEEEKImkBlparSy9w8WtPNVVRUVERgYCAAjRs3ZunSpRW+P3PmDDt37sTT05OYmBicnZ3Ztm0bxcXFDBs2jG7dugGQmJjIt99+S8OGDRk7diz79u2jb9++FfqaO3curq6uFBUVERISQp8+fTAYDLz//vusX78eT09Pbty4AcAXX3xB165diYqK4o8//iA0NJRnnnkGR8c/V9K4ePEibdq0qXCOJk2aoNVq+eOPP6r9XgkhhBBCmDUzTLyrokYl7bcrj7mVj48Pnp6eAPz000+cP3+evXv3AmVL5aWmpmJra0u7du2M7QYMGMCxY8cqJe3r1q3ju+++A+Dy5cukpqaSm5uLr6+vMdbV1RWAH3/8kQMHDrB69WoAtFotly9fpnnz5tV49UIIIYQQoqaqUUn7vdw6s20wGHjvvffo3r17hTYJCQmVHk7463FCQgLx8fHExMSgVqsJDw9Hq9Xe9dyff/45zZo1u+P3LVq04MiRIxU+S0tLw9XVldq1a2NtbV2hTOde5xNCCCGEqNFUNb7KuwLLutpb+Pn58dVXX1FSUgJAcnIyhYVlm8UkJiaSlpZGaWkpu3fvplOnThViNRoNLi4uqNVqkpKSOHHiBADt27fn6NGjpKWlARjLY/z8/Fi/fj3lm8+eOXOm0ngGDhzIsWPHiI+PB8pKfWbPns3EiRMBaNSokTHu9OnTUs8uhBBCCMumUlXtZWYsaqb9VqGhoWRkZDB48GAMBgN16tRh2bJlQFkZzYcffkhqaipdunShd+/eFWJ79OjBpk2b6NevH15eXrRv3x4ANzc3IiMjmThxIqWlpdStW5fo6GjGjx/P3LlzGTRoEKWlpTRu3JgVK1ZU6NPBwYHly5fz4YcfMmvWLLKzs3nttdcYNGgQAAEBAcTFxTFgwADatWtH06ZNH/xNEkIIIYR4RJnjw6RVoTKUT/8KoKz0ZfXq1ZWS6odt//79REVFsXbtWho1amRyP8VpVxS1t/NsAIA2JUtRnH1TDwAKjp1XFOfU6Um0yZmKYgDsvRqi0WgUxTg7OwNwY/fPiuJc+3UF4Ob5S4ri1E82UTxGKBtn0QVlf0lx8G4MYPI9uf7NT4ri6rzQjawbhYpiADxcHe/dSAghhLgPl+dXXtZbicfeqr69fB4Gi51pf9T16tWLXr16/d3DEEIIIYQQjwCZaRdCCCGEEGbn8sKYeze6i8cmh1XTSB4OmWmv4UwtczG5POboOUVxTr4tuXkmRVEMgLp1U5NLQf44eFxRXO3nOwJQmJikKM6xXXOKM3MUxQDYNaxH0e9pimIcnihbZtTUe6L5MVFZnF87k0t/zge+oyjmybh5is8jhBCi5vvr6n41nSTtQgghhBDC/FhY0m6xSz4KIYQQQghhLiw6aW/VqhWBgYHGV3p6OsOGVd+TxP7+/uTm5lZbf0IIIYQQ4v+zUlXtdR8OHTpEQEAAvXv35ssvv6z0fWxsLF27djXmklu2bDF+t337dvr06UOfPn3Yvn17lS/XostjHBwciIuLq/DZpk2Vlw/S6XTY2Fj0rRJCCCGEeLQ84PIYvV5PZGQk0dHRuLu7ExISgr+/Py1atKjQrn///kRERFT47MaNGyxZsoRt27ahUqkYPHgw/v7+uLi4mDweyUT/okOHDvz6668kJCSwaNEiateuTXJyMt9++y2ffvopv/zyC8XFxbz44osMGzaMhIQEPv/8c5ycnIybMX3wwQdYWVX8I8b48ePJyspCq9UycuRIwsLKnlg+dOgQCxcuRK/XU6dOHf79739TWFjIhx9+yIULF9DpdEyYMIFevXpx4cIFpk+fTklJCaWlpSxevFg2WRJCCCGERXrQmyslJiby+OOP4+lZttjDgAED+P777ysl7bfz448/0q1bN1xdXQHo1q0b//nPf3jhhRdMHo9FJ+1FRUUEBgYC0LhxY5YuXVrh+zNnzrBz5048PT2JiYnB2dmZbdu2UVxczLBhw+jWrRtQ9o/67bff0rBhQ8aOHcu+ffvo27dvhb7mzp2Lq6srRUVFhISE0KdPHwwGA++//z7r16/H09OTGzduAPDFF1/QtWtXoqKi+OOPPwgNDeWZZ55h06ZNjBw5kkGDBlFcXExpaelDuEtCCCGEEI8g1YOt8s7OzsbDw8N47O7uTmJi5dXW9u3bx5EjR/Dy8mL69Ok89thjt43Nzs6u0ngsOmm/XXnMrXx8fIy/rn766SfOnz/P3r17gbKl9VJTU7G1taVdu3YVfoUdO3asUtK+bt06vvvuOwAuX75Mamoqubm5+Pr6GmPLf439+OOPHDhwgNWrVwOg1Wq5fPky7du354svviArK4s+ffrILLsQQgghhIliYmKIiflzrfewsDBjJcT9ev7553nhhRews7Nj06ZNvPPOO6xdu7a6hwpYeNJ+L46Of265bjAYeO+99+jevXuFNgkJCZXWCf3rcUJCAvHx8cTExKBWqwkPD0er1d713J9//jnNmjWr8Fnz5s156qmn+L//+z9eeeUVZs2axT/+8Q9TLk0IIYQQwqxVtTzmXkm6u7s7WVl/7luTnZ2Nu7t7hTZ16tQxvg8NDeWTTz4xxv7yyy8VYp9++ukqjdeiV49Rws/Pj6+++oqSkhIAkpOTKSwsBMrKY9LS0igtLWX37t106tSpQqxGo8HFxQW1Wk1SUhInTpwAoH379hw9epS0tLKNdMrLY/z8/Fi/fj3lm9WeOXMGgLS0NDw9PRk5ciQ9e/bk/PnzD/7ChRBCCCEeRSpV1V734OPjQ0pKCmlpaRQXF7Nr1y78/f0rtLly5Yrx/YEDB2jevDlQlsv9+OOP5OXlkZeXx48//oifn1+VLldm2u9TaGgoGRkZDB48GIPBQJ06dVi2bBlQ9o/64YcfGh9E7d27d4XYHj16sGnTJvr164eXlxft27cHwM3NjcjISCZOnEhpaSl169YlOjqa8ePHM3fuXAYNGkRpaSmNGzdmxYoV7N69m7i4OGxsbKhXrx7jxo176PdBCCGEEOKR8IBXj7GxsSEiIoKxY8ei1+sZMmQI3t7eLFq0iLZt29KzZ0/WrVvHgQMHsLa2xsXFhaioKKCs5Hn8+PGEhIQA8PrrrxvLoE2lMpRP5wqTJCQksHr1alasWPF3D+W2tClZ9250C/umHlWKKzh6TlGck29Lbp5JURQDoG7dFI1GoyjG2dkZgD8OHlcUV/v5jgAUJiYpinNs15zizBxFMQB2DetR9HuaohiHJ8qeizD1nmh+rPxgzV3j/NopPlf5+c4HvqMo5sm4eYrPI4QQoua7suqbKsU3GGP6Si5/B5lpr+HKk+mHFefk21JxjLp1U5POVZ5wKlWehCvl2K654hi7hvVMOld5Eq6UqffE2a/dQzuXJOFCCCGEcpK0V1GXLl3o0qXL3z0MIYQQQgiL8teFP2o6SdpruLy9v9y70S1cAsqebC5Ov6oozq5xfQC0yZmK4uy9GppcZpGbf/cVeP7KrZY9ANnLdyiKc38tCICiC+mK4hy8G5N5vUBRDEDDOk4U/nZBUYzjU96A6eUxV1bceenT22kwLpCjScrXm/Vt7m5yeZLmp5OK4py7+ShqL4QQwsw84M2VHjWStAshhBBCCPNjYTPtsuTjHbRq1YrAwEDjKz39zrOssbGxREZGArB48WJWrVpVqc3ixYvp3r07gYGB9O3bl5kzZ95zR9P9+/dz8eJF43F4eDgnTyqbbRRCCCGEEOZPZtrv4F67pZpi9OjRjBkzhtLSUl588UV++eUXunbtesf2+/fv57nnnqNFixbVOg4hhBBCCHNnaTXtMtOugL+/P7m5uQCcPHmS8PBwk/opKSlBq9Xi4uICwObNmxkyZAiDBg1i4sSJ3Lx5k+PHj3PgwAE+/vhjAgMDuXTpEgB79uwhJCSEgIAAjh49Wj0XJoQQQghhbqxUVXuZGZlpv4OioiICAwMBaNy4MUuXLq1yn2vWrOHrr78mMzOTHj160KpVKwB69+7N0KFDAVi4cCFbt24lPDwcf39/nnvuOfr27WvsQ6/Xs3XrVn744QeWLFnCmjVrqjwuIYQQQgizY4aJd1VI0n4HD7I8pqSkhDfeeINdu3YxYMAALly4wGeffYZGo6GgoOCu29yW77bapk0bMjIyqnV8QgghhBDmQqWyrIIRy7raKrK2tqZ8A1mtVtlyg7eytbWle/fuHDlyBIBp06YRERHBzp07mTBhAsXFxXeMtbOzA8DKygq9Xm/yGIQQQgghhPmQpF2BRo0acerUKQD27dtncj8Gg4Hjx4/TpEkTAAoKCqhfvz4lJSXs3LnT2M7JyYmCAuXrfAshhBBC1HgqVdVeZkaSdgUmTJjA3LlzGTx4MNbW1orj16xZQ2BgIC+88AKlpaWMGDECgEmTJhEaGsrw4cNp1qyZsX3//v1ZtWoVQUFBxgdRhRBCCCEEFvcgqspQXu8haiTZEfVPsiNqZbIjqhBCCHOVu+VgleLdQp+vppE8HDLTLoQQQgghxCNOZtqFEEIIIYTZyd36f1WKdwt5rlrG8bDIko9CCCGEEML8mGFdelVI0l7DmVrjXJiYpCjOsV1zALSXlNU52zdxN7mm3eRrO/lfRXGOPmUPB988r+xhYPWTTUy+NlOfKSjJylUUZ+vhBkDR72mK4hye8OTqH0WKYgDq13Yw+d/NlLiSqzcUxQDY1ndVHCOEEOJvYIYrwFSFJO1CCCGEEMLsqCxspt1iH0Rt1aoVgYGBxld6urKVQe5m//79XLx40Xi8aNEi4uPjq61/gISEBMaNG1e60zWIAAAgAElEQVStfQohhBBCiEeTxc60Ozg4EBenbJm7+7V//36ee+45WrRoAZStwy6EEEIIIaqRzLRbLn9/f3Jzy2qCT548SXh4OACLFy9m+vTphIeH07NnT9auXWuM2bFjBwMHDmTQoEH861//4vjx4xw4cICPP/6YwMBALl26xLRp09izZw8Ahw8fJigoiIEDBzJ9+nSKi4uN5/78888JDg5m4MCBJCWV1ZQnJiYSFhZGUFAQw4YN47//VVaPLYQQQghRI1nYjqgWO9NeVFREYGAgAI0bN2bp0qV3bZ+cnMzatWvJz8+nX79+DB8+nJSUFJYvX85XX32Fm5sbN27cwNXVFX9/f5577jn69u1boQ+tVsu0adNYs2YNXl5evP3222zcuJHRo0cDUKdOHbZv386GDRtYvXo1c+bMoVmzZmzYsAEbGxvi4+NZuHAhixcvfiD3RAghhBDCXKhUljX3bLFJu9LymGeffRY7Ozvc3Nxwc3Pj2rVr/Pzzz/Tt2xc3t7IVOFxd777qRHJyMo0bN8bLywuA4OBgNmzYYEza+/TpA0Dbtm357rvvgLIVM9555x1SU1NRqVSUlJQovVQhhBBCiJpHymMsl7W1NeV7TWm12grf2dnZVWin0+mq/fy2trYAWFlZodfrgbKHWLt06cI333zD8uXLjeU0QgghhBDCckjSfotGjRpx6tQpAPbt23fP9l27dmXPnj1cv34dgBs3ytaEdnJyoqCgoFJ7Ly8vMjIySE1NBSAuLo7OnTvf9RwajQZ3d3cAtm/ffv8XI4QQQghRk1lYTbsk7beYMGECc+fOZfDgwVhbW9+zvbe3N6+++irh4eEMGjSIjz76CID+/fuzatUqgoKCuHTpzw157O3tiYqKYtKkSQwcOBCVSsXw4cPveo6xY8eyYMECgoKCHsjsvhBCCCGEOVKpVFV6mRuVobweRNRIsiNqxRiQHVFvJTuiViY7ogohhHnI++5IleJdet+92uFRIzPtQgghhBBCPOJkpl0IIYQQQpidvP1HqxTv0su3mkbycFjsko+WoigpQ1F7h+aNALh5NlVRnLrV4wD88cOviuJqP9uBm2dSFMUAqFs3JTdfe++Gt3CrZQ/A5U+/UhT32NSy5w40P51UFOfczcf00p/4U8pinmkLYPI9yVq0RVGcx6RQTl66pigGwKdJXXJjf1AU4zb4WQCuf/OTorg6L3Qja/FWRTEAHhNDKM7MURRj17Ce4vMIIYSoGnOsS68KSdqFEEIIIYT5sbB12iVpF0IIIYQQ5keSdvOVk5NDVFQUJ06cwMXFBVtbW8aOHUvv3r3/7qEBkJiYyLx588jJyUGtVtOmTRvee+891Gr13z00IYQQQgjxF4cOHWLOnDmUlpYSGhrKK6+8UuH76OhotmzZgrW1NW5ubsydO5dGjcpKjVu1asUTTzwBwGOPPcYXX3xRpbHUmKTdYDDw+uuvExQUxPz58wHIyMjgwIED992HTqfDxubB3JKcnBwmTZrEggUL6NChAwB79uyhoKDgvpL2Bzk2IYQQQghz86Br2vV6PZGRkURHR+Pu7k5ISAj+/v60aNHC2KZVq1Zs27YNtVrNxo0b+eSTT/jss88AcHBwIC4urtrGU2OywJ9//hlbW9sKmxU1atSI8PBwANLT03n77be5efMmAO+//z4dO3YkISGBRYsWUbt2bZKTk9m7dy/jx48nKysLrVbLyJEjCQsLA2DLli2sXLkSZ2dnWrZsiZ2dHREREeTm5jJz5kwyMzMBmDFjBp06daowvg0bNhAUFGRM2AH69u0LlM3Az5kzB61Wi4ODA3PnzqVZs2bExsayb98+CgsLKS0tZcGCBUyePJn8/Hz0ej0ffPABvr7m9eSzEEIIIUS1sHqwK5cnJiby+OOP4+npCcCAAQP4/vvvKyTtXbt2Nb5v3749X3/99QMbT41J2i9cuEDr1q3v+H3dunWJjo7G3t6elJQUpkyZQmxsLABnzpxh586dxn+UuXPn4urqSlFRESEhIfTp04fi4mKWL19ObGwsTk5OjBo1ipYtWwIwZ84cRo0aha+vL5mZmYwZM4bdu3dXGl9QUNBtx9asWTM2bNiAjY0N8fHxLFy4kMWLFxvH9vXXX+Pq6srq1avx8/PjtddeQ6/XG3+ACCGEEEJYnAc8056dnY2Hh4fx2N3dncTExDu237p1Kz169DAea7VaBg8ejI2NDa+88gq9evWq0nhqTNL+V7NmzeLYsWPY2tqybds2dDodkZGRnDt3DisrK1JSUoxtfXx8jAk7wLp16/juu+8AuHz5MqmpqeTk5NC5c2dcXct2S+zbt6+xj/j4eC5evGiMz8/Pp6CgACcnp/saq0aj4Z133iE1NRWVSkVJSYnxu27duhnP6ePjw4wZM9DpdPTq1YtWrVqZdG+EEEIIIcxeFZP2mJgYYmJijMdhYWHG6gql4uLiOHXqFOvXrzd+dvDgQdzd3UlLS2PUqFE88cQTNGnSxOTx1pik3dvbm3379hmPZ86cSW5uLiEhIQCsWbOGevXqERcXR2lpKe3atTO2dXR0NL5PSEggPj6emJgY1Go14eHhaLV3X/u6tLSUzZs3Y29vf8c2LVq04PTp07f9lbVo0SK6dOnC0qVLSU9PZ+TIkcbvbq1379y5M+vXr+eHH35g2rRpvPzyy3ecvRdCCCGEEHd2ryTd3d2drKws43F2djbu7u6V2sXHx/PFF1+wfv167OzsKsQDeHp68vTTT3PmzJkqJe0PthjoIeratStarZaNGzcaPysqKjK+12g01K9fHysrK+Li4tDr9bftR6PR4OLiglqtJikpiRMnTgBls9xHjhwhLy8PnU5X4QeCn58f69atMx6fPXu2Ur8vvfQSO3bs4LfffjN+tm/fPnJyctBoNMZ/2O3bt9/xGjMyMqhXrx5Dhw4lNDSU06dP3+u2CCGEEELUSCorVZVe9+Lj40NKSgppaWkUFxeza9cu/P39K7Q5c+YMERERLF++nLp16xo/z8vLo7i4GIDc3FyOHz9eoRbeFDVmpl2lUrF06VKioqJYuXIlbm5uqNVqpk6dCsCIESOYOHEiO3bsoHv37hVm12/Vo0cPNm3aRL9+/fDy8qJ9+/ZA2a+lcePGERoaiouLC82aNcPZ2RmAd999l8jISAYOHIher8fX15fIyMgK/darV48FCxYwb948rl27hpWVFZ07d6Z79+6MHTuWadOmsXz5cp599tk7XuMvv/zCqlWrsLGxwdHRkXnz5lXHrRNCCCGEMD8PuKbdxsaGiIgIxo4di16vZ8iQIXh7e7No0SLatm1Lz549+fjjjyksLGTSpEnAn0s7JiUlMXPmTFQqFQaDgX/+859VTtpVBoPBUB0XZgnK69R1Oh0TJkxgyJAhj8wa8HdSlJShqL1D87K1RW+eTVUUp271OAB//PCrorjaz3bg5pkURTEA6tZNyc2/e9nSX7nVKitfuvzpV4riHptatiKR5qeTiuKcu/mg0WgUxQA4OzujiT+lLOaZtgAm35OsRVsUxXlMCuXkpWuKYgB8mtQlN/YHRTFug8t+yF7/5idFcXVe6EbW4q2KYgA8JoZQnJmjKMauYT3F5xFCCFE1+b9UrmxQotbT5vVsYI2ZaX8YlixZQnx8PFqtFj8/vyo/BSyEEEIIIcT9kJl2IYQQQghhdgqOnqtSvJNvy2oaycMhM+01nNLyjPI6faUlK+rWTQEoTruiKM7OswHa5ExFMQD2Xg1Nvjalf04r//NZ4W8XFMU5PuWNNiXr3g3/wr6ph0nnAhSfz75p2fqzBcfOK4pz6vQkJVdvKIoBsK3vSsGvvys7V4eyLaCV/p+zk29Lii6kK4oBcPBuTHH6VUUxdo3rA3Bt0/eK4uoO66movRBCiFs84Jr2R40k7UIIIYQQwvzcxwowNYkk7UIIIYQQwuzcz7KNNYnZJ+05OTlERUVx4sQJXFxcsLW1ZezYsY/Mqi6JiYnMmzePnJwc1Go1bdq04b333quwaZIpFi9ejKOjI2PGjKmmkQohhBBCiEeVWSftBoOB119/naCgIObPnw+UbUB04MCB++5Dp9NhY/NgbkNOTg6TJk1iwYIFdOjQAYA9e/ZQUFBQ5aRdCCGEEMKiqWrMHqH3xayT9p9//hlbW1uGDx9u/KxRo0aEh4cDkJ6ezttvv83NmzcBeP/99+nYsSMJCQksWrSI2rVrk5yczN69exk/fjxZWVlotVpGjhxp3NZ2y5YtrFy5EmdnZ1q2bImdnR0RERHk5uYyc+ZMMjPLHqKcMWMGnTp1qjC+DRs2EBQUZEzYAfr27QvAjRs3mDFjBmlpaajVaiIjI2nZsiWLFy8mMzOT9PR0MjMzGTVqFCNHjgRg+fLl7NixAzc3Nx577DHatGnzgO6sEEIIIcQjTh5ENR8XLlygdevWd/y+bt26REdHY29vT0pKClOmTCE2NhYo23Z2586deHp6AjB37lxcXV0pKioiJCSEPn36UFxczPLly4mNjcXJyYlRo0bRsmXZ8kBz5sxh1KhR+Pr6kpmZyZgxY9i9e3el8QUFBd12bIsXL6Z169YsW7aMw4cP88477xAXFwdAcnIya9euJT8/n379+jF8+HDOnz/Pt99+y44dO9Dr9QQHB0vSLoQQQgiLJTXtZmzWrFkcO3YMW1tbtm3bhk6nIzIyknPnzmFlZUVKSoqxrY+PjzFhB1i3bh3fffcdAJcvXyY1NZWcnBw6d+6Mq6srUDZLXt5HfHw8Fy9eNMbn5+cbd0y9H8eOHWPx4sUA/OMf/+DGjRvk5+cD8Oyzz2JnZ4ebmxtubm5cu3aNo0eP0qtXL2NZjb+/v2k3SQghhBCiJpCZdvPh7e3Nvn37jMczZ84kNzeXkJAQANasWUO9evWIi4ujtLSUdu3aGds6Ojoa3yckJBAfH09MTAxqtZrw8HC02rtvB19aWsrmzZuxt7e/Y5sWLVpw+vRpxTun2tnZGd9bW1uj0+kUxQshhBBCiJrFrCv4u3btilarZePGjcbPioqKjO81Gg3169fHysqKuLg49Hr9bfvRaDS4uLigVqtJSkrixIkTQNls/JEjR8jLy0On01X4geDn58e6deuMx2fPVt6w56WXXmLHjh389ttvxs/27dtHTk4Ovr6+fP3110DZj4Y6depQq1atO15r586d2b9/P0VFReTn53Pw4MF73R4hhBBCiJpLparay8yY9Uy7SqVi6dKlREVFsXLlStzc3FCr1UydOhWAESNGMHHiRHbs2EH37t0rzK7fqkePHmzatIl+/frh5eVF+/btAXB3d2fcuHGEhobi4uJCs2bNjLtqvvvuu0RGRjJw4ED0ej2+vr5ERkZW6LdevXosWLCAefPmce3aNaysrOjcuTPdu3dnwoQJzJgxg4EDB6JWq/noo4/ueq1t2rShf//+BAYG4ubmho+PT1VvnxBCCCGE+bKwmnaVwWAw/N2DeJSV16nrdDomTJjAkCFDHpk14O+HRqNR1L78R8nNMymK4tStmwJQnHZFUZydZwO0yZmKYgDsvRqafG35v1T+q8jd1Hq6FQCFv11QFOf4lDfalCxFMQD2TT1MOheg+Hz2TT0AKDh2XlGcU6cnKbl6Q1EMgG19Vwp+/V3ZuTo8AUDB0XPK4nxbUnQhXVEMgIN3Y4rTryqKsWtcH4Brm75XFFd3WE9F7YUQQvyp6Pe0KsU7POF570aPEEna72HevHnEx8ej1Wrx8/Pj3XffRWWGf1IRQgghhKhJJGkXQgghhBDiEWfKX1Nv5eDduJpG8nCYdU27uDeTy2NOJyuKU7fxAuCPH35VFFf72Q6KyyWgrGTC1Gu7PH+TorjH3hoGQN7+o4riXHr5Kh4jlI1TE39KWcwzbQHT/72zlmxTFOcxYQhJWXmKYgCae7iQu/2Qohi34B4AXP/mJ0VxdV7oxrWv9iuKAag7vJfi/xCU/x//5YUxiuIem1y2iVvOxn33aFlRvRF9FLUXQogaycJq2iVpF0IIIYQQZsfSNlcyyyUfc3JyeOutt+jZsyeDBw8mLCzMuDHS3y0hIYFOnToRGBhIYGAgo0eP5uTJk8yePfuescOGDbvr9x06dKiuYQohhBBCmDeVVdVeZsbsZtoNBgOvv/46QUFBzJ8/H4CMjAwOHDhw333odDpsbB7cpfv6+rJixYoKn93PEo2bNikr2xBCCCGEEJbB7JL2n3/+GVtbW4YPH278rFGjRoSHhwOQnp7O22+/zc2bNwF4//336dixIwkJCSxatIjatWuTnJzM3r17GT9+PFlZWWi1WkaOHElYWFl96ZYtW1i5ciXOzs60bNkSOzs7IiIiyM3NZebMmWRmli1ROGPGDDp16nTPMSckJLB69WpWrFjB4sWLyczMJD09nczMTEaNGsXIkSOBspn0X3/9lStXrjB58mTy8/PR6/V88MEH+Pr6ArBw4UIOHjyIg4MDy5Yto169etV3c4UQQgghzIWFlceYXdJ+4cIFWrdufcfv69atS3R0NPb29qSkpDBlyhRiY2MBOHPmDDt37sTTs2yJn7lz5+Lq6kpRUREhISH06dOH4uJili9fTmxsLE5OTowaNYqWLVsCMGfOHEaNGoWvry+ZmZmMGTOG3bt3VxrD0aNHCQwMBKBv37507NixwvfJycmsXbuW/Px8+vXrx/Dhw7G1tTV+/8033+Dn58drr72GXq83/gApLCzkqaeeYvLkyXz88cds3ryZ8ePHV+FuCiGEEEKYJ0tbgtvskva/mjVrFseOHcPW1pZt27ah0+mIjIzk3LlzWFlZkZKSYmzr4+NjTNgB1q1bZ6yFv3z5MqmpqeTk5NC5c2dcXV2BsqS7vI/4+HguXrxojM/PzzduvnSrv5bHJCQkVPj+2Wefxc7ODjc3N9zc3Lh27RoeHh4Vxjljxgx0Oh29evWiVauyzX1sbW15/vnnAWjbti0//aRsNQ0hhBBCiBpDkvZHm7e3N/v2/bk82syZM8nNzSUkJASANWvWUK9ePeLi4igtLaVdu3bGto6Ojsb3CQkJxMfHExMTg1qtJjw8HK1We9dzl5aWsnnzZuzt7at0DXZ2dsb31tbW6HS6Ct937tyZ9evX88MPPzBt2jRefvllgoKCsLW1Nf6qtLKyQq/XV2kcQgghhBBmy8LKY8zu0dmuXbui1WrZuHGj8bOioiLje41GQ/369bGysiIuLu6Oia1Go8HFxQW1Wk1SUhInTpwAyma5jxw5Ql5eHjqdrsIPBD8/P9atW2c8Pnv2bHVfHlD2YG29evUYOnQooaGhnD59+oGcRwghhBBCmAezm2lXqVQsXbqUqKgoVq5ciZubG2q1mqlTpwIwYsQIJk6cyI4dO+jevXuF2fVb9ejRg02bNtGvXz+8vLxo3749AO7u7owbN47Q0FBcXFxo1qyZcQOad999l8jISAYOHIher8fX15fIyMhqv8ZffvmFVatWYWNjg6OjI/Pmzav2cwghhBBCmDNLq2lXGQwGw989iEdNeZ26TqdjwoQJDBkyhN69e//dwzKJ7Ij6J9kR9fbnAtkR9VayI6oQQpiHkqzcKsXberhV00geDrObaX8YlixZQnx8PFqtFj8/P3r16vV3D0kIIYQQQtzKwmraZaZdCCGEEEKYnZIr16sUb9ugTjWN5OGQmXYhhBBCCGF+LKymXZL2Gs7kmvazqYri1K0eB6AoKUNRnEPzRhT9nqYoBsDhCU+Tr83UevH8X5StFlTr6VZokzMVxQDYezWk4Nh5RTFOnZ4EoDj9qqI4u8b1Acj/WdkKRbW6tjG5Xl/pMwxOHZ4ATLv/Sp/NgLLnM4ozcxTF2DUs25nY1Nr05Fc+VhTn9eXbis916/mEEKImKHKwrlK87b