diff --git a/02_a_first_example.ipynb b/02_a_first_example.ipynb
new file mode 100644
index 0000000..5339d00
--- /dev/null
+++ b/02_a_first_example.ipynb
@@ -0,0 +1,1185 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: A first Example - Classifying Flowers"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The purpose of this notebook is to look at a first example of a typical data science application, namely **statistical learning**, which is often referred to by its more well-known name **machine learning**. To do so, we look at a very popular example involving the classification of flowers. Albeit simplistic and almost boring in its kind, the example is a rather good one to look at from a beginner's point of view as it does not involve too many decision variables. That makes understanding technicalities and visualizing the data set a lot easier."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## What is Machine Learning"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Let's at first review a couple of generic definitions to get started.\n",
+ "\n",
+ "Machine learning is the process of **extracting knowledge from data** in an automated fashion.\n",
+ "\n",
+ "Typical use cases regard making predictions on new and unseen data or simply understanding a given dataset better by finding patterns.\n",
+ "\n",
+ "Central to machine learning is the idea of **automating** the **decision making** from data **without** the user specifying **explicit rules** how these decisions should be made.\n",
+ "\n",
+ "That is in direct opposition to what we learned in the \"Expressing Logic\" section in Chapter 0, where we learned how to implement decision criterions \"by hand\" with the `if` statement."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ ""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Example Applications"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ ""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Types of Machine Learning"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Concete machine learning algorithms are commonly classified into three broad categories that may overlap as well:"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ ""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "- **Supervised** (focus of the example in this notebook): Each entry in the dataset comes with a **label**. Examples are a list of emails where spam mail is already marked as such or a sample of handwritten digits. The goal is to use the historic data to make predictions.\n",
+ "\n",
+ "- **Unsupervised**: There is no desired output associated with a data entry. In a sense, one can think of unsupervised learning as a means of discovering labels from the data itself. A popular example is the clustering of customer data.\n",
+ "\n",
+ "- **Reinforcement**: Conceptually, this can be seen as \"learning by doing\". Some kind of **reward function** tells how good a predicted outcome is. A rather recent and extremely popular example for his approach is the Alpha Go machine."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Types of Supervised Learning"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Algorithms from the supervised learning category are often broken down further into classification and regression:"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ ""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "- In **classification** tasks, the labels are *discrete*, such as \"spam\" or \"no spam\" for emails. Often, labels are nominal (e.g., colors of something), or ordinal (e.g., T-shirt sizes in S, M, or L).\n",
