diff --git a/00_python_in_a_nutshell/00_content_arithmetic.ipynb b/00_python_in_a_nutshell/00_content_arithmetic.ipynb
index 3a27936..d000eaf 100644
--- a/00_python_in_a_nutshell/00_content_arithmetic.ipynb
+++ b/00_python_in_a_nutshell/00_content_arithmetic.ipynb
@@ -123,7 +123,7 @@
}
],
"source": [
- "2 ** 3"
+ "2**3"
]
},
{
@@ -143,7 +143,7 @@
}
],
"source": [
- "2 * 2 ** 3"
+ "2 * 2**3"
]
},
{
@@ -536,9 +536,9 @@
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3 (ipykernel)",
+ "display_name": "intro-to-data-science",
"language": "python",
- "name": "python3"
+ "name": "intro-to-data-science"
},
"language_info": {
"codemirror_mode": {
@@ -550,7 +550,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.12"
+ "version": "3.12.4"
},
"toc": {
"base_numbering": 1,
diff --git a/00_python_in_a_nutshell/01_exercises_calculator.ipynb b/00_python_in_a_nutshell/01_exercises_calculator.ipynb
index 758aa47..5dbbfaf 100644
--- a/00_python_in_a_nutshell/01_exercises_calculator.ipynb
+++ b/00_python_in_a_nutshell/01_exercises_calculator.ipynb
@@ -149,9 +149,9 @@
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3 (ipykernel)",
+ "display_name": "intro-to-data-science",
"language": "python",
- "name": "python3"
+ "name": "intro-to-data-science"
},
"language_info": {
"codemirror_mode": {
@@ -163,7 +163,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.12"
+ "version": "3.12.4"
},
"toc": {
"base_numbering": 1,
diff --git a/00_python_in_a_nutshell/02_content_logic.ipynb b/00_python_in_a_nutshell/02_content_logic.ipynb
index c40c754..32ab209 100644
--- a/00_python_in_a_nutshell/02_content_logic.ipynb
+++ b/00_python_in_a_nutshell/02_content_logic.ipynb
@@ -507,7 +507,7 @@
"\n",
"The indented line constitues the `for`-loop's body. In the example, we simply take each of the numbers in `numbers`, one at a time, and add it to a `total` that is initialized at `0`. In other words, we calculate the sum of all the elements in `numbers`.\n",
"\n",
- "Many beginners struggle with the term \"loop.\" To visualize the looping behavior of this code, we use the online tool [PythonTutor ](http://pythontutor.com/visualize.html#code=numbers%20%3D%20%5B1,%202,%203,%204%5D%0A%0Atotal%20%3D%200%0A%0Afor%20number%20in%20numbers%3A%0A%20%20%20%20total%20%3D%20total%20%2B%20number%0A%0Atotal&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false). That tool is helpful for two reasons:\n",
+ "Many beginners struggle with the term \"loop.\" To visualize the looping behavior of this code, we use the online tool [PythonTutor ](http://pythontutor.com/visualize.html#code=numbers%20%3D%20%5B1,%202,%203,%204%5D%0A%0Atotal%20%3D%200%0A%0Afor%20number%20in%20numbers%3A%0A%20%20%20%20total%20%3D%20total%20%2B%20number%0A%0Atotal&cumulative=false&curstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false). That tool is helpful for two reasons:\n",
"1. It allows us to execute code in \"slow motion\" (i.e., by clicking the \"next\" button on the left side, only the next atomic step of the code snippet is executed).\n",
"2. It shows what happens inside the computer's memory on the right-hand side."
]
@@ -999,9 +999,9 @@
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3 (ipykernel)",
+ "display_name": "intro-to-data-science",
"language": "python",
- "name": "python3"
+ "name": "intro-to-data-science"
},
"language_info": {
"codemirror_mode": {
@@ -1013,7 +1013,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.12"
+ "version": "3.12.4"
},
"toc": {
"base_numbering": 1,
diff --git a/00_python_in_a_nutshell/03_exercises_loops.ipynb b/00_python_in_a_nutshell/03_exercises_loops.ipynb
index 58fc7ad..46670ec 100644
--- a/00_python_in_a_nutshell/03_exercises_loops.ipynb
+++ b/00_python_in_a_nutshell/03_exercises_loops.ipynb
@@ -178,9 +178,9 @@
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3 (ipykernel)",
+ "display_name": "intro-to-data-science",
"language": "python",
- "name": "python3"
+ "name": "intro-to-data-science"
},
"language_info": {
"codemirror_mode": {
@@ -192,7 +192,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.12"
+ "version": "3.12.4"
},
"toc": {
"base_numbering": 1,
diff --git a/00_python_in_a_nutshell/04_exercises_fizz_buzz.ipynb b/00_python_in_a_nutshell/04_exercises_fizz_buzz.ipynb
index 57df84f..3b5e5ab 100644
--- a/00_python_in_a_nutshell/04_exercises_fizz_buzz.ipynb
+++ b/00_python_in_a_nutshell/04_exercises_fizz_buzz.ipynb
@@ -112,9 +112,9 @@
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3 (ipykernel)",
+ "display_name": "intro-to-data-science",
"language": "python",
- "name": "python3"
+ "name": "intro-to-data-science"
},
"language_info": {
"codemirror_mode": {
@@ -126,7 +126,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.12"
+ "version": "3.12.4"
},
"toc": {
"base_numbering": 1,
diff --git a/00_python_in_a_nutshell/05_content_functions.ipynb b/00_python_in_a_nutshell/05_content_functions.ipynb
index 7961934..d3b0ff1 100644
--- a/00_python_in_a_nutshell/05_content_functions.ipynb
+++ b/00_python_in_a_nutshell/05_content_functions.ipynb
@@ -73,7 +73,7 @@
"\n",
"Let's execute the function with `numbers` as the input. We see the same `6` below the cell as we do above where we run the code without a function. Without the `return` statement in the function's body, we would not see any output here.\n",
"\n",
- "To see what happens in detail, take a look at [PythonTutor ](https://pythontutor.com/visualize.html#code=numbers%20%3D%20%5B1,%202,%203,%204%5D%0A%0Adef%20add_evens%28numbers%29%3A%0A%20%20%20%20%22%22%22Sum%20up%20all%20the%20even%20numbers%20in%20a%20list.%22%22%22%0A%20%20%20%20result%20%3D%200%0A%0A%20%20%20%20for%20number%20in%20numbers%3A%0A%20%20%20%20%20%20%20%20if%20number%20%25%202%20%3D%3D%200%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20result%20%3D%20result%20%2B%20number%0A%0A%20%20%20%20return%20result%0A%0Atotal%20%3D%20add_evens%28numbers%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false) again. You should notice how there are two variables by the name `numbers` in memory. Python manages the memory with a concept called **namespaces** or **scopes**, which are just fancy terms for saying that Python can tell variables from different contexts apart."
+ "To see what happens in detail, take a look at [PythonTutor ](https://pythontutor.com/visualize.html#code=numbers%20%3D%20%5B1,%202,%203,%204%5D%0A%0Adef%20add_evens%28numbers%29%3A%0A%20%20%20%20%22%22%22Sum%20up%20all%20the%20even%20numbers%20in%20a%20list.%22%22%22%0A%20%20%20%20result%20%3D%200%0A%0A%20%20%20%20for%20number%20in%20numbers%3A%0A%20%20%20%20%20%20%20%20if%20number%20%25%202%20%3D%3D%200%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20result%20%3D%20result%20%2B%20number%0A%0A%20%20%20%20return%20result%0A%0Atotal%20%3D%20add_evens%28numbers%29&cumulative=false&curstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false) again. You should notice how there are two variables by the name `numbers` in memory. Python manages the memory with a concept called **namespaces** or **scopes**, which are just fancy terms for saying that Python can tell variables from different contexts apart."
]
},
{
@@ -151,7 +151,7 @@
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m/tmp/user/1000/ipykernel_707190/1049141082.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
+ "Cell \u001b[0;32mIn[5], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mresult\u001b[49m\n",
"\u001b[0;31mNameError\u001b[0m: name 'result' is not defined"
]
}
@@ -385,7 +385,7 @@
],
"source": [
"for number in numbers:\n",
- " square = number ** 2\n",
+ " square = number**2\n",
" print(\"The square of\", number, \"is\", square)"
]
},
@@ -418,21 +418,39 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "To access a function inside the [random ](https://docs.python.org/3/library/random.html) module, for example, the [random() ](https://docs.python.org/3/library/random.html#random.random) function, we use the `.` operator, formally called the attribute access operator. The [random() ](https://docs.python.org/3/library/random.html#random.random) function simply returns a random decimal number between `0` and `1`."