2bPFLMbslHIYQQQgghLE2NStpzcnJ466236NmzJ4MHDyYsLMy44+mj4OjRo4SEhNC3b18CAgLYsGFDlfrr0KFDNY1MCCGEEEL81aFDhwgICKB37958+eWXlb4vLi7mzTffpHfv3oSGhpKe/ufqYytWrKB3794EBATwn//8p8pjqTHlMQaDgddff52goCDmz58PlG1SdODAgfvuQ6fTYWPzYG7J1atXmTp1KkuXLqVNmzbk5uYyduxYGjRoYLbLSQohhBBC1FR6vZ7IyEiio6Nxd3cnJCQEf39/WrRoYWyzZcsWateuzXfffceuXbv49NNP+eyzz7h48SK7du1i165dZGdn8/LLL7N3716srU0v6akxM+0///wztra2DB8+3PhZo0aNCA8PByA9PZ0RI0YQHBxMcHAwx48fByAhIYERI0bw6quvMmDAAADGjx/P4MGDGTBgADExf667vGXLFgICAggJCeG9994zbqyUm5vLxIkTGTJkCEOGDOHYsWOVxrdhwwaCg4Np06YNAG5ubvzrX/9i1apVAEybNo09e/YY25fPohcUFDBq1CiCg4MZOHAg+/crX3daCCGEEEIok5iYyOOPP46npyd2dnYMGDCA77//vkKbAwcOEBwcDEBAQACHDx/GYDDw/fffM2DAAOzs7PD09OTxxx8nMTGxSuOpMTPtFy5coHXr1nf8vm7dukRHR2Nvb09KSgpTpkwhNjYWgDNnzrBz5048PT0BmDt3Lq6urhQVFRESEkKfPn0oLi5m+fLlxMbG4uTkxKhRo2jZsiUAc+bMYdSoUfj6+pKZmcmYMWPYvXt3hfNfvHiRoKCgCp+1bduWixcv3vW67O3tWbp0KbVq1SI3N5ewsDB69uxpcbuACSGEEEI8TNnZ2Xh4eBiP3d3dKyXe2dnZPPbYYwDY2Njg7OzM9evXyc7O5qmnnqoQm52dXaXx1Jik/a9mzZrFsWPHsLW1Zdu2beh0OiIjIzl37hxWVlakpKQY2/r4+BgTdoB169YZa+EvX75MamoqOTk5dO7cGVdXVwD69u1r7CM+Pr5C8p2fn2/cVbWqDAYDCxYs4MiRI1hZWZGdnU1OTg7169evct9CCCGEEJYqJiamQkVFWFgYYWFhf+OI7q7GJO3e3t7s2/fnEmgzZ84kNzeXkJAQANasWUO9evWIi4ujtLSUdu3aGds6Ojoa3yckJBAfH09MTAxqtZrw8HC0Wu1dz11aWsrmzZuxt7e/Y5vmzZtz+vTpCrurnjp1irZty5YTtLa2prS01NhfSUkJADt37iQ3N5fY2FhsbW3x9/e/53iEEEIIIcTd3StJd3d3Jysry3icnZ2Nu7t7pTaXL1/Gw8MDnU6HRqOhTp069xWrVI2pae/atStarZaNGzcaPysqKjK+12g01K9fHysrK+Li4tDr9bftR6PR4OLiglqtJikpiRMnTgBls/FHjhwhLy8PnU5X4QeCn58f69atMx6fPVt5PekXX3yR7du3G7+7fv06n332GePHjwfK6u9Pny5bK/vAgQPGpF2j0VC3bl1sbW35+eefychQtg66EEIIIYRQzsfHh5SUFNLS0iguLmbXrl34+/tXaOPv78/27dsB2Lt3L127dkWlUuHv78+uXbsoLi4mLS2NlJSUChPGpqgxM+0qlYqlS5cSFRXFypUrcXNzQ61WM3XqVABGjBjBxIkT2bFjB927d68wu36rHj16sGnTJvr164eXlxft27cHyn5JjRs3jtDQUFxcXGjWrJlxs553332XyMhIBg4ciF6vx9fX1/iQarkGDRrwySef8P7776PRaMjIyOCjjz7i6aefBmDo0KGMHz+eQYMGVRjfwIEDee211xg4cCBt27alWbNmD+T+CSGEEEKIP9nY2BAREcHYsWPR6/UMGTIEb29vFi1aRNu2benZsychISH861//onfv3ri4uLBw4UKgrAKkX79+9O/fH2trayIiIqq0cgyAymAwGKrjwixBeZ26TqdjwoQJDBkyxOTlGjds2MCmTZtYv349Li4u1TzSP8mOqH+SHVErkx1RK5MdUYUQwjyY8t+hW5XnBeaixsy0PwxLliwhPj4erVaLn59fhfp0pV588UVefPHFahydEEIIIYSoqWSmXQghhBBCmB2ZaRc1yh8HjytqX/v5jgBoLylbS9S+SdkT0aaUrORoiu7d8C/qOTtwJe+mopgGLmoAND+dVBTn3M2nLM6EazO1hERpWY29V0PA9HKogqPnFMU5+bYk60ahohgAD1dHCn+7oCjG8SlvwLQx3jyToigGQN26KSVXriuKsW1QBzC99MqUsjKl5yo/n6n/2xJCiEdNicru7x7CQyVJuxBCCCGEMDulFlYsIkm7EEIIIYQwOxaWs9ecddqrQ4cOHSocx8bGVlq68a9ubZObm0toaChBQUEcPXq0Qrvw8HACAgIIDAykX79+FXbgupM1a9Zw8+afJSB/HZ8QQgghhKUyGAxVepkbmWmvRocPH+aJJ55gzpw5t/3+008/xcfHhxs3btC7d2+Cg4Oxs7tzPdbatWsZNGgQarX6QQ1ZCCGEEEKYAUna79OBAwdYvnw5JSUluLq68umnn1KvXj3j92fPnuWTTz6hqKiIU6dOERMTg4ODw237KiwsRK1WGxfZnzlzJidPnkSr1RIQEMAbb7zB2rVruXLlCqNGjcLV1dW44+rChQs5ePAgDg4OLFu2rMIYhBBCCCEshdS0W7CioiICAwONx3l5ecbtajt16sTmzZtRqVRs2bKFlStXMm3aNGPbVq1a8cYbb3Dq1CkiIiJu2//UqVOxs7MjNTWVGTNmGJP2yZMn4+rqil6vZ/To0Zw7d46RI0eyZs0a/v3vf+Pm5gaUJftPPfUUkydP5uOPP2bz5s2MHz/+Qd0OIYQQQohHloXl7JK038rBwYG4uDjjcWxsLKdOlS2rlpWVxeTJk7l69SrFxcU0btxYcf/l5TG5ubkMGzaM7t2706hRI3bv3s3mzZvR6XRcvXqVpKQkWrZsWSne1taW559/HoC2bdvy008/mXilQgghhBDmzYBlZe2StN+n2bNnM3r0aHr27MQ6xWwAACAASURBVElCQgJLliwxuS83Nzdat27Nb7/9RmlpKatXr2br1q24uLgwbdo0tFrtbeNsbW1RqVQAWFlZodfrTR6DEEIIIYQ5s7TyGFk95j5pNBrc3cs2ENqxY0eV+rp58yZnz56lSZMmFBQUoFaryzYZysnh0KFDxnZOTk4UFBRU6VxCCCGEEML8yUz7fZowYQKTJk3CxcWFLl26kJ6erriPqVOn4uDgQHFxMcHBwbRtW7YbYuvWrenXrx8eHh507NjR2H7o0KGMHTuWBg0aGB9EFUIIIYQQllfTrjKY40KV4r79cfC4ova1ny/70aC9lK0ozr5J2V8hNBqNojhnZ2dyNEWKYgDqOTtwJe/mvRveooFL2dKZmp9OKopz7uZTFmfCtSmNKY8zdat5U8YIUHD0nKI4J9+WZN0oVBQD4OHqSOFvFxTFOD7lDZg2xptnUhTFAKhbN6XkynVFMbYN6gCgiT+lKM75mbIf7kVJGYriHJo3Unyu8vOZ+r8tIYR41FzKUf7f2Fs1qedcTSN5OGSm/f+xd+fhNV3748ffJ5GJIAlJCNGap8QVc2rqL7NEJGJItQ1xKaVpi2uqqpYav9dFpUpzzarEEIkg5qKqFNWSGooSEWSQhMzj+f1xHudKE2Sf0DrJ5+U5z3P23uuz19r7bHnWWWcNQgghhBBC7xRXsWZnaWkXQgghhBB652ZyxVraX7WWlnbxEtG1u0TObzcUxZm1baxznNKuOKDpjpP8UFm3GutamsWuklfvVhb3Tx8Anbp1pGaWPRPQ01iZm5B19oqimBodWwKQfydFUZyxnWZxrruLwxXF1R8fyKWEVEUxAK0bWJF56qKiGPOubQDdnq20XcqnRbXs2528m/cUxZi8Wg+AtKjvleXl1xOAnEtxiuLMWr9C6rYjimIArAa+rlNeoNvzL4QQL1JxFWtql0q7EEIIIYTQO1Wts4hU2oUQQgghhN6paosrVfp52p2cnEpsR0REMGvWLJ3OdenSJY4ePardPnToEGFhYRUq3yNqtZqvvvoKDw8PPD09efvtt7l8+X+zZWRlZTFjxgzc3NwICAggKCiIX3/99bnkLYQQQgihb4rVFXvpG2lpV+DSpUvExsbSu3dvAFxdXXF1dX0u5964cSPnzp0jKioKMzMzjh8/ztixY9m1axfVq1dn+vTpNGzYkP3792NgYEB8fDzXr19/LnkLIYQQQoiXW5WutKempvLpp59y545m3uJp06bRsWNHzp8/z5w5c8jLy8PU1JS5c+fSsGFDli5dSm5uLmfPnmX06NHk5uYSGxvLjBkzmDp1Kubm5sTGxpKcnMykSZPw8vKiuLiYWbNmcfLkSerXr0+1atUYMGAAXl5eJcry3//+l2+++QYzM81c4j169KBjx45ER0fj7OzMr7/+ysKFCzEw0Pw4Ym9vj729/V97w4QQQgghXhLSp72Syc3Nxc/PT7v94MEDXFxcAJgzZw7Dhg2jU6dO3LlzhxEjRhATE0OTJk3YuHEj1apV48SJEyxevJjQ0FA++OADbSUdNF1tHpeUlMS3337LH3/8wZgxY/Dy8mL//v0kJCSwZ88e7t+/j7e3NwMGDCgRl5mZSU5OTqlKuIODA9euXaNu3bq0bt0aQ0PDF3GLhBBCCCH0TrFU2isXU1NToqKitNsRERHExmpWEjxx4gTXrl3THsvMzCQrK4uMjAymTJlCXFwcKpWKgoKCcuXl5uaGgYEBzZo1IyVFM/Xe2bNn8fLywsDAAGtra7p27focr04IIYQQomqqYnX2yl9pf5ri4mK2bNmCiYlJif2ff/45Xbt2ZdmyZdy+fZuhQ4eW63zGxsY6lcPc3BwzMzPi4+NLtLb/9ttvdO/enebNm3P58mWKioqktV0IIYQQogqq9LPHPE2PHj3YsGGDdvvSpUuAZkEiW1tbAHbs2KE9XqNGDbKyshTl0aFDB/bv309xcTEpKSn89NNPZaYbMWIEs2fPJjdXs2DQo18BvLy8aNSoEQ4ODixdulTbf+v27dscOXJEUVmEEEIIISoLtVpdoZe+qdKV9o8//pjY2Fh8fX3x9vZm06ZNAIwcOZJFixbh7+9PYWGhNn3Xrl25du0afn5+7Nmzp1x5eHp6Ymtri7e3N5MmTaJNmzbaVUcfFxQUhKOjI/369cPFxYXJkyezevVq7a8Ac+bM4f79+7i7u9O3b18++ugjrKysnsNdEEIIIYTQPzLlYyVz7ty5EtsBAQEEBAQAYGVlxZIlS0rFODk5sW/fPu32+PHjAbCwsGD79u2lzgcwf/78MvM1MDBgypQp1KhRg7S0NAYNGkSLFi1K5alSqQgJCSEkJISsrCxCQkJYvXo1EyZMADRdaGbPnq3o2oUQQgghKit9bC2vCJW6ql3x3yAoKIiHDx9SUFDAyJEjtRV9IYQQQgihm19uJlcovv2r1s+pJH8NqbQLIYQQQgi9U9Uq7ZW+e0xVl31e2aqp1ds1BeBSQqqiuNYNNP3r/0h8qCiuiW0tUjJyFcUA1K1pqjiubk1TAH6Lv68orq19HQCu3ElTFNfSzpJr99IVxQA0q2fBrZQMRTGN6mrGSaRm5imKszLXjJnQ5drupWcrigGoZ1Fd8T1pVs8C0O3ZyvnthqIYALO2jcnIUHb/H41T0TXuwi1lz6RjozqKn2PQPMu63n+ln3c9i+qAbs+WEEKUR1Vrd5ZKuxBCCCGE0Dv6OJi0IvRm9hgnJyft+6NHj+Lp6UlCQgKbNm0iMjIS0CyclJiY+NTzREREMGvWrBdWzjlz5tCzZ0+Ki4u1+0JDQ1m1apWi85w/f56goCA8PDzo378/o0aN4sqVK8+7uEIIIYQQeunvnPIxPT2d4cOH4+HhwfDhw3nw4EGpNJcuXSIwMBAfHx98fX1LzDw4depUXFxc8PPzw8/PTzvt+NPoXUv7jz/+yOzZs1m1ahUNGjRgyJAh2mM7duygefPm2jnW/2rFxcUcPHiQ+vXr89NPP9GtWzedzpOSksK4ceNYuHAhHTp0AODMmTPEx8fTsmXLEmkLCwupVk3vPkYhhBBCiAr5O7vHhIWF4ezszKhRowgLCyMsLIxJkyaVSGNqasqCBQt49dVXSUxMZMCAAfTo0YNatWoBMHnyZLy8vMqdp17V9k6fPs306dMJCwujUaNGgKYVu3r16jRo0IDY2FgmTpyIqakp4eHh/P7778ydO5fs7GyMjY1Zu3YtAElJSYwYMYL4+Hjc3NyYPHkyAMePHyc0NJT8/Hzs7e2ZN28eNWrUwMXFBX9/f7777jsKCwtZsmQJTZs2LVW+U6dO0axZM7y9vdm9e3eJSvvly5cJDAwkLS2NkSNHMnjwYMaPH4+fnx+vv/46oPnW9frrr3P58mX8/f21FXaATp06ad9PnToVY2NjLl26RIcOHfjoo4+e960WQgghhBBPcOjQIe0Cnf7+/gQFBZWqtDdu3Fj73tbWFisrK1JTU7WVdqX0pntMfn4+7733HsuWLSuzwuzl5YWDgwMLFy4kKioKAwMDxo8fz7Rp09i5cydr167F1FQzEPHSpUssWbKE6OhoYmJiuHv3LqmpqSxfvpw1a9awY8cOHBwcWLNmjfb8lpaW7NixgzfeeIPVq1eXWcbdu3fj4+ODu7s7R44coaCgQHvsypUrrFu3js2bN7Ns2TISExPx9vYmJiZGe30//vgjr7/+OteuXaNNmzZPvR+JiYls3rxZKuxCCCGEqJIqurhSeHi4dv2egIAAwsPDy533/fv3sbGxAcDa2pr7958+OcD58+cpKCjQNjoDLF68GF9fX+bOnUt+fv4z89SblvZq1arh5OTEtm3bmD59+jPT37hxA2tra9q1awdoFid6xNnZWTtrQ9OmTUlISCAjI4Nr165pu9sUFBTQvn17bYyHhwcADg4OHDhwoFR++fn5HD16lKlTp2Jubs4//vEPjh8/zv/7f/8PAFdXV0xNTTE1NaVr165cuHCBXr16MWfOHPLz8zl27BidOnXSfrF43KBBg8jMzKR79+7aa/fy8sLQ0LBc904IIYQQorKpaPeYwMBAAgMDn3g8ODiYlJSUUvvHjRtXYlulUqFSqZ54nqSkJCZNmsSCBQswMNC0l0+YMAFra2sKCgr45JNPCAsLIyQk5Knl1ZtKu4GBAUuWLCE4OJgVK1bw7rvv6nwuY2Nj7XtDQ0OKiopQq9V0796dRYsWlRljZGSkLUdRUVGp48ePHycjI4N+/foBkJOTg4mJibbSXtaHaWJiQpcuXfj++++JiYnB29sbgGbNmnHx4kXc3NwA2Lp1K3v37uXIkSPaWDMzMx2uXAghhBCicnjRXdofdasuS506dUhKSsLGxoakpCSsrKzKTJeZmcno0aMZP358icbgR630xsbGBAQEPLEXx+P0pnsMaCqqX3/9NdHR0WzdurXU8Ro1apCVlQVo+hElJydz/vx5QHPTCgsLn3ju9u3b8/PPPxMXFwdAdnY2N26Uf47n3bt3M3v2bA4fPszhw4c5dOgQJ06cICcnB9D0fcrLyyMtLY2ffvoJR0dHALy9vYmIiODMmTP07NkTgLfeeosdO3bw888/a8+fm6t8LnMhhBBCCPH8ubi4aGcvjIyMxNXVtVSaR127/fz8Sg04TUpKAjS/Fhw8eJDmzZs/M0+9aWl/xMLCgpUrV/LWW2+V+lbTv39/Pv30U+1A1MWLFzN79mxyc3MxNTUt0Uf9z6ysrJg3bx4TJkzQ9isaN25ciUEET5KTk8P333/PzJkztfuqV69Ox44d+e677wBo2bIlQ4cOJS0tjbFjx2pnuOnevTuTJ0/G1dVV+wuAtbU1ixcvZuHChSQmJlKnTh0sLCx47733lN0sIYQQQohKqvhvnD1m1KhRjBs3jm3btmFnZ8eSJUsAuHDhAps3b2bOnDnExMRw5swZ0tPT2bFjBwDz58+ndevWTJw4kbS0NNRqNa1atSpRh3wSlbqqLSdVxciKqCVjQFZEfZysiFqarIhakqyIKoR4WR2/lFCh+B6tGzynkvw19K6lXQghhBBCiL+zpf3vIC3tQgghhBBC7xz97XaF4nu3bficSvLX0KuBqEIIIYQQQlRF0j2mktO1j62ufeEzjv2iLL9e7cm+8IeiGIDqjk1IfqisT7t1LU2f9jsLNiqKs5vyFgAPD51VFFfLtaPi+w+azyDzp0uKYsy7tAZ0/7xvfviForhXv/iQi7eVjXsAaNPQivTdPyqKsfBxBiDj+HlFcTV7tCNl/V5FMQB1h3qRe1VZ641pc01rTeLySEVxtmP8Acg6c1lRXI1OrUhevVtRDID1P33IPHVRUYx5V81Cb7qUEeBe6DZFcfXeH6jzsyWEqFqqWvcYqbQLIYQQQgi9U9V6eFea7jFOTk7a90ePHsXT05OEhAQ2bdqknUczIiKCxMTEp54nIiKCWbNmvZAynjlzhoEDB+Ll5YWnpycbNypr8f2zx69ZCCGEEKIqUasr9tI3la6l/ccff2T27NmsWrWKBg0aMGTIEO2xHTt20Lx5c+0c6X+l5ORkJk6cyLJly2jbti2pqamMHDkSGxsb3N3d//LyCCGEEELos6rWPabStLQDnD59munTp7NixQoaNWoEQGhoKKtWrWLv3r3ExsYyceJE/Pz8yM3N5fz587zxxhv069ePgQMHkpmZCWhWqRoxYgQeHh783//9n/b8x48fJzAwkP79+/PBBx9oV191cXFh6dKl9O/fH19fX65fL90ffOPGjfTv35+2bdsCmsWcJk2axKpVqwCYOnUqe/f+r//to1b0rKwshg0bpj33wYMHX8CdE0IIIYQQL7NK09L+aKnY9evX07Rp01LHvby82LhxI5MnT8bR0ZH8/HzGjx/P4sWLadeuHZmZmZiaagYqXrp0icjISIyNjfHy8iIoKAgTExOWL1/OmjVrqF69OmFhYaxZs4aQkBAALC0t2bFjBxs3bmT16tXMmTOnRP7Xrl3D39+/xD4HBweuXbv21OsyMTFh2bJlmJubk5qaSmBgIK6urqhUqorcLiGEEEIIvVbFGtorT6W9WrVqODk5sW3bNqZPn/7M9Ddu3MDa2pp27doBYG5urj3m7OysnVWjadOmJCQkkJGRwbVr17TdbQoKCmjfvr02xsPDA9BUxA8cOPDcrkutVrNo0SJOnz6NgYEBiYmJpKSkYG1t/dzyEEIIIYTQN1VtIGqlqbQbGBiwZMkSgoODWbFiBe+++67O5zI2Nta+NzQ0pKioCLVaTffu3Vm0aFGZMUZGRtpyFBUVlTretGlTfvvtN9zc3LT7YmNjcXBw0OZTXFwMQHFxMQUFBQBER0eTmppKREQERkZGuLi4kJenbKl6IYQQQojKRvq06zEzMzO+/vproqOj2bp1a6njNWrU0PZDb9y4McnJyZw/r5n7OTMzk8LCwieeu3379vz888/ExcUBkJ2dzY0bN8pdtrfeeosdO3Zw6ZJm/u20tDSWLFnC2LFjAWjQoAG//fYbAIcPH9ZW2jMyMqhTpw5GRkacPHmShISEcucphBBCCCEqh0rT0v6IhYUFK1eu5K233sLKquRiG/379+fTTz/F1NSU8PBwFi9ezOzZs8nNzcXU1JQ1a9Y88bxWVlbMmzePCRMmkJ+fD8C4ceNo3LhxucplY2PDv//9bz755BMyMjJISEhg/vz5dOnSBYDBgwczduxY+vXrR8+ePalevToAvr6+jBkzBl9fXxwcHGjSpIkut0UIIYQQolKpYg3tlafSfu7cOe37+vXrc/jwYQBcXV21+z09PfH09NRut2vXji1btpQ4T0BAAAEBAdrtr7/+Wvve2dmZ7du3l8r7UV4Ajo6ObNiwocwydu7cmW3bNKsDbty4ka+//pqePXtSu3Zt6tatW6IskyZNAjRfFsLDw595zUIIIYQQVUlV6x5TaSrt+uatt97irbfe+ruLIYQQQgihl6raQFSVuqpdsRBCCCGE0HtRPz192uxn8evS7DmV5K8hLe2VXMHd+4rSG9WvA2gGwCrxaIrM83EpiuLavVKXO2lZimIA7CxrcC89W1FMPQvNOAFdry0lI1dRXN2apiQ/VBYDYF3LVOcy/pVxSmMexSU9yFEUY1PbDIDbqZmK4hpamVOQlKYoBsDIxpL8O8qeY2O7uoB+3H99eLYKktMVxQAYWVvoXEYhhNAHUmkXQgghhBB6p6r1FZFKuxBCCCGE0DtVrYd3pZqn/WmcnJye+zlDQ0NZtWpVqf1//PEHQUFB+Pn50adPHz755BMATp06xejRo597OYQQQgghqppidcVe+kZa2l+AOXPmMGzYMO3qp1euXPmbSySEEEIIUblUtZb2Kl1pP3z4MMuXL6egoAALCwsWLlxI3bp1CQ0N5c6dO9y+fZs7d+4wbNgwhg4dCsDy5cuJjIzEysqK+vXr07Zt21LnTUpKol69etrtli1blkqTnp7OtGnTiI+Px8zMjFmzZtGqVStCQ0O5desWt27dIi0tjZEjRzJ48GAAVq5cSUxMDPn5+bi7u/PBBx+8oDsjhBBCCCFeJlW60t6xY0e2bNmCSqVi69atrFy5kqlTpwJw48YN1q9fT2ZmJn369GHIkCFcuXKFPXv2EBkZSVFREf379y+z0h4cHMywYcNwcnKiR48eBAQEUKtWrRJpQkNDadOmDV999RU//vgjU6ZMISoqCtC0zG/ZsoXs7Gz69+9P7969uXr1KnFxcWzbtg21Ws2YMWM4ffo0nTt3fvE3SgghhBDiJSOLK1Uh9+7dY/z48SQnJ5Ofn0/Dhg21x3r37o2xsTFWVlZYWVlx//59zpw5g5ubG2ZmminoXFxcyjzvgAED6NGjB99//z2HDh1i8+bN7Ny5s0Sas2fPEhoaCmhWWk1PTyczUzOlnaurK6amppiamtK1a1cuXLjA2bNn+eGHH/D39wcgOzubmzdvSqVdCCGEEFVS1aqyV/FK++zZswkODsbV1ZVTp07x5Zdfao8ZGxtr3xsaGlJYWKjo3La2tgwcOJCBAwfSt29ffv/993LHqlSqUvvUajWjRo3ijTfeUFQOIYQQQojKqKr1aa8ys8eUJSMjA1tbWwAiIyOfmb5z584cPHiQ3NxcMjMz+e6778pMd+zYMQoKCgBITk4mPT1dm88jnTp10ra+nzp1CktLS8zNzQE4dOgQeXl5pKWl8dNPP+Ho6EiPHj3Yvn07WVmahYgSExO5f1/ZwklCCCGEEEI/VZmW9pycHHr16qXdHj58OCEhIXz44YfUrl2brl27cvv27aeeo23btnh7e+Pn54eVlRWOjo5lpvvhhx+YM2cOJiYmAEyaNAlra2v++OMPbZqQkBCmTZuGr68vZmZmzJ8/X3usZcuWDB06lLS0NMaOHYutrS22trZcv35d29JevXp1/v3vf1OnTh2d74kQQgghhL4q1sd5GytApa5qvy285EJDQ6levTojRox4LucruKusNd6ovuZLgK7LgZ+PU7b8e7tX6nInLUtRDICdZQ3upWcriqlnUR3Q/dpSMnIVxdWtaUryQ2UxANa1TPViqXmlMY/ikh7kKIqxqa0ZQ3I7NVNRXEMrcwqS0hTFABjZWJJ/R9lzbGxXF9CP+68Pz1ZBcrqiGAAjawudyyiE0E/fHL1Uofi3e7d+TiX5a1SZlnYhhBBCCFF5VLV2Z2lpF0IIIYQQemf9d79VKH7o/ys9bffLTFraKzml3TOsa5kCEH9fWVcE+zqaQbS/3ExWFNf+VWudu8fo+lP40d+ePnbhz3q31UwFeuWOsq4WLe0sSc3MUxQDYGVuwvV7DxTFNK1XG9C9C8OZ64mK4jo1tVXc9Qo03a8u3FIW59hI02VLl2fr3I0kRTEATo1tFH9uVuaa8Ssnf7+rKK5bi/oAXLunrDtIs3oWip9j0DzLv99VlleL+haAbmXUNS7vlrLnEcCkka1O3fMAxfmZNLJ9diIhhHjOpNIuhBBCCCH0ThUbh1q1p3wEcHJyKnfaiIgIEhPLbpH55ZdfGDRoEH5+fvTp00e7cFJoaCirVq16LmUVQgghhBAa6gr+q4j09HSGDx+Oh4cHw4cP58GDsn8hb926NX5+fvj5+fHuu+9q98fHxzNo0CDc3d0ZN24c+fn5z8yzylfaldixYwdJSWX/3D5lyhQ+//xzoqKi2LVrF3369PmLSyeEEEIIUXWo1eoKvSoiLCwMZ2dn9u/fj7OzM2FhYWWmMzU1JSoqiqioKFasWKHdv3DhQoKDgzlw4AC1atVi27Ztz8xTKu1luHTpEoMHD8bX15f33nuPBw8esHfvXmJjY5k4cSJ+fn7k5pbsK56amoq1tTWgWUG1WbNm2mPXrl0jKCgIV1dX1q9fr90/duxYAgIC8PHxITw8XLvfycmJuXPn4uPjw7Bhw0hNTQXg1q1bjBgxgoCAAN58802uX7/+Im+DEEIIIcRLq1hdsVdFHDp0CH9/fwD8/f05ePBguWPVajUnT57E09MTgP79+3Po0KFnxkmlvQyTJ09m4sSJREdH06JFC7788ku8vLxwcHBg4cKFREVFYWpqWiJm2LBheHl58d5777F582by8v43kO3GjRusWrWKrVu3smzZMu1qqXPnziUiIoLt27ezYcMG0tI0Ax2zs7NxcHBg9+7ddO7cmS+//BKATz75hE8++YSIiAimTJnCzJkz/6I7IoQQQghRuYSHhxMQEKB9Pd6A+iz379/HxsYGAGtr6yeuUp+Xl0dAQACDBw/WVuzT0tKoVasW1apphpbWq1fvid2vHycDUf8kIyODjIwMunTpAmi+/Xz44YfPjAsJCaFfv34cP36cXbt2sXv3bjZs2ABA7969MTY2xsrKCisrK+7fv0+9evXYsGEDBw4cAODu3bvExcVhaWmJgYEB3t7eAPj5+RESEkJWVhbnzp0rUZby9H8SQgghhKiMKtrFJTAwkMDAwCceDw4OJiWl9KxU48aNK7GtUqlQqVRlnuO7777D1taW+Ph4hg0bRosWLTA3N9epvFJpf44aNWrEm2++yeDBg3F2dta2nBsbG2vTGBoaUlhYyKlTpzhx4gTh4eGYmZkRFBRUonX+cSqVCrVaTa1atYiKivpLrkUIIYQQ4mX2opcaWrt27ROP1alTh6SkJGxsbEhKSsLKyqrMdLa2mili7e3t6dKlCxcvXsTT05OHDx9SWFhItWrVuHfvnjbd00j3mD+pWbMmtWrV4syZMwBERUXRuXNnAGrUqEFWVtlzih85ckT78MTFxWFgYECtWrWemE9GRga1a9fGzMyM69ev88svv2iPFRcXs2/fPgCio6Pp2LEj5ubmNGzYkJiYGEDzoF6+fLniFyyEEEIIoYf+zj7tLi4uREZGAhAZGYmrq2upNA8ePND2ikhNTeXnn3+mWbNmqFQqunbtqq3r7dixAxcXl2fmWeVb2nNycujVq5d2e/jw4SxYsIBPP/2UnJwc7O3tmTdvHqDpKvPpp59iampKeHh4iX7tUVFRzJs3D1NTUwwNDVm4cCGGhoZPzLdXr15s3ryZPn360LhxY9q3b689Vr16dc6fP8/y5cuxsrJiyZIlAPz73//ms88+Y/ny5RQWFuLt7U2rVq2e9y0RQgghhBBPMWrUKMaNG8e2bduws7PT1tUuXLjA5s2bmTNnDtevX+fTTz/V9ph45513tBOVTJo0ifHjx7NkyRJat27NoEGDnplnla+0P6m1esuWLaX2eXp6akf6/tnixYvL3P/++++X2N61a5f2/cqVK59Yro8++qjUPnt7e5nzXQghhBACKP4bV1eytLRk3bp1pfY7Ojri6OgIQIcOHYiOji4z3t7evlzTPD6uylfahRBCCCGE/qnoAkn6RqV+0b34hRBCCCGEeM6+3HOuQvEh3k7PqSR/DWlpF0IIIYQQeqe4irU7S6W9kitISlOU3sjGEtDMbqNEzZo1dY5TGqNrXEXKqGucXFvF4ypS76NHeAAAIABJREFURqXPP2j+D+haxoLkdGV5WVsAlff+6xqn67Xpw987IYTQlVTahRBCCCGE3qlqPbxlnvZyatmyJRMnTtRuFxYW0q1bN0aPHl3uc+Tk5PCvf/0LX19f+vbty5AhQ5447/sjTk5l97eaOnUqe/fuLXfeQgghhBCViVpdsZe+kZb2cqpevTpXr14lNzcXU1NTfvjhh3KtXvW49evXU7duXf7zn/8A8Mcff2BkZPQiiiuEEEIIUalVtT7t0tKuQO/evTly5AgAu3fvxsfHR3ssPT2dsWPH4uvry+DBg8uc/z05OblERb9JkyYYGxsDsGbNGvr27Uvfvn3LXDZXrVYza9YsPD09CQ4O5v79+8/34oQQQggh9Ihara7QS99IpV0Bb29v9uzZQ15eHleuXOEf//iH9lhoaCht2rQhOjqa8ePHM2XKlFLxAwYM4L///S+BgYEsXryYmzdvAhAbG0tERARbtmwhPDycrVu3cvHixRKxBw4c4MaNG+zZs4cFCxZw7lzFpjkSQgghhBD6QyrtCrRq1Yrbt2+za9cuevfuXeLY2bNn8fPzA8DZ2Zn09HQyMzNLpGndujUHDx5kxIgRPHjwgIEDB3L9+nXOnj2Lm5sb1atXp0aNGri7u3PmzJkSsadPn8bHxwdDQ0NsbW3p1q3bi71YIYQQQoiXmPRpF0/l4uLC//3f/7F+/XrS05VN7wZQo0YNPDw88PDwwMDAgKNHj2JoaPgCSiqEEEIIUXlJn3bxVAMHDuS9996jZcuWJfZ36tSJnTt3AnDq1CksLS0xNzcvkebs2bM8ePAAgPz8fK5du4adnR2dOnXi4MGD5OTkkJ2dzcGDB+nUqVOJ2M6dOxMTE0NRURFJSUmcOnXqBV6lEEIIIcTLrVitrtBL30hLu0L16tVj6NChpfaHhIQwbdo0fH19MTMzY/78+aXSxMfH89lnnwFQXFxM79698fT0RKVSERAQwKBBgwDNF4M2bdqUiHV3d+fkyZN4e3tjZ2dH+/btn//FCSGEEEKIl5JU2suprIGfXbt2pWvXrgBYWFjw1VdfPfUc/v7++Pv7l3ls+PDhDB8+/In5qlQqZsyYobTYQgghhBCVkh42lleIVNqFEEIIIYTe0cdpGytCpa5qVyyEEEIIIfTe7K0/Vih++iDn51SSv4a0tFdyGRkZitLXrFkTgPzbyYrijBtaA3A3LVtRXH3L6qRm5imKAbAyNyE/PklRjLG9DQCHzt9SFOfarhEAKRm5iuLq1jQl78YdRTEAJo3tdP7c0nb9oCjOsm93AE5dvacormvzemSd+11RDEANpxY6PSOg2/0/dvG2ohiAXm0a6nz/T/5+V1Fctxb1Ad3+n579Q9nzD9CxiY3O1xZ/P/MZKUuyr6MZiK/L56005lHczWRl1/aqtebadP47qcPfIKV5PZ6fEKKkqtbsLLPHCCGEEEII8ZKTlnYhhBBCCKF3qloP70rR0n7v3j3GjBmDh4cHbm5uzJ49m/z8/Beer5OTEwC3b9+mb9++Zaa5ceMG77zzDh4eHvTv358PP/yQlJSUCucdERHBrFmzKnweIYQQQgh9VKyu2Evf6H2lXa1WExISgpubG/v372ffvn1kZ2ezePHiCp+7sLCwQvF5eXmMHj2aIUOGsH//fnbs2MGbb75JampqhcsmhBBCCFGVqdXqCr30jd53jzl58iQmJiYMGDAAAENDQ6ZNm4arqysffPABw4YNY86cOTRv3hyAoKAgJk+eTNOmTfn888+5evUqhYWF2op/REQE+/fvJzs7m+LiYr7++mvGjh3Lw4cPKSws5MMPP8TNza1cZYuOjqZ9+/a4uLho9z2a1z0vL4/PPvuM2NhYDA0NmTp1Kt26dSMiIoLDhw+Tk5NDfHw8bm5uTJ48GYDt27cTFhZGzZo1adWqFcbGxs/zVgohhBBCiJeU3lfar169Stu2bUvsMzc3p379+sTFxeHt7U1MTAzNmzcnKSmJpKQkHB0dWbRoEd26dWPevHk8fPiQQYMG8dprrwFw8eJFdu7ciYWFBYWFhSxbtgxzc3NSU1MJDAzE1dUVlUqlU9ke2bhxI6Cp2F+/fp0RI0awb98+AC5dukRkZCTGxsZ4eXkRFBSEoaEhoaGhREREYG5uztChQ0utmiqEEEIIUVXoY2t5Reh9pf1Z+vTpwz//+U8++OADYmJi8PLyAuD48eMcPnyY1atXA5qW77t3NdO1de/eHQsLC0DzQCxatIjTp09jYGBAYmIiKSkpWFtbV6hcZ8+e5e233wagadOm2NnZcePGDQCcnZ21U3w1bdqUhIQE0tPT6dKlC1ZWVgB4e3tz8+bNCpVBCCGEEEJf6WO/9IrQ+0p7s2bNtC3Uj2RmZnL37l1eeeUVzMzMsLCw4PLly8TExPDZZ59p0y1dupQmTZqUiP31118xMzPTbkdHR5OamkpERARGRka4uLiQl1e+ecWbNWvG6dOnFV/T491eDA0NKSoqUnwOIYQQQojKrLiKtbTr/UBUZ2dncnJyiIyMBKCoqIj58+fTv39/beXb29ublStXkpGRQatWrQDo0aMH33zzjfanlYsXL5Z5/oyMDOrUqYORkREnT54kISGh3GXz9fXl3LlzHDlyRLvv9OnT/P7773Tq1Ino6GhAM8PM3bt3S32BeFy7du04ffo0aWlpFBQUsHfv3nKXQwghhBCisqlqA1H1vtKuUqlYtmwZe/fuxcPDA09PT0xMTJgwYYI2jaenJ3v27KFPnz7afWPHjqWwsJB+/frh4+PDF198Ueb5fX19iY2NxdfXl6ioqKdWrP/M1NSUFStWsGHDBjw8PPD29ubbb7/FysqKN998E7Vaja+vL+PHj2fevHlPHVhqY2NDSEgIb7zxBkOGDKFp06blLocQQgghhNBvKrU+ftUQ5abz8ty3kxXFGTfU9PHXZcny1MzydTd6nJW5iU5LiAMcOn9LUZxru0YApGTkKoqrW9OUvBt3FMUAmDS20/lzS9v1g6I4y77dATh19Z6iuK7N65F17ndFMQA1nFro9IyAbvf/2MXbimIAerVpqPP9P/n7XUVx3VrUB3T7f3r2D2XPP0DHJjY6X1v8/UxFcfZ1zAHd/iYojXkUdzNZ2bW9aq25Np3/TurwN0hpXo/nJ4Qoacr6oxWKXzC093MqyV9D7/u0CyGEEEKIqqeqNTtLS7sQQgghhNA7k9YeqVD8v4Nffy7l+KtIS3slp2s3l8yTvymKM++mmY8+PeakojiLPt3IuRSnKAbArPUrirvVWJmbAHBr6nJFcY3mjwHgwQFlMwHVdu+s80/hGSdilcW85gDo/jN/3PiliuJeWfwBv9xU9mwBtH/VmqRVuxTF2IzoC8D9TQcVxdUZ4sbd/2xWFANQ/19vkP3rVUUx1f+hWbwt4fO1iuIafBIMwMNDZxXF1XLtyN2FmxTFANSfOESn5xh0KyNA0n+jFcXZvOPLpQTlq0a3bmBF/MdhimLs54wCdP9/88NlZd3furdS3vXtUX6/xd9XFNPWvo7ifITQNzLloxBCCCGEEOKJ0tPTGT9+PAkJCTRo0IAlS5ZQu3btEmlOnjzJvHnztNt//PEHixcvxs3NjalTp/LTTz9pGwHmz59P69atn5qnVNqFEEIIIYTe+Tt7eIeFheHs7MyoUaMICwsjLCyMSZMmlUjTrVs3oqKiAE0l38PDg+7du2uPT548WbvoZ3no/ZSPj7t37x5jxozBw8MDNzc3Zs+eTX5+/gvP18nJCYDbt2/Tt2/fMtNcvXqVoUOH4unpiZubG0uXLqW4uFjnPF1cXEhNVf4TshBCCCFEZfB3ztN+6NAh/P39AfD39+fgwad34dy3bx89e/YssYCnUpWm0q5WqwkJCcHNzY39+/ezb98+srOzWbx4cYXPXVhYWKH43NxcxowZw6hRo9i3bx/R0dGcP3+e9evXV7hsQgghhBBVUbG6Yq+KuH//PjY2mqmkra2tuX//6eNOdu/eXaphd/Hixfj6+jJ37txyNTJXmkr7yZMnMTExYcCAAQAYGhoybdo0IiIiyMnJYfDgwVy9+r/BZUFBQVy4cIHs7Gw++ugjBg4cWOKbUkREBO+++y5Dhw4lODiYrKwshg0bRv/+/fH19X3mN6rHRUdH06FDB3r06AGAmZkZM2bMYOXKlQCEhoayatUqbfq+ffty+7ZmfumxY8cSEBCAj48P4eHhFbtJQgghhBACgPDwcAICArSvP9ezgoOD6du3b6nXn+uAKpUKlUr1xHySkpL4/ffftfVAgAkTJrB37162b9/OgwcPCAt79kD6StOn/erVq7Rt27bEPnNzc+rXr09cXBze3t7ExMTQvHlzkpKSSEpKwtHRkUWLFtGtWzfmzZvHw4cPGTRoEK+99hoAFy9eZOfOnVhYWFBYWMiyZcswNzcnNTWVwMBAXF1dn/ohPXLt2rVSZWvUqBF5eXk8fPjwqbFz587FwsKC3NxcBg4ciIeHB5aWlgrvjhBCCCFE5aKmYs3lgYGBBAYGPvH42rVrn3isTp06JCUlYWNjQ1JSElZWVk9MGxMTg7u7O0ZGRtp9j1rpjY2NCQgIYPXq1c8sb6WptD9Lnz59+Oc//8kHH3xATEyMtuP/8ePHOXz4sPZm5eXlcfeuZlXD7t27Y2FhAWi63yxatIjTp09jYGBAYmIiKSkpWFtbv9Byb9iwgQMHDgBw9+5d4uLipNIuhBBCiCqv+G+c89HFxYXIyEhGjRpFZGQkrq6uT0y7e/duJkyYUGLfowq/Wq3m4MGDNG/e/Jl5VppKe7Nmzdi3b1+JfZmZmdy9e5dXXnkFMzMzLCwsuHz5MjExMXz22WfadEuXLqVJkyYlYn/99dcSgwWio6NJTU0lIiICIyMjXFxcyMsr3zzhzZo14/TpknMjx8fHY2FhQa1atTA0NCwxKPXReU+dOsWJEycIDw/HzMyMoKCgcucphBBCCFGZ/Z2zx4waNYpx48axbds27OzsWLJkCQAXLlxg8+bNzJkzB9BMUnL37l26dOlSIn7ixImkpaWhVqtp1aoVM2fOfGaelabS7uzszMKFC4mMjMTf35+ioiLmz59P//79tZVvb29vVq5cSUZGBq1atQKgR48efPPNN3zyySeoVCouXrxImzZtSp0/IyODOnXqYGRkxMmTJ0lISCh32Xx9fVmxYgUnTpzgtddeIzc3l9mzZ/P+++8D0KBBA44cOQLAb7/9pu3PnpGRQe3atTEzM+P69ev88ssvFblFQgghhBCVxt+5uJKlpSXr1q0rtd/R0RFHR0ftdsOGDfn+++9LpdNlMpJKMxBVpVKxbNky9u7di4eHB56enpiYmJT4OcLT05M9e/bQp08f7b6xY8dSWFhIv3798PHx4Ysvvijz/L6+vsTGxuLr60tUVFSplvmnMTU1Zfny5SxfvhxPT0+6detGhw4d6Nevn7ZcDx48wMfHh2+++YZXX30VgF69elFYWEifPn34z3/+Q/v27XW4M0IIIYQQQt9VmpZ2gPr167NixYonHq9bty4XL14ssc/U1JRZs2aVSvtoJPEjVlZWT5y95dy5c4Dm29SuXWUv0d6iRQs2bNgAwMGDB5k3bx59+/alQYMGmJqaPnEAwqMZZv7s8OHDZe4XQgghhKgK/s7uMX8HlbqqXbEQQgghhNB7o7/aX6H4r8d6PKeS/DUqVUu7EEIIIYSoGoqrWLuzVNoruYKkNEXpjWw000lmnb2iKK5Gx5YA5Fy8qSjOrM2r5Fy5pSgGwKxlIwqS0xXFGFlrpu98cPCMorjabp0AePjdz4riav2/DuT+Hq8oBsC0hT1ZZy4riqnRSTOwuuBeqqI4o3qaeWV1yS8jI0NRDEDNmjUVf95mLRsBkPPbDWVxbRsrfh5B80zmXi//QHMA06YNAHh49JyiuFq9nQBI+VZZa1HdNz14sO8nRTEAtT27kLrtiKIYq4GvAyh+lk1b2AOQ/evVZ6Qsqfo/mnMzWfmz9ap1TZ3/bil9lmvWrAnAlTvK/r62tLPU+f9N0oMcRTE2tTUTMOjyd0sIfVHRedr1TaUZiCqEEEIIIURlVWlb2lu3bk2LFi0oKiqiSZMmLFiwoMS868+Ti4sL27ZtK7UalouLCzVq1ACgqKgId3d3xo4di4mJSZnneeONN9i8efMLKaMQQgghRGVSxXrHVN6WdlNTU6Kioti1axdGRkZ/W2V43bp1REdHs3XrVm7fvs2MGTNKpSksLASQCrsQQgghRDkVq9UVeumbSltpf1ynTp2Ii4vj8OHDDBo0CH9/f4KDg0lJSaG4uBgXFxcePnyoTe/h4UFKSgqpqam8//77DBgwgAEDBnD27FkA0tLS+Oc//4mPjw8ff/xxuaYcqlGjBjNnzuTgwYOkp6dz6tQp3nzzTd599118fHwAcHLS9G8dP368drElgKlTp7J3716KiopYsGABAwYMwNfXVyr5QgghhKiy1Gp1hV76ptJX2gsLCzl27BgtWrSgY8eObNmyhcjISHx8fFi5ciUGBga4uLhw4MABAH799Vfs7OyoW7cuc+bMYdiwYWzfvp3Q0FCmT58OwLJly+jQoQO7d+/G3d2dO3fulKss5ubmNGzYkLi4OAAuXrzIxx9/zL59+0qk8/b2JiYmBoD8/Hx+/PFHXn/9dbZt20bNmjXZvn0727dvZ8uWLcTHKx/oKIQQQggh9Eul7dOem5uLn58foGlpHzhwIDdu3GD8+PEkJyeTn59Pw4YNAU0ledmyZQwYMIDdu3fj7e0NwIkTJ7h27Zr2nJmZmWRlZXH69Gm+/PJLAF5//XVq165d7nI9/s3O0dERe3v7Uml69erFnDlzyM/P59ixY3Tq1AlTU1N++OEHrly5oq3kZ2RkEBcXV+Y5hBBCCCEqs+Ji/Wstr4hKW2l/1Kf9cbNnzyY4OBhXV1dOnTqlrXg7OTlx69YtUlNTOXjwIGPGjAGguLiYLVu2PHHgqFKZmZkkJCTw6quvcvnyZapXr15mOhMTE7p06cL3339PTEyM9kuEWq1m+vTp9OzZ87mURwghhBBCX+lhD5cKqfTdYx6XkZGBra0tAJGRkdr9KpUKNzc35s2bR9OmTbG01MxV3qNHDzZs2KBNd+nSJQA6d+5MdHQ0AEePHuXBgwfPzDsrK4uZM2fi5uZWrpZ5b29vIiIiOHPmjLaS3qNHDzZt2kRBQQEAN27cIDs7uzyXLoQQQghRqchA1EosJCSEDz/8kICAACwsLEoc8/b2ZufOndpWbYCPP/6Y2NhYfH198fb2ZtOmTQC89957nDlzBh8fHw4cOICdnd0T8xw2bBh9+/Zl0KBB2NnZMWvWrHKVtXv37pw+fZrXXnsNY2NjAAYNGkSzZs0ICAigb9++zJgxg6KiIqW3QQghhBBC76kr+NI3lbZ7zLlzpVcmdHNzw83Nrcz0jo6OXLlScjU9KysrlixZUiqtpaUlq1evfmYZDh8+/MRjXbt2pWvXrk8ss5GRET/9VHLFQwMDAyZMmMCECROembcQQgghhKg8Km2lXQghhBBCVF76OG1jRajUVe2KhRBCCCGE3gtcuLNC8eET+z2nkvw1pKVdCCGEEELonarW7CyV9kouIyNDUfqaNWv+5XEFyemKYgCMrC304tqUxuga93dcW96tREUxACaNbBV/3kbWmkHj+XdSFMUZ29XV+f4nP8xVFGNdyxTQ/f4XJKUpijOysdT52nTJC/Tj/01lvjZ9+JsgxF+tqnUWqVKzxwghhBBCCKGPpKVdgdatW9OiRQuKiopo0qQJCxYswMzMTNE5IiIiiI2NZcaMGaWOHTx4kC+++IKCggKqVatGSEgIXl5e2uOrVq1i69atmJiYUK1aNYKCgvD396/wdQkhhBBC6Bt9nGu9IqTSrsDjq6z+61//YvPmzQwfPvy5nPvy5cssWLCA1atXY29vT3x8PMOHD6dhw4Y4ODiwadMmTpw4wbZt2zA3NyczM5MDBw48l7yFEEIIIfRNFauzS/cYXXXq1Im4uDjS09MZO3Ysvr6+DB48mMuXLwM8cf+TrFq1itGjR2Nvbw+Avb09o0ePZs2aNQB8/fXXfPbZZ5ibmwNgbm5O//79X+AVCiGEEEK8vGRFVPFMhYWFHDt2jBYtWhAaGkqbNm2Ijo5m/PjxTJkyBeCJ+5/k2rVrODg4lNjn6OjItWvXyMzMJCsrS1uhF0IIIYQQVYtU2hXIzc3Fz8+PAQMGYGdnx8CBAzl79ix+fn4AODs7k56eTmZm5hP3CyGEEEKIiqtqLe3Sp12Bx/u0P29NmzYlNjaWVq1aaffFxsbi4OCAubk51atXJz4+XlrbhRBCCCGQPu1CoU6dOrFzp2ZFrlOnTmFpaYm5ufkT9z/JiBEjCAsL4/bt2wDcvn2bdevWMWLECABGjRrFzJkzta31WVlZREZGvshLE0IIIYR4aanV6gq99I20tFdQSEgI06ZNw9fXFzMzM+bPn//U/U/SunVrJk6cyJgxY8jPzychIYF169bRpEkTAN58802ys7MZMGAARkZGVKtW7bnNXCOEEEIIoW/0sYtLRUilXYFz586V2mdhYcFXX31V7v0BAQEEBASUeX4PDw88PDwAWLhwIUuWLGHVqlUYGxujUql45513eOeddyp4FUIIIYQQQt9Ipf0lNXHixL+7CEIIIYQQL60q1tCOSq2PnXqEEEIIIUSV5jVza4Xi93466DmV5K8hLe2VXPxHKxSlt5/3LgAZGRmK4mrWrKlzXNKDHEUxADa1zUh+mKsoxrqWKQBZZ56+0NWf1eikmdEnJUNZfnVrmnIvPVtRDEA9i+rk305WFGPc0BqowOd27Bdlcb3aE39f+RSm9nXMSYs+rijG0rcHAOl7TymKs/Dqyr0vlP9Br/fhIFIz8xTFWJmbAJC67YiyuIGvA5B/J0VRnLFdXTJ+uKAoBqBmd0edn620qO8VxVn69QQg6+wVRXE1OrbU+doyjp9XFtOjHQAFSWmK4oxsLAG4mazs/9ur1jUpSE5XFANgZG3BH4kPFcU0sa0FQGrEUUVxVgG9ASi4e19RnFH9OjrfRyF0VdX6tMvsMUIIIYQQQu+o1RV7VURMTAw+Pj60atWKCxee3NBw7NgxPD09cXd3JywsTLs/Pj6eQYMG4e7uzrhx48jPz39mnlJpF0IIIYQQQoEWLVoQGhpK586dn5imqKiIWbNmsXLlSnbv3s2uXbu4du0aoJlwJDg4mAMHDlCrVi22bdv2zDxfukp7Wloafn5++Pn50b17d3r27Knd/vO3kLVr15KT87+uFS4uLvj6+uLr68vbb79NQkLCCynjwYMHadmyJdevX9fuO3XqFKNHj1Z0npSUFP71r3/h6upKQEAAgYGBHDhwoFyxQUFBT/1mJ4QQQghRmf2d87Q3bdpUOy33k5w/f55XXnkFe3t7jI2N8fHx4dChQ6jVak6ePImnpycA/fv359ChQ8/M86WrtFtaWhIVFUVUVBRvvPEGwcHB2m1jY+MSadevX1+i0g6wbt06oqOj6dKlC8uXL38hZdy1axcdO3Zk9+7dOp9DrVbz3nvv0alTJw4dOkRERASLFi3i3r17pdIWFhZWpLhCCCGEEJVOsbpirxctMTGRevXqabdtbW1JTEwkLS2NWrVqUa2aZmhpvXr1SExMfOb59GIg6o8//siCBQsoKirCwcGBmTNnsnnzZpKSkhg2bBgWFhZs2LChREz79u21+27fvs3IkSNp3749586dw8HBgQEDBrB06VJSU1NZuHAh7dq146effmLOnDkAqFQqvvnmm1KrmGZlZXH27FnWr1/Pu+++ywcffKA9lpmZyahRo4iLi6Nr16589tlnhIeHc+vWLaZMmQJAREQEsbGxuLu7Y2RkxJAhQ7TxDRo0ICgoSJtu//79ZGdnU1xczMqVK/noo4+4fPkyTZo0ITdX2aBIIYQQQojK5PDngRWKDw8PJzw8XLsdGBhIYOD/zhkcHExKSumJAsaNG4ebm1uF8tbFS19pz8vLY+rUqaxdu5bGjRszefJkvv32W4KDg1m7di3r1q3DysqqVNz3339f4obeunWLL774grlz5zJw4ECio6PZtGkThw4dYsWKFXz11VesXr2aGTNm0LFjR7KysjAxMSl13kOHDtGzZ08aN26MpaUlsbGxODg4AJqfQfbs2YOdnR0jR45k//79eHp6EhgYqK2079mzh3fffZeLFy/Spk2bp177xYsX2blzJxYWFqxZswZTU1NiYmK4fPnyExdoEkIIIYQQz/bnSvqfrV27tkLnt7W1LdGDIjExEVtbWywtLXn48CGFhYVUq1aNe/fuYWtr+8zzvXTdY/6suLiYhg0b0rhxY0DT7+fMmTNPTD9s2DB69uzJsWPH8PHx0e5v2LAhLVu2xMDAgGbNmuHs7IxKpaJly5bavu8dOnRg/vz5rF+/noyMDO3PFo/bvXu39rze3t4lusi0a9cOe3t7DA0N8fHx4ezZs1hZWWFvb88vv/xCWloaf/zxBx07dix13pkzZ9KvXz8GDBig3de9e3csLCwAOH36NP369QOgVatWtGzZstz3UAghhBBC/LUcHR25efMm8fHx5Ofns3v3blxcXFCpVHTt2pV9+/YBsGPHDlxcXJ55vpe+0q7UunXr+O6772jdujWhoaHa/Y/3hzcwMNBuq1QqioqKABg1ahSzZ88mNzeXIUOGlBhoCpCens7JkyeZPn06Li4urFq1ipiYGO1gBpVKVSL9o21vb29iYmLYv38/7u7uqFQqmjdvzsWLF7VpP/30U9auXUta2v/muTUzM3set0QIIYQQQjxHBw4coFevXpw7d47Ro0czYsQIQNOa/s477wBQrVo1ZsyYwciRI/H29qZPnz40b94cgEmTJrFmzRrc3d1JT09n0KBnL/T00nePMTAwICEhgbi4OF555RWioqK00+vUqFGDrKysUt3KXSWOAAAgAElEQVRjqlWrxrRp0/D19WXMmDHlzuvWrVu0bNmSli1bEhsby40bN2jatKn2+L59+/Dz82PWrFnafW+//ba25f/8+fPEx8fToEEDYmJiGDx4MADu7u6sWLGCixcvMmnSJAC6devGokWL+Pbbb3nzzTcBntpPvXPnzuzatQtnZ2d+//13rlxRtmCJEEIIIYR4Ptzd3XF3dy+139bWlv/+97/a7d69e9O7d+9S6ezt7cs1zePjXvqWdhMTE+bNm8eHH36Ir68vKpVKO3hz8ODBjBw5Ujt483E2Njb07duXjRs3ljuvdevW0