+ "- In **regression**, the labels are *continuous*. For example, given a person's age, education, and position, infer his/her salary."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example: Iris Flower Classification"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "In the example, we are given measurments regarding the size of various parts of the so-called Iris flower kind. A concrete flower always belongs to one of three distinct special Iris classes. This example application is about classifying a given flower into one of the three classes by only looking at the measurements."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ ""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Importing the Data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The `sklearn` library provides several sample datasets, among which is also the Iris dataset.\n",
+ "\n",
+ "In a tabular visualization, the dataset could be portrayed somewhat like this:\n",
+ "\n",
+ "\n",
+ "\n",
+ "However, the data object imported from `sklearn` is organized slightly different. In particular, the so-called **features** are separated from the **labels**."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.datasets import load_iris"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "iris = load_iris()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Using Python's `dir()` function we can inspect the data object, i.e. find out what **attributes** it has."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['DESCR',\n",
+ " 'data',\n",
+ " 'feature_names',\n",
+ " 'filename',\n",
+ " 'frame',\n",
+ " 'target',\n",
+ " 'target_names']"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "dir(iris)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "`iris.data` provides us with a `numpy.ndarray`, where the first dimension equals the number of observed flowers (i.e., the **instances**) and the second dimension lists the various features of a flower."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([[5.1, 3.5, 1.4, 0.2],\n",
+ " [4.9, 3. , 1.4, 0.2],\n",
+ " [4.7, 3.2, 1.3, 0.2],\n",
+ " [4.6, 3.1, 1.5, 0.2],\n",
+ " [5. , 3.6, 1.4, 0.2],\n",
+ " [5.4, 3.9, 1.7, 0.4],\n",
+ " [4.6, 3.4, 1.4, 0.3],\n",
+ " [5. , 3.4, 1.5, 0.2],\n",
+ " [4.4, 2.9, 1.4, 0.2],\n",
+ " [4.9, 3.1, 1.5, 0.1],\n",
+ " [5.4, 3.7, 1.5, 0.2],\n",
+ " [4.8, 3.4, 1.6, 0.2],\n",
+ " [4.8, 3. , 1.4, 0.1],\n",
+ " [4.3, 3. , 1.1, 0.1],\n",
+ " [5.8, 4. , 1.2, 0.2],\n",
+ " [5.7, 4.4, 1.5, 0.4],\n",
+ " [5.4, 3.9, 1.3, 0.4],\n",
+ " [5.1, 3.5, 1.4, 0.3],\n",
+ " [5.7, 3.8, 1.7, 0.3],\n",
+ " [5.1, 3.8, 1.5, 0.3],\n",
+ " [5.4, 3.4, 1.7, 0.2],\n",
+ " [5.1, 3.7, 1.5, 0.4],\n",
+ " [4.6, 3.6, 1. , 0.2],\n",
+ " [5.1, 3.3, 1.7, 0.5],\n",
+ " [4.8, 3.4, 1.9, 0.2],\n",
+ " [5. , 3. , 1.6, 0.2],\n",
+ " [5. , 3.4, 1.6, 0.4],\n",
+ " [5.2, 3.5, 1.5, 0.2],\n",
+ " [5.2, 3.4, 1.4, 0.2],\n",
+ " [4.7, 3.2, 1.6, 0.2],\n",
+ " [4.8, 3.1, 1.6, 0.2],\n",
+ " [5.4, 3.4, 1.5, 0.4],\n",
+ " [5.2, 4.1, 1.5, 0.1],\n",
+ " [5.5, 4.2, 1.4, 0.2],\n",
+ " [4.9, 3.1, 1.5, 0.2],\n",
+ " [5. , 3.2, 1.2, 0.2],\n",
+ " [5.5, 3.5, 1.3, 0.2],\n",
+ " [4.9, 3.6, 1.4, 0.1],\n",
+ " [4.4, 3. , 1.3, 0.2],\n",
+ " [5.1, 3.4, 1.5, 0.2],\n",
+ " [5. , 3.5, 1.3, 0.3],\n",
+ " [4.5, 2.3, 1.3, 0.3],\n",
+ " [4.4, 3.2, 1.3, 0.2],\n",
+ " [5. , 3.5, 1.6, 0.6],\n",
+ " [5.1, 3.8, 1.9, 0.4],\n",
+ " [4.8, 3. , 1.4, 0.3],\n",
+ " [5.1, 3.8, 1.6, 0.2],\n",
+ " [4.6, 3.2, 1.4, 0.2],\n",
+ " [5.3, 3.7, 1.5, 0.2],\n",
+ " [5. , 3.3, 1.4, 0.2],\n",
+ " [7. , 3.2, 4.7, 1.4],\n",
+ " [6.4, 3.2, 4.5, 1.5],\n",
+ " [6.9, 3.1, 4.9, 1.5],\n",
+ " [5.5, 2.3, 4. , 1.3],\n",
+ " [6.5, 2.8, 4.6, 1.5],\n",
+ " [5.7, 2.8, 4.5, 1.3],\n",
+ " [6.3, 3.3, 4.7, 1.6],\n",
+ " [4.9, 2.4, 3.3, 1. ],\n",
+ " [6.6, 2.9, 4.6, 1.3],\n",