+ "To access a function inside the [random ](https://docs.python.org/3/library/random.html) module, for example, the [seed() ](https://docs.python.org/3/library/random.html#random.seed) function, we use the `.` operator, formally called the attribute access operator. \n",
+ "\n",
+ "We use [random.seed() ](https://docs.python.org/3/library/random.html#random.seed) to make the random numbers *replicable* on separate runs of this notebook."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
+ "outputs": [],
+ "source": [
+ "random.seed(42)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The [random() ](https://docs.python.org/3/library/random.html#random.random) function simply returns a random decimal number between `0` and `1`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "0.7021021034327006"
+ "0.6394267984578837"
]
},
- "execution_count": 16,
+ "execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
@@ -450,16 +468,16 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "False"
+ "True"
]
},
- "execution_count": 17,
+ "execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
@@ -477,7 +495,7 @@
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 19,
"metadata": {},
"outputs": [
{
@@ -486,7 +504,7 @@
"3"
]
},
- "execution_count": 18,
+ "execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
@@ -505,9 +523,9 @@
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3 (ipykernel)",
+ "display_name": "intro-to-data-science",
"language": "python",
- "name": "python3"
+ "name": "intro-to-data-science"
},
"language_info": {
"codemirror_mode": {
@@ -519,7 +537,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.12"
+ "version": "3.12.4"
},
"toc": {
"base_numbering": 1,
diff --git a/00_python_in_a_nutshell/06_exercises_volume.ipynb b/00_python_in_a_nutshell/06_exercises_volume.ipynb
index ded4b96..e50152e 100644
--- a/00_python_in_a_nutshell/06_exercises_volume.ipynb
+++ b/00_python_in_a_nutshell/06_exercises_volume.ipynb
@@ -257,9 +257,9 @@
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3 (ipykernel)",
+ "display_name": "intro-to-data-science",
"language": "python",
- "name": "python3"
+ "name": "intro-to-data-science"
},
"language_info": {
"codemirror_mode": {
@@ -271,7 +271,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.12"
+ "version": "3.12.4"
},
"toc": {
"base_numbering": 1,
diff --git a/00_python_in_a_nutshell/07_content_data_types.ipynb b/00_python_in_a_nutshell/07_content_data_types.ipynb
index a40af42..2ac1470 100644
--- a/00_python_in_a_nutshell/07_content_data_types.ipynb
+++ b/00_python_in_a_nutshell/07_content_data_types.ipynb
@@ -237,19 +237,18 @@
"metadata": {},
"outputs": [
{
- "ename": "AttributeError",
- "evalue": "'int' object has no attribute 'is_integer'",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m/tmp/user/1000/ipykernel_306555/2418692311.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_integer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
- "\u001b[0;31mAttributeError\u001b[0m: 'int' object has no attribute 'is_integer'"
- ]
+ "data": {
+ "text/plain": [
+ "True"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
}
],
"source": [
- "a.is_integer()"
+ "a.is_integer() # Note: In Python versions < 3.12 this cell raises an `AttributeError`"
]
},
{
@@ -494,7 +493,7 @@
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m/tmp/user/1000/ipykernel_306555/2667408552.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mmore_numbers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
+ "Cell \u001b[0;32mIn[21], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mmore_numbers\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mappend\u001b[49m(\u001b[38;5;241m10\u001b[39m)\n",
"\u001b[0;31mAttributeError\u001b[0m: 'tuple' object has no attribute 'append'"
]
}
@@ -607,7 +606,7 @@
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m/tmp/user/1000/ipykernel_306555/3320204082.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mto_words\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"zero\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
+ "Cell \u001b[0;32mIn[26], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mto_words\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mzero\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\n",
"\u001b[0;31mKeyError\u001b[0m: 'zero'"
]
}
@@ -673,9 +672,9 @@
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3 (ipykernel)",
+ "display_name": "intro-to-data-science",
"language": "python",
- "name": "python3"
+ "name": "intro-to-data-science"
},
"language_info": {
"codemirror_mode": {
@@ -687,7 +686,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.12"
+ "version": "3.12.4"
},
"toc": {
"base_numbering": 1,
diff --git a/01_scientific_stack/00_content_numpy.ipynb b/01_scientific_stack/00_content_numpy.ipynb
index 1872760..7ad92fe 100644
--- a/01_scientific_stack/00_content_numpy.ipynb
+++ b/01_scientific_stack/00_content_numpy.ipynb
@@ -36,7 +36,7 @@
"source": [
"Before we can import these libraries, we must ensure that they installed on our computers. If you installed Python via the Anaconda Distribution that should already be the case. Otherwise, we can use Python's **package manager** `pip` to install them manually.\n",
"\n",
- "`pip` is a so-called command-line interface (CLI), meaning it is a program that is run within a terminal window. JupyterLab allows us to run such a CLI tool from within a notebook by starting a code cell with a single `%` symbol. Here, this does not mean Python's modulo operator but is just an instruction to JupyterLab that the following code is *not* Python.\n",