bdvX3x9falWrRq9evUqcXzXrl2lBh54eHiwa9cuQPMzyOeff06fPn1o0KCB9sOsXbs2TZs25c6dO7Rrp1mBT6VSsWzZMk6fPo2LiwsDBw5kypQpTJw4scyyDRkyhOzsbPr06cPSpUtp27Ztua9LCCGEEELot5e6pf3999/Xvo+MjCx1PCgoqESF/fDhwyWOf/LJJ9r3jyrWAPPnz9e+b9iwofbY4+nL8ucZagCGDh2qff+0Lwhff/11qX02NjYsXry4zPQBAQElBpuampo+Ma0QQgghhKjcXvqWdiGEEEIIIao6lbqiS0IJIYQQQgghXqiXunuMqLiss8oGrNboqJlKMvvXq4riqv9DMxr64aGziuJquXbk7sJNimIA6k8cQkZGhqKYmjVrAnBnQfnHOQDYTXkLgKT/RiuKs3nHl/z4JEUxAMb2NmT8cEFRTM3ujgA635PE5aW7nz2N7Rh/LiWkKooBaN3AivTdPyqKsfBxBiAt+riiOEvfHtz88AtFMQCvfvEhBXfvK4oxql8HgHtLtiiKqzdOM1hdl/+nSV9HKYoBsBntR8aJWEUxNV/TrEORuu2Iojirga8Dun1uBcnpimIAjKwtdPo/Crr/v/nh8h1Fcd1b2SnO61F+p66WXi37abo216zCqPTva/2JmjFjGcfPK4qr2aOd4s/NyFozpXHKN/sUxdV921NReiEqC+keI4QQQgghxEtOKu1CCCGEEOL/s3ffcVmV/+PHX4CiYpqgkjlKK0eFpCnukbiRISrlwNmwjzNn4koFRc0ilRy590YRDC3ErZGaiSNnKIoaKpAM2ef3Bz/OF4R7nBsztPfz8eDx4D739T7XOfd9zrmvc51riCLuP11oj4uLw83NDTc3N5o3b07Lli3V12lpaXnSrl69msePHxtcZ9++fTl3Ln/Thr59+9KxY0fc3Nzo3LkzW7ZsMbiuJ/OsX7++EXslhBBCCCFeNP/pNu3W1tYEBma3C124cCFWVlbqjFZPWrt2La6uroWapXTevHnUrVuX+Ph42rdvj7u7e56ZWv+JPIUQQgghxPPvP11oL8iJEyeYM2cOmZmZ2NnZMX36dDZv3kxMTAz9+/enXLlyrFu3jq+++opz586RmppKx44dGTFihNF5JCcnU6pUKSwsLAAKXNfatWvz5Qng5+fHgQMHKFmyJIsWLaJChQr/yOcghBBCCCGKjv9085gnpaamMmHCBPz8/AgKCiIzM5ONGzfSr18/bG1tWbNmjVp4HjVqFAEBAezevZuTJ09y6dIlg+sfO3YsLi4udOrUiSFDhqiF9oLWVVCeycnJvPfee+zevZuGDRuydau2kSqEEEIIIcTzSQrtuWRlZVG1alVq1KgBgLu7O6dOnSowbUhICO7u7nTt2pWrV69y/fp1g+ufN28eQUFBHDx4kJUrVxIdHa1pXcWLF6dNmzYA2NnZqfFCCCGEEOLFJs1jTHDr1i1WrlzJ9u3befnll5kwYQKpqalGx9vY2PDOO+9w9uxZsrKyjF5X8eLFMTMzA8Dc3JzMzMynsj9CCCGEEKJok5r2XMzNzYmOjubmzZsABAYG4uDgAEDp0qVJSkoCICkpiVKlSlGmTBkePHjA4cOHNeXz+PFj/vjjD1577TW968qdpxBCCCGE+O+SmvZcSpQoga+vLyNHjlQ7ovbqlT073Icffsgnn3yCra0t69at45133qFz585UqlSJ999/36j1jx07lpIlS5KWloa7uzt2dtkzDepa15N5CiGEEEKI/yYptP9/w4cPV//ftSv/lO59+/alb9++6uvZs2cXuB5dhWt9hW5d63oyzzNnzqj/d+rUiU6dOulcpxBCCCGEeHGYKYqi/NsbIYQQQgghhNBN2rQLIYQQQghRxEnzmBdcQkKCpvRlypR55nFaY0yNe572LfXGPU0xJapXAp6PfXsetjHtzgNNMZaVsyc5ex727UU+b2Tf8sZA0d63wm5j+v14TXHFK5bTlF6IokZq2oUQQgghhCjipNCuwe3bt3F2ds6zbOHChaxYsYKAgAD++usvdfmkSZO4du0aAI6OjsTGxgLQs2dPdV1BQUFq+nPnzuHj4/NP74IQQgghhHgOSaH9Kdm5cycxMTHq65kzZ/LWW2/lS7d582YAoqOjCQ4OVpfXrVuXyZMn//MbKoQQQgghnjtSaH9Kzp8/z9ixY3FzcyMlJYW+ffty7ty5fOnq168PwDfffMOpU6dwc3Nj9erVhIeHM3jwYACSk5Px8vKiR48edO3aldDQUACuXr1Kjx49cHNzw8XFhRs3bjyz/RNCCCGEEP8e6Yj6lNjZ2TF+/Hjq1q1rVPoxY8awcuVKli5dCkB4eLj63pIlS2jSpAm+vr48evQIDw8PmjVrxubNm+nXrx+urq6kpaWRlZX1j+yLEEIIIYQoWqTQroGZmZmm5aY6evQoYWFhrFy5EoDU1FTu3r1LvXr1WLJkCffu3aNDhw5Ur179qeYrhBBCCCGKJim0a1CuXDn+/vvvPMv+/vtvqlat+tTzWrBgAW+88UaeZW+++SbvvfceBw8e5LPPPmP69Ok0bdr0qecthBBCCCGKFmnTrkHp0qWpWLEiJ06cACA+Pp4jR47QoEEDSpcuTVJSkqZ16UrfokUL1q9fT85ktRcvXgTg1q1bVKtWjX79+tG2bVsuX75cyD0SQgghhBDPAym0azR37lwWLVqEm5sb/fv3Z+jQobz22mu4u7vz1VdfqR1RDalduzbm5ua4urqyevXqPO8NGTKEjIwMXF1d6dKlC/PnzwcgJCQEZ2dn3NzcuHLlCl27dv0ndlEIIYQQQhQxZkpOda54Ib2Is+iZGvc87ZvMiJo3BmRG1CfjnofP39Q42bfCxz0P+yYzogqhjdS0CyGEEEIIUcRJTbsQQgghhBBFnNS0CyGEEEIIUcTJkI8vOFPbCib+ckFT3EtN3gUgfs8JTXHlujQl+exVTTEAVu/V5EGC4Q6/uVUoUxKAPz+ZrSnujeUTAIgNOKQpzqZba5Pbr8YFH9MUY+3cHICoB9rye61C9vcdNX6Rtri5Q/jlyl1NMQBNar1KwtEITTFlWtgDkHTmiqa40vVrcW/+Nk0xAJVGepiUF8CdWWs1xVWe2A+AR4fOaIor27o+t2es0hQDUHXqQP7e96ummJc7NgIw+XuLWRqoKc52sBt//vVIUwzAG6+UNfnzT4+J0xRX3NYagKN/RGuKa/F2FZOvCVuPaRst7MPmtQG4NekHTXHVZn4GwMNNoZriyvdqZ/LvTXLEdU1xVvZvAnBn7kZNcZXH9zb58xeiKJCadiGEEEIIIYo4KbQDiqLQq1cvDh36v5rUkJAQPv7446eWh6OjIy4uLri5ueHi4kJoqOFajPnz53P8+HEA+vbty7lz5wBYsmTJU9suIYQQQghR9EnzGMDMzIzp06czcuRImjRpQkZGBn5+fixfvtyk9WVkZFCsWP6Pds2aNdjY2PDnn3/y8ccf065dO73rGTlyZIHLly5dyueff27StgkhhBBCiOeP1LT/f7Vq1aJNmzYsW7aM77//HldXVxYvXkyPHj3o2rWrWjN++/Ztevfujbu7O+7u7vz2228AhIeH07t3bz7//HO6dOmiN6/ExETKli2rrs/Z2Vl9b8WKFSxcuBCACRMmsHfv3jyx8+bNIyUlBTc3N8aMGfPU9l8IIYQQQhRdUtOey7Bhw3B3d8fS0pIPPviAJk2a4Ovry6NHj/Dw8KBZs2aUL1+eVatWUaJECW7cuMHo0aMJCAgA4OLFiwQFBVGtWrUC19+/f38UReHWrVt89913Jm3j2LFj2bBhA4GB2jp3CSGEEEKI55cU2nOxsrLCyckJKysrQkJCOHDgACtXrgQgNTWVu3fvYmtry4wZM7h06RLm5ubcuHFDja9bt67OAjv8X/OYqKgoBgwYQKNGjf7pXRJCCCGEEC8AKbQ/wdzcHHPz7FZDCxYs4I033sjz/sKFC6lQoQKBgYFkZWVhb2+vvmdlZWVUHq+99hrly5fn+vXr2NrakpWVpb6Xmpr6FPZCCCGEEEK8SKRNuw4tWrRg/fr15EwYe/HiRSB73POKFStibm5OYGAgmZmZmtf98OFDbt++TeXKlSlfvjwPHz4kLi6OtLQ0Dh48aDC+WLFipKena85XCCGEEEI8n6SmXYchQ4Ywa9YsXF1dycrKomrVqixdupTevXszfPhwdu3aRcuWLY2uXYfsNu3m5uZkZGQwZswYKlSoAMDQoUPx8PDglVdeyVezX5APP/wQV1dX3nnnHb755huT91EIIYQQQjwfpND+hOHDh6v/z5gxI9/71atXJygoSH09btw4ABo3bkzjxo11rjcsLEzne/369aNfv375ls+e/X8zd65bty5Pnjn5CiGEEEKIF580jxFCCCGEEKKIM1NyGm0LIYQQQgghiiRpHvOCS0hI0JS+TJkyACRHXNcUZ2X/ZnZ+x85py695XVKuR2uKASj5ZhUeJKRoiqlQpiQA0T5rNMVVmdwfMG3ftG4jZG/n3/t+1RTzcsfs4UPT7z7UFFf81fIA3Jq8TFNcNZ9PORMZoykGoH4NWxKOn9cUU6aZHQCP/7ipKa7U269zf02IphiAiv07az4mS75ZBYD7q3/UltcAJwAeX7yhKa7UO9U155WTX/LZq5pirN6rCUDyuT+1xdXN7p9z95vNmuJeHdOTa/fiNcUAvFWpnEnHMUD6fW35Fa9YDoALt7Sdb+9WK6/5mgzZ1+WYvx9rirF9uRQAd+Zu1BRXeXxvAJJOXdIUV7phHZN/b5JOX9aWV4PaAJrP74r9O2v+riH7+745xl9TzOvfDNOcjxCGSPMYIYQQQgghijgptAshhBBCCFHE/auFdkVR6NWrF4cOHVKXhYSE8PHHHz+1PBwdHXFxccHFxQVPT0+io7U3xTBVeHg4gwcPVl+np6fj7u6uvg4NDaV27dpcv667KUrfvn05dy5/s4yAgIACR7cRQgghhBAvnn+10G5mZsb06dOZPXs2qampJCUl4efnx1dffWXS+jIyMgpcvmbNGoKCgmjUqBGLFy8uzCYXyunTp3n//ffV18HBwTRo0IA9e/b8a9skhBBCCCGKvn+9I2qtWrVo06YNy5YtIzk5GVdXVxYvXszVq1fJyMhg2LBhtGvXjtu3bzN+/HgeP87ujDNlyhTef/99wsPDmT9/PmXLliUyMpJ9+/bpzKtevXrqeOexsbF89dVX3LlzB4CJEyfSoEEDFi5cyO3bt7l16xZ3797Fy8uL33//nSNHjmBra8uSJUsoXrw4J06cYM6cOWRmZmJnZ8f06dOxtLTk8OHDzJo1i1KlStGgQYM8+R85coRWrVoBkJSUxOnTp1m7di2ff/45I0aMACAlJQUvLy8uXbrEG2+8QUrK/3Vk3LFjBz/88ANlypShTp06WFpaPr0vQgghhBBCFFlFok37sGHDCAoK4siRI6SmptKkSRO2b9/O2rVr+frrr0lOTqZ8+fKsWrWKnTt34ufnh4+Pjxp/8eJFJk2apLfADtmF5nbt2gEwc+ZM+vfvz44dO1i4cCGTJ09W00VFRbFmzRoWL17MuHHjaNy4MUFBQZQsWZJDhw6RmprKhAkT8PPzIygoiMzMTDZu3EhqaipTpkxhyZIlBAQEcP/+/Tz5h4eH06hR9igf+/fvp2XLltSoUQNra2vOn88eUWPTpk2ULFmSkJAQhg8fzoULFwCIiYlh4cKFbNq0iY0bN3Lt2rXCf/BCCCGEEOK58K/XtANYWVnh5OSElZUVISEhHDhwgJUrVwKQmprK3bt3sbW1ZcaMGVy6dAlzc3Nu3LihxtetW5dq1arpXH///v2Jj4/HysqKkSNHAnD8+PE8Bd/ExESSkpIAaNWqFcWLF6dWrVpkZmaqteO1atXi9u3bREZGUrVqVWrUqAGAu7s7GzZsoHHjxlStWpXq1asD4OrqytatWwH466+/ePnllylVKnsYrj179qizoDo5ObFnzx7s7Ow4efIkffv2BaBOnTrUrp09tFVERASNGjXCxsZGjcn9GQghhBBCiBdXkSi0A5ibm2Nunl3xv2DBAt5444087y9cuJAKFSoQGBhIVlYW9vb26ntWVlZ6171mzRrKli3L2LFjWbhwIV5eXmRlZbF161ZKlCiRL31OsxNzc3OKFy+OmZmZ+jozM9Ok/Tt8+DAtW7YEID4+nl9++YUrV65gZmZGZmYmZmZmjB8/3qR1CyGEEEKIF1uRaB6TW4sWLVi/fj05E7VevHgRyJ4kqGLFipibmxMYGKi58FysWDEmTpzIrl27iI+Pp0WLFmr7doA//vjD6HXVqFGD6Ohobt7MnuwlMDAQBwcH3njjDaKjo4mKigLI08H0yJEjaqF93759uLm5ceDAAcLCwjh06BBVq1bl1KlTODg4EBwcDMCVK1e4fDl70gl7e3tOnjxJXFwc6enp7N27V9P+CyGEEEKI51eRK7QPGTKEjIwMXF1d6dKlC/Pnzwegd+/e7Ny5E1dXV/7880+DtesFsbW1xdnZmQ0bNjBp0iTOnz+Pi4sLTk5ObNq0yej1lChRAl9fX0aOHImLiwtmZmb06tWLEiVKMGPGDD777DPc3d3VpiyZmZlERUXx5pvZs4YGBwerbetzdOjQgeDgYHr16kVycjKdO3dmwYIFvPvuu+q2Dxs2jJ49e9KrVy91XUIIIYQQ4sVXZJrHDB8+XP2/oPHHq1evTlBQkPp63LhxADRu3JjGjRvrXG9YWFie11OmTFH//+677/RuB8CZM2cKfK9p06bs2rUrX3yrVq3UNvA5Tp06lac5T+4a/hw57dsB/Pz88r0P0L17d7p3717ge0IIIYQQ4sVVZArtL7KGDRvSsGHDf3szhBBCCCHEc8pMyWk8LoQQQgghhCiSpKb9BZeQkKApfZkyZQoVd/9RioGUeVUsW5L0+/GaYgCKVyz3zPctPSZOU1xxW2vNeeXk96z3zZS452HfnodtNDVO9q3wcf/Gvl2+o+06AlC7svZryb+xbw8StF3/K5QpaXJepsY962NL6+9b8YrlNKUX/y1FriOqEEIIIYQQIi8ptAshhBBCCFHESaHdRIqi0KtXLw4dOqQuCwkJ4eOPP9Ybd+DAAbp27YqrqytOTk5s3rxZb/qFCxeyYsWKfMtv376Ns7OzaRsvhBBCCCGeK9Km3URmZmZMnz6dkSNH0qRJEzIyMvDz82P58uVqGkVRUBRFnek1PT2dKVOmsH37dipVqkRaWhq3b9/+t3ZBCCGEEEI8J6TQXgi1atWiTZs2LFu2jOTkZNzc3DA3N6djx4689957XLhwgR9++IEqVaoAkJSURGZmJuXKZXc0sbS05I033gCya84nTpxIXFwcNjY2+Pr6Urly5Tz5nT9/nokTJwLQvHnzZ7inQgghhBDi3yTNYwpp2LBhBAUFceTIET799FMAbt68Se/evdmzZ49aYAcoV64cjo6OtGnThtGjR7N7926ysrIA8PHxwd3dnaCgIFxcXPDx8cmXl5eXF1OmTGH37t3PZueEEEIIIUSRIIX2QrKyssLJyQlXV1csLS0BqFy5MvXq1Ssw/cyZM1m9ejX29vasXLlSrTk/c+aM2kbdzc2N06dP54l79OgRCQkJODg4qGmEEEIIIcR/gxTanwJzc3O13TpkF+T1qV27NgMGDGDlypXs27fvn948IYQQQgjxnJNC+zOUlJREeHi4+vrSpUtq85n69euzZ88eAIKCgmjYsGGe2LJly1KmTBlOnTqlphFCCCGEEP8N0hH1GVIUheXLlzN16lRKlixJqVKl8PX1BWDKlCl4eXmxYsUKtSPqk3x9fZk4cSJmZmbSEVUIIYQQ4j9ECu1PwfDhw9X/q1atSnBwcIHpXnrpJZYtW1bge1WqVGHt2rV6121nZ5enE+r48eNN3WQhhBBCCPEcMVMURfm3N0IIIYQQQgihm7RpF0IIIYQQooiT5jEvuKQzVzSlL12/FgAJh3/XFFemVfYQl7EBhzTF2XRrTcLRCE0xAGVa2JOQkKAtpkwZAG6O8dcU9/o3wwCI3XZAU5yNRxvSY+I0xQAUt7Xm0f7ThhPmUrZtAwCTP5Oo8Ys0xb02dwjnoh5qigGo+1p57n23VVNMpS8+BODewu3a4ob34Pa0lZpiAKpOG0TKVW0zFZesWRUw/diKCz6mKc7aubnJ+xYXeERbXm4tAYgP+UVTXLnOTQD4a1GAprhXhnTj2r14TTEAb1Uqxy2vJZpiqvl+DsD9Ryma4iqWLQnAj6cjNcU5NahB+n3t+1a8Yjku39F2Lald2RqA6wNmaop7c/UkAOL3nNAUV65LU83Xu+K22dsYszRQU5zt4Owhj2+OWqAp7nW/EZqvkZB9nTTlGglwZ1b+Zq/6VJ7YDzD9Wi5ebFLTLoQQQgghRBEnhfYnLF68mC5duuDi4oKbmxtnz57VmXbChAns3btX7/omTJiAo6Mjbm5uuLu7c+bMmQLTzZ8/n+PHjxdq24UQQgghxItJmsfkcubMGQ4ePMjOnTuxtLQkNjaW9PT0Qq93/PjxdOrUiaNHjzJ16tR8Y6xnZmYycuTIQucjhBBCCCFeTFJoz+X+/ftYW1tjaWkJgI2NDQD+/v4cOHCA1NRU6tevz4wZMzAzM8sTe/78eWbPnk1ycjLW1tb4+vpia2ubJ42DgwNRUVEAODo60rlzZ44fP84nn3zCkSNH+OCDD+jUqRMRERHMmjWL5ORkLC0tWb16NaVKlWLevHn8+uuvpKWl0adPH3r27PkMPhUhhBBCCPFvk+YxuTRv3py7d+/SsWNHpk2bxq+//gqAp6cnO3bsIDg4mJSUFA4cyNshMT09HR8fHxYsWEBAQADdu3fHz88v3/rDwsKoVauW+rpcuXLs3LmTLl26qMvS0tIYNWoUEydOZPfu3axevZqSJUuyfft2ypQpw44dO9ixYwdbt27l1q1b/9AnIYQQQgghihKpac+ldOnSBAQEcOrUKcLDwxk1ahRjxoyhdOnSLF++nJSUFOLj46lZsyaOjo5qXGRkJFeuXGHgwIEAZGVlUbFiRfX9uXPnsnjxYmxsbJg58/968js5OeXbhsjISCpWrIi9vT2QPSETwLFjx7h8+TL79u0DsnuW37x5k2rVqj39D0IIIYQQQhQpUmh/goWFBY0bN6Zx48bUqlWLLVu2cPnyZXbs2MGrr77KwoULSU1NzROjKAo1a9Zky5YtBa4zp037k0qVKmX0dimKwuTJk2nZsqW2HRJCCCGEEM89aR6Ty59//smNGzfU13/88Qc1atQAwNramqSkJLWmO7caNWoQGxurjgyTnp7O1atXTdqGGjVqcP/+fSIisscuT0xMJCMjgxYtWrBp0ya1Y2xkZCTJyckm5SGEEEIIIZ4vUtOeS3JyMj4+Pjx69AgLCwtef/11ZsyYQZkyZXB2dqZChQrUrVs3X5ylpSULFizAx8eHhIQEMjMz6d+/PzVr1tS8DZaWlvj5+eHj40NKSgolS5Zk1apVeHh4EB0dTbdu3VAUBWtraxYt0jbZgxBCCCGEeD5JoT0XOzs7Nm/enG/5qFGjGDVqVL7ls2fPVv9/++232bBhg940uYWFhelMZ29vz9at+WeNHD16NKNHj9a9A0IIIYQQ4oUkzWOEEEIIIYQo4swURVH+7Y0QQgghhBBC6CY17UIIIYQQQhRx0qb9BZd05oqm9KXrZ0/+lHD4d01xZVrVAyA24JCmOJturUk4GqEpBqBMC3sSEhK0xZQpA8DNMf6a4l7/ZhgAsdsOGEiZl41HG9Jj4jTFABS3tebR/tOaYsq2bQBg8mcSNV5bp+bX5g7hXNRDTTEAdV8rz73v8vfX0KfSFx8CcG/hdm1xw3twe9pKTTEAVacNIuXqbU0xJWtWBUw/tuKCj2mKs3ZubvK+xQUe0ZaXW/Yws/Ehv2iKK9e5CQB/LQrQFPfKkG5cuxevKQbgrUrluOW1RFNMNd/PAbj/KEVTXMWyJQH48XSkpjinBjVIv69934pXLMflO9quJbUrWwNwfcBMAynzenP1JADi95zQFFeuS1PN17vittnbGLM0UFOc7WA3AG6OWqAp7nW/EZqvkZB9nTTlGglwZ9ZaTXGVJ/YDTLuWX2w1RFMMwDuHZUCL54nUtAshhBBCCFHESaFdCCGEEEKIIs5goX3x4sV06dIFFxcX3NzcOHv2rN70EyZMYO/evQbTODo64ubmhru7uzop0ZPmz5/P8ePHDW2iQSkpKXh6epKZmUl4eDiDBw8u9DqfhfPnz+Pi4kL79u3x8fEhp8/wnDlzOHFC26NLIYQQQgjx/NLbpv3MmTMcPHiQnTt3YmlpSWxsrDojZ2GNHz+eTp06cfToUaZOnUpQUFCe9zMzMxk5cuRTyWvHjh20b98eCwuLp7K+Z2XatGl4e3vz3nvv8emnn3L48GFat26Np6cnU6ZMoWnTpv/2JgohhBBCiGdAb037/fv3sba2xtLSEgAbGxteeeUVAPz9/enevTvOzs5MmTKFgkaOPH/+PJ6ennTr1o2PP/6YmJiYfGkcHByIiooCwNHRka+//hp3d3f27t2bp9Y+IiKCnj174urqSo8ePUhMTCQzM5M5c+bQvXt3XFxcCpwYCSAoKIi2bSSXDZEAACAASURBVNuqrxMTE/nss8/o2LEjU6dOJSsrC4Dg4GBcXFxwdnbm66+/BuDnn3+mf//+KIpCTEwMHTt25P79+/nyuHnzJgMGDMDV1RV3d3eioqJQFIU5c+bg7OyMi4sLP/74IwA+Pj74+2d3WDty5Ah9+vRRtyFHTEwMiYmJ1KtXDzMzM7p27cr+/fsBqFKlCvHx8QVuhxBCCCGEePHorWlv3rw533//PR07dqRp06Y4OTnRqFEjADw9PRk2LHvkg3HjxnHgwAEcHR3V2PT0dHx8fFi0aBE2Njb8+OOP+Pn54evrmyePsLAwatWqpb4uV64cO3fuBLILtABpaWmMGjUKPz8/7O3tSUxMpGTJkmzfvp0yZcqwY8cO0tLS6NmzJ82bN6datWrq+tLS0rh16xZVq1ZVl0VERPDjjz9SuXJlPvnkE3766Sfq16/PvHnzCAgIoGzZsgwaNIjQ0FDat2/Pvn372LBhA0eOHGH48OFUrFgx32c1duxYPvvsM9q3b09qaipZWVn89NNPXLp0icDAQOLi4ujRowcNGzZkzJgx6v8+Pj4sW7YMc/O8909//fUXlSpVUl9XqlSJv/76S339zjvv8Ntvv9GxY0d9X6EQQgghhHgB6C20ly5dmoCAAE6dOkV4eDijRo1izJgxdOvWjfDwcJYvX05KSgrx8fHUrFkzT6E9MjKSK1euMHDgQACysrLyFHbnzp3L4sWLsbGxYebM/xuSysnJKd92REZGUrFiRezt7QF46aWXADh27BiXL19m3759QPYQSTdv3sxTaI+Li1OHtcthb2+vpunSpQunT5+mWLFiNGrUCBsbGwBcXFw4efIk7dq1Y8qUKTg7O1OvXj2cnZ3zbV9iYiJ//fUX7du3B6BEiRIAnD59mi5dumBhYUGFChVwcHDg3LlztG3bFm9vbzw9PfHy8uK1117T9zUUqHz58gU+uRBCCCGEEC8eg+O0W1hY0LhxYxo3bkytWrXYtWsXXbp0Yfr06ezYsYNXX32VhQsXkpqamidOURRq1qzJli1bClxvTpv2J5UqVcrojVcUhcmTJ9OyZUudaUqWLElaWlqeZWZmZnpfP+nevXuYm5vz4MEDsrKyMDc3x8vLi4sXL2Jra4ufn5/R25zjypUrlCtXTi14Z2Zm0q1bNyC7mVCvXr24d+9enm3IaZoEkJqaSsmSJTXnK4QQQgghnj9627T/+eef3LhxQ339xx9/ULlyZbWAbm1tTVJSklrTnVuNGjWIjY1VR4ZJT0/n6tWrJm1kjRo1uH//PhER2ZPwJCYmkpGRQYsWLdi0aZPaOTYyMpLk5OQ8sS+//DKZmZl5bioiIiK4desWWVlZhISE0KBBA+zt7Tl58iSxsbFkZmayZ88eHBwcyMjIYOLEiXzzzTe8+eabrFq1CgBfX18CAwNZtmwZL730EpUqVSI0NBTIbpLz+PFjGjZsSEhICJmZmcTGxnLq1Cns7e2Jjo5m1apV7Ny5k8OHD3P27FksLCwIDAwkMDCQkSNHYmtry0svvcTvv/+Ooijs2rUrT7v8GzduULNmTZM+TyGEEEII8XzRW9OenJyMj48Pjx49wsLCgtdff50ZM2ZQtmxZPDw8cHZ2pkKFCtStWzdfrKWlJQsWLMDHx4eEhAQyMzPp37+/SQVNS0tL/Pz88PHxISUlhZIlS7Jq1So8PDyIjo6mW7duKIqCtbU1ixbln92refPmnD59mmbNmgFQt25dvL29uXnzJo0bN6Z9+/aYm5szZswYtdNp69atadeuHf7+/jRs2JCGDRtSp04devTowQcffMCbb76ZJ4+5c+cydepU5s+fT/HixZk/fz7t27fnzJkzuLm5YWZmxrhx46hQoQIDBw5k/PjxvPLKK8ycORMvLy+2b9+uNqvJ8dVXX+Hl5UVKSgqtWrWiVatWQPYN0M2bN7Gzs9P8WQohhBBCiOeP3kK7nZ2dzhFZRo0axahRo/Itnz17tvr/22+/zYYNG/SmyS0sLExnOnt7