+ " [5.2, 2.7, 3.9, 1.4],\n",
+ " [5. , 2. , 3.5, 1. ],\n",
+ " [5.9, 3. , 4.2, 1.5],\n",
+ " [6. , 2.2, 4. , 1. ],\n",
+ " [6.1, 2.9, 4.7, 1.4],\n",
+ " [5.6, 2.9, 3.6, 1.3],\n",
+ " [6.7, 3.1, 4.4, 1.4],\n",
+ " [5.6, 3. , 4.5, 1.5],\n",
+ " [5.8, 2.7, 4.1, 1. ],\n",
+ " [6.2, 2.2, 4.5, 1.5],\n",
+ " [5.6, 2.5, 3.9, 1.1],\n",
+ " [5.9, 3.2, 4.8, 1.8],\n",
+ " [6.1, 2.8, 4. , 1.3],\n",
+ " [6.3, 2.5, 4.9, 1.5],\n",
+ " [6.1, 2.8, 4.7, 1.2],\n",
+ " [6.4, 2.9, 4.3, 1.3],\n",
+ " [6.6, 3. , 4.4, 1.4],\n",
+ " [6.8, 2.8, 4.8, 1.4],\n",
+ " [6.7, 3. , 5. , 1.7],\n",
+ " [6. , 2.9, 4.5, 1.5],\n",
+ " [5.7, 2.6, 3.5, 1. ],\n",
+ " [5.5, 2.4, 3.8, 1.1],\n",
+ " [5.5, 2.4, 3.7, 1. ],\n",
+ " [5.8, 2.7, 3.9, 1.2],\n",
+ " [6. , 2.7, 5.1, 1.6],\n",
+ " [5.4, 3. , 4.5, 1.5],\n",
+ " [6. , 3.4, 4.5, 1.6],\n",
+ " [6.7, 3.1, 4.7, 1.5],\n",
+ " [6.3, 2.3, 4.4, 1.3],\n",
+ " [5.6, 3. , 4.1, 1.3],\n",
+ " [5.5, 2.5, 4. , 1.3],\n",
+ " [5.5, 2.6, 4.4, 1.2],\n",
+ " [6.1, 3. , 4.6, 1.4],\n",
+ " [5.8, 2.6, 4. , 1.2],\n",
+ " [5. , 2.3, 3.3, 1. ],\n",
+ " [5.6, 2.7, 4.2, 1.3],\n",
+ " [5.7, 3. , 4.2, 1.2],\n",
+ " [5.7, 2.9, 4.2, 1.3],\n",
+ " [6.2, 2.9, 4.3, 1.3],\n",
+ " [5.1, 2.5, 3. , 1.1],\n",
+ " [5.7, 2.8, 4.1, 1.3],\n",
+ " [6.3, 3.3, 6. , 2.5],\n",
+ " [5.8, 2.7, 5.1, 1.9],\n",
+ " [7.1, 3. , 5.9, 2.1],\n",
+ " [6.3, 2.9, 5.6, 1.8],\n",
+ " [6.5, 3. , 5.8, 2.2],\n",
+ " [7.6, 3. , 6.6, 2.1],\n",
+ " [4.9, 2.5, 4.5, 1.7],\n",
+ " [7.3, 2.9, 6.3, 1.8],\n",
+ " [6.7, 2.5, 5.8, 1.8],\n",
+ " [7.2, 3.6, 6.1, 2.5],\n",
+ " [6.5, 3.2, 5.1, 2. ],\n",
+ " [6.4, 2.7, 5.3, 1.9],\n",
+ " [6.8, 3. , 5.5, 2.1],\n",
+ " [5.7, 2.5, 5. , 2. ],\n",
+ " [5.8, 2.8, 5.1, 2.4],\n",
+ " [6.4, 3.2, 5.3, 2.3],\n",
+ " [6.5, 3. , 5.5, 1.8],\n",
+ " [7.7, 3.8, 6.7, 2.2],\n",
+ " [7.7, 2.6, 6.9, 2.3],\n",
+ " [6. , 2.2, 5. , 1.5],\n",
+ " [6.9, 3.2, 5.7, 2.3],\n",
+ " [5.6, 2.8, 4.9, 2. ],\n",
+ " [7.7, 2.8, 6.7, 2. ],\n",
+ " [6.3, 2.7, 4.9, 1.8],\n",
+ " [6.7, 3.3, 5.7, 2.1],\n",
+ " [7.2, 3.2, 6. , 1.8],\n",
+ " [6.2, 2.8, 4.8, 1.8],\n",
+ " [6.1, 3. , 4.9, 1.8],\n",
+ " [6.4, 2.8, 5.6, 2.1],\n",
+ " [7.2, 3. , 5.8, 1.6],\n",
+ " [7.4, 2.8, 6.1, 1.9],\n",
+ " [7.9, 3.8, 6.4, 2. ],\n",
+ " [6.4, 2.8, 5.6, 2.2],\n",
+ " [6.3, 2.8, 5.1, 1.5],\n",
+ " [6.1, 2.6, 5.6, 1.4],\n",
+ " [7.7, 3. , 6.1, 2.3],\n",
+ " [6.3, 3.4, 5.6, 2.4],\n",
+ " [6.4, 3.1, 5.5, 1.8],\n",
+ " [6. , 3. , 4.8, 1.8],\n",
+ " [6.9, 3.1, 5.4, 2.1],\n",
+ " [6.7, 3.1, 5.6, 2.4],\n",
+ " [6.9, 3.1, 5.1, 2.3],\n",
+ " [5.8, 2.7, 5.1, 1.9],\n",
+ " [6.8, 3.2, 5.9, 2.3],\n",
+ " [6.7, 3.3, 5.7, 2.5],\n",
+ " [6.7, 3. , 5.2, 2.3],\n",
+ " [6.3, 2.5, 5. , 1.9],\n",
+ " [6.5, 3. , 5.2, 2. ],\n",
+ " [6.2, 3.4, 5.4, 2.3],\n",
+ " [5.9, 3. , 5.1, 1.8]])"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "iris.data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "To find out what the four features are, we can list them:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "['sepal length (cm)',\n",
+ " 'sepal width (cm)',\n",
+ " 'petal length (cm)',\n",
+ " 'petal width (cm)']"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "iris.feature_names"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Similarly, we can also print the flowers' labels (a.k.a. targets):"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
+ " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
+ " 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
+ " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
+ " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n",
+ " 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n",