+ "`pip` is a so-called command-line interface (CLI), meaning it is a program that is run within a terminal window. JupyterLab allows us to run such a CLI tool from within a notebook by starting a code cell with a single `!` symbol. Here, this does not mean Python's modulo operator but is just an instruction to JupyterLab that the following code is *not* Python.\n",
"\n",
"So, let's proceed by installing [numpy ](https://numpy.org/) and [matplotlib ](https://matplotlib.org/)."
]
@@ -50,13 +50,12 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "Requirement already satisfied: numpy in /home/webartifex/repos/intro-to-data-science/.venv/lib/python3.8/site-packages (1.21.1)\n",
- "Note: you may need to restart the kernel to use updated packages.\n"
+ "Requirement already satisfied: numpy in /home/instructor/Repositories/intro-to-data-science/.venv/lib/python3.12/site-packages (2.0.0)\n"
]
}
],
"source": [
- "%pip install numpy"
+ "!pip install numpy"
]
},
{
@@ -68,20 +67,22 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "Requirement already satisfied: matplotlib in /home/webartifex/repos/intro-to-data-science/.venv/lib/python3.8/site-packages (3.4.3)\n",
- "Requirement already satisfied: python-dateutil>=2.7 in /home/webartifex/repos/intro-to-data-science/.venv/lib/python3.8/site-packages (from matplotlib) (2.8.2)\n",
- "Requirement already satisfied: cycler>=0.10 in /home/webartifex/repos/intro-to-data-science/.venv/lib/python3.8/site-packages (from matplotlib) (0.10.0)\n",
- "Requirement already satisfied: pyparsing>=2.2.1 in /home/webartifex/repos/intro-to-data-science/.venv/lib/python3.8/site-packages (from matplotlib) (2.4.7)\n",
- "Requirement already satisfied: kiwisolver>=1.0.1 in /home/webartifex/repos/intro-to-data-science/.venv/lib/python3.8/site-packages (from matplotlib) (1.3.2)\n",
- "Requirement already satisfied: pillow>=6.2.0 in /home/webartifex/repos/intro-to-data-science/.venv/lib/python3.8/site-packages (from matplotlib) (8.3.2)\n",
- "Requirement already satisfied: numpy>=1.16 in /home/webartifex/repos/intro-to-data-science/.venv/lib/python3.8/site-packages (from matplotlib) (1.21.1)\n",
- "Requirement already satisfied: six in /home/webartifex/repos/intro-to-data-science/.venv/lib/python3.8/site-packages (from cycler>=0.10->matplotlib) (1.16.0)\n",
- "Note: you may need to restart the kernel to use updated packages.\n"
+ "Requirement already satisfied: matplotlib in /home/instructor/Repositories/intro-to-data-science/.venv/lib/python3.12/site-packages (3.9.1)\n",
+ "Requirement already satisfied: contourpy>=1.0.1 in /home/instructor/Repositories/intro-to-data-science/.venv/lib/python3.12/site-packages (from matplotlib) (1.2.1)\n",
+ "Requirement already satisfied: cycler>=0.10 in /home/instructor/Repositories/intro-to-data-science/.venv/lib/python3.12/site-packages (from matplotlib) (0.12.1)\n",
+ "Requirement already satisfied: fonttools>=4.22.0 in /home/instructor/Repositories/intro-to-data-science/.venv/lib/python3.12/site-packages (from matplotlib) (4.53.1)\n",
+ "Requirement already satisfied: kiwisolver>=1.3.1 in /home/instructor/Repositories/intro-to-data-science/.venv/lib/python3.12/site-packages (from matplotlib) (1.4.5)\n",
+ "Requirement already satisfied: numpy>=1.23 in /home/instructor/Repositories/intro-to-data-science/.venv/lib/python3.12/site-packages (from matplotlib) (2.0.0)\n",
+ "Requirement already satisfied: packaging>=20.0 in /home/instructor/Repositories/intro-to-data-science/.venv/lib/python3.12/site-packages (from matplotlib) (24.1)\n",
+ "Requirement already satisfied: pillow>=8 in /home/instructor/Repositories/intro-to-data-science/.venv/lib/python3.12/site-packages (from matplotlib) (10.4.0)\n",
+ "Requirement already satisfied: pyparsing>=2.3.1 in /home/instructor/Repositories/intro-to-data-science/.venv/lib/python3.12/site-packages (from matplotlib) (3.1.2)\n",
+ "Requirement already satisfied: python-dateutil>=2.7 in /home/instructor/Repositories/intro-to-data-science/.venv/lib/python3.12/site-packages (from matplotlib) (2.9.0.post0)\n",
+ "Requirement already satisfied: six>=1.5 in /home/instructor/Repositories/intro-to-data-science/.venv/lib/python3.12/site-packages (from python-dateutil>=2.7->matplotlib) (1.16.0)\n"
]
}
],
"source": [
- "%pip install matplotlib"
+ "!pip install matplotlib"
]
},
{
@@ -281,10 +282,12 @@
}
],
"source": [
- "m1 = np.array([\n",
- " [1, 2, 3, 4, 5],\n",
- " [6, 7, 8, 9, 10],\n",
- "])\n",
+ "m1 = np.array(\n",
+ " [\n",
+ " [1, 2, 3, 4, 5],\n",
+ " [6, 7, 8, 9, 10],\n",
+ " ]\n",
+ ")\n",
"\n",
"m1"
]
@@ -368,8 +371,7 @@
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m/tmp/user/1000/ipykernel_1264563/568665770.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mv1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mm1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
- "\u001b[0;32m<__array_function__ internals>\u001b[0m in \u001b[0;36mdot\u001b[0;34m(*args, **kwargs)\u001b[0m\n",
+ "Cell \u001b[0;32mIn[12], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdot\u001b[49m\u001b[43m(\u001b[49m\u001b[43mv1\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mm1\u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[0;31mValueError\u001b[0m: shapes (5,) and (2,5) not aligned: 5 (dim 0) != 2 (dim 0)"
]
}
@@ -429,7 +431,7 @@
{