e7ZuzT/9+ejRoxk9enTBO/D/9enTh9WrV9OsWTMaN25c4DYBODs752uzntPZFrLb0usag7569eqsXZt/uuIvv/ySL7/8Ms+y1atXq//b2dnlG+4yR926dQkODs63/ODBg3Ts2JFixQy2bhJCCCGEEC8AM6WgsRpfQNu3b8fd3f25G6u9ICEhITRv3pyyZcv+25sihBBCCCGegf9MoV0IIYQQQojnld6OqEIIIYQQQoh/nxTahRBCCCGEKOKk0C6EEEIIIUQRJ4V2IYQQQgghijgptAshhBBCCFHESaFdCCGEEEKIIk4K7UIIIYQQQhRxMqXmf0BmZiYDBgxg3bp1RsesWrVK7/sDBw40uI6UlBTu3LnDG2+8YXS+sbGxbN26lejoaDIyMtTlvr6+euN+++03oqOjyczMVJd17drV6HwL69ixYzRv3rzA9xITE4mNjeW1117Ls/zSpUvUqVPnqW5HfHy83vfLlStX4HJvb2/MzMx0xk2ePLlQ21WQO3fuFLi8cuXKTz2vZ+306dO8/fbbWFlZERgYyMWLF+nXrx9VqlQpMH1hzzdTzxtTaM0rIiKCuLg4WrdunWf5oUOHKF++PHZ2dgXGZWZmMm/evHwzSv/TTp06xc2bN+nevTuxsbEkJSVRrVo1vTGRkZFMmzaNhw8fEhwczKVLlwgLC2PIkCH50v70009619WhQ4cCl5t6jpp6TcgtOjqamzdv0qxZM1JSUsjIyOCll17Kly4wMBBFUfJde3ft2oWFhQUuLi4Frv/ChQt683/33Xf1vv8sj/9x48bx9ddfG1yW49+4thbGw4cP+e2334iJiaFEiRLUqlULOzs7zM2ljrcokEL7f4CFhQXm5uYkJCRQpkwZo2KSkpKA7B+jc+fO4ejoCMCBAweoW7euwfiwsDDmzJlDeno6YWFh/PHHH8yfP58lS5bojRsyZAgNGjSgadOmRs9eO27cOG7dukWdOnXUGDMzM52F9vr16xd4EVUUBTMzM3777Tej8s1t0qRJHDx4MN/yH3/8kVmzZlG+fHkyMjLw9fXF3t4eAC8vL3bu3Klznab8kHXr1g0zMzMUReHu3bvqrLmPHj3i1VdfJSwsrMB16So4GevBgwd8++23xMTEsHz5cq5du8aZM2fw8PDQGTN48GD1/9TUVG7fvk2NGjXYs2ePwfyioqKoVKkSlpaWhIeHc/nyZbp27ap3luDTp0/j7+/PnTt3yMjIUL/v/fv3a9tZI0ybNo3du3dz6dIlVq1ahYeHB19++SXr168vMH1hzzct501hj3+t5+i8efMKLDy99dZbeHl5sXbt2gLjLCwsOH36tMH151bYffP39+f8+fNERkbSvXt30tPTGTduHJs3b9YbN2XKFMaPH8/UqVMBqFOnDmPHji2w0H7gwAEgu3B05swZmjRpAkB4eDj169fXWWjPOUd/++03rl27hpOTEwB79+7lzTff1Lltua8JTzLm+N+6dStbtmzh77//JjQ0lHv37vHVV1+xZs2afGnXr1/P6tWr8y3v0KEDnp6eOgvts2fPBiAtLY3z589Tu3ZtAC5fvoydnR1btmzRu42m/G6AadeRa9eu5XmdmZmp91pt6vem67PKERQUpPd9MP5mC+CXX35h2bJlxMfH884772BjY0NaWhqhoaHcunWLjh07MmjQIJ3x4tmQQvt/hJWVFS4uLjRr1gwrKyt1ua67/GHDhgHQp08fAgIC1BN12LBheQpbuvj7+7N9+3b69u0LwNtvv010dLTBuMePHzNu3DiD6XI7f/48P/74o97ajNzOnDmjaf05Pv/8c53v6arNWrp0KQEBAdja2hIREcH48eMZM2YM7du3L/BHNLecH7KCmJmZFVjYySmUT548mfbt26u1m4cOHdL74+zu7q53WwyZMGEC3bp1U2/KqlevzqhRo/QW2p/80blw4QIbN240Kr/hw4ezY8cObt68ydSpU3F0dGTMmDEsW7ZMZ8ykSZPw8vIyutZI3/cN6L0BLVasGGZmZoSGhtKnTx88PDzYvn27zvSFPd+0nDemHv+m5AXZNyQFPWGoUqUKcXFxemPffvttPv/8czp16pTnuqWrYFvYffv555/ZtWuXej688sor6g2VPo8fP1ZvxnPoKjzm3MAMGjSIPXv2YGtrC0BMTAxeXl4688jZpk2bNrFx40aKFcv++e7Zsyd9+vTRGafrRt1YGzZsYNu2bXz44YdA9rkdGxtbYNqMjAxKly6db7mVlRXp6ek688h5Cjxs2DACAgLUQvuVK1fw9/c3uI2m/G6AtuvI0qVLWbJkCampqbz//vtA9s2gpaWl+tkUxNTvLef6smHDBgDc3NwA4wrroO1mC7J/I7y9vQt80pmRkcHBgwc5duwYHTt2NCp/8c+QQvt/RIcOHXT+0Onz4MEDLC0t1deWlpY8ePDAYFyxYsWMrtXP7YMPPuDQoUP5HqXrU7NmTe7fv6/++Gn18OFDUlNT1de6mmecPn2ar7/+Ok/hAbIv3BEREQXGZGVlqdtlb2/P2rVr+fzzz7l7967BmwwtzZmedPbsWXx8fNTXrVu3Zt68eQbjYmNjWbZsGdeuXcvzmeiqDc0RFxeHk5MTP/zwA5D9/Wt9nPruu+/q/ByfZG5uTrFixfj555/x9PSkb9++BptDlSlTRtNxNWjQIKPTPql06dIsXbqUoKAg1q9fT1ZWVp7H9rqYer6Zct7kMPb4NzWvR48e6XwvJSVFb2xaWhrW1taEh4fnWW7stUzrvhUvXhwzMzP13ExOTjYqH2tra6KiotS4vXv3UrFiRb0xd+/ezXPNqlChgs4mY7n9/fffJCYmqs1akpOT+fvvv43azr///pubN2/m+UwcHBz0xlhaWuY5JvUdxykpKSQnJ+e7RiYmJuottOeIjIxUC+wAtWrV4vr16wbjTD3+tVxHBg8ezODBg/nmm28YM2aMpnxA+/eWc6N7/Phxdu3apS6vXbs27u7ujB07Vm9+Wm62AL3N0IoVK0a7du305ieeDSm0/0eYWpPatWtXevToQfv27QEIDQ01al1vvfUWQUFBZGZmcuPGDdatW0f9+vV1ps95rK0oCkuXLsXS0pJixYrpfaydUxOalJREly5dsLe3p3jx4ur7hpri7N+/nzlz5hATE4ONjQ137tzhzTff1Nk847333qNkyZI0atQo33s1atQoMKZ06dJERUWp7dltbW1Zu3YtQ4cO5erVq3q3L7crV65w7do10tLS1GX6Cqm2trYsWrQIV1dXILt2xpibmrFjx9K5c2cOHjzI9OnT2blzJzY2NgbjrKysiIuLUwstv//+u8GbttztuLOysrh48aLRN17FihUjODiYXbt2sXjxYkB3YSLn0XXjxo2ZM2cOHTp0yFMI0dVetqDv2Vh+fn4EBwczc+ZMKlasyJ07d/j4448Nxmk930w5b3JoPf5Nzatp06b4+fnxxRdfqMeHoigsWLBAbRqii6ltkrXuW47OnTszdepUHj16xNatW9mxY4feWtQcX331FVOmTOHPP/+kZcuWVK1a1eBNctOmTfn444/p0qULkN2UrlmzZgbz+uyzz3B3d6dx48YoisLJkycZPny4wbht27axdu1a7t27R506dTh79iz16tUzeEPu4ODAkiVLSElJ4dixY2zcuFFtvvWkHj16MGLECKZPn64WOm/fvs2MGTPo0aOHwW2sVasWkyZNynPdyl2If1Jhjn8w7TrSqVOnApvDGGp3b+r3pigKp0+fpkGDBkB2M5usrCyDcVputnIcOXKE0NBQ/vrrLyD7SVPbtm1p1aqVwVjxbJgphp7Ri+dazgmY8xjOw8NDvdseN24cnTp1MriO8+fPq21LHRwceOeddwzGPH78mCVLlnD06FEAWrRowZAhQyhRooSpu5LPr7/+qvd9Q4UuV1dX1qxZw8CBA9m1axe//PILu3fvZtasWU9tGy9dukSpUqV4/fXX8yxPT08nJCRE/XHSx9/fn/DwcK5fv07r1q05fPgwDRo0YMGCBTpj4uPj8ff359SpUwA0bNiQYcOGGex01q1bNwICAnBxcVEfw3bv3p0dO3bojbtw4QLe3t5cvXqVmjVrEhcXx/z58/V2tM392NvCwoIqVarQsWNHo46Ra9eusXnzZurVq4ezszO3bt0iJCSEzz77LF/anCZaBdHVzCi3Gzdu8O233+Z7+qCruZEpHb9zM+V8M8WzOP4hu0Zx8uTJRERE8PbbbwPwxx9/ULduXXx8fApsTnH16lWioqJo27YtALNmzSIhIQEAT09PgwWkwuzbsWPH8ly3dHUw17WvWVlZRrf7/emnn9Rz1MHBQb1ZM+T+/fucPXsWyK5MMFSrD9ltpLdv386HH35IYGAg169fx8/Pz2Dzk6ysLLZv357nM/Hw8ND5pHDTpk388MMPJCcnoygKpUuX5tNPP6V3794GtzE1NZVNmzZx8uRJIPsz6dWr11P93cjtWV5HwLTv7fz580ycOJHExEQURaFs2bLMmjXL4Dkwd+5cypYty65du5gyZQobN27krbfeYtSoUQWmnzlzJjdu3KBr16688sorAPz111/s2rWL119/vch1mP3PUsQL7aOPPlLu3LmjvnZ1dVViY2OV6OhopV+/fkatIyMjQ7l3754SHR2t/hlK7+npadL2FrRNhrZz7ty5Ri17kru7u6IoiuLi4qJkZmaq/xc1zs7OSmZmprpt9+/fVwYMGPCP5OXh4aEoiqIMGjRIOXDggHLhwgWlbdu2RsWmp6crV65cUS5fvqykpaUZFZOQkKAkJCSYtK2PHz9Wrl+/bnT6qKgoo5Y9qWfPnsrx48cVZ2dn5fbt28qCBQuU7777Tm9Mv379lEePHhm9bblpPd8URVFOnTqlJCUlKYqiKLt27VJmzZplMM7U49+Uc1RRsj/r/fv3K/v37zf4uQ8ePFg5ffq0+rpz587K3r17lZ07dyr/+9//DOZVmHM7JiZGCQ0NVfbv36/ExMQYFRMbG6t4e3srXbt2Vdzd3RVvb28lNjbWqFhT3Lt3Tzl9+rTy66+/qn+GdOvWTVGU7N+A1NRURVEUxcnJyWDcvn371PRaaD23n/XvRg6t1xGtzp8/r/fPWI8ePdJ0TcnMzFS2bNmiDB8+XBk+fLiyZcsWJSsrS2f6Dh06FLg8KytLad++vdH5in+WNI95waWnp/Pqq6+qrxs0aIC1tTXW1tY8fvzYYPy6devw9/enQoUKedoo6+sMY8poNampqSQnJxMXF8fff/+tdtJMTExUH9Xpcvz48XzLDh8+bLBjUtmyZUlKSsLBwYGxY8diY2OTry1mUVCiRAm17WViYiLly5fn7t27emMiIyNZuXJlviHQDNUG/e9//yMhIYEvv/wSb29vkpKS9HaOy7FhwwZcXFyoWbMmkN1+Mzg4WGdHq9WrV7NixQq1uU+5cuUYMWIEXbp04e7du3mO2YKYMjrRiBEj8o3WM3LkSAICAvTmlZqaStOmTYHsdqbDhw+nW7dujBw5UmeM1o7fOUw536Dg0WrGjx+vc7Qa0H78F+YcTUlJ4ZdfflFH3khKSuKVV17J8/g+t5iYGLWzH8BLL72kdoAzNJKIKfuWY9u2bXz//fc0adIERVHw8fFhyJAhBpt2jB49moYNG6pPv4KCghg1alSBI6kUdoSbr7/+mpCQEN566608x4ihtumVKlXi0aNHtGvXjoEDB1K2bFmjhlc9cOAAvr6+NGzYECcnJ1q2bKl2pizIxYsXWblypdoW3c7Ojk8++YTXX3+djIwMnbHP+ncDtF1HTpw4QdOmTXUO2amrn4WpI+MUdhjYlJQUunfvrjbvyszMJCUlhVKlShWY3tLSkoiIiHwdqs+dO/ePPekQ2kmh/QX3ZCewnCHJAL2dUnKsXbuWvXv3Ym1trSlfrYWWzZs3s2bNGmJiYujWrZt68X3ppZfw9PQsMGbjxo1s2rSJW7du5RkeKykpSW/7+RyLFi2iRIkSeHl5ERQUREJCAkOHDtWym8+EnZ0djx49wsPDg27dumFlZWVw/0aOHEnPnj3x8PDQ1CG0TZs2QHanTS3NO7Zu3ZqngP7yyy+zbdu2Agvt/v7+nD17lo0bN6rjX9+6dYuZM2cSHR3Ntm3b+Pnnn/XmV9DoRLdv3y4w7fXr17l27RoJCQl5fnATExPzNHfRxdLSkqysLF5//XXWr19v1Igipnb8NvV80zpaDWg//k05RyG7cPK///0PBwcH9ZH+0aNHWb16NatWrWLFihX5Htk/+flu3bpV/d+Y65ap5/by5cvZuXOn+vnHxcXRs2dPg4X2+/fv51n/kCFDCAkJKTBtYUe4CQ0NZe/evTpveHT5/vvvgewRUxo3bkxCQgItW7Y0GOfr60t6ejqHDx8mODiYGTNm0KxZM2bOnJkv7b59+5g3bx6DBw/mk08+AbKbd4wYMYJp06bx3Xff6Ry9BJ7N70ZuWq4jJ0+epGnTpuqQnU/Sdb6bOjKOMaMW6TNgwABWrVqlNj9LSUnh448/1jl86ezZs5k2bRpJSUlUqlQJyO4sXaZMmX9kvHthGim0v+Ds7e3ZunVrvs5UmzdvzndHXZBKlSqZNAqM1kJL//796d+/P+vWrdPbdjA3FxcXWrVqxbfffpunN3/p0qWNmjAk94+C1o66pkwcZUoMZNeiAvTq1YuWLVuSmJhocFKmYsWKGdWG9Em6atUNXbSzsrLUmkLIrtXRNVrE7t27CQoKylN7U61aNb777juaNm1q1Cg3BY1OpKuNbWRkJAcPHiQhISHPD27p0qXx9vY2mNfEiRN5/PgxkydPZv78+fzyyy/MmTNHb4ypHb9NPd9MGa1G6/FvyjkK4OPjg7e3d7624cePH8fZ2Vl9OpObra0tZ8+e5b333suz/Pfffzeqs7Kp57a1tXWeNvalS5c26gaqefPm7Nmzh86dOwPZo8e0aNHCYNylS5fy9DsxZrK1atWqkZ6errnQnntkmqpVqwLZoxUZU9tevHhxWrVqhZmZGampqYSGhhZYaPf392fVqlXq+iF7zPomTZrQuXNng7XDz+J3Izct15ERI0YApneO1joyTs4wsKZKTU3Ndyzre7r+7rvvsm3bNu7fv5+nI6ox7e7FsyMdUV9wDx8+ZOjQoRQvXlyt5bpw4QJpaWl8//33VKhQQW/8xIkTiYyM5IMPPsjzI2HMjKim0jpSSg6tw7vlfkydnp5ORkYGpUqVMvh42pSmGaZONgXZY0c3adJE/XF59OgRv/76q94huBYuXIiNjQ3t27fP870ZupnZt2+f+n/Oj7Otra3BZh1z5szhzp079OzZE8i+KXz11VeZMGFCvrSdOnVi7969Ba6nY8eOebZBl4kTJ9K0aVN++OEHFi5cyLp160hPT2fGjBk6Y86cOWPUE5inQWvn1Rymnm/3798nODiYunXr0rBhQ+7cucOvv/6q97wx9fgHbeeovu/b0dGRPXv25HtkHxERwRdffEG3bt3UjrgXLlxg586dfPfddwYrHEzdt/Hjx3PlyhXatm2rTjxUu3ZttbCl63uoX78+jx8/Vp9qZWVlqfukq8nLmjVr2LZtW56Rgj788EODhc/hw4dz6dIlmjZtmucYMXSO5n4aqWUys0OHDhESEsKvv/5Ko0aN6Ny5M82bNy+wmYuTkxM//vhjgesx9tw2lSm/G6ZcR3TVjhsqZI8ePZpSpUrlGRknOTmZb7/9Vm/cvXv38Pb2Vo+hhg0bMmnSJLU2XJeePXsyZcoU9Xf//PnzeHt7G9W8LMfChQuNGuFGPDtS0/6CK1++PJs3b+bEiRNqe9LWrVurbXQNqVy5MpUrVyY9Pd2ocXZzODo6FlhjYajQomukFH0X37CwMGbPnq15eLfcj6kVRWH//v38/vvvBvbMtImjTJ1sKic296gSZcuWxd/fX2+hPaft9ooVK9Rlxsx++OTEGc7OzkbV2OfMGrlp0yYAmjVrpnNipVdeeUVtH5rbiRMn1FELDJkyZQpLlizB0tKSMWPGqKMT6fPOO++wYcMGrl69mqcgbajmLDIykhUrVqgzqebQ1z/Ay8uLESNGMGvWLNauXUtAQIBRw7SZer5VrFgxT4GycuXKBgsshTn+tZyjiqKQlpaWr2Y4NTWV4sWLF9jG1t7enm3btrF+/Xr1WH7rrbfYunWrwYqGwuzba6+9pg7PCqij1xhqqmBKk5ft27ezdetW9anAp59+ykcffWSw0O7o6KhzyEV9TJ3MLDAwECcnJ2bMmGGwdr9YsWLcuXMnX4VJdHS03tjCjnJmyu8G5L2OjB49mpYtWxq8juR+ipOamsrBgweNenrq6+vLpk2b1OuGg4ODUddWLy8vnJ2dmT9/PpD9pNLLy8tgm/eJEycycuRIbG1tURSFBw8e4OfnZzC/3MLCwqTQXtQ8+76v4t/g7e2dZzQGrRITE5XExESj08fGxqp/9+7dU1atWmVwxA1FMW2kFBcXFyU2NlZxc3NTFEVRTpw4oXh5eRm9rbnlrEOfnBFWcqd1dnZ+6jH60hkbW1jXr19X2rVr91TXeeXKFaVdu3bKl19+qaxdu1ZZu3atMn78eKVdu3bK1atXn2peuQ0fPlzx8/NT2rZtqwQEBCgDBw5UvL29Dca5uLgoGzZsUM6ePaucO3dO/dMnZ/SS3N9TzjJjGHu+9ezZU1EURalXr55Sv3599S/ntVbGHP9az9Hvv/9e+eyzz5Tbt2+ry27duqUMHjxY8ff315uXqSOXFMSYfcuh9XqnKIoSHx+vnD171ugRXZydnZWUlBT1dUpKitHndWpqqnL58mVNIzXp2oan6eeff1Y6dOig7NixQ7l06ZJy6dIlZfv27UqHDh2Un3/+WWdcYUc5e5YjbD0pNTXVpFFvTp48qUybNs1gOldXV6OWFSQtLa1Qx4mWc0Y8G1LT/h/x7rvvsnjxkoheLwAAIABJREFUYiIjI2nfvj1OTk7UrVvXYNyVK1cYP368OnObtbU1c+bMKbAdam5PtgMdMGCAwRE3wLSRUooVK4a1tTVZWVlkZWXRpEkTo8Zjzt0pMSsri/PnzxvVS17rxFGmxuSws7PD19dXrYXasGGDwTF609PT2bRpk9petlGjRnz00Ud5Jp8qSO7JSszMzKhYsaLBmfcge7ZYf39/tTY6J76gmv2aNWsSHBxMUFCQ+vSnYcOGzJgxw+hRCgYOHMj8+fMpW7YskD1azejRo/M8WXhSVFQUCxYsYP/+/bi7u+Ps7Kx3GvEcpvQPMKXzKmg/33KebJhS02vq8a/1HB0yZAjr16+nT58+aptaKysrBg0aZLBWWevIJYXdN1Ovd6ZMXNStWzc8PDxo3769+jSge/fuBrcxPDycCRMmUKVKFRRF4e7du8yZM8fg6DFaJzPr1asXmzZtyjfajaJnlJt27dpRtWpVVq5cqY5c9NZbbxmcs6Gwo5xpPSZnzpzJpEmT1An6nmRMs8Ucjx8/5t69e0alvXjxIsHBwezdu5cqVaoY1X6/XLlyBAYG4uzsDEBwcLDeZo66Rrm5ceMGYPxswoA6slZBT8rEv0MK7f8R7u7uuLu7Ex8fz08//cS8efO4e/euzuGrckydOpUJEyaoMxeGh4czZcoUnT3Qc+SeMS7nR9OYGdlMGSnF1OHdcndKzJncZ9GiRQbjTHmkakpM7thFixbxxRdfANmd3nKPAlSQadOmkZGRQa9evYDsR6rTpk0rsPNYbqaObDFp0iS8vLyws7MzarSaEiVKGDVDoi5xcXFqgR2yR6t5+PCh3picwl7ZsmW5cuUKFSpUMBgD2SPqbNiwQVP/gCc7r4aHhxvsvAqmn2+Q3fn3wYMHZGZmqsv09esw9fg35Rz19PTE09OTxMREAKMnH9Iycklupu6bqZ//2rVr1YmL1q1bp05cpM/AgQNp1KgRp0+fxszMDF9fX6Mm0pozZw4rVqxQm2RERkYyZswYg0OX5r5ptLCwoHXr1vmaw+Vm6g1hnTp1mDt3rqaYwo5ypvWYdHNzA2DQoEGathPy9g3IysoiNjZW78hEkZGR7Nmzh+DgYKytrXFyckJRFKNH55o1axbe3t5qM773339fb5M+U0e5ydG3b198fX2pWrUq5ubmREREMHnyZHbv3m3U9op/2L9ZzS+evbNnzyq+vr5Ku3btlMGDBxtMX9CEJMZMUuLp6an+DRgwQJk0aZLmCSxu3bql/PHHHwbTJSUlKZmZmUp6eroSEBCgrFmz5h+d2CSHKRMDFWYyIS1M+d4eP36sbN26VZk1a5Yya9YsZffu3UY3TejRo4dJ22kqd3f3PJMH3b59W+natavemK1btyrx8fFKeHi44ujoqDRp0kTZtGmTwbzatGmT78/R0bHAtCkpKcrDhw/zLX/w4EGephC6mHq+rV27VmnUqJHi5OSkODs7q3//NGPP0cJKS0tT9u/frwwdOlRp1KjRP5aPqZ+/lomLkpOT8zRVuH79urJq1Spl3759Rm1jYZrLmTLhUceOHY1Ob6rRo0crW7Zsybd806ZNyqhRozStS8sxuXr1aqOW5Xb79m317969e0p6erre9LVr11b69Omj3LhxQ12m6/rxtGRmZip79uwxKfbw4cNKx44dlfXr1yvffvut0rVrV02TQIl/ltS0/0fMnTuX0NBQqlWrhpOTE0OGDMlTU6lLtWrV+P7779Waid27d6tja+tjyhTuGRkZWFhYYGZmxt27dzl//nyeTmG65NSqm5ub07p1a6ytrXUO25UjNDSU5cuX8+effwLZNTVDhgyhYcOGBif3iIiIYNKkSWrN1UsvvcSsWbOws7N7qjGFeYRrYWFBVFSU+vndunULCwsLnelNGUs7t8aNGzNnzhw6dOiQpzbaUDMeU33xxRf07t0bBwcHFEXh9OnTekd8ANSOsY0aNTLYITe3sLAwo9P6+PjQsmXLfLVZv/32G0ePHmX69Ol6400937SO727q8W/qOWqqJ0cu8fDw4LvvvtMbU5hz29TPX8vERZ988gkzZ86kevXq3Lx5k549e+Li4sKBAweIiIgw2BzNzs6OSZMmqaOQ7N69W+91BEyfzMzCwoIaNWoU2Ln0aZo4cSJDhw4lKCiowFHO9CnMMblr1y769++fZ9nOnTvzLcutSpUqQHazmGvXrlG8eHFsbGx0pvf392fPnj3069ePli1b0qVLF3U8eX22bt1Ko0aNqF69OoqiMHHiRH766ScqV67M7Nmz9V5bzc3NWb58OU5OTgbzeVLLli2ZPn06gwYNwtramp07d8qwj0XJv3zTIJ6RTZs2FVgDaEh8fHye6bl9fHyU+Ph4g3GrV69WEhISlKysLGXixIlK165dlSNHjuhMv2XLFsXBwUFp3bq1smXLFqVDhw7KF198oXTo0EFZunRpgTFnzpxRPD09laFDhyoXLlxQunTpojRr1kxp0qSJcujQIZ15bdiwQXF3d1eOHz+u1jwdP35c+eijj5Q9e/YYrFlzdnZWTp48qb4+efKkwZouU2JyOjuGh4cX+KfP8ePHldatWyuenp5Knz59lDZt2ignTpzQmd7T01M5evRovuXHjh1TWrZsqQwaNEhvfrmfrOT89e3bV2+MohRuCvGHDx8qYWFhSlhYmMFjOzw8XK1927NnjzJ9+nRl1apVRj1JSEtLU9asWaNOB75u3Tqdnbr0dTY1Zsp4U883T09PgzV+OUw9/k05Rwtr1KhRys8//2z0E5/Cntu5P/+uXbsq3t7eRn3+uYWHhyuhoaE6tzn3ee/n56d2RkxNTTWqxjw1NVVZuXKlMnToUGXo0KEGj+OFCxcqn3zyiRIVFaUui4qKUgYPHqwsXbrUYEfz3r17K/Xq1VP69eunDB48WP37Jxw/flztnH78+HGD6U09JoOCgpTBgwcrDRs2zLNPnp6eOju+hoaGKm3atFG6du2qHDx4UGnTpo3i4eGhNGvW7P+1d+ZxNeX/H3+lhTB2GdvMGMMw9i0TozCRJCqSkCVMo7ITWbJTxjLZzVjLLlkiosgahhFRDIlWS0padKt7P78/+p7zu7fuPfecc+sWfZ6PRw8593zu531v59z7/rw/7/frTQIDA9Xamp2dTU6fPk1cXFxIhw4diJeXF+d3opWVFfs5c/r0aWJra0vS0tLIjRs3iKOjo9r5/vjjD7Jz506SnJxM0tPT2R91bN68mQwaNIj8+++/5NChQ8TCwoJcvnxZ7TiKdqBOewVBJpORkJAQsmrVKrJ69Wpy4cIFzvNLapv/6tWrxNXVlfz333+c6QsDBw4kHz58IElJSaRDhw7s3Dk5OSqdHVtbW3Lt2jUSHBxMunbtSu7fv08IIeT58+ecVe8DBgxQ+uGVlpZG2rVrRw4ePMj52pQ9t7rUDDFjCCncnp45c6ba85QhkUhITEwMiYmJUev0cG2B9+nTh+Tk5IiygYuwsDDSv39/0qdPH0IIIdHR0YKcAb5qHUuWLCGOjo7Ezs6OzJo1i0yePJkcPHiQzJ49m9d7O3/+fOLh4UFu3rxJbt68SebNm0fmz5+v9NwBAwaofB6uxzS93zw9PcmIESPI9u3bye7du9kfVXaIuf7F3KPyhISEFPu5efMmSU1N5Rz39u1bEhoaSsLCwsjbt285z9X03taEgoIC8vr1a5KUlMT+KEPeMXdwcFBQVeFaVLx//16putJ///3HuWjt16+f0mvo06dPpGPHjiQ0NFTlWEKEBQ2WLVtGli9frvJHHUJVzsRek4mJieTWrVtk+PDhCq/p0aNHKhe/1tbW5MWLF+TBgwekY8eO7CIoNTVVcCrahw8fyOHDhzmVceQVYmbOnKmQtsPnu0NIWp88K1asIJ8+fWL/n5iYqDUlHop6aHpMBWHp0qWIj4+HlZUVgMLmNzdv3sTixYuVnq/pNj/53/bflStXYGNjgxYtWnBuCerr66NmzZqoWbMmvvnmG3a70dDQUKXiiVQqZbsObty4ER07dgQANG/enNM2QHkRYe3atdGoUSO2eFMV3bp1g5eXF6ysrKCjo4Pg4GAYGxuzxbfKti3FjAEKt6eTk5N5V++fOnUKhBDY2NjAwMCAVWw4efIkdHV1FYqo5CEitLTlSU1Nxfr16/H27Vvs3LkTz58/x/3791VqtQOaadcLUeu4ffs2goODIZFIYGpqips3b0JXVxcjRoxgUwy4iIqKUijCMjExUTmubt26ePjwYbHmPw8fPuTcQtf0fhOq7y7m+hdzj8oTEBCAyMhIdO/eHQBw584dtGnTBomJiXB1dVWqqX3s2DFs2bIFP//8MwghWLFiBVxdXTmLmMW8NlUpaAzq1ET8/f2xefNm1KtXT6EQu6g2OgD8+OOP8PHxQYMGDRAfH892ii1ajFmU5cuXK1UxysjIwPbt27Fu3Tql4ypVqqRUOadKlSowMjJitehV0apVK1Z5pFmzZpzpRerSdNQhVOVM7DXZuHFjNG7cWFCjoUqVKqFZs2YACjvKMmlTdevW5Uw9tLOzQ+fOnWFqaoru3bujcuXKqFmzJhwcHODg4MA539u3b1GzZk1EREQoXKO5ublq7RWS1ifPggULkJqaioiICACFPRPUacJTtAd12isIt27dwrlz59hcb1tbW9aBV8bjx4+Vtnjv16+f2pxSoPDD29nZGYmJiZg1axaysrI4VUVyc3MRHR0NmUyG/Px8REdHgxTuBCk0wpFH/vmqVKmi8BhXTnv16tXx5MmTYhJkT5484dVC/smTJwCKd8aLjo6Gjo6OUsdRzBiGpk2bwtHREX379lVQxVHWnXH//v3Yu3dvseP9+/fH6NGjVTrtQ4YMwZQpU+Dl5cXmbCYmJmLFihW8HNt58+bBzs6OdW6+++47zJgxg9NpV9ZCnC9C1DoYh6Vy5cpo1KgR+wWro6PDSz5QSH2Ah4cHpk+fDltbW4VOhCdPnuRUE9H0fhPS8lzs9S/mHpVHKpUiODiYbY6UmpqKuXPn4ujRoxg9erRSp33nzp04ceIEm6ufnp6OESNGqHTaxb42MSoi8gipKVixYgX8/PyQmJiI3bt3swvi58+fc9rx6tUrpbKOXbt2xZIlS1SOE9vMLC8vD15eXggLC0OTJk0gk8mQnJwMc3NzLF26VGkQwdbWVuH/TA1PtWrVVM5TdLwQlTOx16QYOUuZTIaMjAzIZDLo6OggIyODDURxNU47evQo7t27h2vXrmHTpk2oVasWfvnlF5iamrKLAGVMnToVQ4cOhUwmQ9++fVnZ0Tt37nDWWTx48ACLFi1CQkICWrZsiVWrVvEKZDGcO3cOa9asgbGxMQghWL58OTw8PNQ2uKJoB+q0VxC+/fZbJCcnsw5ZSkoKvv32W5Xnc2nj8unsuHLlSsTExKBp06YwNDREeno6p3Z6/fr1WRmrevXqKUhaqeqA+OTJE3Tu3Jn9gO7cuTOA/48aq2Lu3LmYPHky7OzsijlWfKTK9u7dyxlZKakxDEyXRkKIWq3vgoICpV+QVatW5YzAaqKlDRQ6UwMHDsRff/0FoNAhVyf9qIl2vYGBAeuM5+XloXnz5oiLi1N67vv377Fnzx4QQtjfgcLrhI+cnIeHB8aMGYOmTZuCEILk5GSV1zLTyfPAgQMKnTyPHTuGunXrqpxD7P0mplhZ7PUv5h6VJyUlReE8Rku7Vq1aKhdPtWvXVrieq1WrxukYi31txsbGCv/Pz8/Hs2fP0KBBA86/G8PXX3/NewFapUoV/Pbbb8WOd+7cmf0MUwbXvc91by9cuBCurq7o0qWLwnvy77//Ytu2bSrHbdu2Dfn5+bh8+TIr0ZmVlYVly5YpSNAqQ17vnhCCOnXq8NK7Z4iPj8eLFy/Y7taqEHtNipGzzMrKgp2dHeuoyy9QuIJEenp66N69O7vD9ObNG1y7dg1//vkn4uPj0aFDB6WLrj59+uDy5cvIzs5GzZo12eNt27blDAAsXboUc+fORbdu3RAWFoZVq1Zx9q8oyrZt2xAQEMBe92lpaRg3bhx12ssJ1Gn/wmG+zLOzszFw4EB2217ZFr48Yrf5GSpVqoTXr1/jzJkzAArTQ7hab4tRm4mJiRE8BiiMTBV1rJo3b44jR47wqpLv378/+vfvj2HDhvGOYIgZw9C8eXNYWloqHDt37pzSc3Nzc5GTk1NMpz4rK0tt2oRYLW2g0MFPT09nv7wiIyPVOjHy2vWzZs3CL7/8wlu7Xohax/Dhw1mHR/53AJw7AQxMoxJGjeT777/nTFWqW7cupk6dyut1yI8Rc78x0WkhkWKx17+Ye1QeY2NjuLi4sF/+ISEhMDY2Rk5OTrFrhVlYffPNNxg+fDh+/fVXtlnXjz/+WOKvzcvLC05OTmjRogUyMzPh4OAAXV1dfPjwAXPnzmUb2xSFsbNp06ZwcnJC7969Fa4NZbthYvn2229x5coVmJmZKRy/cuUKZ+RVbDOzixcv4tixYwqpcdWrV8fixYvh4ODA6bSL1bsXqnIm9pr88OED5+PKUqzEppsUpUGDBhg2bBiGDRsGmUzGuXDQ09NTcNgBqO1BQghhU64sLS3ZQApfCCEKC9VatWrxUruhaAcdQv8aXzR37txR+ZiOjo7KLnoPHz7k3Obv0KED57xr165FVFQUm45x9uxZtGvXDjNnzhT5SsoPWVlZCA4ORmBgIGQyGYYOHQorKytOJ1fMGAZbW1vWAeE6BgC7du1CREQEli5dqpDmsmzZMhgbG2PixIkCXy0/mPSOZ8+eoUWLFkhPT1fbBbGkuHPnDjIzM9GrV68S7dqnqrMgg5DOguoQe785Oztj9+7dAIAdO3bAxcWlxGwqaQghCAkJYVMPOnfuDAsLC6VRyqJpZEURkg7EBysrK5w9exZA4a7YnTt3sHXrVrx79w6TJk3CyZMnlY7Tpp0vX76Ei4sLOnXqpHCNREZGYvv27ZypFmKwtrZWmpOv7jEAGDx4cLFmPMqOFeXw4cPo378/r8CQJvTt25ft/FwUVZ2cxaJpvYRQfv31V8ydO5f9v4+Pj8L/1X1u+fj44L///mPTZ4ODg9GyZUt4eHiUqJ0UcVCnvYJy9+5dnD17VmUhKlCYVnDgwAE8e/YMQOE2/+jRo3ltF1tbW+PUqVNsioRUKoWNjQ3nB/3nyJ07dzBr1ixkZmbCwsICrq6unGlHQsZcuXIFV69exblz5xT0drOysvD8+XMEBAQoff5Dhw7hr7/+Qk5ODoDCyMykSZOUFrFpirx+c0FBAeLi4kAIQbNmzdQWJ44fPx6+vr5sJC0jIwMzZ87k3MoVEyETy8aNGzF16lR4enoqfZyrK6EYxNxvNjY2rEOpaiH3JSGRSHDp0qViO0+aIv8+/vbbbxgwYADs7OyKPcaHjIwM1KhRQ22vCAYhed95eXkICgpSuEasra05I+ZiGTx4MPz9/ZU6tmPGjOF0wN3c3PDTTz8p6N0/fvxYreY6IQQXL15ku8R26dIF/fr10+yFlDFM4OzChQtITU1la4TOnj2LunXrYv78+SrHEkLw+vVrlTr6ylD1ecXA53PrwoULuHfvHoDCXZnP/W/wJUHTYyoQ0dHRCAoKQkhICBo3bszZwhoQt80vz8ePH1knKjMzU/TzqIKvokpJUVBQAD09PUilUoSHhyMwMBBJSUlwdnaGtbU17t69i99++w0hISEajWFo0KAB2rZti0uXLimoy1SrVo3zg9nR0RGOjo6C01xkMhkiIyM582qL4ubmxjqKM2bMwKZNm3iPTU9PV9j6rlmzJt6/f885xs7OTmsRMubad3V1LZZ+kJCQwOs5Pn36pFZ5h0HM/cbXMSwJ7t27hy5duoi+75jCwvfv37PFgqqK/uSRSqW4fv06zpw5g5s3b6JLly4l7rR/9dVXuHz5Mho0aIB///0XK1euBFB4/3IpdWzevBmWlpZo3rw58vLyMHHiRDx58gS6urpYt24devTooXLs06dPMXfuXIW8b29vb7Rs2VLlGAMDAwwdOlT8CxVA0RxuedRdd6tWrcKmTZswZcoUAECXLl04a5oYhKqciSU2NhbNmzdn1buKUpJN4Zh6CW9vbwQGBrLH+/btyy4MVaGjo4PffvtNULBL02BCQkICzMzM2Ih8bm4uEhMT0aRJE42el1JClJ6aJKU88OLFC7Jp0yZiYWFBRowYQfz8/Ejv3r1Lfd6goCDSu3dvMnfuXOLh4UH69OnD2Vb50aNHnD/KYLRqZ8+eLcrG4OBgXseKzte3b1/i6empVE+4qBaxmDFFyczMJAUFBez/CwoKSkU3nRDlevJ8zxc61tbWVkHLOjExkZf+sLZRZhNXEyVCCLl37x6xtLQkZmZmhBBCYmJiyOLFi0vcti5durCNYeR/F9IAh++1xLxmsX8jc3Nz8vz5c97n3759myxatIiYmpoSd3d30qNHj1K77l+8eEGcnZ3J4MGDyfHjx9njV69eJatXr1Y5buDAgUQmkxFCCDl8+DAZPXo0KSgoIM+fPydDhw7lnNPBwUGh4dmtW7eIg4ODhq+kfJGZmUmysrJ4n29hYcG+n4QQIpVKOfsbiPneIISQhQsXEkKEN4UrKCjg7GnBxYABA4o1uOJ6bQweHh7kwYMHgud79+4d8fT0JBMmTCCEEPLs2TNy9OhRteNsbW0V+npIJBJiZ2cneH5K6UAj7V84lpaW6Nq1K3bs2MGmYCiTBCxpBg0aBGNjY0RFRUFHRwezZ8/mLATz9vZW+ZgqScT8/HwEBQXh/v37SvOO1eXu/fXXX8UidsqOMZD/RZxOnz6tcit74cKFGo8pirOzM/bs2cOOz83NxYQJE9QWdYnBxMQEISEh6N+/P68orvw5QqO+06dPx8iRI9GtWzcQQnDv3j0sW7aM93hmC1dHRwddu3aFubm50vPUaQyrKhaMjY3F8+fPkZmZqXB9ZWVlqZU4XL16NXbt2oXJkycDKNS6vnv3LucYMWzdupX9Xahs4b///ouFCxciJycH4eHhePLkCQ4fPqxSPlBPTw+LFi3CmzdvsGLFimKPq7uO69aty7sI29TUFI0aNcKIESPg4eGB6tWro2/fvrx3LeLi4rBr1y4kJyejoKCAPa5KWrVZs2ZK07J69eqFXr16qZxHX1+fve6vX78OKysr6Orqonnz5pBKpZw25uTksIWaANC9e3c2pa0kUSXzylAaKYvyuwhAoQqQul0EQLjKmZjvDQCsvOrOnTuLpRZx3du6urpo1qyZQlogXzw9PeHk5KSgQsXn8+7BgwcICgpCo0aNFK5/dX83MTK8QOHOlvxOmoGBAa/eDxTtQJ32L5zNmzfj7NmzGDNmDHr16gUrKytBleDnzp1TqlzCZ3s6MjKSdaqkUilnXpwYFYAlS5YgKCgImZmZuHz5crHHVTntTK54UecjKyuLU5YxLS2N0wFU5vyJGVMUiURSTPZOnUSg0DQXhsOHD2PPnj3Q1dVF5cqV1aYwcMluqkt9MDU1RWBgIB48eAAAmD9/Pu8CtCVLlihsox86dAg3btxQuo2uTiZTFXFxcQgPDy92fVWrVk2ppnpRiuahqpPAlIdvWk1RqUIhCF1YbN++HREREbh+/bqo9IG2bdti+vTpMDc3V3AKlN2nFhYWCAsLw7lz56Crq8uqx/Bl2rRpGDFiBIYPHy7ofReKgYEB/vvvP9SrVw+3b99WKNbjukeBQsWZLVu2KOR9c6nAiKWkCx35sHjx4mLqMV5eXioDDWJVzjRVNBoxYkSxOhBlx+T5+PEjrKys0L59e4V7VN37bGpqKkiFatKkSVi8eLEguUZ5xMjwAkCdOnUQFhbGNt0KDQ3l1X+Aoh2o0/6FY25uDnNzc+Tk5CAsLAz79u1DWloaFi9ejH79+rEdRVUhNBrNUNSpUpebqEqhg0HZF3vXrl3RtWtXtG3blpd0H4PYXHGZTCbYARQzpiiGhoZ4/PixgmJE0WZS8lSqVAnLli0TVDzHIES3GBAvu8mgq6uLunXrQiKRIDY2FrGxsSoVjeQR0ixMrIIHc+/cv3+ft348Q8OGDfHvv/9CR0cH+fn58PPz4xVlFhr91hQhC4s6derAysoKzZs3F6UKlJ2dDUNDQ9y4cUPhuLJ7e8GCBZg/fz5u376Ns2fP4o8//kBmZiaCg4NhZmamtmhTT0+vVAqvldk5depUpKenY+zYsazTfeXKFfz000+cY4XmfYuNmDNRa20idBeBa5eI72Ltv//+w/PnzxV6dChr2AUA7969w5s3b5Cbm6uQ156VlaV2sTVt2jRe9hQlPz8fhw8fZhfGxsbGcHBwUFmwb2dnhwkTJsDGxgYTJ07k1XVYHjEyvEBhXcHs2bOxfPlyEELQsGFDXv1LKNqBqsdUQDIyMnD+/HkEBwdj3759Ss8Rq1zCMGDAAAWnSiaTwcrKSqW+uJiKdzGOvjz5+fmCPgjFqHOUhKLHw4cPMXPmTBgZGYEQgtTUVGzYsIGzZbiPjw86duzIO82FgRCC06dPIzExEW5ubkhJScG7d+84o11iOXbsGPz8/PD69Wu0atUKDx48QMeOHTm7wzK4uLgodG9NSkrC8uXLlUa7lKVyyKMurWPu3LlYsGCBgsqNt7c3Z8FXWloaVq5ciYiICFY3ecGCBWojVvb29ti4cSMmT57MLroGDRrE9jsoSaZOnYpx48Zh+fLlOHr0KPz8/PDo0SOVjVuWL1/OeS2pex81IT8/ny1GvX79Om7fvs15/qZNm1CnTh3069dPIZpZkupC2iYpKYnzcVXOedGunwzqdsM0UWoSqx5TFD4qZ0DhjvLt27cRGxsLMzMzXL16FV26dMHGjRuVnn/ixAkEBgbi0aNHaNeuHXu8WrVqsLW1LVE5V4YFCxagoKCAXUicPn0alSpVYouelZGdnY2tW7fi2rVrGDJkiMKiWt0uraYyvEK72VK0A420V0Bq1qwJBwcHODg4qDxwdquLAAAgAElEQVRHbDSaQWhuopiKd2UpMfKo++C9fv06fH192bxXdV9iYta3JbEmbt++Pc6dO8d2/OQjpyg0zYVhyZIlqFSpEm7dugU3NzdUrVoVS5cuxfHjxzV+HUXx8/NDQEAAhg8fDn9/f8TGxnJ2+pOn6DZ6VFQU2rZty26zyzvvmipBPH36tJjKjbodhjp16mDdunWi5tNGWg1Q+LdeuXIl3rx5A1NTU/Ts2RNeXl4qz+daJHLx999/Y9KkSSqdfj7Ovr6+Pvr06YM+ffpwqrkwMAtl+dQCLnUhsXUPYhCr2y02Yi5094xBXqkpJSWFvQc+fvyIhg0bcjYbkt9FYKQb+ajHAMJVzoDCRl2nTp2CjY0NVq9ejdTUVMyZM0fl+enp6ez1BBReG7Vr10aXLl3UpihFRkZi+fLlePHiBfLz8yGVSmFoaKj2szUqKkpBJtPExISVf1SFvr4+DA0NkZeXh+zsbEGfBW3atMH+/fsFyfDKU61aNbi4uGDHjh28x1BKH+q0U5TSqlUrtGrVCoMGDRK8LQcIc6rkUdWsRFmKg6bSVswXy48//sgrGi2mgLckin4/ffqEPXv2IDk5GStWrMDLly8RFxfHfuEoQ+wX9cOHD3HixAk2GlSzZs1SK0IyMDBgi8Dy8vLQvHlzdmGiDiHSiPLtxsUgk8mQkZHBdib88OGD2iJDZdH96tWro23btioLZgHtptUIXViIfR8Z+8U6/UXhSg1jENq9kokqxsXFISoqiu3efPnyZYVIbEkQGRmJhg0bwsrKCh06dOC9sBcbMS/K+/fvFYotVRVUMu/hwoUL0a9fP7YT65UrV1QufiQSCQ4dOoT4+Hi0bNkSc+fO5fX9ERcXh7Nnz+LMmTOoXbs2Bg4cCEII75z1ypUro1KlStDT00NWVhbq1q2LlJQUlecrS9VJSkrC9u3bMWXKFJWpdgCwbNkybNiwAdOmTcPx48dx8uRJvHz5Uq2Nurq6iI+PxzfffAOgUFqRq4bq6tWr8Pb2Rt++fXHixAnei3FVO9CMjUJ2Ed68ecP7XIp2oE47hROh0WgGsfru8i2aJRIJwsPD8f3336sdFx4ejmfPnil8GanLZf7666/RsmVL3ukjYrbWS2I73tPTE23atEFkZCSAwl2QadOmcTrtYtNcGE155j1JS0srtUK+r7/+Gh8/foS5uTnGjx+PGjVq8FZkMDY2RlJSEl69eoUePXogNzcXBQUFnJr0Tk5OSv/W6tJxnJ2d4eDggAEDBrBdPdVFSyUSCV68eIEBAwYAKPwibdKkCZ48eYLbt29jwYIFSscJjX4ziFGrEbuwSEtLw99//43nz58r3G+q3kfGAa5SpYrSovbSgFnopqSkYPny5WoXusxnxahRoxAYGMheR+7u7ry6zCrTrlelZ3/jxg3cuHGDdVLNzMwwaNAgtGjRgnMOsQtxhrCwMPj4+ODt27eoU6cOkpOT0bx5c7YTrCoePHigcK2YmZlh7dq1Ss+dO3cu9PT00LVrV1y9ehWxsbEqr3V5NFU5a9u2LT5+/Ah7e3vY2dmhatWqnHUoqr4bPnz4gPHjx3M67UDhTrJUKoWuri6GDh0KGxsbzJo1i3OMh4cHxowZo6Aew7X7sH37dvj6+qq9Loqi6Q60PK1btxY0N0ULaEdZklJeyMzMJOnp6eyPOszNzUlMTIyCdi4fnj17VuzYrVu3BD0HIYUasaNHj+Y8Z9GiRWTOnDnE1NSUbNq0iQwaNIh4enqqfe4HDx4QZ2dnsn37drJ79272p7zB6GPL66BbW1tzjvHy8iJLlixhdYA/fPjAS2v31KlTxMXFhfTq1YusX7+e9O/fn1Nfv6S4ffs2CQ0NVdAH5uLIkSPEzs6O/Prrr4QQQuLi4siYMWM4x0RFRbE/d+/eJatWrSI+Pj685vvvv/+Iv78/8ff3V3ptF8Xe3l5BWz8/P58MHz6cFBQUEEtLS15zCmHYsGGEEGHXyMKFC8nIkSOJn58f8fPzI6NHjybz5s0jLi4uZMWKFSrHjR8/nhw9epQMGDCA3L59m8ybN4+sWbNGrY3K9N1LS5d/2rRp5K+//iJWVlaEkEIt+sGDB6sd179//2Ia1f3791c7Tuxrk0gk5Pjx46R79+7E399f7fnypKamkqSkJPZHHdbW1iQtLY29RiIiInh9Tjo7O5MtW7aQhIQEkpCQQLZu3UqcnZ2Vnjto0CD29/z8fN5/34sXL5Lp06cTU1NTsmDBAnLz5k3Sp08fXmOLkpCQQGJiYkSNJUR9v4mRI0cSiURC5syZQ3x8fMiePXvU3msMEomExMTEkJiYGN6fddomNTW12LHY2NgysISiDBppryAcPnwYmzZtUtCk5dNBUmg0mmH69OkYMmQIJk6cCIlEgj/++AOPHj3CkSNHBD3Pp0+f8Pr1a85z7t+/j6CgIFhbW8Pd3R3jx4/HpEmT1D73n3/+iapVq0IikZRrHVoDAwPk5uayf4P4+Hi1HSnFprkMHjwYbdq0wa1bt0AIwdatW3lra/NFWYEbo9+ck5PDq9vmgQMHcOzYMQwfPhxAoQZxWloa55ii6RldunTBsGHDeNn8/fffo0aNGmxajDqd5oyMDOTk5LBqDZ8+fcKHDx+gq6vL+fq0mVbz9OlTHDp0iN2id3R0xKhRo3Dw4EFOpZIPHz7A3t4efn5+MDY2hrGxMWeXTrESq4BwvXWG+Ph4/Pnnn2wU2dDQkFcaio2NDYYNG8bK04aGhnKmBcmrkERHR7NzqFMhycvLQ3h4OM6cOYOkpCQ4OTnxbhUvNmKup6eH2rVrQyaTQSaT4eeff+aVZ75u3Tps3rwZ7u7ubE8EVWlVenp6Sn9Xh6YqZ2PHjmVFFZjOnfLH+HLr1i2F+hVlrFmzBoQQeHl5Ye/evUhJSeHVCVoqleLatWtISkqCVCpFREQEgJKtlyiKmB3okSNHYtq0aawAxe7duxEQEIDg4OBSs5PCH+q0VxB2796NoKAg3jrYDHPmzMGkSZNgbGys4Gyo+6A5evQo1q5dixEjRiA7OxvW1tY4dOiQ2vnknQWZTIa0tDS4ublxjmFyXA0NDfHmzRvUrl0b7969UzvX27dvRalyiGnHLraFOwBMmTIFEydOREpKCmbNmoX79++rzecXm+YyZ84c/PHHHwoOH3OspJAvcCsKn4UkULiQkb8e5R06VcgvFmQyGR4/fozMzEy14/z9/bF582bUq1dP4T3kam4yceJEDBkyBN27dwchBP/88w9+//135OTkwMTEROU4babViF1YMM6YkZERwsPDYWRkxDbRUYYmRe1i9dbFLHQBYPLkyejVqxfu3bsHoDDtiEu68fr16wgMDMTr168V7slq1aph5syZSsd4eHjg2bNnMDU1hbu7u9qGQ0Xx9fXFkSNHMH78eJw8eRK3bt1SKHBURY0aNZCdnY1u3bph9uzZqFOnjkI6oipq1arF1kuoO5/p2wBAoXcD38+7qlWrwtraGtbW1qzK2d9//63SaZdIJPj06RPS09ORkZGhsGjiysdWtijNyMiAkZERfHx8OG1s3LgxcnNz8fbtW0Fysr///jsqV66Mli1blmrvAAYvLy/k5ubi9u3bsLe3R0hICK/6DH9/f3h5eeH8+fN4//49mjdvjmPHjpW6vRSelEl8n6J1nJ2dRbUAHz9+PHFzcyO+vr5k06ZN7I86JBIJ8fb2JoMHDybm5ubkzJkzvOZLTExkf16/fk3y8/PVjtm8eTPJyMgg58+fJz169CA9e/YkGzZsUDvOx8eHXLt2jZdd8ghtxy52jDxpaWnk8uXL5NKlS+T9+/dqzxeb5lJ0O7u00jk0xcfHh2zbto1YWFiQ69evE1dXV7J+/XrOMX369GF/+vXrR8aPH0/++ecftXOZm5uTtLQ0wTa+efOGXLx4kVy8eJG8fv2a1xhtptUcPXqU9OnTh8ybN4/MnTuX9O3blxw9epRkZ2cTb29vleMuXbpEPn78SJ4+fUpGjx5NbG1tSWhoqNr58vLyBNvIpIYJ5fr162TUqFGke/fuZObMmaRPnz680/MKCgrI69evBaWenD9/nrdtP/74I+nYsSPp2LEj6dSpE/vD/F8dzHtibW1NpFIp+7s6srOziVQqJfn5+SQwMJDs27eP13V97949YmlpSczMzAghhMTExJDFixerHacN9u7dS/r06UPatGmjcH9bW1tzphvJf88kJiaSpKQkkp2dzWvOsLAw0r9/fzZ9Jzo6mri4uKgdJ586pA2Y+Zh/s7KyiKOjI6+x+/fvJ7169SJmZmbk3r17pWYjRThUp72CEB0dDU9PT3To0EEh4qRObk2sRvTgwYPx66+/wtXVFenp6Vi8eDH09fVV6uY6Oztj9+7dAIAdO3bwKv5SRl5eHiQSCa8mEp06dcKnT59gYGAAPT093tGgESNGqOzsV5Jj5Jt+KEOdlGFsbCyb5mJiYsKZLrFjxw5s374dEomE3bkghMDAwAD29vaYPXu2INv5cuHCBbZrbteuXTlTQOQhhODYsWO4fv06AOCXX36Bvb290jQuMS3H5XFycsKePXsEbfcDhZG7V69eKWxNq2scZWFhgYCAAPb6zczMxLBhwxASEgIbGxuVDbPEptW8ffsWDx8+BAC0a9cODRo0UPu6xPLy5UusX7++WAEr186KJnrr6enpePDgAQgh6NChA69dRjG7KkChDOKWLVvwzz//ACgslHZzc+P1OSSUcePGYcuWLVi/fj3S09NRp04dPHr0iPPzRSqVYty4caI6iGqzd4BY/P394eTkpJW57OzssG/fPjg5ObHvh7W1tdpr5I8//oCJiYnaVJ+Swt7enk0h3LRpE2rVqoVBgwbh4sWLnOPGjRsHIyMjLFy4ECkpKViwYAG6deuGuXPnasVuCjc0PaaC4OXlhZ9//lnw1pypqSmuX78u+INm5cqV7FackZERtm3bxtmhUz4f+fz587ycdk2bK4lVYxDSjl2TMd7e3iof09HR4czrFZrm4uLiAhcXF6xbt06tCkJJUbRr7qFDh3Djxg21jVSkUimsrKxw/vx5NqedCzc3N1a3e8qUKbzyT+Vp2rQpnJyc0Lt3b94pYmIbR2k7raZy5cowMjKCRCJBfHw84uPjVS4sNG2u5OnpialTp2LVqlXw8/NDYGAgZDIZ5xiheuvy5OXlsXUIfLvt+vn54fz584Lbti9YsAAtWrSAr68vAODUqVPw9PRUKWGrCVu3bkWVKlXg6emJoKAgZGZmqk0h1NXVRaVKlZCZmSlqIaFJ7wBt4ODgAD8/P97dRjVBT09P1HvYsWNHuLu7QyaTCQoSiaV37974+PEjJk6cyNac8KnhGT16NLvQr1GjBo4cOaJSopmifajTXkEoKCjg1RSpKIcOHcLu3bt5R6MjIiJgYmKCdu3