+ " 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "iris.target"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The three flower classes are encoded with integers. Let's show the corresponding names:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array(['setosa', 'versicolor', 'virginica'], dtype='"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "feature_index = 2\n",
+ "colors = ['blue', 'red', 'green']\n",
+ "\n",
+ "for label, color in zip(range(len(iris.target_names)), colors):\n",
+ " plt.hist(\n",
+ " iris.data[iris.target==label, feature_index], \n",
+ " label=iris.target_names[label],\n",
+ " color=color,\n",
+ " )\n",
+ "\n",
+ "plt.xlabel(iris.feature_names[feature_index])\n",
+ "plt.legend(loc='upper right')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Also, we can draw scatter plots of two features."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEGCAYAAACO8lkDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAzn0lEQVR4nO3de3xcdZn48c+TSUobLqVCd60tTcoqRdq09MKlVuSSoixW1B/U4kYoF4kkAltZUNyubUWj66oUdWkxKoImy2WL7gKCSruichFoa9vQQgUhKW3RXpBQaAtN+/z+OCftzGRmMudkzpkzZ5736zWvzJw5l+85J5lv5jzPeb6iqhhjjDHJKordAGOMMdFjnYMxxpg+rHMwxhjTh3UOxhhj+rDOwRhjTB+VxW6AV0cffbTW1tYWuxnGGFNSVq5cuV1Vh+c7f8l1DrW1taxYsaLYzTDGmJIiIl1e5g/0spKIfE5E1onIMyJyp4gMTnv/EBG5W0ReEJEnRaQ2yPYYY4zJT2Cdg4iMBK4BpqrqeCABXJg22+XA31T13cAi4BtBtccYY0z+gg5IVwJDRKQSqAa2pL3/UeAO9/lSoF5EJOA2GWOM6UdgMQdV3Swi3wI2AruBX6vqr9NmGwm87M7fIyLdwFHA9uSZRKQRaAQYPXp0n23t3buXTZs2sWfPnoLvRzkaPHgwo0aNoqqqqthNMcYUSWCdg4gMw/lmMAZ4DfhvEfmUqrZ5XZeqtgKtAFOnTu1TDGrTpk0cfvjh1NbWYl88BkZV2bFjB5s2bWLMmDHFbo4xpkiCvKw0A3hJVbep6l7gZ8D70ubZDBwD4F56Ggrs8LqhPXv2cNRRR1nHUAAiwlFHHWXfwkyg2jvaqb25loovV1B7cy3tHe3FbpJJE2TnsBE4VUSq3ThCPfBs2jz3AXPc5xcA/6c+y8Rax1A4dixNkNo72mm8v5Gu7i4Upau7i8b7G62DiJjAOgdVfRInyLwK6HC31SoiN4rIee5sPwKOEpEXgGuBG4JqjzEmGuYtn8euvbtSpu3au4t5y+cVqUUmk0BvglPVBcCCtMnzk97fA8wKsg1RdPvtt/PBD36Qd73rXcVuijGh29i90dN0UxxWW6kIbr/9drZsSc/qNaY8jB7aN+Mw13RTHGXZObS3Q20tVFQ4P9sLcKnzzTff5MMf/jATJ05k/Pjx3H333axcuZLTTz+dKVOm8KEPfYhXXnmFpUuXsmLFChoaGjjxxBPZvXs3y5cvZ9KkSdTV1XHZZZfx1ltvAXDDDTdwwgknMGHCBK677joA7r//fk455RQmTZrEjBkz+Otf/zrwxhsTopb6FqqrqlOmVVdV01LfUqQWmYxUtaQeU6ZM0XTr16/vMy2btjbV6mpVOPiornamD8TSpUv105/+9IHXr732mk6bNk23bt2qqqp33XWXXnrppaqqevrpp+vTTz+tqqq7d+/WUaNG6YYNG1RV9aKLLtJFixbp9u3b9bjjjtP9+/erqurf/vY3VVV99dVXD0z7wQ9+oNdee+3AGp6Fl2NqjFdta9u0ZlGNykLRmkU12rZ2gH+Apl/ACvXwWVtyhfcGat482JUaC2PXLmd6Q4P/9dbV1fEv//IvfOELX2DmzJkMGzaMZ555hrPPPhuAffv2MWLEiD7LbdiwgTFjxnDccccBMGfOHG655RauuuoqBg8ezOWXX87MmTOZOXMm4NzTMXv2bF555RXefvttuxfBlKSGugYa6gbwB2cCV3aXlTZmiXllm56v4447jlWrVlFXV8e//du/ce+99zJu3DhWr17N6tWr6ejo4Ne/Tr9BPLvKykqeeuopLrjgAh544AHOOeccAK6++mquuuoqOjo6+P73v2/3IxhjAlF2nUOG6hs5p+dry5YtVFdX86lPfYrrr7+eJ598km3btvHEE08ATomPdevWAXD44Yezc+dOAMaOHUtnZycvvPACAD/96U85/fTTeeONN+ju7ubcc89l0aJFrFmzBoDu7m5GjhwJwB133JHeDGOMKYiyu6zU0gKNjamXlqqrnekD0dHRwfXXX09FRQVVVVUsWbKEyspKrrnmGrq7u+np6WHu3LmMGzeOSy65hCuvvJIhQ4bwxBNP8OMf/5hZs2bR09PDSSedxJVXXsmrr77KRz/6Ufbs2YOqctNNNwGwcOFCZs2axbBhwzjrrLN46aWXBtZwY4zJxEuAIgqPgQakVZ3gc02Nqojzc6DB6Dh6evXTgQcMwwhKWuAzmuy8hA8LSPevoWFgwee427FrBzt276Cr2xk4qre8AVCwIGJvCYXeO2VLdRvGOzsvpaHsYg6mf5t3bkbTSlwVurxBGCUUrExDNNl5KQ3WOZg+3t73dsbphSxvEEYJBSvTEE12XkqDdQ6mj0GJQRmnF7K8QRglFKxMQzTZeSkN1jmYPkYePrJP2e5ClzcIo4SClWmIJjsvpcE6B9PHUdVHcdSQo6gZWoMg1AytofUjrQUNFjbUNdD6kdbAtzFn4hwSkgAgIQnmTJxjQc8iC+Pcm4GT9MBj1E2dOlVXrFiRMu3ZZ5/lve99b5FaFIz58+fzgQ98gBkzZnha7pFHHuFb3/oWDzzwwIC2H4djmp4VA85/qPZBZMqRiKxU1an5zm/fHIpIVdm/f3/G92688UbPHYMfPT09gW+jWCwrxhj/yrNzKHDN7htuuIFbbrnlwOuFCxfyrW99i29+85ucdNJJTJgwgQULnDGPOjs7GTt2LBdffDHjx4/n5Zdf5pJLLmH8+PHU1dWxaNEiAC655BKWLl0KwNNPP8373vc+Jk6cyMknn8zOnTvZs2cPl156KXV1dUyaNInf/OY3fdr16quv8rGPfYwJEyZw6qmnsnbt2gPtu+iii5g+fToXXXTRgPY9yiwrxhj/yq9zaG936md0dTkVu7u6nNcD6CBmz57NPffcc+D1Pffcw/Dhw3n++ed56qmnWL16NStXruR3v/sdAM8//zzNzc2sW7eO7du3s3nzZp555hk6Ojq49NJLU9b99ttvM3v2bL7zne+wZs0ali1bxpAhQ7jlllsQETo6OrjzzjuZM2dOnyJ8CxYsYNKkSaxdu5avfe1rXHzxxQfeW79+PcuWLePOO+/0vd9RZ1kxxvgXWOcgImNFZHXS43URmZs2zxki0p00z/wsqyucXDW7fZo0aRJbt25ly5YtrFmzhmHDhh2owjpp0iQmT57Mc889x/PPPw9ATU0Np556KgDHHnssL774IldffTW//OUvOeKII1LWvWHDBkaMGMFJJ50EwBFHHEFlZSWPPvoon/rUpwA4/vjjqamp4U9/+lPKso8++uiBbwZnnXUWO3bs4PXXXwfgvPPOY8iQIb73uRRYVowx/gVWPkNVNwAnAohIAtgM/DzDrL9X1ZlBtaOPgGp2z5o1i6VLl/KXv/yF2bNn09XVxRe/+EU+85nPpMzX2dnJoYceeuD1sGHDWLNmDb/61a+49dZbueeee7jtttsG1JZ8JLchrnqDzvOWz2Nj90ZGDx1NS32LBaONyUNYl5XqgT+raldI28suoJrds2fP5q677mLp0qXMmjWLD33oQ9x222288cYbAGzevJmtW7f2WW779u3s37+f888/n69+9ausWrUq5f2xY8fyyiuv8PTTTwOwc+dOenp6OO2002h3L4X96U9/YuPGjYwdOzZl2eR5HnnkEY4++ug+30zirqGugc65nexfsJ/OuZ3WMRiTp7AK710IZLu4PU1E1gBbgOtUdV36DCLSCDQCjB7owAsB1eweN24cO3fuZOTIkYwYMYIRI0bw7LPPMm3aNAAOO+ww2traSCQSKctt3ryZSy+99EDW0te//vWU9wcNGsTdd9/N1Vdfze7duxkyZAjLli2jubmZpqYm6urqqKys5Pbbb+eQQw5JWXbhwoVcdtllTJgwgerqahv/wRiTt8DvcxCRQTgf/ONU9a9p7x0B7FfVN0TkXOA7qvqeXOsryH0O7e1OjGHjRucbQ0uLlWlNE4f7HIwxB3m9zyGMbw7/CKxK7xgAVPX1pOcPishiETlaVbcH2iKr2W2MMTmFEXP4JFkuKYnIO8Ut4iMiJ7vt2RFCm0wEtHe0U3tzLRVfrqD25lraOwZ2v4kxpnAC/eYgIocCZwOfSZp2JYCq3gpcADSJSA+wG7hQS62eh/HFBnwxJtoC7RxU9U3gqLRptyY9/0/gP4Nsg4mmXKUtrHMwpvjK7w5pEwlW2sKYaLPOwRSFlbYwJtqscwjIli1buOCCCzwvd+655/Laa6/lnGf+/PksW7bMZ8uiwW9pCwtiGxMOG88hZD09PVRWhnXvoX9hHNP2jnZPpS1sfAZj/LPxHPJQ6P8+s5XsHj9+PAC333475513HmeddRb19fXs2rWLT3ziE5xwwgl8/OMf55RTTqG3w6utrWX79u10dnby3ve+lyuuuIJx48bxwQ9+kN27dwP9l/Pu7OzktNNOY/LkyUyePJnHH398QPsXFK+lLWx8BmPCU3adQ+9/n13dXSh6IIVyIB1EppLdp5xySso8q1atYunSpfz2t79l8eLFDBs2jPXr1/OVr3yFlStXZlzv888/z2c/+1nWrVvHkUceyb333pvyfrZy3n/3d3/Hww8/zKpVq7j77ru55pprfO9blFgQ25jwlF3nEMR/n5lKdh9zzDEp85x99tm84x3vAJxS2hdeeCEA48ePZ8KECRnXO2bMGE488UQApkyZQmdnZ8r72cp57927lyuuuIK6ujpmzZrF+vXrfe9blFgQ25jwRP/id4EF9d9nesnudH5KZCcX0kskEgcuK/Vn0aJF/P3f/z1r1qxh//79DB482PO2o6ilviVjzMHGZzCm8Mrum0NQ/32ml+zOZfr06QcuQ61fv56Ojg5f28xWzru7u5sRI0ZQUVHBT3/6U/bt2+dr/VHTUNdA60daqRlagyDUDK3pNxgdVnZTXLKo4rIfZuDK7ptDUP99ppfsTr8ElKy5uZk5c+ZwwgkncPzxxzNu3DiGDh3qeZu5ynmff/75/OQnP+Gcc86J1cA+DXUNeWcmhVWiIy6lQOKyH6YwyjKV1WsKZaHt27ePvXv3MnjwYP785z8zY8YMNmzYwKBBg0JrQ39KKT04m9qba+nq7ju+VM3QGjrndpbcdoIWl/0wmUWxZHfkePnvMwi7du3izDPPZO/evagqixcvjlTHEBdhZTfFJYsqLvthCqMsO4diO/zww0n/9mMKb/TQ0Rn/Ey50dlNY2wlaXPbDFEZsAtKldnksyuJyLFvqWxiUSP1GNigxqODZTX5LgURNXPbDFEYsOofBgwezY8eO2HyoFZOqsmPHjtikv6b/TgTxO+IniyqK4rIfpjBiEZDeu3cvmzZtYs+ePUVqVbwMHjyYUaNGUVVVVeymDIgFWI05qCwD0lVVVYwZM6bYzTARYwFWY/yLxWUlYzKxchvG+Gedg4ktC7Aa419gnYOIjBWR1UmP10Vkbto8IiLfFZEXRGStiEwOqj2m/IQaYG1vh9paqKhwfrZb2QlT2kIJSItIAtgMnKKqXUnTzwWuBs4FTgG+o6qnZF6LI1NA2piiam+HxkbYlVTtt7oaWluhwTJ9TDREdbCfeuDPyR2D66PAT9TxB+BIERkRUpuMKYx581I7BnBez7NBiEzpCqtzuBC4M8P0kcDLSa83udNSiEijiKwQkRXbtm0LqInG+LQxS/ZTtunGlIDAOwcRGQScB/y333WoaquqTlXVqcOHDy9c44wphNFZsp+yTTemBITxzeEfgVWq+tcM720GkodMG+VOM6Zomm+aQeUCQRYKlQuE5ptm5F6gpYX2KVXUzoWKBVA7F9qnVEGLZUWZ0hVG5/BJMl9SArgPuNjNWjoV6FbVV0JokzEZNd80gyWvL2dfBSCwrwKWvL48ZwfRPgEazxO6jgQV6DrSed2eefRXY0pCoJ2DiBwKnA38LGnalSJypfvyQeBF4AXgB0BzkO0xpj+t3ctB0iaKOz2LecvnsUvfTpm2S98e0LjkxhRboOUzVPVN4Ki0abcmPVfgs0G2wRgv9qV3DP1MByvTYeLJ7pA2Jkkiy20/2aaDlekw8WSdgzFJGofWQ3pHoO70LKxMh4mjnJ2DiEwTkVvc0hbbRGSjiDwoIp8VkaFhNdLEVAglJ9o72qm9uZaKL1dQe3Mt7R25t7H42mU0HVFPYj+gkNgPTUfUs/jaZVmXaahrYM7EOSQkAUBCEsyZOMfGQTAlLWv5DBF5CNgC/C+wAtgKDAaOA84EPgLcpKr3hdNUh5XPiIkQSk60d7TTeH8ju/Ye3EZ1VXXB6yuFtR1jBsJr+YxcncPRqrq9n431O0+hWecQE7W10NV3IB5qaqCzszCbCGmwHxtUyJSCgg32k/6hLyJHJM+vqq+G3TGYGAmh5ERYWUSWrWTiqN+AtIh8RkT+AqwFVroP+9fdDEwIJSfCyiKybCUTR/lkK10HjFfVWlUd4z6ODbphpnC8BmVD0dLixBiSVVcXtORES30LVSRSplWR6DeLqP3aGdR+TqhYKNR+Tmi/Nnf5DD/ZSs2/aKbyxkrky0LljZU0/8Lu/zTRkk/n8GdgV79zmUjqDZZ2dXehKF3dXTTe31j8DqKhwQk+19SAiPOz0OMfPPoY0rMvZZL07INHH8u6SPu1M2gcsjy1FMaQ5Tk7CK+DCjX/opklK5awT5227dN9LFmxxDoIEyn9DvYjIpOAHwNPAm/1TlfVa4JtWmYWkPamnIOltddX0nXYvj7Ta95I0PnNnszLfM6pkdRnmdegc1FhBsaqvLHyQMeQLCEJeuZnbpcxA1WwgHSS7wP/B3QA+/02zBRHOQdLNx7a9wM413SAjVnu3sk23Y9MHUOu6cYUQz6dQ5WqXht4S0wgRg8dnfGbQzkES0e/mcj4zWH0m4kMc7vvdZPxm8Po7sK1KyGJrN8cjImKfGIOD7kjsY0QkXf0PgJvmSmIci7t0HJsI9V7U6dV73WmZ11G6qlOLbBK9dvO9EJpnJJ5+9mmG1MM+XQOnwS+CDyOpbKWHK/B0sjzUHKjoWkxrbvqqXkNRJ24QeuuehqaFmdf5qZltO5OW2Z3PQ03ZS+f4dXiDy+maWpTSrmNpqlNLP5w9nYZE7Z+A9JRYwHpMua15EYIJTqMKRVeA9L53AT3WRE5Mun1MBGxnDsTvnnzUj/owXk9L8ugOl7nN8YckM9lpStU9bXeF6r6N+CKwFpkTDZeS26EUKLDmLjKp3NIiMiBcbBEJAEMCq5JxmThteRGCCU6jImrfDqHXwJ3i0i9iNQDd7rT+iUiR4rIUhF5TkSeFZFpae+fISLdIrLafcz3vgumZHkdz8FryY2WFmZcDLLg4GPGxRS0REevSJYoMWYA8rnP4QtAI9Dkvn4Y+GGe6/8O8EtVvUBEBgHVGeb5varOzHN9Ji7Sg8VdXc5ryB4s7p0+b55zaWj0aOeDPsv8M/b9mOVpVcCWH+tMX0Zw4zn0ligBSjcrzJS9wLKV3JHiVgPHapaNiMgZwHVeOgfLVoqJEMZzkC9L1vd0QeF+78u5RIkpHQXLVhKR+0XkIyJSleG9Y0XkRhG5LMe6xwDbgB+LyB9F5IcicmiG+aaJyBoReUhExmVpS6OIrBCRFdu2betvn0wpiFGwuJxLlJj4yhVzuAI4DXhORJ52x47+PxF5Cafe0kpVvS3H8pXAZGCJqk4C3gRuSJtnFVCjqhOB7wH/k2lFqtqqqlNVderw4cPz2jETcTEKFtt4DiaOsnYOqvoXVf28qv4DMAv4CnAtME5Vz1bV/+1n3ZuATar6pPt6KU5nkbyN11X1Dff5g0CViBztc19MKQlhPIf6MZlLXmSb7lc5lygx8ZVPthKq2qmqT6jqalXNa2wHVf0L8LKIjHUn1QPrk+cRkXf2psmKyMlue3bk3XoTGZ6zdRoaaP7KNCrnO1lElfOh+SvT+r9z2UOG07KLl/XpCOrH1LPs4tylMLzuS0NdA3MGTyOxH1BI7Ic5g6dZMNqUtEDLZ4jIiTiZTYOAF4FLgdkAqnqriFyFkwXVA+wGrlXVx3Ot0wLS0ZOerQPOf875DHiTLmeNoRDKYfjZl/YlzTRuXsKupOhc9V5oHdmUs46TMWHyGpC22kpmwPxk6/ga8CaEDCc/++JnUCFjwlbw2krG9MdPto6vAW9CyHDysy9+BhUyJuryKbw3XUQeFpE/iciLIvKSiLwYRuNMafCTrZNtYJucA96EkOHkZ1+yDR6Ua1AhY6Iun28OPwJuAt4PnARMdX+agfJaPsLvZpY0U3t9JRULhdrrK2lfUtiiui31LVRVpN4OU1VRlTNbx9eANy0ttE+ponYuVCyA2rnQPqWqoBlOfjKP/Awq5OecWIkOE6Z8OoduVX1IVbeq6o7eR+Ati7ve4GpXF6geLB9R4A6iN1jaddg+VKDrsH00bl5S8A4iqTZjxtfppo+eTmVFavWWyopKpo+ennWZ9gnQeJ7QdSTOvhzpvG6f4LfVffkZHKmhaTGtI5uoeSPhDBD0RiJnMNrPOekNlHd1d6HogRId1kGYoGQNSItI7z0JnwASwM+At3rfV9VVgbcug9gEpEMIrkI4wVJfQdyQlokiP+ckLvtuisdrQDpX4b1vp71OXqkCZ3lpmEkTUvmIMIKlvoK4IS0TRX7OSVz23ZSOXHdIn6mqZwKX9z5Pmvbp8JoYUyGVjwgjWOoriBvSMlHk55zEZd9N6cgn5rA0w7T/LnRDyk4I5SPAX7DU8zb8BHFDWiaK/JyTuOy7KR25qrIeLyLnA0NF5P8lPS4BBofWwlLiJfuoocG5s7emBkScnwEMfO81WOprG36CuHUNzJk450DqakISzJk4p99lWofNSd2XYbmXiSI/58TP8TJmIHIFpD8KfAw4D7gv6a2dwF39lbkISmQD0iGUdogTP2UqyvkY+zpexiQpePkMEZmmqk8MuGUFEtnOIaTso7jwlX1TxsfYspXMQBUyW6nXP4nIJ9OmdQMr8ijbXT5iNHhNGHxl35TxMbZsJRO2fALShwAnAs+7jwnAKOByEbk5sJaVmhgNXhMGX9k3ZXyMLVvJhC2fzmECcKaqfk9VvwfMAI4HPg58MMjGlZSQso/CEnSphpb6Fqr3p35xrd5fmTv7pqUFBg1KnTZoUM5jHHTpkLBYtpIJWz6dwzDgsKTXhwLvUNV9JN0xXfZCyj4KQxilGhqWPEbrz3uoeQ0nY+c1aP15Dw1LHsu9YHqMLEfMLKzSIWHwkxFmzEDkE5C+HPg34BFAgA8AXwPuBBaq6vUBtzFFZAPSMRJK8LOyEvZluCM4kYCewoznYOMsGHNQwQPSqvojEXkQONmd9K+qusV9HmrHYMIRSvAzU8eQazp4DkjbOAvG+JfvYD8VwDbgb8C7ReQDwTXJFFsowc9EllIR2aaD54C0jbNgjH/5DPbzDeAxYB7ON4XrgevyWbmIHCkiS0XkORF5VkSmpb0vIvJdEXlBRNYmVYI1RRRK8LMxS6mIbNPBc9A/jNIhxsSWquZ8ABuAQ/qbL8uydwCfdp8PAo5Me/9c4CGcWMapwJP9rXPKlCkaVW2Lm7TmuoTKArTmuoS2LW4qdpN8a1vbpjWLalQWitYsqtG2tW39LNCmWlOjKuL8bOtnflXVpibVREIVnJ9NeRwvj8s0fbteE/NRFqCJ+WjTt+v730ZU+TnGxrhw7k3L//O73xmcD+/DvKzUXW4o8BJu0DvLPN8HPpn0egMwItd6o9o5tC1u0up5KAsPPqrnUdIdRN7a2lSrq51fp95HdXXhP7w8bqdtbZtWt1SnnpOW6v47uigK6xib2PLaOeSTrXQvMBFYTupgP9f0s9yJQCuw3l1+JfDPqvpm0jwPAP+uqo+6r5cDX1DVrOlIUc1WKuvMmLDKWnjNVopTyYkyLh1iCiOI8hn3kVp4z8u6JwNXq+qTIvId4AbgS15XJCKNQCPA6IjeDVvWmTFhlbXwmq0Up5ITZVw6xBRHvwFpVb0DuAf4g6re0fvIY92bgE2q+qT7eilOZ5FsM3BM0utR7rT0NrSq6lRVnTp8+PA8Nh2+ss6MCaushddspTiVnCjj0iGmOPLJVvoIsBr4pfv6RBHp95uEqv4FeFlExrqT6nEuMSW7D7jYzVo6FehW1Vc8tD8yyjozJqzSIV6zlepbqCK1c64iEUzJCS9jefgRs/IsJvryuc9hIc4NcK8BqOpq4Ng813810C4ia3GK931NRK4UkSvd9x8EXgReAH4AlF5dA1cYg+pEVlilQ7xu59HHkJ7Uy3rSsw8e7adEh1e940x0dTmh4q4u53UhO4gYlWcxpSGfgPQfVPVUEfmjqk5yp61V1QmhtDBNVAPSJnpCSxKwYLEpAUEEpNeJyD8BCRF5D3ANUJRR4IzxIrQkAQsWmxjK57LS1cA4nDTWO4HXgbkBtsmYgggtScCCxSaG8slW2qWq81