"data": {
"text/plain": [
- "1"
+ "np.int64(1)"
]
},
"execution_count": 14,
@@ -449,7 +451,7 @@
{
"data": {
"text/plain": [
- "5"
+ "np.int64(5)"
]
},
"execution_count": 15,
@@ -779,7 +781,7 @@
{
"data": {
"text/plain": [
- "6"
+ "np.int64(6)"
]
},
"execution_count": 28,
@@ -1062,7 +1064,7 @@
{
"data": {
"text/plain": [
- "1"
+ "np.int64(1)"
]
},
"execution_count": 39,
@@ -1210,14 +1212,12 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAD4CAYAAAAHHSreAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABCWUlEQVR4nO29d3hc13Xo+1sz6MCgVxJsIAGwk5Ioim6SLMmyaOdJ7pHy8iLH9tV1Esc3zk0c6fN7jj+nycmLnZdcO7biJjuOJFtx0XUoy5Is0UWmxGIWgERjAdEx6DPomNnvjzkHHIEACWBmTpnZv++bDzOnLpyy115lry1KKTQajUajicZjtwAajUajcR5aOWg0Go3mKrRy0Gg0Gs1VaOWg0Wg0mqvQykGj0Wg0V5FmtwCrobS0VG3cuNFuMTQajcZVHD9+fEApVbacbV2pHDZu3MixY8fsFkOj0WhchYi0L3db7VbSaDQazVVo5aDRaDSaq9DKQaPRaDRXoZWDRqPRaK5CKweNRqPRXEVclIOIfF1E+kWkYYn1IiL/LCJtInJaRG6MWvegiLQanwfjIY9Go9FoYiNelsM3gXuusf4gUGt8HgL+FUBEioG/BG4B9gN/KSJFcZJJo9FoNKskLspBKfVzYOgam9wHfEtFOAIUikgV8HbgeaXUkFJqGHieaysZjYVcHpzgP169zOnOEbtF0RhMzoR4qamfp45eZmYubLc4GkApRVt/gG8faaelL2C3OHHDqkFwa4GOqN+dxrKlll+FiDxExOpg/fr1iZFSA8BjPz/Pk0c7uOAfByDdK3zuvbt5z43VNkuWurT0Bfi7Q+d45fwg04ZS+NHJbv71d2+iIDvdZulSk3BY8YUXWvjhyS46hiYByE738r9+5wbu3FZhs3Sx45qAtFLqMaXUPqXUvrKyZY3+1qyC/32qm7891ERJbgaf/q3t/NfH38zNG4v50++e4p9fbEVPDmU9kzMhPvrt45zsGOGB/ev51of28/fv3c1rF4d4/5dfoWtk0m4RU5LHf32Jf/lZGxtLcvnrd+3kx3/8ZraU5/HfvnWMbx9Z9kBkx2KV5dAFrIv6XW0s6wJuX7D8ZYtk0iygd3SK//uHDexdV8gT/+0Aad5I3+Gbv7+fh//zNJ9/voXxmTkeObjNZklTi0efPceFgXH+4yO38MYtpfPLq4uy+e//fpx3f/FX/Pjjb6bcl2WjlKlFW3+AR59t4o6t5XztwX2ICABPPnSAjz/xG/6fHzYwPRviI2+psVnS1WOV5fAM8HtG1tIBYFQp1QM8B9wtIkVGIPpuY5nGYpRS/PnTp5ieC/H5D+yZVwwAGWke/vEDe3jfTdV87RcX6RiasFHS1OLnLX4e/3U7H3rTptcpBoA3binlyYcOMDg+w1cOX7BJwtRjNhTmE0+dIifDy6Pv3TWvGAByM9P4yv91E3dsLeefXmhlZGLGRkljI16prE8AvwbqRaRTRD4sIh8VkY8amxwCLgBtwL8BfwiglBoC/go4anw+ayzTWMy3j7Tzi9YBPvXO7dSU5V21XkT4s7vr8YjwpZfbbJAw9RiZmOHPnz5FbXken7ynftFtdqwp4N03rOXfj7TTH5iyWMLU5F9ebOVM1yh/955di1praV4Pf3HPVoLTc3ztlxdtkDA+xCtb6QGlVJVSKl0pVa2U+ppS6stKqS8b65VS6o+UUpuVUruUUsei9v26UmqL8flGPOTRrIzRiVn+7lATt9aV8bu3LB3sryzI4oH96/jesU5tPVjA//diK4PBGb7w23vJSvcuud3H3rqFubDS1oMFdAxN8MWXz/OeG9dyz86qJberr/Txzl1VfONXl1xrPbgmIK1JHD882cXkbIhPvr3+dSbyYvzB7Vu09WABU7Mh/vN4J+/YVcXOtQXX3HZjaa62Hiziu8c6CCvFn929uCUXzcfvrHW19aCVQ4qjlOKJ1y6zY03+dRsh0NaDVfykoZexqTnuv3nd9TdGWw9WMBcK871jndxWV8aawuzrbu9260ErhxTndOcoTb0B7t+//LEj2npIPE+8dpkNJTkcqClZ1vbaekg8h1v89I5Ncf/Ny39X3Gw9aOWQ4jx59DLZ6V7u27tm2ftUFmTxrhvW8MzJbqZmQwmULjW54A/y6sUhfvvmdXg813bzRfPR22qYngvz41M9CZQudXnitQ5K8zK5c1v5svepr/Rxx9Zynj7eSTjsrjFCWjmkMOPTczxzspt37q4iP2tlo2x/a/caxmdC/LzFnyDpUpenjnbg9QjvW+GI9C3lPrZW+ni2QSuHeNM3NsVLzf2876Zq0r0razZ/a3cVPaNTnHJZGRqtHFKYH5/uZnwmxAP7l+fXjuYNm0soyE7nJw29CZAsdZmZC/OfJzq5c2s55fkrH9R2cGcVx9qH6R/TrqV48vTxTkJhtewYUDR3bqsg3Suue1e0ckhhnnitgy3ledy4fuWFcNO9Ht62vYLnz/UxPaddS/HixXN9DARneGAFMaBoDu6qRCl4rtFdDZGTCYcVTx69zBtqSthYmrvi/Quy03nTllIONfS4qvyMVg4pyuXBCU52jPDb+9ZdN311Kd6xq5LA1ByvtA3GWbrU5Ucnu6nIz+TWutXVD6stz2NzWS6HzmjlEC9+0zFCx9AkH7h59YUn37Gzio6hSRq7x+IoWWLRyiFFOdzSD8Bd21dfPfJNW0rxZaZpH3ecmA2F+VXbAHdsLce7gkB0NCLCO3ZV8erFQQaD03GWMDU53NyPR+Ct9csPRC/kbdsr8HqEQ2fc865o5ZCiHG7xs744h40lOas+Rmaalzu3lfPTs33MhvTcArFyon2YwPQct9WtvhECuGdnJWEFPz3bFyfJUpvDLX72riukMCdj1ccoys3gDTUlPNvQ6xrXklYOKcj0XIhXzg9ye33Zql1KJgd3VTEyMcuRC9q1FCuHW/ykeYQ3blne2Ial2F6Vz4aSHFf1Up3KYHCa012j3B6D1WByz85KLg6M0+ySCYG0ckhBjl0aZmImxG2r9GtHc1tdGTkZXp51WSaGEznc4ufGDUUrTiteiIhwcGcVvz4/6MqRuU7il20DKEVc3pW376hEBNfEg7RySEEOt/jJ8HqWPfr2WmSle3nr1nKeP9vnGnPZifQHpmjsHotLIwRwcGclc2HFy816HEosHG72U5ybwa5llJa5HmW+TG7eWMzzLnH3aeWQghxu9nPzpiJyM+Mz19Obt5TiD0xzYWA8LsdLRX7RMgDEp4cKsHNtAflZadrdFwPhsOLnrX7eUlu6opHq1+LNW0pp6h1zhUWnlUOK0TM6SXNfIG6NEDBvgeiGaPW83OKnzJfJjjX5cTme1yPs31Si70kMNHaPMRCcifu7ohS8etH509Zo5ZBimOUuYs2IiWZjSQ4V+ZkcueD8B96JhMKKX7T6ubU29gSBaA7UFHNpcIKeUT3H9Gow073fUhs/5bBnXQGZaR5XKO14zQR3j4g0i0ibiDy8yPoviMhJ49MiIiNR60JR656JhzyapTnc4qcyP4u6iqtne1stIsKBmkgvVccdVs7pzhFGJma5rT5+jRBcsehe1Up7VRxu8bNzbT5lvsy4HTMzzctNG4pc0ZGKWTmIiBf4InAQ2A48ICLbo7dRSn1CKbVXKbUX+Bfg+1GrJ811Sql7Y5VHszRzoTC/aB3gtrr49lAh0hD5A9Nc1HGHFXO4xY9H4C0L5oiOlW1V+TrusEpGJ2c5cXkkri4lkwM1Ja6IO8TDctgPtCmlLiilZoAngfuusf0DwBNxOK9mhTR0jxGYmuMtdfFthCA67uD8HpHTeKVtkF1rCyjKXf0gq8XQcYfV89rFIUJhFVeXkokZd3jN4XGHeCiHtUBH1O9OY9lViMgGYBPws6jFWSJyTESOiMi7ljqJiDxkbHfM79fpeavhePswADdvLI77sTeW5FDuy9QN0QqZmQtzqnOEfQm4J6DjDqvlxOVh0jzC3nWFcT/2lbhD8iuHlXA/8LRSKrqM5wal1D7gd4B/EpHNi+2olHpMKbVPKbWvrCz+2jwVOHF5mLWF2VSsohT09dBxh9VxrmeM6bkwN21YeWXc5aDjDqvjePswO9YWkJXujfuxr8QdnN2Riody6AKii5xXG8sW434WuJSUUl3G3wvAy8ANcZBJswgn2ocT1ghBpCHq13GHFWFac4m6L9uq8vHpuMOKmA2FOdUxwk2rKGW/XA7UlHDO4XGHeCiHo0CtiGwSkQwiCuCqrCMR2QoUAb+OWlYkIpnG91LgTcDZOMikWUD3yCQ9o1PcuL4wYec4UBNxjTjdXHYSxxNozUEk7nDLpmJX5NU7hbPdEWvuxg2FCTuHG+IOMSsHpdQc8DHgOeAc8F2lVKOIfFZEorOP7geeVK/3OWwDjonIKeAl4FGllFYOCeBKDzUxvm2ATaW5Ou6wQk60D3NjAq05iDREFwfG6R3Vs8MthxOXE2vNgTviDnGpn6CUOgQcWrDs0wt+f2aR/V4BdsVDBs21Od4+THa6l61VvoSdw4w7vHoxEneId7pssmFaczcl0JqDqLjDxUHu27torogmiuPtw6wpyKKqIDth5zDjDq9edG5HSo+QThFOXB5mz7qCFU+OvlJu2lBE39g0vXoO4+tihTUHsLXSR3a6l99cHknoeZIFK6w5iLwrTb0BJmecOc2uVg4pwORMiLPdYwk1k012V0eqV57qGEn4udzOicuJt+YA0rwedq7N53TnSELPkwx0j0zSPTpl0btSSCisONszmvBzrQatHFKA050jzIUVNyYw+8JkW1U+aR7hVKczH3gncaJ9mN3VibfmINIQNXaP6Rn7roMZb7DiXdljdKROdjjzXdHKIQU4bjzwN1jwwGcZPWHdS702kzMhGi2y5iBi0U3PhWnudccsZHZxon2ErHQP2+NUHfdalOdnUZmf5dh3RSuHFOBE+zA1ZbkUx7k8w1LsqS7kdOco4bAeDLcUpjVnlXIwR/qe1hbdNTl+eZjd1YWWWHMQyVpy6j3RyiHJUUpx4nJiB/QsZE91IYGpOS4O6sFwS2GlNQewvjiHwpx0x/ZSncDUbIjGrlHLFDZE3H0XB8YZnZy17JzLRSuHJOfS4ARD4zPWPvDrIr5U3RAtzYn