aISEhQaFRBVc+pNBCV0BR2urSpUustByDOqf93r17aN26NapWrYpTp04hOjoaY8eOVRuVFdKOXZMxYqJiDM+fP1f4v1QqVRu5B8BqCMuP27Ztm6DcTb7cunVLoWuura2tWqk1oNABadasGe8IuvxmYkJCgmA7GzVqhEaNGiE/P593wbLYxlH29vYwMzNjo98zZsxgo99ckS4xRaVCFxbyhbxM4xwhSCQSduHRuHFjTJkyBXZ2dpxt4YXqrTP88ccfOHfuHH744QcFB1Od0/7111+Lcsji4+MVFoPu7u5sN9CSRCqVwsXFBf7+/qhUqZIg7XwmX7xHjx4Kn8XqFltieweIIScnB1WqVEGlSpUQFxeHFy9ewNTUVK3zvXTpUhQUFMDR0RFAYbdRps6jpJg0aRK8vLzwww8/ICgoCFKpFC9fvoS/vz+nvCTD6tWrcfjwYd59QcTy8OFDNGzYkF3I5eTkoGXLlvj+++8xbtw4tePNzc0RFhamsABStyikaA/qtFcQTE1NceTIEfTp00fQNrPQaPSaNWvY6NjUqVPZ3wFg27ZtKp3UhIQEVvta/ncGZSt9+cIvphOeEJYsWYLTp0/jyZMn2LNnD+zt7eHh4YH9+/dzjhPT1EnMGKaTJFCoZy2vcb1+/XqlhW7yaS7yBWFMmos6bt26hQsXLmDlypX48OEDPD09YWxsLNh2PgjtmivPx48fYWVlhfbt2ys0HVF2nch/QYr5shSzYNGkcZSQ6DeDmKJSoQsLeQdx3759gpstGRgYQCaT4dtvv8X+/fvRoEEDtqmRKoTqrTOEhobi/PnzvIpP5RGzqwIUFsPfvXsXXbt2BVAYEODTBEoomkTM+/fvL0ijm0Fs7wAxjB49GgcOHMDHjx8xYcIEtG3bFsHBwSrVagoKCqCnpyeq26hQ7OzsMHHiRAwePBjPnj2DgYEBZs2ahV9++YWXU9uwYUNRSmxCWbx4Mdvh959//sHatWuxaNEixMTEwMvLS2WKKsO6devw8OFDdrHv5+eH+/fvqyyspmgX6rRXEJj8Q/mWxHy2mYVGo+WjmkXLJbjKJ7Zu3cr+7uzszGmTMsR8EOrp6UFHRwehoaEYNWoU7O3tERAQoPJ8Me3YNWnhHhwczDrtf/31l4LTfu3aNaUfopqmuaxbtw7BwcGwtrZG1apVsXbtWnTp0kXw8/BBbNdcAJzR2aIwihZETs0C4N9JUkxTJrGNo7SZVqPJwkLM/TZ//nx8+vQJCxcuhK+vL27fvq1WqYNpLMYED/g0FgMKne/8/HzBTruYXRWgMNLr4eGBrKwsAIVpBVzpbZogNmJua2uL3NxcJCcn82pYJ4+QzrmaQAiBoaEhAgIC4OjoiEmTJnHuWNjb2+PEiROCu42KwdLSEqampti6dSuuXbuGIUOGsPfBgQMH1C7smAWhqampoAWhUKRSKRuMCw4OhoODAywsLGBhYcFr9yc8PBynTp1id6hsbW1hY2NDnfZyAnXaKwhit5mFRqO5oppcX/SlFc3lolq1atixYweCgoKwf/9+yGQyTunAH374AYCwduxixjCIXQAB4tNcXr58CT8/P1hYWCA2NhanTp3CTz/9xLuFthDEds0FhF0vMTExoucBFNNSJBIJLly4oNYh2LJlC4DCHPru3bsjMzMTvXr1UjuXNtNqNOlIKwZmcVapUiXeO09C9daZxbGhoSFsbGxgYmIiqPBebBpYq1atcPr0adZpr169Ovbu3YtWrVqJej4uxEbML126BB8fH+Tn5+PSpUuIiYmBr6+v2nxlR0dHNG7cGJaWlrCwsFCrY64JhBC27waT2sJV98BcC/LdRgEgKSmJlwa9UPT19WFoaIi8vDzk5OQIWrw2adIETZo0EbwgFArzPaanp4eIiAgsX76cfYzpM6GOjx8/so4/H1lcivagTnsFIT8/H4cOHRJcqCM0Gs2V5pKYmFgCr+T/kX9uvik18mzYsAFnzpzBypUrUb9+fSQnJ2PChAkqzw8JCUGfPn1ga2uLEydO8EoPEDOGQewCCBCf5vL7779j8eLFMDExASEEe/bswbBhw9Q2bhGDsbExkpKS8OrVK/To0QO5ubkoKChgW8grw9HREYcOHUKnTp0U3oPSLOoS2pRJvlAWELbA0GZajdCFhfx7npubK3jH4v79+1iwYAFycnIQHh6OJ0+e4PDhw1iyZInKMUL11pm/VZs2bYrVuPAhLS0Nf//9dzGFG3U7HQzy1+7evXt55RALRWzEfPPmzQgICGBVVlq3bs3rMzkkJAQPHz7E2bNnsX37dvzwww8YOHBgqeTsz58/Hzt27IC5uTlatGiBhIQEdO/eXeX5aWlpbCqIg4MD65Tq6uoiJiYGP//8c4nZdvXqVXh7e6Nv3744ceKE4EAGsyD89OlTqQRBGKysrDB69GjUrl0bVapUYVO2Xr16xfnZyuDi4gJbW1uFXbvSUg+jCIc67RWEJUuWiCrUERqN5kpzEZP2woX884l57vr167Nbk2lpaWjYsCHbQVQZT58+ZX/38/Pj5YCLGcPAldaRl5fHOVZsmktAQAD7wa6jowNnZ2e1qQhiOXr0KI4cOYKMjAyEhobi9evXWLx4MWcXw7Vr1wIQr/wjBqFNmYQWysqjrbQaMQsLTd/zVatWYdeuXZg8eTKAwug0E0RQhdDGYsz9lZOTg8qVK7M7IlKpVO09AwCzZ8+GpaUlwsPDsXTpUpw4cUJwQzqG0lJTFhsxV6Z6wjdS3L59e7Rv3x4uLi7w9vbGvHnzSsVpZzrsMjRt2pRzd0Qmkymti5BKpWrrJYSyfft2+Pr6okWLFqLGi1m0imHy5MkwMTHBu3fv0LNnT/ZvLJPJsGjRIrXjBw0aBGNjY0RFRUFHRwezZ89G/fr1S9RGinio015BEFuoIzQarWmaS9GCS1XHNJkrMjIS69atQ82aNeHq6goPDw+kp6dDJpPBx8cHpqamop63pNEkrUNomguTe1+9evVi7/eJEydKJZ/xwIEDrI4wAHz33XcK0p/KcHd310i+UQx2dnbs73p6emjSpInaxa6QQll5tJVWo8nCQhOESgf27NkTP/30E6u3vmDBAl5O9Lhx47Bnzx5Uq1YNQOHOwIQJE9T2Svjw4QPs7e3h5+fHOpCMXJ5QSqvgUGzEXKzqSVZWFi5evIizZ88iISEB5ubmpdYhMyoqCjt27EBSUpJCcEiVBnr9+vVLRdlKGQcPHtRovJhFq1g6duxY7FizZs14j4+MjGT7Z0ilUvTr168kzaNoAHXaKwhiC3WERqM1pWjBpapjmrBs2TLMnDkTmZmZGDt2LP7++2907NgRsbGxmDVrlkqn/fXr11ixYgUIIezv8iiLCIkZUxIITXMRU/SqKQYGBgqpDlw7OAyayjcKgXFoxdSDCCmUZdB2Wo3YhYVYxEoHitFbl0gkrMMOFO4Yfvr0Se1cTAMtIyMjhIeHw8jICBkZGSrPL5qmxcDsjpUGYiPmixYtwvbt2xVUT1xdXdWOGzx4MMzNzeHm5sbLydeE2bNnw8PDg3c/kc+tN2R517sHivfPOHz4MG7evKm2fwZFO1CnvYIgX6hDCEFycjJnoY62o9FXrlzB1atX8ebNGwXHNisrq8RVAKRSKdssauPGjWxUQp0D4eHhwf7Ot7BUzJiSQGiaiyZFr2Lp1q0btm/fjtzcXNy4cQMHDx5Um4esqXyjEDRpyiRmF0jbaTViFhaaIEY6UKzeuqGhIR4/fsx2DX706BEvCcbJkycjMzMTc+fOxfLly5GdnY358+erPF+baVoMYiPmL168wIwZMzBjxgxB84WFhZX6vcZQp04d/Prrr7zP37t3b+kZU8JoU+9eE8T2z6BoB+q0VxBMTExw4cIFvHjxAgDw/fffcxZ0iY1GMwhJcwEKpdzatm2LS5cusV+0QGGETF1TKKFzyX/5F/0i5/pyYvJlVc1XUmM0QWyaiyZFr2KZM2cOjh07hpYtW+LIkSMwMzNTqyWvqXyjEDSJ6kdGRmL58uV48eIF8vPzIZVKYWhoqNY+babVaFuxqU6dOoKlA8Xqrc+fPx/Tpk2DkZERCCFITU3F+vXr1Y5jFrZfffUV29ysvDmGYiPm3t7eSE1NhYWFBQYOHIiWLVvymi89PV2j4lwhTJ06FQsWLCim+qNKLUddn5HyhLJFa3mMXmvSP4NS+uiQz21/iSIKoeoxQ4YMwalTpwAU6tPKO5g2NjY4efIk53yMWoq6Y8rsFNp6WuhcrVu3ZqXjJBIJ67gzBZ7qOoeKeW1i3w+hyD9n0ecvzfdEKEVTQcojXO+lOuzs7LBhwwZMmzYNx48fx8mTJ/Hy5Uu12vl37txRepzLwRb7XopdWAhFVY8CBq4UsYkTJ8LX11ch1YUPeXl50NHRYVOEmjVrxjYZE0rv3r0RHh4ueFxpIb+DIJR3797h3LlzCA4ORnZ2NiwtLdU6/M7OzrC0tMTu3bsVinPnzJkjygYuZs+ejRcvXqBFixYKwRUxzenKOxkZGTh48CCb417WMOprWVlZiIqKYiVaHz58iPbt22vUoZtSctBIewVBqHqM2Gi0pmku169fh6+vL5KTk1FQUMAZQRU7l9gCTzHzaTPtBxCf5qKplrlQyqoQUgiaRvW//fZbSKVS6OrqYujQobCxsVHrtGszrWbZsmVKFxYljXxa2KZNmzBlyhS1YzTVW3dwcMCJEycUosliF8nlLa4lNmIOFNYojRkzBt27d8fOnTuxdetWtU57SRbnqiMqKgohISGl8txlRUpKCrZu3Yq3b9/C3NwcVlZW2LRpE06ePFmu0k5KWt2NUjpQp72CIFQ9RqzcoCZpLkBhhf2mTZvw448/qk3L0HQuoYiZT9s2lkWai1i0XQgpFE0WMkwDltatW2PNmjUwMjLibBLDoO20GjELC6HIy5zu27ePl+ypWL31d+/e4c2bN8jNzUV0dDTrcGdlZfEqRFVGebtv/P392Yi5l5cX74h5bGwsgoODERISgtq1a8PS0hLz5s1TO5/Q4lxN6Ny5M54/f842pfsS8PDwgLGxMfr3749r165h6NChaN26NU6fPl2upBS7deum9lpnAhaUsoOmx1QQbG1t4evrq6AeM3Xq1BJPz2AQk+YCFLaM37dvn6CqerFziUXMfNqyUdtpLpogJhXkcyEpKQn16tVDfn4+9u7di8zMTIwcOVJtbqg202pGjRqFPXv2YOHChahXrx6MjIwQGBiosLgvaYRGu1XprauSLj1x4gQCAwPx6NEjhQh/tWrVYGdnpzI3Wp0KTHR0NG+btcnTp0+xc+dOnDt3Do8ePeI818HBAQMHDsSAAQPYbrl8uHz5Mrp27YqUlBS2ONfNzU1QwShfLC0tkZCQgMaNGyvsrKiSfPwcGDx4sMI9ZWpqivDw8HKnHOPk5IT+/fvj119/Vdixy8vLw71793Dy5El0795dQQKXon2o015BiIiIgKenZzH1mJLsGCfP5cuXeae5yPPw4UP4+vrC2NhY4UObkZ0sybnEImY+bdtI+Tyxs7NDYGAgrGH+wocAABGOSURBVK2tWUeFTw2JGMQuLDRBqNM+fPhwBb317OxsXnrrISEhsLCw0MjW8oqyiLmFhQXq1q3LOS43Nxfx8fEACndYGIlQVUgkEhw6dAjx8fFo2bIlhg0bxkbdS4ukpCSlx5miyM+RwYMHw9/fn931GTNmjML/y0sxrUQiQUBAAIKCgpCYmIgaNWogNzcXhBD07NkTI0eOxE8//VTWZlZ4qNNeAZBKpfD398fIkSN5q8doSr9+/Xinucjj7OyMqlWrFtPp5WqgIXYusYiZT9s2lmccHR1x6NChYtHNL2EhExoaijdv3mDUqFEAAHt7e7Zh1Jw5czBgwADO8WKj39oqKhWD/N85NzdXYfdH3d9bviCe6xjDqVOnMGTIEOzevVvpfca1+P9cEBoxLygowPr16xEYGIhGjRqBEIKUlBTY2dlhxowZKncAp0+fDj09PXTt2hVXr15Fo0aNSq2vhCo+fvyIAwcOlJtiTTH07dsXOjo6SmsjdHR0EBYWVgZWcZOfn4/09HRUqVIFNWrUKGtzKHLQnPYKgK6uLs6cOYNx48ahVatWWpnz66+/RsuWLQU7qG/fvsWZM2e0MpdYxMynbRvLM2vXrgVQNhrXpc3OnTsVOpHm5eUhICAAnz59gqenp1qnfc2aNSCEwMvLC3v37kVKSgovfXghRaWaLiyEosnfWajeOpO3npOTI3rO8s6+ffsQHx+PjIwM1KpVS23EfM2aNcjOzkZoaCjbuyErKws+Pj7w8fFR6YjHxsayuz3Dhg1TK8eqCcqKNTdu3IhTp06Vq2JNMYhpzlbW6Ovrw8jIqKzNoCiBOu0VhM6dO2PZsmUYOHCgQj6oWOkwdcyZMweTJk0SlOYCFOb7Xb9+nW1+VJpziUXMfNq2sTzj7u4uumlReSc/P1+h62GXLl1Qu3Zt1K5dm1chJJMGULlyZcHt2fkWlWq6sNAmQvXWzczMACjfmbt8+XKp2akNxEbMw8PDERISohAwqF69OpYsWcLZaVo+Faa002I+l2JNCqWsoU57BYFRwvD19WWP6ejolEqDDAD4888/UbVqVUgkEuTn5/Med+jQIezevRsGBgbQ09PjtYUudi6xiJlP2zaWZzRpWlTe+fjxo8L/5Tt+MtFsZWga/RaiVqPpwkKbtGrVCufOnSumt66K8ePHY+fOnWjSpInC8ePHj2Pbtm2cXYHLO2Ij5jo6Okp3+HR1dTl3/hgFMQAKKmKlkcaWkZHBSoH26tULpqamWLt2bbkr1qRQyhrqtFcQtN0YQUyaCyBuK13sXGIRM5+2bSzPcMlSfu60b98eR48exfDhwxWOHz58mG1WogxtptWIXViUBUL11j09PTFhwgTs2LED3333HQBgx44dOHPmDPbv368Nk0sNsRHz5s2b4+TJk7CxsVE4furUKTRr1kzlOG33bsjIyFAozszMzCx3xZoVhaSkJLx69Qo9evRAbm4uCgoK2IUipWyhTvsXzp49ezgfL630DDFpLgBw7949tG7dGlWrVsWpU6cQHR2NsWPHcjaNETuXWMTMp20byzOaNi0qz8yfPx9ubm4ICgpiU88eP36MvLw8bNmyReU4babViF1YaBOxeutmZmYwMDDApEmTsGXLFhw7dgxRUVHYv38/atasqS3zSwWxEfPFixfD3d0dx48fV6gNyM3N5bwmtUlWVhbs7OwUdlEYPf/yWqwphM+hAzTD0aNHceTIEWRkZCA0NBSvX7/G4sWLsW/fvrI2jQKqHvPFs3nzZgBAXFwcoqKi2EYlly9fRrt27diiwJKmU6dO+PTpk6A0FwCwtrbG6dOn8fTpU8ybNw/29vY4d+4cZ5RM7FxiETOftm2klC0RERF4/vw5AOCHH36AiYkJ5/n9+vXDxYsXlT5mbm6O0NBQpY+JSat5//493NzcoK+vr3RhUa9ePX4vshQRq7fOcPfuXbi5uaFTp07w9fVVW6z5OeDq6or+/fsrjZifO3dObSMtodckpWSZPHkyFi1aVG47QDMMGTIEx44dw/Dhw1mpWXkJWkrZQp32CsKoUaOwY8cOhVxIFxcXHDhwoIwtU4TZ+t68eTMaNGgAe3t70e3HKZTPhVmzZqF79+5Ko9937txRWXw5YsQIbNiwgY3SDxkyBHv37mXTariiY5+DEydUb52RlySEID8/H3p6eqhUqdIXsUh+8+YN3N3dUaVKFaURcyENk8orY8eOLXbNKjv2OTJq1ChER0eX2w7QDPb29jh27BjbH6KgoAC2trbUaS8n0PSYCkJqaqqCaomBgQFSU1NLbT4xaS5AYSRtx44dCAoKwv79+yGTyVBQUFAqc4lFzHzatpHyeVEWaTUmJibl0lEH/l9vPSkpSWmKn6q0vi9RRpShQYMGOHbsmMJiy8zMrNz+DYUgkUiQk5OD9PR0hdz2rKwsvHnzpoytKxmmTZtW1ibwolu3bti+fTtyc3Nx48YNHDx4kN2hp5Q9NNJeQdi2bRvOnTuHfv36ASjcVre0tMTvv/9eKvOJSXMBCnNZz5w5g3bt2qFr165ITk7GnTt3im0Jl8RcYhEzn7ZtpHyeaCutprxz+PBhjBgxgk3vK4pQOUxK+Wbfvn3Yt28f3r59q6APXr16dQwfPhyjR48uQ+sqFjKZDAEBAbh+/ToA4JdffoG9vf0XJxrwuUIj7RWEyZMnw9TUFHfv3gUArF69ulRbEuvp6UFHRwehoaEYNWoU7O3tERAQoHZc/fr12ShaWloaGjZsyOmwazKXWMTMp20bKZ8nQqPfn0NRqRi+ZL11SnHGjh2LsWPHwt/fH05OTmVtTqlQnrsWy5Obm4uhQ4eynylSqRS5ubkKKT2UsoOKoFYgPn36hOrVq2Ps2LH4+uuvS1UjWz7NpXfv3mrTXCIjI+Hk5AR3d3dER0dj0KBBsLa2Ro8ePXD16tUSnUtTxMynbRspFYP58+cjMDAQTk5O8Pb2hre3N5ycnHDixAnMnz+/rM0Tzfjx45GYmFjs+PHjx7Fy5coysIiiDRwcHODn54epU6di6tSp2L9//xfT12LZsmVYv349vv32Wzx48AArVqxgC8jLE+PGjUNubi77/9zc3ArZBLC8Qp32CsLmzZuxc+dO/PXXXwAKc2HnzJlTavNt2LABBgYGWLlyJerXr4/Xr19jwoQJKs9ftmwZXFxcYGVlhbFjx2LFihW4ceMG9u/fz9kBUcxcmiJmPm3bSKkY1K1bF4cPH4arqysaN26Mxo0bw9XVFUeOHCkXKjBiYfTWX758yR7bsWMH9u7dS1PKvmCWLl2Kx48fw9HREY6Ojnj8+DGWLFlS1maVGEW7Fl+7dq2sTSqGRCJBtWrV2P9Xq1at3DVdq8jQ9JgKwsWLF3Hy5ElW+7ZBgwbIzs4utfmEprlIpVJWw3zjxo3o2LEjgMLGICU9l6aImU/bNlIqFuW5qFQMX7LeOqU4BQUF0NPTQ1RUFE6fPs0eNzExweDBg8vQspJDSNfissTQ0BCPHz9WUCiqUqVKGVtFYaCR9gqCvr6+QnOOnJycUplHbJqLfLvqoh8QqgpgNEmpEYOY+bRtI4XypWBiYoLVq1fDyckJCQkJ2LdvH3XYv1Ds7e0BFDaKio+PZ48nJCRAV1e3rMwqUeS7FletWpWza3FZMn/+fEybNg0jR46Eo6MjZsyYgUWLFpW1WZT/QdVjKgi7du3Cq1evcOPGDbi4uOD48eMYNGhQiRf92NnZYebMmcjMzISXlxf+/vtvdOzYEbGxsZg1axbbrKEorVu3hqGhIdslk3HcCSHIy8vD48ePS2wubb42bdtIoXwJfMl665TiMJrgERER8PT0RNOmTQEASUlJWLVqFX7++ecytrBkyM3NRXJyMr7//vuyNoWT/Px8xMXFAQCaNWsGfX39MraIwkDTYyoIEyZMwI0bN1CtWjXExcVh6tSp6NmzZ4nPIzbNJSYmRmtziUXMfNq2kUL5EviS9dYpxUlLS2P1+B0cHCCVSgEURt5jYmK+CKf90qVL8PHxQX5+Pi5duoSYmBj4+vqWm+ZKERERMDExwYULFxSOM3Ul6roQU7QDddorED179kTPnj2RlpaG2rVrl8ocYtJcPoe5xM6nbRspFArlc0MmkymtsZJKpaVae6VNNm/ejICAAHZ3u3Xr1khKSipjq/6ff/75ByYmJiolVanTXj6gTvsXTmRkJNatW4eaNWvC1dUVHh4eSE9Ph0wmg4+PD0xNTUt0vidPnqBz585smkvnzp0B/H+ay+c6l9j5tG0jhUKhfG7Ur1//i2+Ypaenh6+++qqszVDJ1KlTIZPJ0KtXLwwcOLCszaGogDrtXzjLli1jc6rHjh1bLKe6pJ12MWkun8NcYufTto0UCoXyufEll9ZNmjQJXl5e+OGHHxAUFASpVIqXL1/C398fnTp1KmvzFKhUqRJ27txJnfZyDFWP+cJhcqotLS1Rr149mlNNoVAolHLF3r17y9qEUsPOzg4TJ05E48aN8ezZMxgYGGDWrFmoXr06Fi5cWNbmFaNHjx7YtWsXUlJS8OHDB/aHUj6gkfYvHJpTTaFQKJTyTK1atcrahFLD0tISpqam2Lp1K65du4YhQ4aw370HDhwod91Gg4ODARTaxqCjo4OwsLCyMokiB3Xav3BoTjWFQqFQKGWHvr4+21wpJyenXAfMLl26VNYmUDigOu0UCoVCoVAopcDVq1fh7e2Nvn37ws3NDYaGhmVtklIePHiARYsWISEhAS1btsSqVatoGm05hDrtFAqFQqFQKKXAyJEjsXTpUrRo0aKsTeHEzs4Os2bNQrdu3RAWFoaAgADs2rWrrM2iFIEWolIoFAqFQqGUAgcPHiz3DjtQmDLbs2dPGBgYwNLSEmlpaWVtEkUJNKedQqFQKBQKpQLz8eNHhW6oRf9PmyuVD2h6DIVCoVAoFEoFxtPTk/Px1atXa8kSChfUaadQKBQKhUKhUMo5NKedQqFQKBQKhYLU1FTMnz8fEydOBAA8f/4cx44dK2OrKAzUaadQKBQKhUKhYN68efjll1/w9u1bAMB3330HPz+/MraKwkCddgqFQqFQKBQK0tPTMXDgQLabup6enkJndUrZQv8SFAqFQqFQKBRUrVoV6enpbNfWyMhIfPXVV2VsFYWBFqJSKBQKhUKhUPD48WMsX74cz549Q4sWLZCeng5fX1+0atWqrE2jgDrtFAqFQqFQKJT/UVBQgLi4OBBC0KxZM+jr65e1SZT/QZ12CoVCoVAolAqMfCMlZdDmSuUD2hGVQqFQKBQKpQJz+fJlzsep014+oJF2CoVCoVAoFAqlnEMj7RQKhUKhUCgUAEB4eDiePXsGiUTCHnN3dy9DiygMVPKRQqFQKBQKhQIvLy8EBwdj//79AICQkBAkJyeXsVUUBuq0UygUCoVCoVBw//59rFmzBjVq1IC7uzsOHz6Mly9flrVZlP9BnXYKhUKhUCgUCqpUqQIAMDQ0xJs3b6Cvr493796VsVUUBprTTqFQKBQKhUJB79698fHjR0yYMAF2dnbQ0dGBvb19WZtF+R9UPYZCoVAoFAqFokBeXh4kEgm++uqrsjaF8j9oegyFQqFQKBRKBebhw4cKaTAnT57EtGnT4Ovriw8fPpShZRR5qNNOoVAoFAqFUoFZvHgx9PX1AQD//PMP1q5dCxsbG1SvXh1eXl5lbB2FgTrtFAqFQqFQKBUYqVSKWrVqAQCCg4Ph4OAACwsLTJ8+Ha9evSpj6ygM1GmnUCgUCoVCqcDIZDIUFBQAACIiIvDzzz+zj0ml0rIyi1IEqh5DoVAoFAqFUoGxsrLC6NGjUbt2bVSpUgVdu3YFALx69QrVq1cvY+soDFQ9hkKhUCgUCqWCExkZiXfv3qFnz56oWrUqACAuLg45OTlo06ZNGVtHAajTTqFQKBQKhUKhlHtoTjuFQqFQKBQKhVLOoU47hUKhUCgUCoVSzqFOO4VCoVAoFAqFUs6hTjuFQqFQKBQKhVLOoU47hUKhUCgUCoVSzvk/gc8e/c6bwBIAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plot_correlation(spearman, \"Spearman's Rank Correlation\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Predictors weakly or strongly correlated with a target variable are collected." - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "spearman_weakly_correlated = set()\n", - "spearman_strongly_correlated = set()\n", - "spearman_uncorrelated = set()\n", - "# Iterate over the raw and transformed target.\n", - "for target in TARGET_VARIABLES:\n", - " corrs = spearman.loc[target].drop(TARGET_VARIABLES).abs()\n", - " spearman_weakly_correlated |= set(corrs[(weak < corrs) & (corrs <= strong)].index)\n", - " spearman_strongly_correlated |= set(corrs[(strong < corrs)].index)\n", - " spearman_uncorrelated |= set(corrs[(corrs < uncorrelated)].index)\n", - "# Show that no contradiction exists between the classifications.