Reorganize the repository
- make it more generic (not cscm in the names) - update the readme and license files - use latest releases in pyproject.toml and requirements.txt
This commit is contained in:
parent
b480ded9de
commit
1566258b25
6 changed files with 185 additions and 124 deletions
2
LICENSE
2
LICENSE
|
@ -1,6 +1,6 @@
|
|||
MIT License
|
||||
|
||||
Copyright (c) 2018 Alexander Hess [alexander@webartifex.biz]
|
||||
Copyright (c) 2018-2019 Alexander Hess [alexander@webartifex.biz]
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
|
|
62
README.md
62
README.md
|
@ -1,34 +1,50 @@
|
|||
# Introduction to Machine Learning with Python
|
||||
# Workshop: Machine Learning for Beginners
|
||||
|
||||
## General Notes
|
||||
This repository contains the code for the workshop "Machine Learning for
|
||||
Beginners" as presented in various occasions at
|
||||
[WHU - Otto Beisheim School of Management](https://www.whu.edu), such as the
|
||||
[Campus for Supply Chain Management](https://www.campus-for-supply-chain-management-cscm.de/),
|
||||
[IdeaLab](https://www.idealab.io)'s [IdeaHack](http://www.ideahack.io), or
|
||||
within many [executive education](https://ee.whu.edu/) programs.
|
||||
|
||||
This project contains a Jupyter notebook introducing some very basic concepts
|
||||
of machine learning and the popular Iris classification case study.
|
||||
|
||||
First, some simple linear algebra ideas are shown via examples with the numpy
|
||||
library. Then a so-called K-nearest-neighbor algorithm is trained to classify
|
||||
flower from the Iris dataset.
|
||||
## Prerequisites
|
||||
|
||||
This intro is aimed at total beginners to programming and machine learning.
|
||||
To be suitable for *total beginners*, there are *no* prerequisites.
|
||||
If you are interested to learn more after this workshop, check out the
|
||||
full-semester course **[Introduction to Python & Programming](https://github.com/webartifex/intro-to-python)**.
|
||||
|
||||
It was used within a 90 minute workshop at the
|
||||
[WHU Campus for Supply Chain Management](http://campus-for-scm.de), which
|
||||
targets students of business administration and young management professionals.
|
||||
|
||||
## Installation
|
||||
|
||||
This project uses popular Python libraries that can be installed via the
|
||||
pipenv command line tool. To do so, run `pipenv install` or
|
||||
`pipenv install --ignore-pipfile` (to use the exact environment as of the time
|
||||
of this writing). For a tutorial on pipenv, go to the official
|
||||
[documentation](https://pipenv.readthedocs.io/en/latest/).
|
||||
To follow this workshop on your own computer, a working installation of
|
||||
**Python 3.6** or higher is required.
|
||||
|
||||
After installation, start Jupyter via the command `jupyter notebook` and wait
|
||||
for a new tab to be opened in your default web browser. Then, open the notebook
|
||||
called [intro_to_machine_learning.ipynb](intro_to_machine_learning.ipynb).
|
||||
A popular and beginner friendly way is to install the [Anaconda Distribution](https://www.anaconda.com/distribution/)
|
||||
that not only ships Python but comes pre-packaged with a lot of third-party
|
||||
libraries from the so-called "scientific stack".
|
||||
Just go to the [download](https://www.anaconda.com/distribution/#download-section)
|
||||
section and install the latest version (i.e., *2019-10* with Python 3.7 at the
|
||||
time of this writing) for your operating system.
|
||||
|
||||
## Read-only Version
|
||||
Then, among others, you will find an entry "Jupyter Notebook" in your start
|
||||
menu.
|
||||
Click on it and a new tab in your web browser will open where you can switch
|
||||
between folders as you could in your computer's default file browser.
|
||||
|
||||
To download the course's materials as a ZIP file, click on the green "Clone or
|
||||
download" button on the top right on this website.
|
||||
Then, unpack the ZIP file into a folder of your choosing (ideally somewhere
|
||||
within your personal user folder so that the files show up right away).
|
||||
|
||||
|
||||
## About the Author
|
||||
|
||||
Alexander Hess is a PhD student at the Chair of Logistics Management at the
|
||||
[WHU - Otto Beisheim School of Management](https://www.whu.edu) where he
|
||||
conducts research on urban delivery platforms and teaches an introductory
|
||||
course on Python (cf., [Fall Term 2019](https://vlv.whu.edu/campus/all/event.asp?objgguid=0xE57C2715B01B441AAFD3E79AA05CACCF&from=vvz&gguid=0x6A2B0ED5B2B949E69957A2099E7DE2F1&mode=own&tguid=0x3980A9BBC3BF4A638E977F2DC163F44B&lang=en),
|
||||
[Spring Term 2020](https://vlv.whu.edu/campus/all/event.asp?objgguid=0x3354F4C108FF4E959CDD692A325D9AFE&from=vvz&gguid=0x262E29795DD742CFBDE72B12B69CEFD6&mode=own&lang=en&tguid=0x2E4A7D1FF3C34AD08FF07685461781C9)).
|
||||
|
||||
Connect him on [LinkedIn](https://www.linkedin.com/in/webartifex).
|
||||
|
||||
For those interested in just reading the example codes without installing
|
||||
anything, just open this [notebook](intro_to_machine_learning.ipynb) and view
|
||||
the Jupyter notebook in your browser.
|
||||
|
|
182
poetry.lock
generated
182
poetry.lock
generated
|
@ -1,7 +1,7 @@
|
|||
[[package]]
|
||||
category = "main"
|
||||
description = "Disable App Nap on OS X 10.9"
|
||||
marker = "python_version >= \"3.3\" and sys_platform == \"darwin\" or sys_platform == \"darwin\""
|
||||
marker = "sys_platform == \"darwin\" or platform_system == \"Darwin\" or python_version >= \"3.3\" and sys_platform == \"darwin\""
|
||||
name = "appnope"
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
|
@ -13,7 +13,7 @@ description = "Classes Without Boilerplate"
|
|||
name = "attrs"
|
||||
optional = false
|
||||
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
|
||||
version = "19.2.0"
|
||||
version = "19.3.0"
|
||||
|
||||
[[package]]
|
||||
category = "main"
|
||||
|
@ -57,11 +57,11 @@ six = "*"
|
|||
|
||||
[[package]]
|
||||
category = "main"
|
||||
description = "Better living through Python with decorators"
|
||||
description = "Decorators for Humans"
|
||||
name = "decorator"
|
||||
optional = false
|
||||
python-versions = ">=2.6, !=3.0.*, !=3.1.*"
|
||||
version = "4.4.0"
|
||||
version = "4.4.1"
|
||||
|
||||
[[package]]
|
||||
category = "main"
|
||||
|
@ -79,15 +79,28 @@ optional = false
|
|||
python-versions = ">=2.7"
|
||||
version = "0.3"
|
||||
|
||||
[[package]]
|
||||
category = "main"
|
||||
description = "Read metadata from Python packages"
|
||||
marker = "python_version < \"3.8\""
|
||||
name = "importlib-metadata"
|
||||
optional = false
|
||||
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,>=2.7"
|
||||
version = "1.2.0"
|
||||
|
||||
[package.dependencies]
|
||||
zipp = ">=0.5"
|
||||
|
||||
[[package]]
|
||||
category = "main"
|
||||
description = "IPython Kernel for Jupyter"
|
||||
name = "ipykernel"
|
||||
optional = false
|
||||
python-versions = ">=3.4"
|
||||
version = "5.1.2"
|
||||
version = "5.1.3"
|
||||
|
||||
[package.dependencies]
|
||||
appnope = "*"
|
||||
ipython = ">=5.0.0"
|
||||
jupyter-client = "*"
|
||||
tornado = ">=4.2"
|
||||
|
@ -98,8 +111,8 @@ category = "main"
|
|||
description = "IPython: Productive Interactive Computing"
|
||||
name = "ipython"
|
||||
optional = false
|
||||
python-versions = ">=3.5"
|
||||
version = "7.8.0"
|
||||
python-versions = ">=3.6"
|
||||
version = "7.10.1"
|
||||
|
||||
[package.dependencies]
|
||||
appnope = "*"
|
||||
|
@ -109,7 +122,7 @@ decorator = "*"
|
|||
jedi = ">=0.10"
|
||||
pexpect = "*"
|
||||
pickleshare = "*"
|
||||
prompt-toolkit = ">=2.0.0,<2.1.0"
|
||||
prompt-toolkit = ">=2.0.0,<3.0.0 || >3.0.0,<3.0.1 || >3.0.1,<3.1.0"
|
||||
pygments = "*"
|
||||
setuptools = ">=18.5"
|
||||
traitlets = ">=4.2"
|
||||
|
@ -153,11 +166,11 @@ parso = ">=0.5.0"
|
|||
|
||||
[[package]]
|
||||
category = "main"
|
||||
description = "A small but fast and easy to use stand-alone template engine written in pure python."
|
||||
description = "A very fast and expressive template engine."
|
||||
name = "jinja2"
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
version = "2.10.1"
|
||||
version = "2.10.3"
|
||||
|
||||
[package.dependencies]
|
||||
MarkupSafe = ">=0.23"
|
||||
|
@ -176,7 +189,7 @@ description = "An implementation of JSON Schema validation for Python"
|
|||
name = "jsonschema"
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
version = "3.0.2"
|
||||
version = "3.2.0"
|
||||
|
||||
[package.dependencies]
|
||||
attrs = ">=17.4.0"
|
||||
|
@ -184,6 +197,10 @@ pyrsistent = ">=0.14.0"
|
|||
setuptools = "*"
|
||||
six = ">=1.11.0"
|
||||
|
||||
[package.dependencies.importlib-metadata]
|
||||
python = "<3.8"
|
||||
version = "*"
|
||||
|
||||
[[package]]
|
||||
category = "main"
|
||||
description = "Jupyter metapackage. Install all the Jupyter components in one go."