T1JDdjaJ6q7gmjccYMRGhJAhYsNjGUtXMQkftF5L5sjzAbaYrAY/ZN8xfGUTlfkIVC5Xyh+Qvj+t9EwAMKhZYkYMHiSAo6gSzusgakReT0XAuq6m8DaVE/LCAdgt7sm127Dk6rrs76gdf8hXEsGbLeqZDVS6Fp9wks/sa6zJtwBxTatffgNqqrqm0AG1MQHn+Fy4LXgHS/2UpRY51DCDxm31TOF/ZluIyf2Ac9N2b+/YpVaQsTOZZA1pfXziHf8RxMOfGYfbMvy29RtukQs9IWJnIsgWzgrHMwfXnMvknszzx7tukQs9IWJnIsgWzgrHMoA54Dvy0tMGhQ6rRBg7Jm3zS+dQKkXz1Sd3q2TdS3UL0/9Tab6v2V/Ze28BpltKhkJFm1EW+K8mucrZY3cD8HK7L2eXipC17IR1THc4gqX2MatLWpVlWljh1QVZVz7ICmz5+giS+5g+p8CW36/Am5G9bUpG11aM1cnMGR5qJtdeQevMfrmAY2BkIkhTn8RxzGRirU8aJQ4zlYtlI8+Ar8hhHNq6yEfRnuVE4koCdLaQuv7bKoZCTZafGmUMfLspVMioovV6B9rvmAIOxfkCUoUFHh/IPSZyGB/TkCCV6IZH8v2++k13aFsR/GMzst3hTqeBU8W0lE3iMiS0VkvYi82PvIv0mmmHwFfsOI5iWylLDINj3X9gs13YTCTos3xTpe+QSkfwwsAXqAM4GfAG1BNsoUTkt9C9VVqZG56qrq3IHfMKJ5jVlKWGSb7qddcYtKxoSdFm+Kdrz6C0oAK92fHenTivGwgLR3bYubtOa6hBP4vS6hbYtzBH0PLOQxmucj+tf2ufrUgPTn6vtvV1OTaiLhROUSidwBbFXV+vrUSF59HtswgYtLsDgshTheeAxI59M5PI7zDeNnwFXAx4ENXjZSyId1Dh6FkRriYxu+s6i8bKepKXXe3kd/HYoxMeS1c8hnsJ+TgGeBI4GvAEOB/1DVPxT+e0z/LCDtURipIT62EUoWlZ+MKGNiquCD/ajq0+6KK4BrVHXnANpnwhZGHQEf2/BVPsPrdjJ1DLmmG2MOyCdbaaqIdABrgQ4RWSMiU4JvmimIMFIdfGwjlCwqPxlRxhggv2yl24BmVa1V1VrgszgZTP0SkU4R6RCR1SLS51qQiJwhIt3u+6tFZL6n1pc6P/fENzc7l0tEnJ/Nzbnnb2mBqqrUaVVV/ac6eGmbj3SKULKo/GRExYxVDwlWrI9vf0EJ4I8Zpq3KJ6ABdAJH53j/DOABL0GS2ASk/QSK/QRY29pUBw1KnX/QoNzb8dM2P9lKa9u0ZlGNykLRmkU1uYPRfrfjNbspRqx6SLBK7fgSQED6ZmAIzvjRCswG9uDe66Cqq3Is2wlMVdXtWd4/A7hOVWfm05FBjALSfgLFYZSc8LuMiRw7jcEqteNb8PIZIvKbHG+rqp6VY9mXgL/hdCrfV9XWtPfPAO4FNgFbcDqKPkOHiUgj0AgwevToKV2Zzkip8XNPfBglJ/wuYyLHTmOwSu34BpGtdOYA2vN+Vd0sIn8HPCwiz6nq75LeXwXUqOobInIu8D/AezK0oRVoBeebwwDaEx2jR2f+tyNXoDiRyP7NoZDb8bOMiRw7jcGK+/HNJ1vp70XkRyLykPv6BBG5PJ+Vq+pm9+dW4OfAyWnvv66qb7jPHwSqRORoj/tQmvzcEx9GyQm/y5jIsdMYrNgf3/6CEsBDwCeANe7rSpJKaeRY7lDg8KTnjwPnpM3zTg5e2joZ2Nj7OtsjNgFpVX/3xPsJsPrZTlzqG8RlPzS8U+9VGNuIal5BKf16EUD5jKc1LWsJWJ3HcscCa9zHOmCeO/1K4Er3+VXue2uAPwDv62+9seocTLBKLZ0kh6hWAgnjEEd130uN184hn4D0I8D5wMOqOllETgW+oao5BwMKSmyylUzwSi2dJIeoVgKJ6rhQpq+CB6SBa3GGBv0HEXkMGA5c4LN9xoQnjNIhIYlqJZAwDnFU9z3u8slWWuUOGToWEJyKrHsDb5kxAxWjdBI/iWphCOMQR3Xf4y6fbKVZwBB17j/4GHC3iEwOumHGDFiM0kmiWgnEb3UWL6K673GXT22lL6nqThF5P1AP/AhnZDhjoq2hAVpbnQvgIs7P1lZneolZvBiamg7+t5xIOK8XLy5uu6DvvZm57tX0I8r7Hmf5BKT/qKqTROTrOCms/9U7LZwmprKAtDHREaOYf+x5DUjn881hs4h8H6em0oMickieyxljYi5GMX+TJp8P+U8AvwI+pKqvAe8Arg+yUcaY0hDGcCGmOPrtHFR1l6r+TFWfd1+/oqq/Dr5ppqTEurB9NPg5xEGflhjF/AH7NU7h5Y65KDzsDukIitGdyFHld4iNME5LKZWQyCXuv8YU+g7pqLGAdARZVDJwNixH8OJ+vAo+nkPUWOcQQaVW2L4E2bAcwYv78QoiW8mY3CwqGTg/h9hOizd2vFJZ52AGLm5RyQiyYTmCZ8crlXUO5SDoFIwY3YkcFq+npKEB5sxJvUt4zpzch7ihAaZNS502bVrhT4ufX68ZM5xfld7HjBmFbZMf9mucxkv0OgoPy1byKO4pGCUorMyjMMZB8NOu+vrM7aqvL1y7TF9YtpJJEfcUjBIUVuZRGOMg+GlXrtpLJfZxVFIsW8mkinsKRgkKK/MojA/hqLbL9GXZSiaVpWBETliZR9nGOyjkOAj26xVfgXYOItIpIh0islpE+vy7L47visgLIrI2sHEionpPfBjtKvMUjLBOvZft+BkDoaXFuUyUrLIy9zJ+xkHwerz8/HrV13ubborES4DC6wPoBI7O8f65wEM4I8ydCjzZ3zo9B6SjGpANs11xqW/gUZjlI7xsp61NddCg1PkHDSp8cNnrMn6Pl59fr/SgtAWjg0eUAtIi0glMVdXtWd7/PvCIqt7pvt4AnKGqr2Rbp+eYQ1QDslFtV4yEdYi9bies4LLXZexXMt6iFnNQ4NcislJEMn2ZHQm8nPR6kzsthYg0isgKEVmxbds2by2IasH5qLYrRsI6xF6346ddmT7kc033s4z9SppkQXcO71fVycA/Ap8VkQ/4WYmqtqrqVFWdOnz4cG8LRzViFtV2xUhYh9jrdsIKLntdxn4lTbJAOwdV3ez+3Ar8HDg5bZbNwDFJr0e50wonqgHZqLYrRsI6xF6346ddfoLLXpexX0mTwkuAwssDOBQ4POn548A5afN8mNSA9FP9rdfXHdJRDcj6aZePZdrWtmnNohqVhaI1i2q0bW1E9j8ETU2qiYQT9Ewk8rs72M8yXk+Ln1Mfxr742YYpDXgMSAfZORwLrHEf64B57vQrgSvd5wLcAvwZ6MAJXhe+c4gLH+kkbWvbtLqlWlnIgUd1S3VZdBBRLTkRVVFN7DOF4bVzsDukS4mPdJLam2vp6u67TM3QGjrnZl4mLqJaciKqLFsp3qKWrWQKyUc6ycbuzO9lmx4nYWUFxYVlK5lk1jmUEh/pJKOHZn4v2/Q4iWrJiaiybCWTzDqHUuIjnaSlvoXqqtRlqquqaamPfwpKS4tTBiJZRUXhs4LC0tzsXPYScX42Nxd2/ZatZJJZ51BKfIxG0lDXQOtHWqkZWoMg1AytofUjrTTUxX8Ek8ce61sZdP9+Z3o206f3/ZaQSDjTi6m5GZYsOXh5a98+53UhOwgb7MYks4C0iS0/weWoBmXLOVBuCsMC0sa4/ASXoxqULedAuSkO6xxMbPkJLkc1KFvOgXJTHNY5mNjyE1yOalA2yoFyE0/WOZjYWrwYmpoO/nedSDivFy/OvozfoGzQmUR+9sWYgbCAtDED1JtJlM4+vE2UWEDamJC1tnqbbkwpsM7BmAGyTCITR9Y5GDNAlklk4sg6B2PStLc7N8NVVDg/29tzzx9WJpHXdkV1G6Y0WOdgTJL2dudDvavLGdGgq8t5netDcvp0J0MpWWVlYUtu+GlXFLdhSodlKxmTxE/5jDBKbsRlG6Z4vGYrWedgTJKKCue/5nQifYv4DWSZMNoVxW2Y4rFUVmMGwE/5jDBKbsRlG6Z0WOdgTBI/5TPCKLkRl22YEuJlwGk/DyAB/BF4IMN7lwDbgNXu49P9rW/KlCkFG3C72NraVGtqVEWcnzaQezT4OS9hnMu4bMMUB7BCPXx2Bx5zEJFrganAEao6M+29S4CpqnpVvuuLS8yhNzNk166D06qrbXAVY0wwIhVzEJFRwIeBHwa5nVI0b15qxwDO63nzitMeY4xJFnTM4Wbg80CuXIfzRWStiCwVkWMyzSAijSKyQkRWbNu2LYh2hi6qg8oYYwwE2DmIyExgq6quzDHb/UCtqk4AHgbuyDSTqraq6lRVnTp8+PAAWhs+ywwxxkRZkN8cpgPniUgncBdwloi0Jc+gqjtU9S335Q+BKQG2J1IsM8Qfr+UdwioHYWUnTOx4iV77fQBnkDlbaUTS848Df+hvXZatVL7a2lSrq1WdW7WcR3V19uPmdf6w2mVMMRC1bCUAETkDuE5VZ4rIjW4j7xORrwPnAT3Aq0CTqj6Xa11xyVYy3nkt7xBWOQgrO2FKgZXPMLHltbxDWOUgrOyEKQWRSmU1ppC8BvHDCvpbcoGJI+scTMnwGsQPK+hvyQUmjqxzMCWjocG5g7ymxrlkU1OT+47yhgaYM+fgiGyJhPO60Hege22XMaXAYg4mtqxEiTEHWczBGJeVKDHGP+scTGxZiRJj/LPOwcSWZREZ4591Dia2LIvIGP+sczCxZVlExvhXWewGGBOkhgbrDIzxw745GGOM6cM6B2OMMX1Y52CMMaYP6xyMMcb0YZ2DMcaYPkqutpKIbAMyDK2Sl6OB7QVsTqkp5/0v532H8t5/23dHjaoOz3fBkuscBkJEVngpPBU35bz/5bzvUN77b/vub9/tspIxxpg+rHMwxhjTR7l1Dq3FbkCRlfP+l/O+Q3nvv+27D2UVczDGGJOfcvvmYIwxJg/WORhjjOkjdp2DiBwjIr8RkfUisk5E/jnDPCIi3xWRF0RkrYhMLkZbg5Dn/p8hIt0istp9zC9GWwtNRAaLyFMissbd9y9nmOcQEbnbPfdPikhtEZpacHnu+yUisi3pvH+6GG0NkogkROSPIvJAhvdiee579bPvns99HEt29wD/oqqrRORwYKWIPKyq65Pm+UfgPe7jFGCJ+zMO8tl/gN+r6switC9IbwFnqeobIlIFPCoiD6nqH5LmuRz4m6q+W0QuBL4BzC5GYwssn30HuFtVrypC+8Lyz8CzwBEZ3ovrue+Va9/B47mP3TcHVX1FVVe5z3fiHKyRabN9FPiJOv4AHCkiI0JuaiDy3P9Ycs/nG+7LKveRnnHxUeAO9/lSoF5EJKQmBibPfY81ERkFfBj4YZZZYnnuIa999yx2nUMy92vjJODJtLdGAi8nvd5EDD9Ac+w/wDT3EsRDIjIu3JYFx/1qvRrYCjysqlnPvar2AN3AUaE2MiB57DvA+e6l1KUicky4LQzczcDngf1Z3o/tuaf/fQeP5z62nYOIHAbcC8xV1deL3Z6w9bP/q3DqrEwEvgf8T8jNC4yq7lPVE4FRwMkiMr7ITQpNHvt+P1CrqhOAhzn4X3TJE5GZwFZVXVnstoQtz333fO5j2Tm411zvBdpV9WcZZtkMJPeco9xpsdDf/qvq672XIFT1QaBKRI4OuZmBUtXXgN8A56S9deDci0glMBTYEWrjApZt31V1h6q+5b78ITAl5KYFaTpwnoh0AncBZ4lIW9o8cT33/e67n3Mfu87BvYb4I+BZVb0py2z3ARe7WUunAt2q+kpojQxQPvsvIu/svdYqIifj/B6U/B+JiAwXkSPd50OAs4Hn0ma7D5jjPr8A+D+NwZ2g+ex7WlztPJx4VCyo6hdVdZSq1gIX4pzXT6XNFstzn8+++zn3ccxWmg5cBHS4118B/hUYDaCqtwIPAucCLwC7gEvDb2Zg8tn/C4AmEekBdgMXxuGPBBgB3CEiCZwO7x5VfUBEbgRWqOp9OB3nT0XkBeBVnD+mOMhn368RkfNwMtpeBS4pWmtDUibnPqOBnnsrn2GMMaaP2F1WMsYYM3DWORhjjOnDOgdjjDF9WOdgjDGmD+scjDHG9GGdgzEcqFTbp5plHsu9S0SWZnnvERGZ6j7/16TptSLyTJ7rnysiF3ttV4b1XCUilw10PaZ8WOdgzACo6hZVvSCPWf+1/1lSuXfxXgb8l+eG9XUbcHUB1mPKhHUOpiSIyKEi8gu3WOAzIjLbnT5FRH4rIitF5Fe9d4K6/7V/x61d/4x7JzgicrKIPOHWvX9cRMb2s91fiMgE9/kfxR37QkRuFJErkr8FiMgQEblLRJ4VkZ8DQ9zp/w4McdvS7q46ISI/EGfshV+7dzWnOwtY5RaJQ0TeLSLL3GOwSkT+wf3G81sR+V8ReVFE/l1EGsQZ26FDRP4BQFV3AZ29x8GY/ljnYErFOcAWVZ2oquOBX7o1pL4HXKCqU3D+O25JWqbaLUTX7L4HTkmJ01R1EjAf+Fo/2/09cJqIDMW5u3S6O/004Hdp8zYBu1T1vcAC3Po1qnoDsFtVT1TVBnfe9wC3qOo44DXg/Azbng4kF1Nrd5eZCLwP6C35MhG4Engvzt3xx6nqyTg1dJK/Laxw221Mv+JYPsPEUwfwbRH5BvCAqv7erTo6HnjYLRWV4OAHJsCdAKr6OxE5wq09dDhOmYn34Ix3UNXPdn8PXAO8BPwCOFtEqoExqrpBUkcT+wDwXXeba0VkbY71vqSqq93nK4HaDPOMwK2BI87ATSNV9efu+ve40wGe7q0NJiJ/Bn7tLt8BnJm0vq3A8f3srzGAdQ6mRKjqn8QZzvVc4Ksishz4ObBOVadlWyzD668Av1HVj7sf7I/0s+mnganAiziljo8GriD1P3o/3kp6vg/3ElSa3cBgj+van/R6P6l/44PddRrTL7usZEqCiLwL55JNG/BNYDKwARguItPceaokdeCi3rjE+3Eq73bjlGnuLc9+SX/bVdW3cQaImQU8gfNN4jr6XlLCnfZP7jbHAxOS3tvrXgbz4lng3W47dgKbRORj7voPcb/BeHEckFeWlDHWOZhSUQc85VaaXQB81f3gvgD4hoisAVbjXIvvtUdE/gjcijN+MMB/AF93p+f7zfn3OIOp7Hafj3J/plsCHCYizwI3kvrtohVYmxSQzsdDOJeqel2EU11zLfA48E4P6wInhvGwx2VMmbKqrCaWROQR4DpVXVHstgyEm/X0eVV9foDrmQRcq6oXFaZlJu7sm4Mx0XYDTmB6oI4GvlSA9ZgyYd8cjDHG9GHfHIwxxvRhnYMxxpg+rHMwxhjTh3UOxhhj+rDOwRhjTB//H6H3s8qzYFtBAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "