intro-to-data-science/01_scientific_stack/01_exercises_arrays.ipynb

280 lines
8.2 KiB
Text
Raw Permalink Normal View History

2021-10-05 01:28:01 +02:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Note**: Click on \"*Kernel*\" > \"*Restart Kernel and Run All*\" in [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/) *after* finishing the exercises to ensure that your solution runs top to bottom *without* any errors. If you cannot run this file on your machine, you may want to open it [in the cloud <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_mb.png\">](https://mybinder.org/v2/gh/webartifex/intro-to-data-science/main?urlpath=lab/tree/01_scientific_stack/01_exercises_arrays.ipynb)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 0: Python's Scientific Stack (Coding Exercises)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The exercises below assume that you have read the preceeding content sections.\n",
"\n",
"The `...`'s in the code cells indicate where you need to fill in code snippets. The number of `...`'s within a code cell give you a rough idea of how many lines of code are needed to solve the task. You should not need to create any additional code cells for your final solution. However, you may want to use temporary code cells to try out some ideas."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Working with Arrays"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Another useful constructor [numpy <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_np.png\">](https://numpy.org/) provides is [np.arange() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_np.png\">](https://numpy.org/doc/stable/reference/generated/numpy.arange.html#numpy.arange) which works similar to Python's [range() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#func-range) built-in.\n",
"\n",
"**Q1**: Create a one-dimensional array with [np.arange() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_np.png\">](https://numpy.org/doc/stable/reference/generated/numpy.arange.html#numpy.arange) holding the `int`egers from `0` through `9`!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"v1 = np.arange(...)\n",
"\n",
"v1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q2**: Create a one-dimensional array with [np.arange() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_np.png\">](https://numpy.org/doc/stable/reference/generated/numpy.arange.html#numpy.arange) holding the `int`egers from `100` through `109`!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"v2 = np.arange(...)\n",
"\n",
"v2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q3**: Create a one-dimensional array with [np.arange() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_np.png\">](https://numpy.org/doc/stable/reference/generated/numpy.arange.html#numpy.arange) holding the even `int`egers from `80` through `100`!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"v3 = np.arange(...)\n",
"\n",
"v3"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q4**: Create a one-dimensional array with [np.arange() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_np.png\">](https://numpy.org/doc/stable/reference/generated/numpy.arange.html#numpy.arange) holding the odd `int`egers between `80` and `100` in backwards order!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"v4 = np.arange(...)\n",
"\n",
"v4"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[np.arange() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_np.png\">](https://numpy.org/doc/stable/reference/generated/numpy.arange.html#numpy.arange) is often combined with the `ndarray` method [.reshape() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_np.png\">](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.reshape.html#numpy.ndarray.reshape) that takes a `tuple` as its input specifying the `.shape` of the resulting array.\n",
"\n",
"**Q5**: Create a two-dimensional array modeling a 5x2 matrix by the name `m1` with [np.arange() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_np.png\">](https://numpy.org/doc/stable/reference/generated/numpy.arange.html#numpy.arange) holding the `int`egers from `1` through `10`!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m1 = np.arange(...).reshape((...))\n",
"\n",
"m1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q6**: Create a two-dimensional array modeling a 5x5 square matrix by the name `m2` with [np.arange() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_np.png\">](https://numpy.org/doc/stable/reference/generated/numpy.arange.html#numpy.arange) holding the `int`egers from `1` through `25` and flip the elements along the main diagonal!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m2 = np.arange(...).reshape((...)). ...\n",
"\n",
"m2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q7**: Slice out the matrix `m3` as the first two rows of `m1`!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m3 = m1[..., ...]\n",
"\n",
"m3"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q8**: Slice out the matrix `m4` as the last two rows of `m1`!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m4 = m1[..., ...]\n",
"\n",
"m4"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q9**: Slice out the matrix `m5` from `m1` such that it holds all elements that are on an *odd* row and column!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m5 = m2[..., ...]\n",
"\n",
"m5"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q10**: Slice out the matrix `m6` from `m1` such that it holds all elements that are on an *even* row and column!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m6 = m2[..., ...]\n",
"\n",
"m6"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q11**: Slice out the matrix `m7` from `m1` such that it holds all elements that are on an *even* row and an *odd* column!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m7 = m2[..., ...]\n",
"\n",
"m7"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "intro-to-data-science",
2021-10-05 01:28:01 +02:00
"language": "python",
"name": "intro-to-data-science"
2021-10-05 01:28:01 +02:00
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.4"
2021-10-05 01:28:01 +02:00
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": false,
"sideBar": true,
"skip_h1_title": true,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": false,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 4
}