2EUutORFh19oCHQu6Bqc7RyPWnMUdKYAzDrwvWjkkOWYDvdt4CK1gS1ke2eleTjk00OYEznSNzDcMVrGnupCWPuemTtrNma7I82p2bqxgl5nd58COlFYOSU5j9xgZaR5q4zi5z/XQqZPXpj8wRd/YNDvjMGn9SthdXUAorGjs1kp7MRq7RqnIz6Tcl5hSJotRkJ3OptJcR6Z+a+WQ5DR0jbK10mdZgM1kj06dXJLG7jGAuM0XvVzMoLR2LS1OQ/coO9dYq7AhktLqxKC0Vg5JjFKKhq5RdtjwwO9eV6hTJ5eg0XBfWJEuGY3TUyftZHImRFt/0HKFDRGXb+/YFP0OqyqglUMS0zk8ydjUHDvXWv/AmwN8nNgjspvG7jE2luSQn5Vu+bl3O7SXajdNvWOEFeyw2NUHkXRWcJ5Fp5VDEmP6lu0wlXXq5NI0dI/a0ggB7FlnpE5OOC910k4aDFef1XEggO1VBXg94ri4g1YOSUxD1xhej1BfmdjaPYshIuyuLuSkwx54uxmdmKVjaNIW9wVcSZ083TViy/mdSmPXKEU56awpsC4YbZKd4aW+wue4jCWtHJKYhu5RasvzEjLV4XLYU11Aa39Qp05GYac1B1dSJ7Vr6fU0dEdic3aVmd+zroAzXaOOmmI3LspBRO4RkWYRaRORhxdZ/0ER8YvISePzkah1D4pIq/F5MB7yaCI0do/ZEow22V6VTyisaOnTQWkTuzKVTAqy06kuyuZsz5gt53ciM3NhWnqD7LAhNmeyvSqfkYlZehw0IVPMykFEvMAXgYPAduABEdm+yKZPKaX2Gp+vGvsWA38J3ALsB/5SRKwbnpjE9I9N4Q9M29YIQaRCK8A53RDN09A9SlVBFiV5mbbJsK0qX9+TKFr7A8yEwrZZc+DMdyUelsN+oE0pdUEpNQM8Cdy3zH3fDjyvlBpSSg0DzwP3xEGmlKfBdF/YFPiESFA6N8PrqAfebuxKLY5me1U+lwbGtbvPoLHLvmC0ydYkVQ5rgY6o353GsoW8V0ROi8jTIrJuhftqVkiD8cBbnUsfjccIhp/r0W4lgPHpOS4MjNuSWhzNtqp8wgqatbsPiHSk8jLT2FCcY5sMeZlprC/OcdS7YlVA+n8DG5VSu4lYB4+v9AAi8pCIHBORY36/P+4CJhuN3aPUlOaSlxmXacJXzbaqfM71jjkq0GYXTb1jKGVfMNpkuwN7qXbS2D3G9qp8PB575zzfVuVz1D2Jh3LoAtZF/a42ls2jlBpUSk0bP78K3LTcfaOO8ZhSap9Sal9ZWVkcxE5uGrrGbLUaTLavyScwNUfn8KTdotiOac3ZGfgEqC7KJi8zzVENkV2Ewoqz3WO23xOIjHe4ODjOxMyc3aIA8VEOR4FaEdkkIhnA/cAz0RuISFXUz3uBc8b354C7RaTICETfbSzTxMDw+AxdI5O2+lBNnBhos4uGrlFKcjOozLc+lz4aj0fYWumsXqpdXBwIMjkbst2ag4jloBSOKTkTs3JQSs0BHyPSqJ8DvquUahSRz4rIvcZmHxeRRhE5BXwc+KCx7xDwV0QUzFHgs8YyTQyYaYp2ZiqZbK30IYKjfKl20dgdsebsyqWPJpKxFEj52frmU4sdYDmYHSmnpBnHxSGtlDoEHFqw7NNR3x8BHlli368DX4+HHJoIZo/QfNjsJCcjjY0luSnfS50NhWnrD/KW2o12iwJEno1vH2mnc3iS9SX2BWLt5lxPgHSvsLnMupL2S1FdlI0vyznuPj1COglp7g1QmpdBqY259NFsq/JxrtcZD7xdXBoYZyYUtqWUyWJsq4rI4ZReql009Y6xuSzP8pL2iyEibKvMd4yVbf8V0cSdpt6AYxohgG2V+bQPThCcdkagzQ7OGX5kp9yX+nl3X2orh+beAFsdck8gorSbesYc4e7TyiHJMMtVbK2036VkYrq3mlPYemjujRRB3FJuv/sCIu6+TaWp7e4bNcpV1DvsXRmfCdExPGG3KFo5JBvtg+NMzznHfQGwbY0ZaHOGuWwHzb0BakpzyUyzpwjiYphjUFIVcxCgsywH52T3aeWQZJhpcE564NcUZJHvoECbHTjN1QeRwXAdQ5MEplJzbgfTknXSfamv9OERZ3SktHJIMpp6A4hAbblzHngRSelib8HpyCBAJylsuBKUbnJIXr3VNPUG8GWlUWXDHA5LkZXudYy7TyuHJKO5N8DGklyyM5zjvoCIudzcm5p59c3zwWjn+LbBWS4MOzCD0U4YdxKNUzpSWjkkGc19AeornNVDhYgLY2ImRPuQ/YE2q3Giqw+gMj+Lwpx0RzREVqOUirwrDrsnEFEOkfnf7XX3aeWQREzOhLg0OO7IB77OkCkVJ/5p7h0jN8PL2sJsu0V5HSJCXYWPlr6g3aJYTvfoFIGpOcdZc8B8567V5vuilUMS0dofQCnn9VABao0UztYUVA5NvQHqKn22V/1cjLqKPFr6AilXNdcMRm9z4LtSN68c7H1XtHJIIpocNtAqmtzMNKqLsmlOsV6q6b5wosKGSC81MDVH75hzpqe0AvNdqXPgfakuyiY73Wv7fBtaOSQRzb0BstI9bCjJtVuURamv8NGSYpkx/YFpRiZmHRkHAqitMN19qaW0m3oCrC3MJj8r3W5RrsLjEeoq8rRbSRM/mnsD1Jb78DrQfQGRhujCQJDZUNhuUSyjyaGZSiamCyPVlHazA8edRFNb4dOWgyZ+NDmsTsxC6ivzmA0pLg2M2y2KZZi+bafel+LcDMp8mSmVKDAzF+a8P+ho5VBf4cMfmGZ4fMY2GbRySBIGg9MMBKcd/cDXpaALo6k3QEV+JkW5GXaLsiRmUDpVuDAQZC6sHKuwwRnZfVo5JAlXcumd6b4A2FyWh0dSa2L7iPvCufcEmE9nTZUBis0OTtwwqauIZPe5XjmIyD0i0iwibSLy8CLr/1REzorIaRF5UUQ2RK0LichJ4/PMwn01y8NscOsqnVH1czGy0r1sLMlNGf92KKxo6w9SX+HcewIR5TA5G6JrJDXm+W7uDZDmEWpKnXtfKvOz8GWl2Wplx6wcRMQLfBE4CGwHHhCR7Qs2+w2wTym1G3ga+PuodZNKqb3G5140q6K1P0hhTjplDpngZylqK/Jo6U8N5dAxNMH0XHg+I8ipmO4+p8xdnGha+4NsLM0lI825jhNzgKKdVnY8rs5+oE0pdUEpNQM8CdwXvYFS6iWllFk34QhQHYfzaqJo7QtQV+68OjELqa/wcWlgnKnZkN2iJBzTJVDncOVQa7owUkRpt/YF5t02TqauwkerjQMU46Ec1gIdUb87jWVL8WHg2ajfWSJyTESOiMi7ltpJRB4ytjvm9/tjEjjZUErR0hdkixse+EofYQXn/ckflG7tj/yPTpngZynys9JZU5CVEu6+qdlIfa8tDqpavBT1FXkMT8ziD07bcn5L7SoR+V1gH/APUYs3KKX2Ab8D/JOIbF5sX6XUY0qpfUqpfWVlZRZI6x78wWlGJ2epc3gjBNGlAVJAOfRFBlrlZabZLcp1ieTVJ/89Oe8PohSusRwAWnrtuS/xUA5dwLqo39XGstchIncBnwLuVUrNq0KlVJfx9wLwMnBDHGRKKcyG1unuC4CNJbmkeyUlMpZa+oKOtxpM6it9nPcHmUvyAYpuelfsTmeNh3I4CtSKyCYRyQDuB16XdSQiNwBfIaIY+qOWF4lIpvG9FHgTcDYOMqUU5sPjBrdSRpqHTaXJn7EUCivO+4Ou6KFCpLGcmQsnfUn11v5IptJGh5aYiaY0L5Pi3Az3Kgel1BzwMeA54BzwXaVUo4h8VkTM7KN/APKA7y1IWd0GHBORU8BLwKNKKa0cVohbMpVM6ip8SR/8nM9UcoFvG664WeyuBJpoWvqcn6kUjZ0DFOPiDFVKHQIOLVj26ajvdy2x3yvArnjIkMq09gWoLc9zfKaSSX2Fjx+f7mF8eo5cF/jjV4P5Qte6xHLYUp6HCDT3Brlnp93SJI7WvsD8DHhuoL7Cx/dPdKGUsvz9dof61CyJmank9Fz6aExZzWyeZMT839xyX3Iy0lhXlJPUZTSmZkNcHppwzT2ByPMTmJ6je9T6kupaObgcN2UqmZi96bZkVg59AdYUZLkiU8mktjwvqe/JeX+QsEsylUzMSbLsuC9aObgcM/vCTb2hDcU5ZHg9tCZx3KG1313WHFwpqZ6sGUtmA+uWOBDYOyucVg4ux22+bYA0r4easlzakjSv3qypVOsiaw4ivdTZkErajKWWvgBej7Cp1PmZSiZFuRmU5mVoy0Gzclr7gxRkuydTyWRLeV7SxhzMTCU35NJHUzufsZSc96WlL8jGkhzXZCqZ2PWuuOsqaa7CrBPjlkwlk9pyHx3DE0zOJF+NpfmyGS6y5iBSUh2gLUndfW39QdcpbIi8K3bUWNLKwcW4MVPJpLYiD5WkNZbmXX0ucyvlZqaxtjA7KS26qdkQ7YPjrn1Xxqbm8AesrbGklYOLMTOV3NYIgb1ZGImmrT9IVUEWPgdOXn89ah0wsX0iuOAfJ6zcp7DhSuFGq5W2Vg4uxk11YhayoSSXNI8kZcZSS1/AlT1UiDSe5/1BQkk2K5z5nLnxXTGzq6zOWNLKwcW0utR9AZEaSxtLc5Oul2rWVHLjPYFIQzQ9F6ZzOLkyllr7gq7LVDIpzcugMCddWw6a5TOfqeRzV6aSSTIOuuoanmRqNuyqgVbRbEnSjKXW/oArM5UgMitcbbn17j73XSnNPK1GLr3bMpVMasvzuDQ4zvRc8mQsme4LN0wmsxh2+bcTTeRdcec9gcjz1NJvbcaSVg4upq3fPfMFLMaWisiscBcHxu0WJW64Zfa3pcjPSqcyPyupYkHTcyHaBydce08g0pEamZhlcHzGsnNq5eBSBoPTDI3PuP6Bh+RyYbT2BSn3ZVKQ7b5MJZPaiuRy910amCAUVq6qIrAQOwYoauXgUtxW9XMxNpXm4pHkcmG09Qdc3QhBxOpp6w8STpKMpSuuPvfeF9MlZuUARa0cXMqVImLufeCz0r1sKMlNmhG5Spk1ldyrsCHSEE3MhOgenbRblLjQ1h9E5MoIcDdSkZ+JLzPN0o5UXJSDiNwjIs0i0iYiDy+yPlNEnjLWvyoiG6PWPWIsbxaRt8dDnlSgrT9IboaXqoIsu0WJiS02ZGEkip7RKcZnQq7uoUKUCyNJLLrW/iDri3PISvfaLcqqERG2WDxAMWblICJe4IvAQWA78ICIbF+w2YeBYaXUFuALwOeMfbcTmXN6B3AP8CXjeJrr0NofYEuFz7WZSia15XlcHBhnNgnKRLcmgTUHsMWssZQkSrutz73jTqKptbgAXzwsh/1Am1LqglJqBngSuG/BNvcBjxvfnwbulEirdh/wpFJqWil1EWgzjpcQvvhSG48+25Sow1tKa7I88BV5zIUVl5IgY2l+UKKL40BglonOTIpZ4eZCYS4MBF2bWhxNbbmPgeA0wxZlLMVDOawFOqJ+dxrLFt1GKTUHjAIly9wXABF5SESOicgxv9+/KkGbegP815nuVe3rJEYnZukPTLvefQHRgTb391Lb+oMU52ZQnJthtygxU1ueR1sSFEVsH5pgNqSS4l3ZWuWjvsJnWTqrawLSSqnHlFL7lFL7ysrKVnWM2vI8OocnmZiZi7N01tLmd2/ZjIVsLotMbJ8M/u1Wl487iaa2Io+2vqDlZaLjzfxMiUlwX95SW8Zzn7jVsmcsHsqhC1gX9bvaWLboNiKSBhQAg8vcN27UlkfKRF/wu9uF4cbpDpciO8NLdZH7y0RfyVRyfyMEkXclMD1H35i1ZaLjjVkSfnOS3BcriYdyOArUisgmEckgEmB+ZsE2zwAPGt/fB/xMRbokzwD3G9lMm4Ba4LU4yLQoV7Iw3O1Lbe0LkpXuYW1Rtt2ixAVzMhM34+by6Yth+ujd/64EWFuYTV5mmt2iuI6YlYMRQ/gY8BxwDviuUqpRRD4rIvcam30NKBGRNuBPgYeNfRuB7wJngZ8Af6SUSlihnQ0luaR7xfWpk639QTaX5eH1uDtTyaS2PI8LA+OuntjezOxxezDaJFmmDE0mV5/VxEWdKqUOAYcWLPt01Pcp4P1L7Ps3wN/EQ47rke71sKk01/UujLb+IDdvLLJbjLixpTyPmbkwHcOTriypDMmTxmpSkptBkQ1louNJKBxx9b2hpsRuUVyJawLS8cLtLozg9BxdI5NJ1Rsye9tuvi+t/QF8WWmuLZ++kEiZaJ+rR693DU8yPRdOqnfFSlJOOWwpz+Py0ARTs+4sE31+vupncrgvIDnKRJvjTtw+KDGaLRV5tLg4Y8mMl7i91pVdpJxyqK3II+zijKX5TKUkeuDzMtNYU5DlasshMvtb8ihsiLjIRidn8QfdmbFkvitbypLrvlhF6ikHl2dhtPQHSPcKG4pz7BYlrmyp8LnWchgan2Eg6O7y6YsxP0DRpUHplr4gZb5MCnLcWz7dTlJOOWwszcHrEdeOyG3rC1JTmkeaN7lunTllqBsntr9SNiPJlIPLC/C19QdcO12rE0iuFmYZZKZ52VCS49oUvZYkmC9gMWrL85ieC9M17L4y0S1G41mXJGmsJuW+THxZaa60ssNh5fqpQe0m5ZQDmNUN3ffAT8zM0Tk8mZQPvJsHKLb1BcjLTHN9+fSF2DWxfTzoHp1kYiaUlB0pq0hR5eDj0uAEM3PuGnR1vn8cpUhKU9kMGrrRhdHSFxlolUyZSiaRdFb33RNToSWbNWclqakcKvIIhRWXBt2VsdSSJCWhF6MgJ51yX6Yre6mtSezbrq3IY3B8hkGXZSzNvytJliRgJSmpHObz6l3WELX2ByOZSiXJlalkEpnY3l1uJTNTKRldfXDlXXGb9dDaH8lUKsxxf/l0u0hJ5XClTLS7GqLWvgA1pXmkJ1mmkklteSSd1U2DrpI1U8lkfvS625RDX/Jac1aRnK3MdchK97K+OMd1D3xLf4AtSfzAbynPMya2n7JblGWTrJlKJmsKssjN8LrKctCZSvEhJZUDGBlLLhqRa2Yq1SXxA2/6h900PWWyZiqZiAhbyvNcdU90plJ8SF3lUOFz1cT2yZypZGL2vt00IjeZM5VMal02el1nKsWHlFUO9RU+ZkPumdg+FYqIFeVmUObLpNlFvdTW/mBSK2yIvCv+wDRDFs1dHCvz74rOVIqJlFUOZiPrloaopc/MVHLnfAfLpa7CPS6M4fEZBoLTSe/brquM/H9uuS9mTSWdqRQbMSkHESkWkedFpNX4e9UMNCKyV0R+LSKNInJaRH47at03ReSiiJw0PntjkWclbC7LwyORB8kNtPYF2FSam7SZSiZ1FT5a+4KEXVBjqSXJM5VM6uZnhXOHcmjtC2irIQ7E2tI8DLyolKoFXjR+L2QC+D2l1A7gHuCfRKQwav2fK6X2Gp+TMcqzbLLSvWwszaWl1yUPfH8wKQe/LaS+wsfkbIhOF9RYak3yTCWTyvwsfFlprrCylVKGqy+574kVxKoc7gMeN74/Drxr4QZKqRalVKvxvRvoB8piPG9cqCv30eKCsQ6TMyE6hieSOlPJxFSAbnBhtCZ5ppKJiFBX4XOFld01ojOV4kWsyqFCKdVjfO8FKq61sYjsBzKA81GL/8ZwN31BRJacY1FEHhKRYyJyzO/3xyh2hLpKH5cGxh0/K9x5fxClkt99AVdcGG7opZqT1ydzppJJRDkEHD9A8cpc3snfkUo011UOIvKCiDQs8rkvejsVeWqWfHJEpAr4NvD7Sikzf/QRYCtwM1AM/MVS+yulHlNK7VNK7Ssri4/hUWfMCnfe7+wekdmLTvasGABfVjprCrJcYTm09CV/ppJJfUUeIxOz+APOrrHUqmsqxY20622glLprqXUi0iciVUqpHqPx719iu3zgv4BPKaWORB3btDqmReQbwJ+tSPoYqZ+f2D7IjjUFVp56RaRKppJJXaXzXRipkqlkUjfv7gtSnu9cN1pLX5DSvEyKcnWmUqzE6lZ6BnjQ+P4g8KOFG4hIBvAD4FtKqacXrKsy/gqReEVDjPKsiI2luaR7xfEujJYkr6m0kLoKH+f7g8w5eICi+cyYaZ7Jjvl/uuFdqa/UVkM8iLW1eRR4m4i0AncZvxGRfSLyVWObDwC3Ah9cJGX1OyJyBjgDlAJ/HaM8KyLd66Gm1PllNJp7A9SnSCMEEeUwEwrTPjRhtyhL0mxkuW1NkftSmpdJSW6Go9+VUFhFlENFvt2iJAXXdStdC6XUIHDnIsuPAR8xvv878O9L7H9HLOePB3WVPk52DNstxpKMTc3SNTLJ79yy3m5RLMN097X0Bthc5sxeYFNvgEJjDopUobYiz9GWw+WhCaZmwymjsBNNavgprkFdeR4dQ5OMT8/ZLcqitKRYDxUwMoCc7cJo7h2jvsKXEplKJvXGAEWnZiw1944BpJSVnUi0cjAeJKeWJG4ylEMqPfDZGUZJdYcGpcNhRUtfMKUUNkTeleD0nGNLqjf1BhBJ/kGJVqGVQ4WzA23NvQF8mWmsLcy2WxRLqS33OfaedI1MEpyeo74ytXzbdVHuPifS3BtgQ3EO2Rleu0VJClJeOawvziEzzePoB76uMrXcFwD1lXlcHBhnes55AxRT0ZoD5kfoO1Vpp1riRqJJeeXg9Qi1FXnzM3o5CaUUTb1jKee+gEgvNRRWXHRgSfVU9W0X5KRTme/MAYpTsyEuDY6zNcWsuUSS8soBIj0i84V3Er1jU4xNzaWscoArKaNOoqk3QHVRNnmZMSX7uZLaijxH3pPWviBhlVqJG4lGKwciPcC+sWmGHTaZyRX3Rer1hmrKcknzyPw1cBLNvYGUbYS2VkZmhXPaAMWmFLXmEolWDsC2qkjje67HWdaD2UOrT8Hsi8w0L1vK8xx3T6bnQlwYGE/ZRmhbVT4zc2HHufuaewNkpXtSpsSMFWjlwBXlcNZhDVFzb4CqgiwKctLtFsUWtlflO045nO8fJxRWKWnNgYPflb4AteU+vJ7UStxIJFo5AGW+TMp8mZzrcZYLoynFsy+2VeXTNzbNYNA5lUCb+yKNYqq6lTaX5ZHuFccph1R/VxKBVg4G2xzWS50NhWnrT+0H/oq7zzlKu6k3QLpX2FSamu6LjDQPW8p9jrong8Fp/IHplFXYiUIrB4NtVT7a+oPMOiTQdnFgnNmQSukHfltV5H93ktJuNuo9pUqF3MXYVuVz3D0BHYyON6n7hC9ge1U+M6GwYyb+mc9USuEKkyV5mZT7Mh3XEKWywobIu+IPTDPgEHdfqg5KTDRaORg4LWOpuXcMr0fYXJ6a7guTbVX5jvFvj07M0jM6lbLBaBPnvSsBinMzKMtLnQq5VqCVg0FNaS4ZaR7H+FKbegLUlOaSmZbadWK2VeVz3h9kZs5+d9+53tQORps4TTk0pWCFXCuISTmISLGIPC8ircbfoiW2C0VN9PNM1PJNIvKqiLSJyFPGrHG2kOb1UFfhnLz6xu4xdq517tSlVrGtysdsSDmiam5jd+TZ2LE2tS2H4twMKvOzHNGRmg2FOdcbYGeK35NEEKvl8DDwolKqFnjR+L0Yk0qpvcbn3qjlnwO+oJTaAgwDH45RnpjYVpnP2e4x2+vV+wPT9I5NsWONfuC3O6iX2tg1Srkvk3Kfc+dQtgqnBKVNq1J3pOJPrMrhPuBx4/vjROaBXhbGvNF3AOa80ivaPxFsq8pncHwGf8DeQFtj9ygAO9boB37TvLvP/oaooXtUN0IG26ryaesP2l41t6HLsOb0uxJ3YlUOFUqpHuN7L1CxxHZZInJMRI6IyLuMZSXAiFLKnIKtE1gbozwx4ZTRn6b7Yru2HEjzeqiv8M37++1iciZEW39QW3MG26rymQvb7+5r7B4lO92bsuNOEsl1lYOIvCAiDYt87oveTkV8MUv5YzYopfYBvwP8k4hsXqmgIvKQoWCO+f3+le6+LLY7ZNBVY/coG0pyKMhOzbIZC4m4MAK2uvuaescIK91DNXHKAMXGrjG2r8nXZTMSwHWVg1LqLqXUzkU+PwL6RKQKwPjbv8Qxuoy/F4CXgRuAQaBQRMy6x9VA1zXkeEwptU8pta+srGwF/+LyKchJZ21htu0ujIauMXbqRmie7VX5DI3P0G+ju6/BsOZ04DPCptJcstLtdfeFw4rG7lF2amsuIcTqVnoGeND4/iDwo4UbiEiRiGQa30uBNwFnDUvjJeB919rfauwOtI1OznJ5aEK7lKJwgrvvbPcohUbnQROZJKu+wt535dLgOOMzIXboOFBCiFU5PAq8TURagbuM34jIPhH5qrHNNuCYiJwiogweVUqdNdb9BfCnItJGJAbxtRjliZltVflcGBhncsaeQNvZ+R6qfuBNtprKodu+hqiha4wda/J1Ln0U5gBFu9x9pjWn40CJIaaprJRSg8Cdiyw/BnzE+P4KsGuJ/S8A+2ORId7sWltAKKw42zPKTRuKLT//lUwl/cCbFGSns7Ekh9OdI7acf2YuTHNvgN9/00Zbzu9UdlUX8OTRDjqGJllfkmP5+Ru7R8nweqgtT+1BiYlCj5BewJ51hQCc6hi15fwNXaNU5mdRqksBvI7d1YWc7rTnnrT2B5gJhbX7YgF7qgsBOGWT0m7sGqO+0kdGmm7GEoG+qguoyM+iIj/Ttl5qZGS0thoWsru6gJ7RKfrHpiw/t5larAOfr8dsmO14V5RSxrgTfU8ShVYOi2BXL3ViZo7z/qBOl1yEeYvOhvvS2DVKboaXjXoKyteR7vWwY02+LVZ218gkIxOzbNfvSsLQymER9lQXcGFgnNHJWUvPe64nYOTS697QQnasyccj2NJLbeiO5NJ7dC79VeypLqShe5RQ2NqgtDkyWltziUMrh0Uwe6lnLO6lmsFonal0NTkZadRV+Cy3HEJhxdnuMW3NLcHu6gImjNHjVnK2exSvR+bTnDXxRyuHRdi9thCwPtDW2DVGcW