|
||||
|
@ -206,10 +223,10 @@ description = "Jupyter protocol implementation and client libraries"
|
|||
name = "jupyter-client"
|
||||
optional = false
|
||||
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
|
||||
version = "5.3.3"
|
||||
version = "5.3.4"
|
||||
|
||||
[package.dependencies]
|
||||
jupyter-core = "*"
|
||||
jupyter-core = ">=4.6.0"
|
||||
python-dateutil = ">=2.1"
|
||||
pywin32 = ">=1.0"
|
||||
pyzmq = ">=13"
|
||||
|
@ -237,9 +254,10 @@ description = "Jupyter core package. A base package on which Jupyter projects re
|
|||
name = "jupyter-core"
|
||||
optional = false
|
||||
python-versions = ">=2.7, !=3.0, !=3.1, !=3.2"
|
||||
version = "4.5.0"
|
||||
version = "4.6.1"
|
||||
|
||||
[package.dependencies]
|
||||
pywin32 = ">=1.0"
|
||||
traitlets = "*"
|
||||
|
||||
[[package]]
|
||||
|
@ -267,7 +285,7 @@ description = "Python plotting package"
|
|||
name = "matplotlib"
|
||||
optional = false
|
||||
python-versions = ">=3.6"
|
||||
version = "3.1.1"
|
||||
version = "3.1.2"
|
||||
|
||||
[package.dependencies]
|
||||
cycler = ">=0.10"
|
||||
|
@ -284,13 +302,22 @@ optional = false
|
|||
python-versions = "*"
|
||||
version = "0.8.4"
|
||||
|
||||
[[package]]
|
||||
category = "main"
|
||||
description = "More routines for operating on iterables, beyond itertools"
|
||||
marker = "python_version < \"3.8\""
|
||||
name = "more-itertools"
|
||||
optional = false
|
||||
python-versions = ">=3.5"
|
||||
version = "8.0.0"
|
||||
|
||||
[[package]]
|
||||
category = "main"
|
||||
description = "Converting Jupyter Notebooks"
|
||||
name = "nbconvert"
|
||||
optional = false
|
||||
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
|
||||
version = "5.6.0"
|
||||
version = "5.6.1"
|
||||
|
||||
[package.dependencies]
|
||||
bleach = "*"
|
||||
|
@ -325,15 +352,15 @@ description = "A web-based notebook environment for interactive computing"
|
|||
name = "notebook"
|
||||
optional = false
|
||||
python-versions = ">=3.5"
|
||||
version = "6.0.1"
|
||||
version = "6.0.2"
|
||||
|
||||
[package.dependencies]
|
||||
Send2Trash = "*"
|
||||
ipykernel = "*"
|
||||
ipython-genutils = "*"
|
||||
jinja2 = "*"
|
||||
jupyter-client = ">=5.3.1"
|
||||
jupyter-core = ">=4.4.0"
|
||||
jupyter-client = ">=5.3.4"
|
||||
jupyter-core = ">=4.6.0"
|
||||
nbconvert = "*"
|
||||
nbformat = "*"
|
||||
prometheus-client = "*"
|
||||
|
@ -348,7 +375,7 @@ description = "NumPy is the fundamental package for array computing with Python.
|
|||
name = "numpy"
|
||||
optional = false
|
||||
python-versions = ">=3.5"
|
||||
version = "1.17.2"
|
||||
version = "1.17.4"
|
||||
|
||||
[[package]]
|
||||
category = "main"
|
||||
|
@ -356,7 +383,7 @@ description = "Powerful data structures for data analysis, time series, and stat
|
|||
name = "pandas"
|
||||
optional = false
|
||||
python-versions = ">=3.5.3"
|
||||
version = "0.25.1"
|
||||
version = "0.25.3"
|
||||
|
||||
[package.dependencies]
|
||||
numpy = ">=1.13.3"
|
||||
|
@ -412,8 +439,8 @@ category = "main"
|
|||
description = "Library for building powerful interactive command lines in Python"
|
||||
name = "prompt-toolkit"
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
version = "2.0.9"
|
||||
python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*"
|
||||
version = "2.0.10"
|
||||
|
||||
[package.dependencies]
|
||||
six = ">=1.9.0"
|
||||
|
@ -434,7 +461,7 @@ description = "Pygments is a syntax highlighting package written in Python."
|
|||
name = "pygments"
|
||||
optional = false
|
||||
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
|
||||
version = "2.4.2"
|
||||
version = "2.5.2"
|
||||
|
||||
[[package]]
|
||||
category = "main"
|
||||
|
@ -442,7 +469,7 @@ description = "Python parsing module"
|
|||
name = "pyparsing"
|
||||
optional = false
|
||||
python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*"
|
||||
version = "2.4.2"
|
||||
version = "2.4.5"
|
||||
|
||||
[[package]]
|
||||
category = "main"
|
||||
|
@ -450,7 +477,7 @@ description = "Persistent/Functional/Immutable data structures"
|
|||
name = "pyrsistent"
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
version = "0.15.4"
|
||||
version = "0.15.6"
|
||||
|
||||
[package.dependencies]
|
||||
six = "*"
|
||||
|
@ -460,8 +487,8 @@ category = "main"
|
|||
description = "Extensions to the standard Python datetime module"
|
||||
name = "python-dateutil"
|
||||
optional = false
|
||||
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*"
|
||||
version = "2.8.0"
|
||||
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7"
|
||||
version = "2.8.1"
|
||||
|
||||
[package.dependencies]
|
||||
six = ">=1.5"
|
||||
|
@ -472,7 +499,7 @@ description = "World timezone definitions, modern and historical"
|
|||
name = "pytz"
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
version = "2019.2"
|
||||
version = "2019.3"
|
||||
|
||||
[[package]]
|
||||
category = "main"
|
||||
|
@ -481,7 +508,7 @@ marker = "sys_platform == \"win32\""
|
|||
name = "pywin32"
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
version = "225"
|
||||
version = "227"
|
||||
|
||||
[[package]]
|
||||
category = "main"
|
||||
|
@ -490,7 +517,7 @@ marker = "os_name == \"nt\""
|
|||
name = "pywinpty"
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
version = "0.5.5"
|
||||
version = "0.5.7"
|
||||
|
||||
[[package]]
|
||||
category = "main"
|
||||
|
@ -498,7 +525,7 @@ description = "Python bindings for 0MQ"
|
|||
name = "pyzmq"
|
||||
optional = false
|
||||
python-versions = ">=2.7,!=3.0.*,!=3.1.*,!=3.2.*"
|
||||
version = "18.1.0"
|
||||
version = "18.1.1"
|
||||
|
||||
[[package]]
|
||||
category = "main"
|
||||
|
@ -506,7 +533,7 @@ description = "Jupyter Qt console"
|
|||
name = "qtconsole"
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
version = "4.5.5"
|
||||
version = "4.6.0"
|
||||
|
||||
[package.dependencies]
|
||||
ipykernel = ">=4.1"
|
||||
|
@ -522,7 +549,7 @@ description = "A set of python modules for machine learning and data mining"
|
|||
name = "scikit-learn"
|
||||
optional = false
|
||||
python-versions = ">=3.5"
|
||||
version = "0.21.3"
|
||||
version = "0.22"
|
||||
|
||||
[package.dependencies]
|
||||
joblib = ">=0.11"
|
||||
|
@ -535,7 +562,7 @@ description = "SciPy: Scientific Library for Python"
|
|||
name = "scipy"
|
||||
optional = false
|
||||
python-versions = ">=3.5"
|
||||
version = "1.3.1"
|
||||
version = "1.3.3"
|
||||
|
||||
[package.dependencies]
|
||||
numpy = ">=1.13.3"
|
||||
|
@ -554,7 +581,7 @@ description = "Python 2 and 3 compatibility utilities"
|
|||
name = "six"
|
||||
optional = false
|
||||
python-versions = ">=2.6, !=3.0.*, !=3.1.*"
|
||||
version = "1.12.0"
|
||||
version = "1.13.0"
|
||||
|
||||