\n", - "assert spearman_weakly_correlated & spearman_strongly_correlated == set()\n", - "assert spearman_weakly_correlated & spearman_uncorrelated == set()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Show the discrete and ordinal variables that are weakly and strongly correlated with the sales price or uncorrelated." - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Bsmt Half Bath Basement half bathrooms\n", - "BsmtFin Type 2 Rating of basement finished area (if multiple types)\n", - "Exter Cond Evaluates the present condition of the material on the exterior\n", - "Land Slope Slope of property\n", - "Mo Sold Month Sold (MM)\n", - "Pool QC Pool quality\n", - "Utilities Type of utilities available\n", - "Yr Sold Year Sold (YYYY)\n" - ] - } - ], - "source": [ - "print_column_list(spearman_uncorrelated)" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Bsmt Exposure Refers to walkout or garden level walls\n", - "BsmtFin Type 1 Rating of basement finished area\n", - "Fireplace Qu Fireplace quality\n", - "Fireplaces Number of fireplaces\n", - "Full Bath Full bathrooms above grade\n", - "Garage Cond Garage condition\n", - "Garage Finish Interior finish of the garage\n", - "Garage Qual Garage quality\n", - "Half Bath Half baths above grade\n", - "Heating QC Heating quality and condition\n", - "Lot Shape General shape of property\n", - "Paved Drive Paved driveway\n", - "TotRms AbvGrd Total rooms above grade (does not include bathrooms)\n", - "Year Remod/Add Remodel date (same as construction date if no remodeling or additions)\n" - ] - } - ], - "source": [ - "print_column_list(spearman_weakly_correlated)" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Bsmt Qual Evaluates the height of the basement\n", - "Exter Qual Evaluates the quality of the material on the exterior\n", - "Garage Cars Size of garage in car capacity\n", - "Kitchen Qual Kitchen quality\n", - "Overall Qual Rates the overall material and finish of the house\n", - "Total Bath\n", - "Year Built Original construction date\n" - ] - } - ], - "source": [ - "print_column_list(spearman_strongly_correlated)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Save the Results" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Save the weakly and strongly correlated Variables\n", - "\n", - "The subset of variables that have a correlation with the house price are saved in a simple JSON file for easy re-use." - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "with open(\"data/correlated_variables.json\", \"w\") as file:\n", - " file.write(json.dumps({\n", - " \"uncorrelated\": sorted(\n", - " list(pearson_uncorrelated) + list(spearman_uncorrelated)\n", - " ),\n", - " \"weakly_correlated\": sorted(\n", - " list(pearson_weakly_correlated) + list(spearman_weakly_correlated)\n", - " ),\n", - " \"strongly_correlated\": sorted(\n", - " list(pearson_strongly_correlated) + list(spearman_strongly_correlated)\n", - " ),\n", - " }))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Save the Data\n", - "\n", - "Sort the new variables into the unprocessed `cleaned_df` DataFrame with the targets at the end. This \"restores\" the ordinal labels again for storage." - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "for column in new_variables:\n", - " cleaned_df[column] = df[column]\n", - "for target in set(TARGET_VARIABLES) & set(new_variables):\n", - " new_variables.remove(target)\n", - "cleaned_df = cleaned_df[sorted(ALL_VARIABLES + new_variables) + TARGET_VARIABLES]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In totality, this notebook added two new linear combinations and one Box-Cox transformation to the previous 78 columns." - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(2898, 86)" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "cleaned_df.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
1st Flr SF1st Flr SF (box-cox-0)2nd Flr SF3Ssn PorchAlleyBedroom AbvGrBldg TypeBsmt CondBsmt ExposureBsmt Full BathBsmt Half BathBsmt QualBsmt Unf SFBsmtFin SF 1BsmtFin SF 2BsmtFin Type 1BsmtFin Type 2Central AirCondition 1Condition 2ElectricalEnclosed PorchExter CondExter QualExterior 1stExterior 2ndFenceFireplace QuFireplacesFoundationFull BathFunctionalGarage AreaGarage CarsGarage CondGarage FinishGarage QualGarage TypeGr Liv AreaGr Liv Area (box-cox-0)Half BathHeatingHeating QCHouse StyleKitchen AbvGrKitchen QualLand ContourLand SlopeLot AreaLot Area (box-cox-0.1)Lot ConfigLot ShapeLow Qual Fin SFMS SubClassMS ZoningMas Vnr AreaMas Vnr TypeMisc FeatureMisc ValMo SoldNeighborhoodOpen Porch SFOverall CondOverall QualPaved DrivePool AreaPool QCRoof MatlRoof StyleSale ConditionSale TypeScreen PorchStreetTotRms AbvGrdTotal BathTotal Bsmt SFTotal Porch SFTotal SFTotal SF (box-cox-0.2)UtilitiesWood Deck SFYear BuiltYear Remod/AddYr SoldSalePriceSalePrice (box-cox-0)
OrderPID
15263011001656.07.4121600.00.0NA31FamGdGd10TA441.0639.00.0BLQUnfYNormNormSBrkr0.0TATABrkFacePlywoodNAGd2CBlock1Typ528.02TAFinTAAttchd1656.07.4121600GasAFa1Story1TALvlGtl31770.018.196923CornerIR10.0020RL112.0StoneNA0.05Names62.056P0.0NACompShgHipNormalWD0.0Pave72.01080.0272.02736.019.344072AllPub210.0196019602010215000.012.278393
2526350040896.06.7979400.00.0NA21FamTANo00TA270.0468.0144.0RecLwQYFeedrNormSBrkr0.0TATAVinylSdVinylSdMnPrvNA0CBlock1Typ730.01TAUnfTAAttchd896.06.7979400GasATA1Story1TALvlGtl11622.015.499290InsideReg0.0020RH0.0NoneNA0.06Names0.065Y0.0NACompShgGableNormalWD120.0Pave51.0882.0260.01778.017.333478AllPub140.0196119612010105000.011.561716
35263510101329.07.1921820.00.0NA31FamTANo00TA406.0923.00.0ALQUnfYNormNormSBrkr0.0TATAWd SdngWd SdngNANA0CBlock1Typ312.01TAUnfTAAttchd1329.07.1921821GasATA1Story1GdLvlGtl14267.016.027549CornerIR10.0020RL108.0BrkFaceGar212500.06Names36.066Y0.0NACompShgHipNormalWD0.0Pave61.51329.0429.02658.019.203658AllPub393.0195819582010172000.012.055250
45263530302110.07.6544430.00.0NA31FamTANo10TA1045.01065.00.0ALQUnfYNormNormSBrkr0.0TAGdBrkFaceBrkFaceNATA2CBlock2Typ522.02TAFinTAAttchd2110.07.6544431GasAEx1Story1ExLvlGtl11160.015.396064CornerReg0.0020RL0.0NoneNA0.04Names0.057Y0.0NACompShgHipNormalWD0.0Pave83.52110.00.04220.021.548042AllPub0.0196819682010244000.012.404924
5527105010928.06.833032701.00.0NA31FamTANo00Gd137.0791.00.0GLQUnfYNormNormSBrkr0.0TATAVinylSdVinylSdMnPrvTA1PConc2Typ482.02TAFinTAAttchd1629.07.3957221GasAGd2Story1TALvlGtl13830.015.946705InsideIR10.0060RL0.0NoneNA0.03Gilbert34.055Y0.0NACompShgGableNormalWD0.0Pave62.5928.0246.02557.019.016856AllPub212.0199719982010189900.012.154253
\n", - "
" - ], - "text/plain": [ - " 1st Flr SF 1st Flr SF (box-cox-0) 2nd Flr SF 3Ssn Porch \\\n", - "Order PID \n", - "1 526301100 1656.0 7.412160 0.0 0.0 \n", - "2 526350040 896.0 6.797940 0.0 0.0 \n", - "3 526351010 1329.0 7.192182 0.0 0.0 \n", - "4 526353030 2110.0 7.654443 0.0 0.0 \n", - "5 527105010 928.0 6.833032 701.0 0.0 \n", - "\n", - " Alley Bedroom AbvGr Bldg Type Bsmt Cond Bsmt Exposure \\\n", - "Order PID \n", - "1 526301100 NA 3 1Fam Gd Gd \n", - "2 526350040 NA 2 1Fam TA No \n", - "3 526351010 NA 3 1Fam TA No \n", - "4 526353030 NA 3 1Fam TA No \n", - "5 527105010 NA 3 1Fam TA No \n", - "\n", - " Bsmt Full Bath Bsmt Half Bath Bsmt Qual Bsmt Unf SF \\\n", - "Order PID \n", - "1 526301100 1 0 TA 441.0 \n", - "2 526350040 0 0 TA 270.0 \n", - "3 526351010 0 0 TA 406.0 \n", - "4 526353030 1 0 TA 1045.0 \n", - "5 527105010 0 0 Gd 137.0 \n", - "\n", - " BsmtFin SF 1 BsmtFin SF 2 BsmtFin Type 1 BsmtFin Type 2 \\\n", - "Order PID \n", - "1 526301100 639.0 0.0 BLQ Unf \n", - "2 526350040 468.0 144.0 Rec LwQ \n", - "3 526351010 923.0 0.0 ALQ Unf \n", - "4 526353030 1065.0 0.0 ALQ Unf \n", - "5 527105010 791.0 0.0 GLQ Unf \n", - "\n", - " Central Air Condition 1 Condition 2 Electrical \\\n", - "Order PID \n", - "1 526301100 Y Norm Norm SBrkr \n", - "2 526350040 Y Feedr Norm SBrkr \n", - "3 526351010 Y Norm Norm SBrkr \n", - "4 526353030 Y Norm Norm SBrkr \n", - "5 527105010 Y Norm Norm SBrkr \n", - "\n", - " Enclosed Porch Exter Cond Exter Qual Exterior 1st \\\n", - "Order PID \n", - "1 526301100 0.0 TA TA BrkFace \n", - "2 526350040 0.0 TA TA VinylSd \n", - "3 526351010 0.0 TA TA Wd Sdng \n", - "4 526353030 0.0 TA Gd BrkFace \n", - "5 527105010 0.0 TA TA VinylSd \n", - "\n", - " Exterior 2nd Fence Fireplace Qu Fireplaces Foundation \\\n", - "Order PID \n", - "1 526301100 Plywood NA Gd 2 CBlock \n", - "2 526350040 VinylSd MnPrv NA 0 CBlock \n", - "3 526351010 Wd Sdng NA NA 0 CBlock \n", - "4 526353030 BrkFace NA TA 2 CBlock \n", - "5 527105010 VinylSd MnPrv TA 1 PConc \n", - "\n", - " Full Bath Functional Garage Area Garage Cars Garage Cond \\\n", - "Order PID \n", - "1 526301100 1 Typ 528.0 2 TA \n", - "2 526350040 1 Typ 730.0 1 TA \n", - "3 526351010 1 Typ 312.0 1 TA \n", - "4 526353030 2 Typ 522.0 2 TA \n", - "5 527105010 2 Typ 482.0 2 TA \n", - "\n", - " Garage Finish Garage Qual Garage Type Gr Liv Area \\\n", - "Order PID \n", - "1 526301100 Fin TA Attchd 1656.0 \n", - "2 526350040 Unf TA Attchd 896.0 \n", - "3 526351010 Unf TA Attchd 1329.0 \n", - "4 526353030 Fin TA Attchd 2110.0 \n", - "5 527105010 Fin TA Attchd 1629.0 \n", - "\n", - " Gr Liv Area (box-cox-0) Half Bath Heating Heating QC \\\n", - "Order PID \n", - "1 526301100 7.412160 0 GasA Fa \n", - "2 526350040 6.797940 0 GasA TA \n", - "3 526351010 7.192182 1 GasA TA \n", - "4 526353030 7.654443 1 GasA Ex \n", - "5 527105010 7.395722 1 GasA Gd \n", - "\n", - " House Style Kitchen AbvGr Kitchen Qual Land Contour \\\n", - "Order PID \n", - "1 526301100 1Story 1 TA Lvl \n", - "2 526350040 1Story 1 TA Lvl \n", - "3 526351010 1Story 1 Gd Lvl \n", - "4 526353030 1Story 1 Ex Lvl \n", - "5 527105010 2Story 1 TA Lvl \n", - "\n", - " Land Slope Lot Area Lot Area (box-cox-0.1) Lot Config \\\n", - "Order PID \n", - "1 526301100 Gtl 31770.0 18.196923 Corner \n", - "2 526350040 Gtl 11622.0 15.499290 Inside \n", - "3 526351010 Gtl 14267.0 16.027549 Corner \n", - "4 526353030 Gtl 11160.0 15.396064 Corner \n", - "5 527105010 Gtl 13830.0 15.946705 Inside \n", - "\n", - " Lot Shape Low Qual Fin SF MS SubClass MS Zoning \\\n", - "Order PID \n", - "1 526301100 IR1 0.0 020 RL \n", - "2 526350040 Reg 0.0 020 RH \n", - "3 526351010 IR1 0.0 020 RL \n", - "4 526353030 Reg 0.0 020 RL \n", - "5 527105010 IR1 0.0 060 RL \n", - "\n", - " Mas Vnr Area Mas Vnr Type Misc Feature Misc Val Mo Sold \\\n", - "Order PID \n", - "1 526301100 112.0 Stone NA 0.0 5 \n", - "2 526350040 0.0 None NA 0.0 6 \n", - "3 526351010 108.0 BrkFace Gar2 12500.0 6 \n", - "4 526353030 0.0 None NA 0.0 4 \n", - "5 527105010 0.0 None NA 0.0 3 \n", - "\n", - " Neighborhood Open Porch SF Overall Cond Overall Qual \\\n", - "Order PID \n", - "1 526301100 Names 62.0 5 6 \n", - "2 526350040 Names 0.0 6 5 \n", - "3 526351010 Names 36.0 6 6 \n", - "4 526353030 Names 0.0 5 7 \n", - "5 527105010 Gilbert 34.0 5 5 \n", - "\n", - " Paved Drive Pool Area Pool QC Roof Matl Roof Style \\\n", - "Order PID \n", - "1 526301100 P 0.0 NA CompShg Hip \n", - "2 526350040 Y 0.0 NA CompShg Gable \n", - "3 526351010 Y 0.0 NA CompShg Hip \n", - "4 526353030 Y 0.0 NA CompShg Hip \n", - "5 527105010 Y 0.0 NA CompShg Gable \n", - "\n", - " Sale Condition Sale Type Screen Porch Street TotRms AbvGrd \\\n", - "Order PID \n", - "1 526301100 Normal WD 0.0 Pave 7 \n", - "2 526350040 Normal WD 120.0 Pave 5 \n", - "3 526351010 Normal WD 0.0 Pave 6 \n", - "4 526353030 Normal WD 0.0 Pave 8 \n", - "5 527105010 Normal WD 0.0 Pave 6 \n", - "\n", - " Total Bath Total Bsmt SF Total Porch SF Total SF \\\n", - "Order PID \n", - "1 526301100 2.0 1080.0 272.0 2736.0 \n", - "2 526350040 1.0 882.0 260.0 1778.0 \n", - "3 526351010 1.5 1329.0 429.0 2658.0 \n", - "4 526353030 3.5 2110.0 0.0 4220.0 \n", - "5 527105010 2.5 928.0 246.0 2557.0 \n", - "\n", - " Total SF (box-cox-0.2) Utilities Wood Deck SF Year Built \\\n", - "Order PID \n", - "1 526301100 19.344072 AllPub 210.0 1960 \n", - "2 526350040 17.333478 AllPub 140.0 1961 \n", - "3 526351010 19.203658 AllPub 393.0 1958 \n", - "4 526353030 21.548042 AllPub 0.0 1968 \n", - "5 527105010 19.016856 AllPub 212.0 1997 \n", - "\n", - " Year Remod/Add Yr Sold SalePrice SalePrice (box-cox-0) \n", - "Order PID \n", - "1 526301100 1960 2010 215000.0 12.278393 \n", - "2 526350040 1961 2010 105000.0 11.561716 \n", - "3 526351010 1958 2010 172000.0 12.055250 \n", - "4 526353030 1968 2010 244000.0 12.404924 \n", - "5 527105010 1998 2010 189900.0 12.154253 " - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "cleaned_df.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [], - "source": [ - "cleaned_df.to_csv(\"data/data_clean_with_transformations.csv\")" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.8" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/README.md b/README.md index 4ff2676..4030099 100644 --- a/README.md +++ b/README.md @@ -16,7 +16,7 @@ A video presentation of the case study is available on [YouTube