[[package]]
|
||||
category = "main"
|
||||
|
@ -562,7 +589,7 @@ description = "Terminals served to xterm.js using Tornado websockets"
|
|||
name = "terminado"
|
||||
optional = false
|
||||
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
|
||||
version = "0.8.2"
|
||||
version = "0.8.3"
|
||||
|
||||
[package.dependencies]
|
||||
ptyprocess = "*"
|
||||
|
@ -575,7 +602,7 @@ description = "Test utilities for code working with files and commands"
|
|||
name = "testpath"
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
version = "0.4.2"
|
||||
version = "0.4.4"
|
||||
|
||||
[[package]]
|
||||
category = "main"
|
||||
|
@ -591,7 +618,7 @@ description = "Traitlets Python config system"
|
|||
name = "traitlets"
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
version = "4.3.2"
|
||||
version = "4.3.3"
|
||||
|
||||
[package.dependencies]
|
||||
decorator = "*"
|
||||
|
@ -625,65 +652,80 @@ version = "3.5.1"
|
|||
[package.dependencies]
|
||||
notebook = ">=4.4.1"
|
||||
|
||||
[[package]]
|
||||
category = "main"
|
||||
description = "Backport of pathlib-compatible object wrapper for zip files"
|
||||
marker = "python_version < \"3.8\""
|
||||
name = "zipp"
|
||||
optional = false
|
||||
python-versions = ">=2.7"
|
||||
version = "0.6.0"
|
||||
|
||||
[package.dependencies]
|
||||
more-itertools = "*"
|
||||
|
||||
[metadata]
|
||||
content-hash = "a3ff172975371433ae31a3594786d5fdff6d2a065f91dad939a4ab8b919ac29f"
|
||||
content-hash = "b678503528880d842a6c7de4885400f8df165a7af7e54e82801b323b4437d27f"
|
||||
python-versions = "^3.6"
|
||||
|
||||
[metadata.hashes]
|
||||
appnope = ["5b26757dc6f79a3b7dc9fab95359328d5747fcb2409d331ea66d0272b90ab2a0", "8b995ffe925347a2138d7ac0fe77155e4311a0ea6d6da4f5128fe4b3cbe5ed71"]
|
||||
attrs = ["ec20e7a4825331c1b5ebf261d111e16fa9612c1f7a5e1f884f12bd53a664dfd2", "f913492e1663d3c36f502e5e9ba6cd13cf19d7fab50aa13239e420fef95e1396"]
|
||||
attrs = ["08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", "f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72"]
|
||||
backcall = ["38ecd85be2c1e78f77fd91700c76e14667dc21e2713b63876c0eb901196e01e4", "bbbf4b1e5cd2bdb08f915895b51081c041bac22394fdfcfdfbe9f14b77c08bf2"]
|
||||
bleach = ["213336e49e102af26d9cde77dd2d0397afabc5a6bf2fed985dc35b5d1e285a16", "3fdf7f77adcf649c9911387df51254b813185e32b2c6619f690b593a617e19fa"]
|
||||
colorama = ["05eed71e2e327246ad6b38c540c4a3117230b19679b875190486ddd2d721422d", "f8ac84de7840f5b9c4e3347b3c1eaa50f7e49c2b07596221daec5edaabbd7c48"]
|
||||
cycler = ["1d8a5ae1ff6c5cf9b93e8811e581232ad8920aeec647c37316ceac982b08cb2d", "cd7b2d1018258d7247a71425e9f26463dfb444d411c39569972f4ce586b0c9d8"]
|
||||
decorator = ["86156361c50488b84a3f148056ea716ca587df2f0de1d34750d35c21312725de", "f069f3a01830ca754ba5258fde2278454a0b5b79e0d7f5c13b3b97e57d4acff6"]
|
||||
decorator = ["54c38050039232e1db4ad7375cfce6748d7b41c29e95a081c8a6d2c30364a2ce", "5d19b92a3c8f7f101c8dd86afd86b0f061a8ce4540ab8cd401fa2542756bce6d"]
|
||||
defusedxml = ["6687150770438374ab581bb7a1b327a847dd9c5749e396102de3fad4e8a3ef93", "f684034d135af4c6cbb949b8a4d2ed61634515257a67299e5f940fbaa34377f5"]
|
||||
entrypoints = ["589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", "c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451"]
|
||||
ipykernel = ["167c3ef08450f5e060b76c749905acb0e0fbef9365899377a4a1eae728864383", "b503913e0b4cce7ed2de965457dfb2edd633e8234161a60e23f2fe2161345d12"]
|
||||
ipython = ["c4ab005921641e40a68e405e286e7a1fcc464497e14d81b6914b4fd95e5dee9b", "dd76831f065f17bddd7eaa5c781f5ea32de5ef217592cf019e34043b56895aa1"]
|
||||
importlib-metadata = ["3a8b2dfd0a2c6a3636e7c016a7e54ae04b997d30e69d5eacdca7a6c2221a1402", "41e688146d000891f32b1669e8573c57e39e5060e7f5f647aa617cd9a9568278"]
|
||||
ipykernel = ["1a7def9c986f1ee018c1138d16951932d4c9d4da01dad45f9d34e9899565a22f", "b368ad13edb71fa2db367a01e755a925d7f75ed5e09fbd3f06c85e7a8ef108a8"]
|
||||
ipython = ["c66c7e27239855828a764b1e8fc72c24a6f4498a2637572094a78c5551fb9d51", "f186b01b36609e0c5d0de27c7ef8e80c990c70478f8c880863004b3489a9030e"]
|
||||
ipython-genutils = ["72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8", "eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8"]
|
||||
ipywidgets = ["13ffeca438e0c0f91ae583dc22f50379b9d6b28390ac7be8b757140e9a771516", "e945f6e02854a74994c596d9db83444a1850c01648f1574adf144fbbabe05c97"]
|
||||
jedi = ["786b6c3d80e2f06fd77162a07fed81b8baa22dde5d62896a790a331d6ac21a27", "ba859c74fa3c966a22f2aeebe1b74ee27e2a462f56d3f5f7ca4a59af61bfe42e"]
|
||||
jinja2 = ["065c4f02ebe7f7cf559e49ee5a95fb800a9e4528727aec6f24402a5374c65013", "14dd6caf1527abb21f08f86c784eac40853ba93edb79552aa1e4b8aef1b61c7b"]
|
||||
jinja2 = ["74320bb91f31270f9551d46522e33af46a80c3d619f4a4bf42b3164d30b5911f", "9fe95f19286cfefaa917656583d020be14e7859c6b0252588391e47db34527de"]
|
||||
joblib = ["006108c7576b3eb6c5b27761ddbf188eb6e6347696325ab2027ea1ee9a4b922d", "6fcc57aacb4e89451fd449e9412687c51817c3f48662c3d8f38ba3f8a0a193ff"]
|
||||
jsonschema = ["5f9c0a719ca2ce14c5de2fd350a64fd2d13e8539db29836a86adc990bb1a068f", "8d4a2b7b6c2237e0199c8ea1a6d3e05bf118e289ae2b9d7ba444182a2959560d"]
|
||||
jsonschema = ["4e5b3cf8216f577bee9ce139cbe72eca3ea4f292ec60928ff24758ce626cd163", "c8a85b28d377cc7737e46e2d9f2b4f44ee3c0e1deac6bf46ddefc7187d30797a"]
|
||||
jupyter = ["3e1f86076bbb7c8c207829390305a2b1fe836d471ed54be66a3b8c41e7f46cc7", "5b290f93b98ffbc21c0c7e749f054b3267782166d72fa5e3ed1ed4eaf34a2b78", "d9dc4b3318f310e34c82951ea5d6683f67bed7def4b259fafbfe4f1beb1d8e5f"]
|
||||
jupyter-client = ["6a6d415c62179728f6d9295b37356d8f6833e9e01c2b6e1901dc555571f57b21", "f406f214f9daa92be110d5b83d62f3451ffc73d3522db7350f0554683533ab18"]
|
||||
jupyter-client = ["60e6faec1031d63df57f1cc671ed673dced0ed420f4377ea33db37b1c188b910", "d0c077c9aaa4432ad485e7733e4d91e48f87b4f4bab7d283d42bb24cbbba0a0f"]
|
||||
jupyter-console = ["308ce876354924fb6c540b41d5d6d08acfc946984bf0c97777c1ddcb42e0b2f5", "cc80a97a5c389cbd30252ffb5ce7cefd4b66bde98219edd16bf5cb6f84bb3568"]
|
||||
jupyter-core = ["2c6e7c1e9f2ac45b5c2ceea5730bc9008d92fe59d0725eac57b04c0edfba24f7", "f4fa22d6cf25f34807c995f22d2923693575c70f02557bcbfbe59bd5ec8d8b84"]
|
||||
kiwisolver = ["05b5b061e09f60f56244adc885c4a7867da25ca387376b02c1efc29cc16bcd0f", "26f4fbd6f5e1dabff70a9ba0d2c4bd30761086454aa30dddc5b52764ee4852b7", "3b2378ad387f49cbb328205bda569b9f87288d6bc1bf4cd683c34523a2341efe", "400599c0fe58d21522cae0e8b22318e09d9729451b17ee61ba8e1e7c0346565c", "47b8cb81a7d18dbaf4fed6a61c3cecdb5adec7b4ac292bddb0d016d57e8507d5", "53eaed412477c836e1b9522c19858a8557d6e595077830146182225613b11a75", "58e626e1f7dfbb620d08d457325a4cdac65d1809680009f46bf41eaf74ad0187", "5a52e1b006bfa5be04fe4debbcdd2688432a9af4b207a3f429c74ad625022641", "5c7ca4e449ac9f99b3b9d4693debb1d6d237d1542dd6a56b3305fe8a9620f883", "682e54f0ce8f45981878756d7203fd01e188cc6c8b2c5e2cf03675390b4534d5", "79bfb2f0bd7cbf9ea256612c9523367e5ec51d7cd616ae20ca2c90f575d839a2", "7f4dd50874177d2bb060d74769210f3bce1af87a8c7cf5b37d032ebf94f0aca3", "8944a16020c07b682df861207b7e0efcd2f46c7488619cb55f65882279119389", "8aa7009437640beb2768bfd06da049bad0df85f47ff18426261acecd1cf00897", "939f36f21a8c571686eb491acfffa9c7f1ac345087281b412d63ea39ca14ec4a", "9733b7f64bd9f807832d673355f79703f81f0b3e52bfce420fc00d8cb28c6a6c", "a02f6c3e229d0b7220bd74600e9351e18bc0c361b05f29adae0d10599ae0e326", "a0c0a9f06872330d0dd31b45607197caab3c22777600e88031bfe66799e70bb0", "acc4df99308111585121db217681f1ce0eecb48d3a828a2f9bbf9773f4937e9e", "b64916959e4ae0ac78af7c3e8cef4becee0c0e9694ad477b4c6b3a536de6a544", "d3fcf0819dc3fea58be1fd1ca390851bdb719a549850e708ed858503ff25d995", "d52e3b1868a4e8fd18b5cb15055c76820df514e26aa84cc02f593d99fef6707f", "db1a5d3cc4ae943d674718d6c47d2d82488ddd94b93b9e12d24aabdbfe48caee", "e3a21a720791712ed721c7b95d433e036134de6f18c77dbe96119eaf7aa08004", "e8bf074363ce2babeb4764d94f8e65efd22e6a7c74860a4f05a6947afc020ff2", "f16814a4a96dc04bf1da7d53ee8d5b1d6decfc1a92a63349bb15d37b6a263dd9", "f2b22153870ca5cf2ab9c940d7bc38e8e9089fa0f7e5856ea195e1cf4ff43d5a", "f790f8b3dff3d53453de6a7b7ddd173d2e020fb160baff578d578065b108a05f"]
|
||||
jupyter-core = ["464769f7387d7a62a2403d067f1ddc616655b7f77f5d810c0dd62cb54bfd0fb9", "a183e0ec2e8f6adddf62b0a3fc6a2237e3e0056d381e536d3e7c7ecc3067e244"]
|
||||
kiwisolver = ["05b5b061e09f60f56244adc885c4a7867da25ca387376b02c1efc29cc16bcd0f", "210d8c39d01758d76c2b9a693567e1657ec661229bc32eac30761fa79b2474b0", "26f4fbd6f5e1dabff70a9ba0d2c4bd30761086454aa30dddc5b52764ee4852b7", "3b15d56a9cd40c52d7ab763ff0bc700edbb4e1a298dc43715ecccd605002cf11", "3b2378ad387f49cbb328205bda569b9f87288d6bc1bf4cd683c34523a2341efe", "400599c0fe58d21522cae0e8b22318e09d9729451b17ee61ba8e1e7c0346565c", "47b8cb81a7d18dbaf4fed6a61c3cecdb5adec7b4ac292bddb0d016d57e8507d5", "53eaed412477c836e1b9522c19858a8557d6e595077830146182225613b11a75", "58e626e1f7dfbb620d08d457325a4cdac65d1809680009f46bf41eaf74ad0187", "5a52e1b006bfa5be04fe4debbcdd2688432a9af4b207a3f429c74ad625022641", "5c7ca4e449ac9f99b3b9d4693debb1d6d237d1542dd6a56b3305fe8a9620f883", "682e54f0ce8f45981878756d7203fd01e188cc6c8b2c5e2cf03675390b4534d5", "76275ee077772c8dde04fb6c5bc24b91af1bb3e7f4816fd1852f1495a64dad93", "79bfb2f0bd7cbf9ea256612c9523367e5ec51d7cd616ae20ca2c90f575d839a2", "7f4dd50874177d2bb060d74769210f3bce1af87a8c7cf5b37d032ebf94f0aca3", "8944a16020c07b682df861207b7e0efcd2f46c7488619cb55f65882279119389", "8aa7009437640beb2768bfd06da049bad0df85f47ff18426261acecd1cf00897", "9105ce82dcc32c73eb53a04c869b6a4bc756b43e4385f76ea7943e827f529e4d", "933df612c453928f1c6faa9236161a1d999a26cd40abf1dc5d7ebbc6dbfb8fca", "939f36f21a8c571686eb491acfffa9c7f1ac345087281b412d63ea39ca14ec4a", "9491578147849b93e70d7c1d23cb1229458f71fc79c51d52dce0809b2ca44eea", "9733b7f64bd9f807832d673355f79703f81f0b3e52bfce420fc00d8cb28c6a6c", "a02f6c3e229d0b7220bd74600e9351e18bc0c361b05f29adae0d10599ae0e326", "a0c0a9f06872330d0dd31b45607197caab3c22777600e88031bfe66799e70bb0", "aa716b9122307c50686356cfb47bfbc66541868078d0c801341df31dca1232a9", "acc4df99308111585121db217681f1ce0eecb48d3a828a2f9bbf9773f4937e9e", "b64916959e4ae0ac78af7c3e8cef4becee0c0e9694ad477b4c6b3a536de6a544", "d22702cadb86b6fcba0e6b907d9f84a312db9cd6934ee728144ce3018e715ee1", "d3fcf0819dc3fea58be1fd1ca390851bdb719a549850e708ed858503ff25d995", "d52e3b1868a4e8fd18b5cb15055c76820df514e26aa84cc02f593d99fef6707f", "db1a5d3cc4ae943d674718d6c47d2d82488ddd94b93b9e12d24aabdbfe48caee", "e3a21a720791712ed721c7b95d433e036134de6f18c77dbe96119eaf7aa08004", "e8bf074363ce2babeb4764d94f8e65efd22e6a7c74860a4f05a6947afc020ff2", "f16814a4a96dc04bf1da7d53ee8d5b1d6decfc1a92a63349bb15d37b6a263dd9", "f2b22153870ca5cf2ab9c940d7bc38e8e9089fa0f7e5856ea195e1cf4ff43d5a", "f790f8b3dff3d53453de6a7b7ddd173d2e020fb160baff578d578065b108a05f", "fe51b79da0062f8e9d49ed0182a626a7dc7a0cbca0328f612c6ee5e4711c81e4"]
|
||||
markupsafe = ["00bc623926325b26bb9605ae9eae8a215691f33cae5df11ca5424f06f2d1f473", "09027a7803a62ca78792ad89403b1b7a73a01c8cb65909cd876f7fcebd79b161", "09c4b7f37d6c648cb13f9230d847adf22f8171b1ccc4d5682398e77f40309235", "1027c282dad077d0bae18be6794e6b6b8c91d58ed8a8d89a89d59693b9131db5", "24982cc2533820871eba85ba648cd53d8623687ff11cbb805be4ff7b4c971aff", "29872e92839765e546828bb7754a68c418d927cd064fd4708fab9fe9c8bb116b", "43a55c2930bbc139570ac2452adf3d70cdbb3cfe5912c71cdce1c2c6bbd9c5d1", "46c99d2de99945ec5cb54f23c8cd5689f6d7177305ebff350a58ce5f8de1669e", "500d4957e52ddc3351cabf489e79c91c17f6e0899158447047588650b5e69183", "535f6fc4d397c1563d08b88e485c3496cf5784e927af890fb3c3aac7f933ec66", "62fe6c95e3ec8a7fad637b7f3d372c15ec1caa01ab47926cfdf7a75b40e0eac1", "6dd73240d2af64df90aa7c4e7481e23825ea70af4b4922f8ede5b9e35f78a3b1", "717ba8fe3ae9cc0006d7c451f0bb265ee07739daf76355d06366154ee68d221e", "79855e1c5b8da654cf486b830bd42c06e8780cea587384cf6545b7d9ac013a0b", "7c1699dfe0cf8ff607dbdcc1e9b9af1755371f92a68f706051cc8c37d447c905", "88e5fcfb52ee7b911e8bb6d6aa2fd21fbecc674eadd44118a9cc3863f938e735", "8defac2f2ccd6805ebf65f5eeb132adcf2ab57aa11fdf4c0dd5169a004710e7d", "98c7086708b163d425c67c7a91bad6e466bb99d797aa64f965e9d25c12111a5e", "9add70b36c5666a2ed02b43b335fe19002ee5235efd4b8a89bfcf9005bebac0d", "9bf40443012702a1d2070043cb6291650a0841ece432556f784f004937f0f32c", "ade5e387d2ad0d7ebf59146cc00c8044acbd863725f887353a10df825fc8ae21", "b00c1de48212e4cc9603895652c5c410df699856a2853135b3967591e4beebc2", "b1282f8c00509d99fef04d8ba936b156d419be841854fe901d8ae224c59f0be5", "b2051432115498d3562c084a49bba65d97cf251f5a331c64a12ee7e04dacc51b", "ba59edeaa2fc6114428f1637ffff42da1e311e29382d81b339c1817d37ec93c6", "c8716a48d94b06bb3b2524c2b77e055fb313aeb4ea620c8dd03a105574ba704f", "cd5df75523866410809ca100dc9681e301e3c27567cf498077e8551b6d20e42f", "e249096428b3ae81b08327a63a485ad0878de3fb939049038579ac0ef61e17e7"]
|
||||
matplotlib = ["1febd22afe1489b13c6749ea059d392c03261b2950d1d45c17e3aed812080c93", "31a30d03f39528c79f3a592857be62a08595dec4ac034978ecd0f814fa0eec2d", "4442ce720907f67a79d45de9ada47be81ce17e6c2f448b3c64765af93f6829c9", "796edbd1182cbffa7e1e7a97f1e141f875a8501ba8dd834269ae3cd45a8c976f", "934e6243df7165aad097572abf5b6003c77c9b6c480c3c4de6f2ef1b5fdd4ec0", "bab9d848dbf1517bc58d1f486772e99919b19efef5dd8596d4b26f9f5ee08b6b", "c1fe1e6cdaa53f11f088b7470c2056c0df7d80ee4858dadf6cbe433fcba4323b", "e5b8aeca9276a3a988caebe9f08366ed519fff98f77c6df5b64d7603d0e42e36", "ec6bd0a6a58df3628ff269978f4a4b924a0d371ad8ce1f8e2b635b99e482877a"]
|
||||
matplotlib = ["08ccc8922eb4792b91c652d3e6d46b1c99073f1284d1b6705155643e8046463a", "161dcd807c0c3232f4dcd4a12a382d52004a498174cbfafd40646106c5bcdcc8", "1f9e885bfa1b148d16f82a6672d043ecf11197f6c71ae222d0546db706e52eb2", "2d6ab54015a7c0d727c33e36f85f5c5e4172059efdd067f7527f6e5d16ad01aa", "5d2e408a2813abf664bd79431107543ecb449136912eb55bb312317edecf597e", "61c8b740a008218eb604de518eb411c4953db0cb725dd0b32adf8a81771cab9e", "80f10af8378fccc136da40ea6aa4a920767476cdfb3241acb93ef4f0465dbf57", "819d4860315468b482f38f1afe45a5437f60f03eaede495d5ff89f2eeac89500", "8cc0e44905c2c8fda5637cad6f311eb9517017515a034247ab93d0cf99f8bb7a", "8e8e2c2fe3d873108735c6ee9884e6f36f467df4a143136209cff303b183bada", "98c2ffeab8b79a4e3a0af5dd9939f92980eb6e3fec10f7f313df5f35a84dacab", "d59bb0e82002ac49f4152963f8a1079e66794a4f454457fd2f0dcc7bf0797d30", "ee59b7bb9eb75932fe3787e54e61c99b628155b0cedc907864f24723ba55b309"]
|
||||
mistune = ["59a3429db53c50b5c6bcc8a07f8848cb00d7dc8bdb431a4ab41920d201d4756e", "88a1051873018da288eee8538d476dffe1262495144b33ecb586c4ab266bb8d4"]
|
||||
nbconvert = ["427a468ec26e7d68a529b95f578d5cbf018cb4c1f889e897681c2b6d11897695", "48d3c342057a2cf21e8df820d49ff27ab9f25fc72b8f15606bd47967333b2709"]
|
||||
more-itertools = ["53ff73f186307d9c8ef17a9600309154a6ae27f25579e80af4db8f047ba14bc2", "a0ea684c39bc4315ba7aae406596ef191fd84f873d2d2751f84d64e81a7a2d45"]
|
||||
nbconvert = ["21fb48e700b43e82ba0e3142421a659d7739b65568cc832a13976a77be16b523", "f0d6ec03875f96df45aa13e21fd9b8450c42d7e1830418cccc008c0df725fcee"]
|
||||
nbformat = ["b9a0dbdbd45bb034f4f8893cafd6f652ea08c8c1674ba83f2dc55d3955743b0b", "f7494ef0df60766b7cabe0a3651556345a963b74dbc16bc7c18479041170d402"]
|
||||
notebook = ["660976fe4fe45c7aa55e04bf4bccb9f9566749ff637e9020af3422f9921f9a5d", "b0a290f5cc7792d50a21bec62b3c221dd820bf00efa916ce9aeec4b5354bde20"]
|
||||
numpy = ["05dbfe72684cc14b92568de1bc1f41e5f62b00f714afc9adee42f6311738091f", "0d82cb7271a577529d07bbb05cb58675f2deb09772175fab96dc8de025d8ac05", "10132aa1fef99adc85a905d82e8497a580f83739837d7cbd234649f2e9b9dc58", "12322df2e21f033a60c80319c25011194cd2a21294cc66fee0908aeae2c27832", "16f19b3aa775dddc9814e02a46b8e6ae6a54ed8cf143962b4e53f0471dbd7b16", "3d0b0989dd2d066db006158de7220802899a1e5c8cf622abe2d0bd158fd01c2c", "438a3f0e7b681642898fd7993d38e2bf140a2d1eafaf3e89bb626db7f50db355", "5fd214f482ab53f2cea57414c5fb3e58895b17df6e6f5bca5be6a0bb6aea23bb", "73615d3edc84dd7c4aeb212fa3748fb83217e00d201875a47327f55363cef2df", "7bd355ad7496f4ce1d235e9814ec81ee3d28308d591c067ce92e49f745ba2c2f", "7d077f2976b8f3de08a0dcf5d72083f4af5411e8fddacd662aae27baa2601196", "a4092682778dc48093e8bda8d26ee8360153e2047826f95a3f5eae09f0ae3abf", "b458de8624c9f6034af492372eb2fee41a8e605f03f4732f43fc099e227858b2", "e70fc8ff03a961f13363c2c95ef8285e0cf6a720f8271836f852cc0fa64e97c8", "ee8e9d7cad5fe6dde50ede0d2e978d81eafeaa6233fb0b8719f60214cf226578", "f4a4f6aba148858a5a5d546a99280f71f5ee6ec8182a7d195af1a914195b21a2"]
|
||||
pandas = ["18d91a9199d1dfaa01ad645f7540370ba630bdcef09daaf9edf45b4b1bca0232", "3f26e5da310a0c0b83ea50da1fd397de2640b02b424aa69be7e0784228f656c9", "4182e32f4456d2c64619e97c58571fa5ca0993d1e8c2d9ca44916185e1726e15", "426e590e2eb0e60f765271d668a30cf38b582eaae5ec9b31229c8c3c10c5bc21", "5eb934a8f0dc358f0e0cdf314072286bbac74e4c124b64371395e94644d5d919", "717928808043d3ea55b9bcde636d4a52d2236c246f6df464163a66ff59980ad8", "8145f97c5ed71827a6ec98ceaef35afed1377e2d19c4078f324d209ff253ecb5", "8744c84c914dcc59cbbb2943b32b7664df1039d99e834e1034a3372acb89ea4d", "c1ac1d9590d0c9314ebf01591bd40d4c03d710bfc84a3889e5263c97d7891dee", "cb2e197b7b0687becb026b84d3c242482f20cbb29a9981e43604eb67576da9f6", "d4001b71ad2c9b84ff18b182cea22b7b6cbf624216da3ea06fb7af28d1f93165", "d8930772adccb2882989ab1493fa74bd87d47c8ac7417f5dd3dd834ba8c24dc9", "dfbb0173ee2399bc4ed3caf2d236e5c0092f948aafd0a15fbe4a0e77ee61a958", "eebfbba048f4fa8ac711b22c78516e16ff8117d05a580e7eeef6b0c2be554c18", "f1b21bc5cf3dbea53d33615d1ead892dfdae9d7052fa8898083bec88be20dcd2"]
|
||||
notebook = ["399a4411e171170173344761e7fd4491a3625659881f76ce47c50231ed714d9b", "f67d76a68b1074a91693e95dea903ea01fd02be7c9fac5a4b870b8475caed805"]
|
||||
numpy = ["0a7a1dd123aecc9f0076934288ceed7fd9a81ba3919f11a855a7887cbe82a02f", "0c0763787133dfeec19904c22c7e358b231c87ba3206b211652f8cbe1241deb6", "3d52298d0be333583739f1aec9026f3b09fdfe3ddf7c7028cb16d9d2af1cca7e", "43bb4b70585f1c2d153e45323a886839f98af8bfa810f7014b20be714c37c447", "475963c5b9e116c38ad7347e154e5651d05a2286d86455671f5b1eebba5feb76", "64874913367f18eb3013b16123c9fed113962e75d809fca5b78ebfbb73ed93ba", "683828e50c339fc9e68720396f2de14253992c495fdddef77a1e17de55f1decc", "6ca4000c4a6f95a78c33c7dadbb9495c10880be9c89316aa536eac359ab820ae", "75fd817b7061f6378e4659dd792c84c0b60533e867f83e0d1e52d5d8e53df88c", "7d81d784bdbed30137aca242ab307f3e65c8d93f4c7b7d8f322110b2e90177f9", "8d0af8d3664f142414fd5b15cabfd3b6cc3ef242a3c7a7493257025be5a6955f", "9679831005fb16c6df3dd35d17aa31dc0d4d7573d84f0b44cc481490a65c7725", "a8f67ebfae9f575d85fa859b54d3bdecaeece74e3274b0b5c5f804d7ca789fe1", "acbf5c52db4adb366c064d0b7c7899e3e778d89db585feadd23b06b587d64761", "ada4805ed51f5bcaa3a06d3dd94939351869c095e30a2b54264f5a5004b52170", "c7354e8f0eca5c110b7e978034cd86ed98a7a5ffcf69ca97535445a595e07b8e", "e2e9d8c87120ba2c591f60e32736b82b67f72c37ba88a4c23c81b5b8fa49c018", "e467c57121fe1b78a8f68dd9255fbb3bb3f4f7547c6b9e109f31d14569f490c3", "ede47b98de79565fcd7f2decb475e2dcc85ee4097743e551fe26cfc7eb3ff143", "f58913e9227400f1395c7b800503ebfdb0772f1c33ff8cb4d6451c06cabdf316", "fe39f5fd4103ec4ca3cb8600b19216cd1ff316b4990f4c0b6057ad982c0a34d5"]
|
||||
pandas = ["00dff3a8e337f5ed7ad295d98a31821d3d0fe7792da82d78d7fd79b89c03ea9d", "22361b1597c8c2ffd697aa9bf85423afa9e1fcfa6b1ea821054a244d5f24d75e", "255920e63850dc512ce356233081098554d641ba99c3767dde9e9f35630f994b", "26382aab9c119735908d94d2c5c08020a4a0a82969b7e5eefb92f902b3b30ad7", "33970f4cacdd9a0ddb8f21e151bfb9f178afb7c36eb7c25b9094c02876f385c2", "4545467a637e0e1393f7d05d61dace89689ad6d6f66f267f86fff737b702cce9", "52da74df8a9c9a103af0a72c9d5fdc8e0183a90884278db7f386b5692a2220a4", "61741f5aeb252f39c3031d11405305b6d10ce663c53bc3112705d7ad66c013d0", "6a3ac2c87e4e32a969921d1428525f09462770c349147aa8e9ab95f88c71ec71", "7458c48e3d15b8aaa7d575be60e1e4dd70348efcd9376656b72fecd55c59a4c3", "78bf638993219311377ce9836b3dc05f627a666d0dbc8cec37c0ff3c9ada673b", "8153705d6545fd9eb6dd2bc79301bff08825d2e2f716d5dced48daafc2d0b81f", "975c461accd14e89d71772e89108a050fa824c0b87a67d34cedf245f6681fc17", "9962957a27bfb70ab64103d0a7b42fa59c642fb4ed4cb75d0227b7bb9228535d", "adc3d3a3f9e59a38d923e90e20c4922fc62d1e5a03d083440468c6d8f3f1ae0a", "bbe3eb765a0b1e578833d243e2814b60c825b7fdbf4cdfe8e8aae8a08ed56ecf", "df8864824b1fe488cf778c3650ee59c3a0d8f42e53707de167ba6b4f7d35f133", "e45055c30a608076e31a9fcd780a956ed3b1fa20db61561b8d88b79259f526f7", "ee50c2142cdcf41995655d499a157d0a812fce55c97d9aad13bc1eef837ed36c"]
|
||||
pandocfilters = ["b3dd70e169bb5449e6bc6ff96aea89c5eea8c5f6ab5e207fc2f521a2cf4a0da9"]
|
||||
parso = ["63854233e1fadb5da97f2744b6b24346d2750b85965e7e399bec1620232797dc", "666b0ee4a7a1220f65d367617f2cd3ffddff3e205f3f16a0284df30e774c2a9c"]
|
||||
pexpect = ["2094eefdfcf37a1fdbfb9aa090862c1a4878e5c7e0e7e7088bdb511c558e5cd1", "9e2c1fd0e6ee3a49b28f95d4b33bc389c89b20af6a1255906e90ff1262ce62eb"]
|
||||
pickleshare = ["87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", "9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"]
|
||||
prometheus-client = ["71cd24a2b3eb335cb800c7159f423df1bd4dcd5171b234be15e3f31ec9f622da"]
|
||||
prompt-toolkit = ["11adf3389a996a6d45cc277580d0d53e8a5afd281d0c9ec71b28e6f121463780", "2519ad1d8038fd5fc8e770362237ad0364d16a7650fb5724af6997ed5515e3c1", "977c6583ae813a37dc1c2e1b715892461fcbdaa57f6fc62f33a528c4886c8f55"]
|
||||
prompt-toolkit = ["46642344ce457641f28fc9d1c9ca939b63dadf8df128b86f1b9860e59c73a5e4", "e7f8af9e3d70f514373bf41aa51bc33af12a6db3f71461ea47fea985defb2c31", "f15af68f66e664eaa559d4ac8a928111eebd5feda0c11738b5998045224829db"]
|
||||
ptyprocess = ["923f299cc5ad920c68f2bc0bc98b75b9f838b93b599941a6b63ddbc2476394c0", "d7cc528d76e76342423ca640335bd3633420dc1366f258cb31d05e865ef5ca1f"]
|
||||
pygments = ["71e430bc85c88a430f000ac1d9b331d2407f681d6f6aec95e8bcfbc3df5b0127", "881c4c157e45f30af185c1ffe8d549d48ac9127433f2c380c24b84572ad66297"]
|
||||
pyparsing = ["6f98a7b9397e206d78cc01df10131398f1c8b8510a2f4d97d9abd82e1aacdd80", "d9338df12903bbf5d65a0e4e87c2161968b10d2e489652bb47001d82a9b028b4"]
|
||||
pyrsistent = ["34b47fa169d6006b32e99d4b3c4031f155e6e68ebcc107d6454852e8e0ee6533"]
|
||||
python-dateutil = ["7e6584c74aeed623791615e26efd690f29817a27c73085b78e4bad02493df2fb", "c89805f6f4d64db21ed966fda138f8a5ed7a4fdbc1a8ee329ce1b74e3c74da9e"]
|
||||
pytz = ["26c0b32e437e54a18161324a2fca3c4b9846b74a8dccddd843113109e1116b32", "c894d57500a4cd2d5c71114aaab77dbab5eabd9022308ce5ac9bb93a60a6f0c7"]
|
||||
pywin32 = ["0443e9bb196e72480f50cbddc2cf98fbb858a77d02e281ba79489ea3287b36e9", "09bbe7cdb29eb40ab2e83f7a232eeeedde864be7a0622b70a90f456aad07a234", "0d8e0f47808798d320c983574c36c49db642678902933a210edd40157d206fd0", "0db7c9f4b93528afd080d35912a60be2f86a1d6c49c0a9cf9cedd106eed81ea3", "749e590875051661ecefbd9dfa957a485016de0f25e43f5e70f888ef1e29587b", "779d3e9d4b934f2445d2920c3941416d99af72eb7f7fd57a63576cc8aa540ad6", "7c89d2c11a31c7aaa16dc4d25054d7e0e99d6f6b24193cf62c83850484658c87", "81f7732b662c46274d7d8c411c905d53e71999cba95457a0686467c3ebc745ca", "9db1fb8830bfa99c5bfd335d4482c14db5c6f5028db3b006787ef4200206242b", "bd8d04835db28646d9e07fd0ab7c7b18bd90e89dfdc559e60389179495ef30da", "fc6822a68afd79e97b015985dd455767c72009b81bcd18957068626c43f11e75", "fe6cfc2045931866417740b575231c7e12d69d481643be1493487ad53b089959"]
|
||||
pywinpty = ["0e01321e53a230233358a6d608a1a8bc86c3882cf82769ba3c62ca387dc9cc51", "333e0bc5fca8ad9e9a1516ebedb2a65da38dc1f399f8b2ea57d6cccec1ff2cc8", "3ca3123aa6340ab31bbf9bd012b92e72f9ec905e4c9ee152cc997403e1778cd3", "44a6dddcf2abf402e22f87e2c9a341f7d0b296afbec3d28184c8de4d7f514ee4", "53d94d574c3d4da2df5b1c3ae728b8d90e4d33502b0388576bbd4ddeb4de0f77", "c3955f162c53dde968f3fc11361658f1d83b683bfe601d4b6f94bb01ea4300bc", "cec9894ecb34de3d7b1ca121dd98433035b9f8949b5095e84b103b349231509c", "dcd45912e2fe2e6f72cee997a4da6ed1ad2056165a277ce5ec7f7ac98dcdf667", "f2bcdd9a2ffd8b223752a971b3d377fb7bfed85f140ec9710f1218d760f2ccb7"]
|
||||
pyzmq = ["01636e95a88d60118479041c6aaaaf5419c6485b7b1d37c9c4dd424b7b9f1121", "021dba0d1436516092c624359e5da51472b11ba8edffa334218912f7e8b65467", "0463bd941b6aead494d4035f7eebd70035293dd6caf8425993e85ad41de13fa3", "05fd51edd81eed798fccafdd49c936b6c166ffae7b32482e4d6d6a2e196af4e6", "1fadc8fbdf3d22753c36d4172169d184ee6654f8d6539e7af25029643363c490", "22efa0596cf245a78a99060fe5682c4cd00c58bb7614271129215c889062db80", "260c70b7c018905ec3659d0f04db735ac830fe27236e43b9dc0532cf7c9873ef", "2762c45e289732d4450406cedca35a9d4d71e449131ba2f491e0bf473e3d2ff2", "2fc6cada8dc53521c1189596f1898d45c5f68603194d3a6453d6db4b27f4e12e", "343b9710a61f2b167673bea1974e70b5dccfe64b5ed10626798f08c1f7227e72", "41bf96d5f554598a0632c3ec28e3026f1d6591a50f580df38eff0b8067efb9e7", "856b2cdf7a1e2cbb84928e1e8db0ea4018709b39804103d3a409e5584f553f57", "85b869abc894672de9aecdf032158ea8ad01e2f0c3b09ef60e3687fb79418096", "93f44739db69234c013a16990e43db1aa0af3cf5a4b8b377d028ff24515fbeb3", "98fa3e75ccb22c0dc99654e3dd9ff693b956861459e8c8e8734dd6247b89eb29", "9a22c94d2e93af8bebd4fcf5fa38830f5e3b1ff0d4424e2912b07651eb1bafb4", "a7d3f4b4bbb5d7866ae727763268b5c15797cbd7b63ea17f3b0ec1067da8994b", "b645a49376547b3816433a7e2d2a99135c8e651e50497e7ecac3bd126e4bea16", "cf0765822e78cf9e45451647a346d443f66792aba906bc340f4e0ac7870c169c", "dc398e1e047efb18bfab7a8989346c6921a847feae2cad69fedf6ca12fb99e2c", "dd5995ae2e80044e33b5077fb4bc2b0c1788ac6feaf15a6b87a00c14b4bdd682", "e03fe5e07e70f245dc9013a9d48ae8cc4b10c33a1968039c5a3b64b5d01d083d", "ea09a306144dff2795e48439883349819bef2c53c0ee62a3c2fae429451843bb", "f4e37f33da282c3c319849877e34f97f0a3acec09622ec61b7333205bdd13b52", "fa4bad0d1d173dee3e8ef3c3eb6b2bb6c723fc7a661eeecc1ecb2fa99860dd45"]
|
||||
qtconsole = ["40d5d8e00d070ea266dbf6f0da74c4b9597b8b8d67cd8233c3ffd8debf923703", "b91e7412587e6cfe1644696538f73baf5611e837be5406633218443b2827c6d9"]
|
||||
scikit-learn = ["1ac81293d261747c25ea5a0ee8cd2bb1f3b5ba9ec05421a7f9f0feb4eb7c4116", "289361cf003d90b007f5066b27fcddc2d71324c82f1c88e316fedacb0dfdd516", "3a14d0abd4281fc3fd2149c486c3ec7cedad848b8d5f7b6f61522029d65a29f8", "5083a5e50d9d54548e4ada829598ae63a05651dd2bb319f821ffd9e8388384a6", "777cdd5c077b7ca9cb381396c81990cf41d2fa8350760d3cad3b4c460a7db644", "8bf2ff63da820d09b96b18e88f9625228457bff8df4618f6b087e12442ef9e15", "8d319b71c449627d178f21c57614e21747e54bb3fc9602b6f42906c3931aa320", "928050b65781fea9542dfe9bfe02d8c4f5530baa8472ec60782ea77347d2c836", "92c903613ff50e22aa95d589f9fff5deb6f34e79f7f21f609680087f137bb524", "ae322235def5ce8fae645b439e332e6f25d34bb90d6a6c8e261f17eb476457b7", "c1cd6b29eb1fd1cc672ac5e4a8be5f6ea936d094a3dc659ada0746d6fac750b1", "c41a6e2685d06bcdb0d26533af2540f54884d40db7e48baed6a5bcbf1a7cc642", "d07fcb0c0acbc043faa0e7cf4d2037f71193de3fb04fb8ed5c259b089af1cf5c", "d146d5443cda0a41f74276e42faf8c7f283fef49e8a853b832885239ef544e05", "eb2b7bed0a26ba5ce3700e15938b28a4f4513578d3e54a2156c29df19ac5fd01", "eb9b8ebf59eddd8b96366428238ab27d05a19e89c5516ce294abc35cea75d003"]
|
||||
scipy = ["0baa64bf42592032f6f6445a07144e355ca876b177f47ad8d0612901c9375bef", "243b04730d7223d2b844bda9500310eecc9eda0cba9ceaf0cde1839f8287dfa8", "2643cfb46d97b7797d1dbdb6f3c23fe3402904e3c90e6facfe6a9b98d808c1b5", "396eb4cdad421f846a1498299474f0a3752921229388f91f60dc3eda55a00488", "3ae3692616975d3c10aca6d574d6b4ff95568768d4525f76222fb60f142075b9", "435d19f80b4dcf67dc090cc04fde2c5c8a70b3372e64f6a9c58c5b806abfa5a8", "46a5e55850cfe02332998b3aef481d33f1efee1960fe6cfee0202c7dd6fc21ab", "75b513c462e58eeca82b22fc00f0d1875a37b12913eee9d979233349fce5c8b2", "7ccfa44a08226825126c4ef0027aa46a38c928a10f0a8a8483c80dd9f9a0ad44", "89dd6a6d329e3f693d1204d5562dd63af0fd7a17854ced17f9cbc37d5b853c8d", "a81da2fe32f4eab8b60d56ad43e44d93d392da228a77e229e59b51508a00299c", "a9d606d11eb2eec7ef893eb825017fbb6eef1e1d0b98a5b7fc11446ebeb2b9b1", "ac37eb652248e2d7cbbfd89619dce5ecfd27d657e714ed049d82f19b162e8d45", "cbc0611699e420774e945f6a4e2830f7ca2b3ee3483fca1aa659100049487dd5", "d02d813ec9958ed63b390ded463163685af6025cb2e9a226ec2c477df90c6957", "dd3b52e00f93fd1c86f2d78243dfb0d02743c94dd1d34ffea10055438e63b99d"]
|
||||
pygments = ["2a3fe295e54a20164a9df49c75fa58526d3be48e14aceba6d6b1e8ac0bfd6f1b", "98c8aa5a9f778fcd1026a17361ddaf7330d1b7c62ae97c3bb0ae73e0b9b6b0fe"]
|
||||
pyparsing = ["20f995ecd72f2a1f4bf6b072b63b22e2eb457836601e76d6e5dfcd75436acc1f", "4ca62001be367f01bd3e92ecbb79070272a9d4964dce6a48a82ff0b8bc7e683a"]
|
||||
pyrsistent = ["f3b280d030afb652f79d67c5586157c5c1355c9a58dfc7940566e28d28f3df1b"]
|
||||
python-dateutil = ["73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", "75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a"]
|
||||
pytz = ["1c557d7d0e871de1f5ccd5833f60fb2550652da6be2693c1e02300743d21500d", "b02c06db6cf09c12dd25137e563b31700d3b80fcc4ad23abb7a315f2789819be"]
|
||||
pywin32 = ["300a2db938e98c3e7e2093e4491439e62287d0d493fe07cce110db070b54c0be", "31f88a89139cb2adc40f8f0e65ee56a8c585f629974f9e07622ba80199057511", "371fcc39416d736401f0274dd64c2302728c9e034808e37381b5e1b22be4a6b0", "47a3c7551376a865dd8d095a98deba954a98f326c6fe3c72d8726ca6e6b15507", "4cdad3e84191194ea6d0dd1b1b9bdda574ff563177d2adf2b4efec2a244fa116", "7c1ae32c489dc012930787f06244426f8356e129184a02c25aef163917ce158e", "7f18199fbf29ca99dff10e1f09451582ae9e372a892ff03a28528a24d55875bc", "9b31e009564fb95db160f154e2aa195ed66bcc4c058ed72850d047141b36f3a2", "a929a4af626e530383a579431b70e512e736e9588106715215bf685a3ea508d4", "c054c52ba46e7eb6b7d7dfae4dbd987a1bb48ee86debe3f245a2884ece46e295", "f27cec5e7f588c3d1051651830ecc00294f90728d19c3bf6916e6dba93ea357c", "f4c5be1a293bae0076d93c88f37ee8da68136744588bc5e2be2f299a34ceb7aa"]
|
||||
pywinpty = ["1e525a4de05e72016a7af27836d512db67d06a015aeaf2fa0180f8e6a039b3c2", "2740eeeb59297593a0d3f762269b01d0285c1b829d6827445fcd348fb47f7e70", "2d7e9c881638a72ffdca3f5417dd1563b60f603e1b43e5895674c2a1b01f95a0", "33df97f79843b2b8b8bc5c7aaf54adec08cc1bae94ee99dfb1a93c7a67704d95", "5fb2c6c6819491b216f78acc2c521b9df21e0f53b9a399d58a5c151a3c4e2a2d", "8fc5019ff3efb4f13708bd3b5ad327589c1a554cb516d792527361525a7cb78c", "b358cb552c0f6baf790de375fab96524a0498c9df83489b8c23f7f08795e966b", "dbd838de92de1d4ebf0dce9d4d5e4fc38d0b7b1de837947a18b57a882f219139", "dd22c8efacf600730abe4a46c1388355ce0d4ab75dc79b15d23a7bd87bf05b48", "e854211df55d107f0edfda8a80b39dfc87015bef52a8fe6594eb379240d81df2"]
|
||||
pyzmq = ["01b588911714a6696283de3904f564c550c9e12e8b4995e173f1011755e01086", "0573b9790aa26faff33fba40f25763657271d26f64bffb55a957a3d4165d6098", "0fa82b9fc3334478be95a5566f35f23109f763d1669bb762e3871a8fa2a4a037", "1e59b7b19396f26e360f41411a5d4603356d18871049cd7790f1a7d18f65fb2c", "2a294b4f44201bb21acc2c1a17ff87fbe57b82060b10ddb00ac03e57f3d7fcfa", "355b38d7dd6f884b8ee9771f59036bcd178d98539680c4f87e7ceb2c6fd057b6", "4b73d20aec63933bbda7957e30add233289d86d92a0bb9feb3f4746376f33527", "4ec47f2b50bdb97df58f1697470e5c58c3c5109289a623e30baf293481ff0166", "5541dc8cad3a8486d58bbed076cb113b65b5dd6b91eb94fb3e38a3d1d3022f20", "6fca7d11310430e751f9832257866a122edf9d7b635305c5d8c51f74a5174d3d", "7369656f89878455a5bcd5d56ca961884f5d096268f71c0750fc33d6732a25e5", "75d73ee7ca4b289a2a2dfe0e6bd8f854979fc13b3fe4ebc19381be3b04e37a4a", "80c928d5adcfa12346b08d31360988d843b54b94154575cccd628f1fe91446bc", "83ce18b133dc7e6789f64cb994e7376c5aa6b4aeced993048bf1d7f9a0fe6d3a", "8b8498ceee33a7023deb2f3db907ca41d6940321e282297327a9be41e3983792", "8c69a6cbfa94da29a34f6b16193e7c15f5d3220cb772d6d17425ff3faa063a6d", "8ff946b20d13a99dc5c21cb76f4b8b253eeddf3eceab4218df8825b0c65ab23d", "972d723a36ab6a60b7806faa5c18aa3c080b7d046c407e816a1d8673989e2485", "a6c9c42bbdba3f9c73aedbb7671815af1943ae8073e532c2b66efb72f39f4165", "aa3872f2ebfc5f9692ef8957fe69abe92d905a029c0608e45ebfcd451ad30ab5", "cf08435b14684f7f2ca2df32c9df38a79cdc17c20dc461927789216cb43d8363", "d30db4566177a6205ed1badb8dbbac3c043e91b12a2db5ef9171b318c5641b75", "d5ac84f38575a601ab20c1878818ffe0d09eb51d6cb8511b636da46d0fd8949a", "e37f22eb4bfbf69cd462c7000616e03b0cdc1b65f2d99334acad36ea0e4ddf6b", "e6549dd80de7b23b637f586217a4280facd14ac01e9410a037a13854a6977299", "ed6205ca0de035f252baa0fd26fdd2bc8a8f633f92f89ca866fd423ff26c6f25", "efdde21febb9b5d7a8e0b87ea2549d7e00fda1936459cfb27fb6fca0c36af6c1", "f4e72646bfe79ff3adbf1314906bbd2d67ef9ccc71a3a98b8b2ccbcca0ab7bec"]
|
||||
qtconsole = ["4de25b8895957d23ceacf2526b6f0a76da4e60e60115611930d387c853f3cb08", "654f423662e7dfe6a9b26fac8ec76aedcf742c339909ac49f1f0c1a1b744bcd1"]
|
||||
scikit-learn = ["0098757148ee055796370ca5f4c5887940c46f87a4989f7ca9be6a2c42803ef1", "06b78e6f62b6a89b00acc873ee823c99ddf4ee1d461a02ce0d22276a17d2c13e", "07aaa1d639759ebfa33e747022d3fde880eb4343c6a7ddd916478be3a6b98d67", "087fffad9e7604bbbaa078bdfdf6919a96495f0eb742c70dd900820224c20a0a", "09b81c1145437fd5d25a2e8419621185c22b05450a7c77ad0a568194bbd65963", "1632967d8fbae09e6090ef6bd632681c5fc64b95378a858c59fd37b57357425e", "3004fe60aca1f20b80d13698e5d9123e0d500062b548c733a9f230ab943ce334", "314abf60c073c48a1e95feaae9f3ca47a2139bd77cebb5b877c23a45c9e03012", "594e693aef1dca29ab5823781f8db15815f257295cff52868f0602553ee5c66b", "5e426ed57851e60d2edb63a60888cc85e47b129f69f9c26eb872d8b7581c4c63", "63b7c4ddd5a6ed504ee7a6d2670dc8df478b70c4e31a2d165de82c4d6f4b6e1b", "8049f6330bbd1f8dd8db587fbfb69f8150efb36a22ddb4d178a0479c027496c5", "8509da5e03155c872d2e646763f4d42cfbdbd460dad9b803dba7602c32b7a605", "8c524b4567bb4d5ea172aa0d8212fe1b06898c4ad130ac443bbe0e5f4bd9d104", "ab3f791d5663bcc8137ea2339cbbd81907d2c7f51da6ef0402a6a37ef74bd857", "ac81facbda6ac2296e5d7b7518dc15d93858fda34f7d7877a5e9bbc2c8b0b5aa", "bc48a36424a6af3c353827a5d68abdad132f5ca843d721852fdf8b2e8d6277d3", "c252cfb331e15188d731253cffaa04a87fb0ea7aad5bff9f85229b5b883c8290", "ca60076ba9e38ed936a0e7fb5a0d18cffe375840d9dc4e562df7e0f5ee066d4d", "df3111e9a6d1b5009b45d10e98276e1e7fafefc538a6496e4e80042bba27cf68", "e321baa1210d20ac9751f4f8ec5e64affc44c93992a7e61611663884cd3e4b5a"]
|
||||
scipy = ["0b8c9dc042b9a47912b18b036b4844029384a5b8d89b64a4901ac3e06876e5f6", "18ad034be955df046b5a27924cdb3db0e8e1d76aaa22c635403fe7aee17f1482", "225d0b5e140bb66df23d438c7b535303ce8e533f94454f4e5bde5f8d109103ea", "2f690ba68ed7caa7c30b6dc48c1deed22c78f3840fa4736083ef4f2bd8baa19e", "4b8746f4a755bdb2eeb39d6e253a60481e165cfd74fdfb54d27394bd2c9ec8ac", "4ba2ce1a58fe117e993cf316a149cf9926c7c5000c0cdc4bc7c56ae8325612f6", "546f0dc020b155b8711159d53c87b36591d31f3327c47974a4fb6b50d91589c2", "583f2ccd6a112656c9feb2345761d2b19e9213a094cfced4e7d2c1cae4173272", "64bf4e8ae0db2d42b58477817f648d81e77f0b381d0ea4427385bba3f959380a", "7be424ee09bed7ced36c9457f99c826ce199fd0c0f5b272cf3d098ff7b29e3ae", "869465c7ff89fc0a1e2ea1642b0c65f1b3c05030f3a4c0d53d6a57b2dba7c242", "884e619821f47eccd42979488d10fa1e15dbe9f3b7660b1c8c928d203bd3c1a3", "a42b0d02150ef4747e225c31c976a304de5dc8202ec35a27111b7bb8176e5f13", "a70308bb065562afb936c963780deab359966d71ab4f230368b154dde3136ea4", "b01ea5e4cf95a93dc335089f8fbe97852f56fdb74afff238cbdf09793103b6b7", "b7b8cf45f9a48f23084f19deb9384a1cccb5e92fbc879b12f97dc4d56fb2eb92", "bb0899d3f8b9fe8ef95b79210cf0deb6709542889fadaa438eeb3a28001e09e7", "c008f1b58f99f1d1cc546957b3effe448365e0a217df1f1894e358906e91edad", "cfee99d085d562a7e3c4afe51ac1fe9b434363489e565a130459307f30077973", "dfcb0f0a2d8e958611e0b56536285bb435f03746b6feac0e29f045f7c6caf164", "f5d47351aeb1cb6bda14a8908e56648926a6b2d714f89717c71f7ada41282141"]
|
||||
send2trash = ["60001cc07d707fe247c94f74ca6ac0d3255aabcb930529690897ca2a39db28b2", "f1691922577b6fa12821234aeb57599d887c4900b9ca537948d2dac34aea888b"]
|
||||
six = ["3350809f0555b11f552448330d0b52d5f24c91a322ea4a15ef22629740f3761c", "d16a0141ec1a18405cd4ce8b4613101da75da0e9a7aec5bdd4fa804d0e0eba73"]
|
||||
terminado = ["d9d012de63acb8223ac969c17c3043337c2fcfd28f3aea1ee429b345d01ef460", "de08e141f83c3a0798b050ecb097ab6259c3f0331b2f7b7750c9075ced2c20c2"]
|
||||
testpath = ["46c89ebb683f473ffe2aab0ed9f12581d4d078308a3cb3765d79c6b2317b0109", "b694b3d9288dbd81685c5d2e7140b81365d46c29f5db4bc659de5aa6b98780f8"]
|
||||
six = ["1f1b7d42e254082a9db6279deae68afb421ceba6158efa6131de7b3003ee93fd", "30f610279e8b2578cab6db20741130331735c781b56053c59c4076da27f06b66"]
|
||||
terminado = ["4804a774f802306a7d9af7322193c5390f1da0abb429e082a10ef1d46e6fb2c2", "a43dcb3e353bc680dd0783b1d9c3fc28d529f190bc54ba9a229f72fe6e7a54d7"]
|
||||
testpath = ["60e0a3261c149755f4399a1fff7d37523179a70fdc3abdf78de9fc2604aeec7e", "bfcf9411ef4bf3db7579063e0546938b1edda3d69f4e1fb8756991f5951f85d4"]
|
||||
tornado = ["349884248c36801afa19e342a77cc4458caca694b0eda633f5878e458a44cb2c", "398e0d35e086ba38a0427c3b37f4337327231942e731edaa6e9fd1865bbd6f60", "4e73ef678b1a859f0cb29e1d895526a20ea64b5ffd510a2307b5998c7df24281", "559bce3d31484b665259f50cd94c5c28b961b09315ccd838f284687245f416e5", "abbe53a39734ef4aba061fca54e30c6b4639d3e1f59653f0da37a0003de148c7", "c845db36ba616912074c5b1ee897f8e0124df269468f25e4fe21fe72f6edd7a9", "c9399267c926a4e7c418baa5cbe91c7d1cf362d505a1ef898fde44a07c9dd8a5"]
|
||||
traitlets = ["9c4bd2d267b7153df9152698efb1050a5d84982d3384a37b2c1f7723ba3e7835", "c6cb5e6f57c5a9bdaa40fa71ce7b4af30298fbab9ece9815b5d995ab6217c7d9"]
|
||||
traitlets = ["70b4c6a1d9019d7b4f6846832288f86998aa3b9207c6821f3578a6a6a467fe44", "d023ee369ddd2763310e4c3eae1ff649689440d4ae59d7485eb4cfbbe3e359f7"]
|
||||
wcwidth = ["3df37372226d6e63e1b1e1eda15c594bca98a22d33a23832a90998faa96bc65e", "f4ebe71925af7b40a864553f761ed559b43544f8f71746c2d756c7fe788ade7c"]
|
||||
webencodings = ["a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", "b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923"]
|
||||
widgetsnbextension = ["079f87d87270bce047512400efd70238820751a11d2d8cb137a5a5bdbaf255c7", "bd314f8ceb488571a5ffea6cc5b9fc6cba0adaf88a9d2386b93a489751938bcd"]
|
||||
zipp = ["3718b1cbcd963c7d4c5511a8240812904164b7f381b647143a89d3b98f9bcd8e", "f06903e9f1f43b12d371004b4ac7b06ab39a44adc747266928ae6debfa7b3335"]
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
[tool.poetry]
|
||||
name = "cscm-workshop-intro-machine-learning"
|
||||
name = "workshop-machine-learning-for-beginners"
|
||||
version = "0.1.0"
|
||||
description = "An introductory workshop on machine learning for WHU's Campus for Supply Chain Management"
|
||||
description = "An introductory workshop on machine learning"
|
||||
authors = ["Alexander Hess <alexander@webartifex.biz>"]
|
||||
license = "MIT"
|
||||
|
||||
|
@ -11,7 +11,7 @@ jupyter = "^1.0"
|
|||
numpy = "^1.17"
|
||||
matplotlib = "^3.1"
|
||||
pandas = "^0.25"
|
||||
scikit-learn = "^0.21"
|
||||
scikit-learn = "^0.22"
|
||||
|
||||
[tool.poetry.dev-dependencies]
|
||||
|
||||
|
|
|
@ -1,53 +1,56 @@
|
|||
attrs==19.2.0
|
||||
attrs==19.3.0
|
||||
backcall==0.1.0
|
||||
bleach==3.1.0
|
||||
cycler==0.10.0
|
||||
decorator==4.4.0
|
||||
decorator==4.4.1
|
||||
defusedxml==0.6.0
|
||||
entrypoints==0.3
|
||||
ipykernel==5.1.2
|
||||
ipython==7.8.0
|
||||
importlib-metadata==1.2.0
|
||||
ipykernel==5.1.3
|
||||
ipython==7.10.1
|
||||
ipython-genutils==0.2.0
|
||||
ipywidgets==7.5.1
|
||||
jedi==0.15.1
|
||||
Jinja2==2.10.1
|
||||
Jinja2==2.10.3
|
||||
joblib==0.14.0
|
||||
jsonschema==3.0.2
|
||||
jsonschema==3.2.0
|
||||
jupyter==1.0.0
|
||||
jupyter-client==5.3.3
|
||||
jupyter-client==5.3.4
|
||||
jupyter-console==6.0.0
|
||||
jupyter-core==4.5.0
|
||||
jupyter-core==4.6.1
|
||||
kiwisolver==1.1.0
|
||||
MarkupSafe==1.1.1
|
||||
matplotlib==3.1.1
|
||||
matplotlib==3.1.2
|
||||
mistune==0.8.4
|
||||
nbconvert==5.6.0
|
||||
more-itertools==8.0.0
|
||||
nbconvert==5.6.1
|
||||
nbformat==4.4.0
|
||||
notebook==6.0.1
|
||||
numpy==1.17.2
|
||||
pandas==0.25.1
|
||||
notebook==6.0.2
|
||||
numpy==1.17.4
|
||||
pandas==0.25.3
|
||||
pandocfilters==1.4.2
|
||||
parso==0.5.1
|
||||
pexpect==4.7.0
|
||||
pickleshare==0.7.5
|
||||
prometheus-client==0.7.1
|
||||
prompt-toolkit==2.0.9
|
||||
prompt-toolkit==2.0.10
|
||||
ptyprocess==0.6.0
|
||||
Pygments==2.4.2
|
||||
pyparsing==2.4.2
|
||||
pyrsistent==0.15.4
|
||||
python-dateutil==2.8.0
|
||||
pytz==2019.2
|
||||
pyzmq==18.1.0
|
||||
qtconsole==4.5.5
|
||||
scikit-learn==0.21.3
|
||||
scipy==1.3.1
|
||||
Pygments==2.5.2
|
||||
pyparsing==2.4.5
|
||||
pyrsistent==0.15.6
|
||||
python-dateutil==2.8.1
|
||||
pytz==2019.3
|
||||
pyzmq==18.1.1
|
||||
qtconsole==4.6.0
|
||||
scikit-learn==0.22
|
||||
scipy==1.3.3
|
||||
Send2Trash==1.5.0
|
||||
six==1.12.0
|
||||
terminado==0.8.2
|
||||
testpath==0.4.2
|
||||
six==1.13.0
|
||||
terminado==0.8.3
|
||||
testpath==0.4.4
|
||||
tornado==6.0.3
|
||||
traitlets==4.3.2
|
||||
traitlets==4.3.3
|
||||
wcwidth==0.1.7
|
||||
webencodings==0.5.1
|
||||
widgetsnbextension==3.5.1
|
||||
zipp==0.6.0
|
||||
|
|
Loading…
Reference in a new issue