4GVQW6sNti7Kku5HTniKWpkxcHxpmcDWmFvQS7bQpKN3SPsaUsj6z01C5pn0i0cliEghx7UidPdY7oXPprsHtdASMTs3QMTVp2TvMZ0IHPxakpzcWXmWbpu6KU4nTnSMqXTk80WjksgdVB6cDULM19AW7asOiUGBqupE6etLAhOt4+jC8zTefSL4HHI+yqLrA0KH15aIKB4Ix+VxKMVg5LMJ86GbAmdfJkxwhKoR/4azCfOtkxYtk5j7cPs3d9oS7sdg12VxfS1DtmWfnu4+3DgH5XEo1WDkuw1whKn7aoR3S8fRiRK+fVXI2ZOmmVRaetueWxp7qA2ZCyrEKrtuasQSuHJdixpgCvRywLtB1vH6a+wocvS5fpvhZ7qgs50zXKXCjxc0qf6hjV1twyMLP7rIo7nLg8oq05C9DKYQmyM7zUludZkjoZDitOXh7hRt0IXZfd1QVMzoZo8yc+dVJbc8ujqiBS7uWkBe6+wNQszb1j3LhevyuJRiuHa2BV6mRrf5DA9Bw36Qf+upipk1a4+45f1tbcchAR9lQXWOLuO9UxSlhbc5aglcM12Lu+kJGJWS4OjCf0PDrAtnxqSnPxZaVx4vJwQs8TDit+0z6srbllsnddIef9QUYnEltVYN6aW1+Y0PNotHK4Jvs3RUp2v3pxKKHnOd4+TEluBhtsKHvsNjweYf/G4oTfE23NrYz9m4pRCl67lOB3xbDm8rU1l3C0crgGNaW5lPkyOXJhMKHnOXE50kPVg9+Wx4GaEi4OjNM7mrg0Y9My0dbc8tizrpDMNE9C35VwWPGby9qas4qYlIOIFIvI8yLSavy96q6JyFtF5GTUZ0pE3mWs+6aIXIxatzcWeeKNiHCgpoQjFwYTFncYDE5zcWBcN0Ir4EBNCQCvXkxcQ6StuZWRle7lxvVFCVUObf4ggSltzVlFrJbDw8CLSqla4EXj9+tQSr2klNqrlNoL3AFMAD+N2uTPzfVKqZMxyhN3DtQU0zc2zaXBiYQc/8TlEQCdfbECtq/Jx5eZxpELiXNhnGgf5ob12ppbCQdqSjjbM5awuIMZm9OWgzXEqhzuAx43vj8OvOs6278PeFYplZiWNgGYvdRE9YiOtw+T5hF2V+vCbsvF6xH2byrm1QTdk6HxGS5oa27FHKhJbNzhePswxbkZbNTWnCXEqhwqlFI9xvdeoOI6298PPLFg2d+IyGkR+YKILDk3pog8JCLHROSY3++PQeSVkei4w4n2YXasLdDVJVfIgZoSLgyM05eAmeFO6OyxVZHouMOJ9mFu1NacZVxXOYjICyLSsMjnvujtVMQpv6RjXkSqgF3Ac1GLHwG2AjcDxcBfLLW/UuoxpdQ+pdS+srKy64kdNxIZdwhOz3Hi8jAHaorjetxUIJEW3S/bBshK92hrboVkpXu5YX1hQu5J5/AEFwbG9btiIddVDkqpu5RSOxf5/AjoMxp9s/Hvv8ahPgD8QCk175BUSvWoCNPAN4D9sf07iSFRcYdX2gaYCyturyuP63FTgUTGHQ63+HlDTYm25lZBouIOP28ZAOD2eus6hqlOrG6lZ4AHje8PAj+6xrYPsMClFKVYhEi8oiFGeRLCfHZMnHtEh1v85GZ4tftiFSQq7tA+OM7FgXFur9cKezUcqClBKTga57jD4ZZ+1hZms7ksL67H1SxNrMrhUeBtItIK3GX8RkT2ichXzY1EZCOwDji8YP/viMgZ4AxQCvx1jPIkhETEHZRSHG7x88YtpWSk6eEmq8GMO/THMe7w85ZIPOu2Ot1DXQ171xWSEee4w2wozK/aBrmtvkzHGywkLZadlVKDwJ2LLD8GfCTq9yVg7SLb3RHL+a3iStxhCKVUXB7Q8/5xOocn+ehtm+MgYWoyH3e4OMS9e9bE5ZgvN/vZUJLDxtLcuBwv1YiMdyjkSBzHoBxvHyY4PacVtsXoLusyOVBTTO/YFOf98amzdFj3UGNm+5p8fFlp/Kp1IC7Hm54L8cr5QX1PYuRATQmN3WMMjc/E5XiHW/ykeYQ3bi6Jy/E0y0Mrh2XyVsMH/Vxjb1yOd7jFT01ZLuuKdc72avF6hNvry3nhXB+hcOyZZMcuDTM5G9LKIUbu3FqBUvDC2b64HO9ws5+bNhTp6rgWo5XDMllTmM3edYX8pCF25TA1G+LVC4M6SykOHNxZyeD4DK/FoRDf4RY/GV7PvLtKszp2rs2nuiibZxt6rr/xdegfm+Jszxi36Swly9HKYQW8Y1clZ7pG6RiKLaX1yIVBpufC+oGPA7fXl5GV7olLQ3S42c/Nm4rIzYwpFJfyiAgHd1byy7YBRidjS2n9ueEy1Nac9WjlsAIO7qwCiNl6ONziJzPNwy2b9ICeWMnJSOOt9eU829BLOAbXUs/oJM19Ad0IxYmDu6qYDSl+1hSba+lwi58yXybbq/LjJJlmuWjlsALWFeewc20+h2LopSqleKmpn1v0IKu4cc/OSvyBaY7HMAHQz5oi4zdv1cohLuytLqSqIItDZ1bfkZqZC/OLVj9vqS3VKaw2oJXDCjm4s4rfXB6hZ3RyVfsfax/m0uAEv7W7Ks6SpS53bC0nI83DszE0RN871smW8jzqK3xxlCx18XiEt++o5HCLn+D03KqO8eK5PkYmZvk/dscnTVmzMrRyWCEHd1YCq3ctPfHaZfIy07RyiCO+rHRurS3l2YaeVbmWmnrHONkxwv03r9M91Djyjl1VzMyFeanpWlV1luaJox1UFWRpa84mtHJYITVleWyt9K2qlzo6OcuhMz3cu3cNORk66BlPDu6somd0ilOdIyve98nXOsjwenjPjdXxFyyFuWlDEWW+zFUlC3QMTfCLVj/v37cOr0crbDvQymEVHNxZxdH2oRWXi37mZBdTs2EeuHl9giRLXe7aVkG6Vzh0ZmUN0dRsiB/8pou7d1RQnJuRIOlSE69HuGdHJS81+ZmYWZlr6XvHOwH4wD6tsO1CK4dVcO/eiA/0G7+6tOx9lFI88VoHO9bks0uXgo47BTnp3LG1nKeOdjA2tfz0yZ809DI6OcsD+7XCTgTvumEtk7Mh/uPVy8veJxRWfO9YB7fWllFdpAeJ2oVWDqtgU2ku9+5Zw7d+fYnB4PSy9jnTNcrZnjHuv3ldgqVLXf74jlrGpub45gqU9pNHL7OuOJs36IFvCeGmDUW8cXMJXz58gcmZ0LL2OdzST8/olH5XbEYrh1Xyx3fUMjkb4t9+cXFZ2z95tIOsdA/33XBV/UFNnNi5toC7tlXw1V9cWJb1cHFgnCMXhrj/5vV4tF87YfyPO2sZCE7znVfbl7X9k691UJqXwZ3brjexpCaRaOWwSraU5y3beugYmuCHv+ninbvWkK/rwySUP7krYj08vgzr4X/9rA2vR3jfTdqvnUhuqSlZtvVwtnuMF5v6ee9N1bqUvc3oqx8Dy7EeQmHF//zuKTwifOJttRZKl5rMWw+/vHhN6+Gnjb3854lO/vutNVTkZ1koYWqyHOthajbEJ546SXFuBh+9VZeytxutHGIg2npYasKZr/7iAq9dGuIz9+7QwTWL+JO7ahmdnOWrSyhtf2CaR75/hh1r8vmTu+osli41ibYeAkso7X/8aTPNfQH+/n27KdKZY7YTk3IQkfeLSKOIhEVk3zW2u0dEmkWkTUQejlq+SUReNZY/JSKueyI+fmctobDi/V/5NRf8wdetO9czxj/+tIW376jgvTfqWINV7FxbwDt3V/HPL7byry+fR6krA+OUUjzy/dMEpuf4wm/v1a4LC/mfd9cxPDHDB75yhN7R13emfn1+kK/+8iL/5y3r58vja+wl1jejAXgP8POlNhARL/BF4CCwHXhARLYbqz8HfEEptQUYBj4cozyWs7ksjyceOkBgao73/OsrHLs0ROfwBN8+0s4ffucE+dnp/O27d+mRtxbz+Q/s4d49a/jcT5r41A8bmJiZ43CLn08+fZoXzvXzybfXU6dLZVjKTRuK+foHb+by4Djv/tKvaOod4+LAOF/75UU+8dRJNhTn8Kl3brNbTI2BRPeqVn0QkZeBPzOmB1247g3AZ5RSbzd+P2KsehTwA5VKqbmF212Lffv2qWPHrjqVrbQPjvPBbxylfXAcs4LD+uIcHn3PLt64pdRe4VKUcFjx//60mS+9fB6PQFhBZpqHd9+wlr999y6doWQTZ7vH+NA3j9IfmJp/V2rL8/j8B/bqMUAJRkSOK6WW9PJEY0UNh7VAR9TvTuAWoAQYUUrNRS1f0vciIg8BDwGsX++8AUsbSnL5/h+8kS+93EZFfha315ezuSxXWww24vEIn7xnK1ur8jnVMcKba0t5g66Gazvb1+Tzgz96I185fIGaslxurytnfYmOxzmN6yoHEXkBqFxk1aeUUj+Kv0iLo5R6DHgMIpaDVeddCUW5GXzqnduvv6HGUu7ds4Z79+jKnk6iqiCbz9y7w24xNNfguspBKXVXjOfoAqKHOlYbywaBQhFJM6wHc7lGo9FobMaKVI2jQK2RmZQB3A88oyLBjpeA9xnbPQhYZoloNBqNZmliTWV9t4h0Am8A/ktEnjOWrxGRQwCGVfAx4DngHPBdpVSjcYi/AP5URNqIxCC+Fos8Go1Go4kPcclWshonZitpNBqN01lJtpIeAaTRaDSaq9DKQaPRaDRXoZWDRqPRaK5CKweNRqPRXIUrA9Ii4gcWq/1bCgxYLM5K0PLFjtNldLp84HwZtXyxs5SMG5RSZcs5gCuVw1KIyLHlRuLtQMsXO06X0enygfNl1PLFTjxk1G4ljUaj0VyFVg4ajUajuYpkUw6P2S3AddDyxY7TZXS6fOB8GbV8sROzjEkVc9BoNBpNfEg2y0Gj0Wg0cUArB41Go9FcheuUg4i8X0QaRSQsIvsWrHtERNpEpFlEFp1u1Cgd/qqx3VNGGfFEyfqUiJw0PpdE5OQS210SkTPGdpZVFBSRz4hIV5SM71hiu3uMa9omIg9bJZ9x7n8QkSYROS0iPxCRwiW2s/QaXu+aiEimcf/bjOdtY6Jlijr3OhF5SUTOGu/K/1hkm9tFZDTq3n/aKvmiZLjmPZMI/2xcw9MicqOFstVHXZuTIjImIn+yYBvLr6GIfF1E+kWkIWpZsYg8LyKtxt+iJfZ90NimVUQevO7JlFKu+gDbgHrgZWBf1PLtwCkgE9gEnAe8i+z/XeB+4/uXgT+wSO5/BD69xLpLQKkN1/IzROb+vtY2XuNa1gAZxjXebqGMdwNpxvfPAZ+z+xou55oAfwh82fh+P/CUhdesCrjR+O4DWhaR73bgx1Y/cyu5Z8A7gGcBAQ4Ar9okpxfoJTKAzNZrCNwK3Ag0RC37e+Bh4/vDi70jQDFwwfhbZHwvuta5XGc5KKXOKaWaF1l1H/CkUmpaKXURaAP2R28gkQmd7wCeNhY9DrwrgeJGn/cDwBOJPlcC2A+0KaUuKKVmgCeJXGtLUEr9VF2ZZ/wIkRkD7WY51+Q+Is8XRJ63O8WiCcWVUj1KqRPG9wCReVSWnJ/dwdwHfEtFOEJk5sgqG+S4EzivlFqsKoOlKKV+DgwtWBz9rC3Vpr0deF4pNaSUGgaeB+651rlcpxyuwVqgI+p3J1e/ECXASFRjs9g2ieAtQJ9SqnWJ9Qr4qYgcF5GHLJAnmo8ZJvvXlzBHl3NdreJDRHqSi2HlNVzONZnfxnjeRok8f5ZiuLNuAF5dZPUbROSUiDwrInZM6Hy9e+aUZ+9+lu7Y2X0NASqUUj3G916gYpFtVnwtrzuHtB2IyAtA5SKrPqWUctRUosuU9QGubTW8WSnVJSLlwPMi0mT0EBIqH/CvwF8ReUn/iojr60PxOO9KWM41FJFPAXPAd5Y4TMKuoVsRkTzgP4E/UUqNLVh9goibJGjEmn4I1FosouPvmRGTvBd4ZJHVTriGr0MppUQkLuMTHKkclFJ3rWK3LmBd1O9qY1k0g0RM0zSjN7fYNivierKKSBrwHuCmaxyjy/jbLyI/IOK2iMtLstxrKSL/Bvx4kVXLua4xsYxr+EHgt4A7leFAXeQYCbuGi7Cca2Ju02k8AwVEnj9LEJF0IorhO0qp7y9cH60slFKHRORLIlKqlLKsoNwy7lnCn71lcBA4oZTqW7jCCdfQoE9EqpRSPYbbrX+RbbqIxEhMqonEbZckmdxKzwD3G1kim4ho8NeiNzAalpeA9xmLHgQSbYncBTQppToXWykiuSLiM78TCcA2LLZtvFngv333Euc9CtRKJMsrg4iJ/YwV8kEkKwj4JHCvUmpiiW2svobLuSbPEHm+IPK8/WwpxRZvjNjG14BzSqnPL7FNpRkDEZH9RNoCK5XXcu7ZM8DvGVlLB4DRKPeJVSxp9dt9DaOIftaWatOeA+4WkSLDfXy3sWxprIy0x+NDpBHrBKaBPuC5qHWfIpJF0gwcjFp+CFhjfK8hojTagO8BmQmW95vARxcsWwMcipLnlPFpJOJKsepafhs4A5w2HrCqhfIZv99BJOPlvJXyGeduI+IrPWl8vrxQRjuu4WLXBPgsESUGkGU8X23G81Zj4TV7MxFX4emo6/YO4KPmswh8zLhWp4gE+t9o8X1d9J4tkFGALxrX+AxR2YkWyZhLpLEviFpm6zUkoqh6gFmjHfwwkVjWi0Ar8AJQbGy7D/hq1L4fMp7HNuD3r3cuXT5Do9FoNFeRTG4ljUaj0cQJrRw0Go1GcxVaOWg0Go3mKrRy0Gg0Gs1VaOWg0Wg0mqvQykGj0Wg0V6GVg0aj0Wiu4v8Hg5zqbaUp4PoAAAAASUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAGdCAYAAAASUnlxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0UklEQVR4nO3deXxU5dk//s+ZPZNkJnsmgZCFLSCrIDFo1dY8BKUttD5WLC2VIrRW2lr4utBfhYqtqLXaanmqVXF53LVq3QpSFH3EGJBFFsMSyJ5MVpJJJpmZzMz5/TE5Z2Yge+bM2a736zWvlsmZyT3OyTnXvVzXzbAsy4IQQgghRAU0YjeAEEIIISRaKPAhhBBCiGpQ4EMIIYQQ1aDAhxBCCCGqQYEPIYQQQlSDAh9CCCGEqAYFPoQQQghRDQp8CCGEEKIaOrEbIAa/34/6+nrEx8eDYRixm0MIIYSQYWBZFp2dncjMzIRGM7qxG1UGPvX19cjKyhK7GYQQQggZhZqaGowfP35Ur1Vl4BMfHw8g8B/OYrGI3BpCCCGEDIfD4UBWVhZ/Hx8NVQY+3PSWxWKhwIcQQgiRmbEsU6HFzYQQQghRDQp8CCGEEKIaFPgQQgghRDUo8CGEEEKIalDgQwghhBDVoMCHEEIIIapBgQ8hhBBCVIMCH0IIIYSoBgU+hBBCCFENQQOfTz/9FN/5zneQmZkJhmHw9ttvD/maPXv24OKLL4bRaMSkSZPw7LPPXnDMtm3bkJOTA5PJhIKCAuzbty/yjSeEEEKI4gga+DidTsyePRvbtm0b1vEVFRVYsmQJvvnNb+Lw4cO47bbbcPPNN2Pnzp38Ma+++irWr1+PzZs34+DBg5g9ezaKi4vR1NQk1McghBBCiEIwLMuyUflFDIO33noLy5YtG/CYO++8E++//z6OHTvGP7d8+XK0t7djx44dAICCggJccskl+Nvf/gYA8Pv9yMrKwi9/+Uvcddddw2qLw+GA1WpFR0cH7dVFCCGEyEQk7t+SWuNTUlKCoqKisOeKi4tRUlICAPB4PDhw4EDYMRqNBkVFRfwx/XG73XA4HGEPQvrj8frx8YkmPLzrFOrae8RuDlEIlmVxvL4Df/voND4vbxG7OURBmjpd+N+SSvxvSSX8/qiMY8iepHZnt9vtSE9PD3suPT0dDocDPT09OHfuHHw+X7/HnDhxYsD33bp1K+655x5B2kzkz+P1Y++ZFnxwpAE7j9vhcHkBAP88UItX1l6KrCSzyC0kcsSyLMoaOvH+0Xp8cNSOihYnAECrYfC3G+fimpkZIreQyFVTpws7jtnx/pEG7KtsAzdvc7zegfu+NxMazeh3LlcDSQU+Qtm4cSPWr1/P/9vhcCArK0vEFhGpcLh68f3/+RzlTV38c6nxRhi0GtS192D5P76g4IeMyu/ePoYXS6v5fxt1GuSmxOKEvRPrXj6EvwEU/JAR23ncjnUvHUSvLzi6M2OcBV/XO/DK/hoAoOBnCJIKfGw2GxobG8Oea2xshMViQUxMDLRaLbRabb/H2Gy2Ad/XaDTCaDQK0mYibw9/eArlTV2wxuixdE4mrp2ZgUtyktDa5cbyf3yBsy1OCn7IiH12ugUvllZDwwD/NT0d187MwNXT0hGj1+L2N77CmwfrKPghI9bR04v/761j6PWxmDHOgqWzx+GamTaMTzTjX4fr8JtXD1PwMwySWuNTWFiI3bt3hz23a9cuFBYWAgAMBgPmzZsXdozf78fu3bv5YwgZruP1HXi+pBIAsO2HF2PL0hm4NC8ZWg2DNIsJr6y9FHkpsfzIT01bt7gNJrLg9vqw6V+BBI2VhTl44sfzsXTOOMQZddBqGPzpv2fj+xePg8/PYt3Lh/Dvow0it5jIxSO7TqGly428lFj885aFWHNFHsYnBjpkS+eMwyM3zIGGAV7ZX4PfvnWU1vwMQNDAp6urC4cPH8bhw4cBBNLVDx8+jOrqwPDvxo0bsXLlSv74n//85zh79izuuOMOnDhxAv/zP/+D1157Db/5zW/4Y9avX48nn3wSzz33HMrKynDLLbfA6XRi1apVQn4UojB+P4u73z4GPwssmZWByyenXHDM+cHPjU9+gW6PV4TWEjl56v8qcLbFiZQ4I9YvmnLBz/sLfr6sbBOhpUROQjtqW5bOgFGnveCY84Ofh3edinIr5UHQwOfLL7/E3LlzMXfuXACBoGXu3LnYtGkTAKChoYEPggAgNzcX77//Pnbt2oXZs2fjz3/+M5566ikUFxfzx9xwww146KGHsGnTJsyZMweHDx/Gjh07LljwTMhg3jhQi4PV7TAbtLh7yfQBj+OCn0yrCbXnevDmwbootpLITe25bjz20WkAwP+3JB8Wk77f47jg59qZNvj8LLZ9XB7NZhKZGU5HjbN0zjg8cN0sAMD2vRXo6OmNVjNlI2p1fKSE6vioW3u3B9/68ydoc3rw22vzsfaKiUO+ZvtnFdjy3teYmBqLXb+5kubOSb9+9r9fYufxRhTkJuGVtZeCYQY/TypanPjWn/eAZYGPNlyJvNS4KLWUyMlrX9bgjjeOwGzQYveGK5FhjRn0eJZlUfyXT3GqsQu/WzINN38jL0otFZ7i6vgQEg1/2nkSbU4PpqTHYdVlucN6zfXzxyPOqMOZZif+j+qwkH58fLIJO483QqthcO+yGUMGPQCQmxKLb01NAwA8+3mlwC0kctTe7cH9/w6Ua7mtaPKQQQ8QKBjMXdue/bwSPlrrE4YCH6IqR2rb8dK+wPTqlqUzoNcO708g3qTH9fPHAwCe2VshWPuIPLl6ffj9O8cBAD+9LAdT0uOH/dqfXh64Qb1xoJamJcgFHvpw5B01APje3HFINOtRe64Hu75uHPoFKkKBD1GVR3eXg2WBZXMycWle8ohee9PCHDAMsOdkc1jdH0L+dbgOVa3dSLcY8euiCxc0D2bhxGRMTY9Ht8eH1/pSkQkBgCaHCy+VjryjBgAmvRY3LpgAILDWhwRR4ENUo6O7F5+cCmxm+4tvThrx67OTY3F1fmAR/XM0LUFCvPtVICV9ZWEO4owjK48WmJbIARCYlvD6/JFuHpGp9482wM8CF09IGHFHDQB+XJgNnYbBvoo2HKvrEKCF8kSBD1GNnV/b0etjMTU9fkRTEaF+2neDeuNALTq6aVqCAM2dbnx+JrDu6zuzMkf1Hsv6piXq2nvwnzKaliAB735VDwD4zuzRnVcZ1hi+QOYzeysj1SzZo8CHqMZ7RwK98u/MHn2l3MKJyci3xaOn14dXv6we+gVE8XYcC/TKZ2clYELy6Kp7m/Ra/LCAm5aojGDriFzVnuvGwep2MAxw7Riqe3OdtXe/qkdzpztCrZM3CnyIKrR2ubG3Lxvr26PslQPh0xLPfV5F0xKEn+b6zqyxbT3x40tzaFqC8N7v66gV5CYh3WIa9fvMnZCIOVkJ8Pj8eLG0KlLNkzUKfIgq/PuYHT4/i5njrMhJiR3Tey2dMw5JsQbUtVO2hNo1dPRgX1/V5SVjDHxsVhPfs6dpCfLukbFNc4XiMgdf+KIabq9vzO8ndxT4EFUIzpWPfUNIk16LH/ZlS7z2JWXhqBnXK1+QkzSs+ipD4UYT3z1ST9ujqFhFixPH6hzQahhcM2Ps16xrZthgs5jQ0uXGnpPNEWihvFHgQxSv0eEK6ZWPvfcUeJ/AxajkbCtcvdSDUqt3I7BuLNScrASMS4iBx+vHF2dbI/KeRH7e6+uoXTYpBUmxhjG/n16rQfFFgYxUCnwo8CEq8P6RBrAsMD87EeMSxt4rB4B8WzxsFhNcvX6UVtAGk2pU3dqNr2raoWHAZ86MFcMwuHJqKgC6QakZP801xunTUFf1VQj/5GQTVLhTVRgKfIjicReRb0fwIsIwDK6cwt2gmiL2vkQ+uPNq4cQUpMQZI/a+V00JBj5qv0Gp0Ul7J041dsGg1WDRRbaIve+leckw6DSo73DhtMoLsFLgQxStpq0bh6oDvfJrIxj4AMBVfT3zT6hnrkqRXDcWauGkFOi1DKrbulHR4ozoexPp486rK6akwhqjj9j7xhi0fBFEtXfWKPAhivb+0cAajEvzkpEWP/qU0P5cNjkFOg2Dsy1OVLd2R/S9ibSVN3XihL0Tei2D4gj2ygEgzqjDJTlJAGi6S21YlsV7R4QJqIHgaOInp9R9XlHgQxRtrJVPB2Mx6XFxdiIA8FthEHXgavdcMTkVCeaxLz49HzeauEflNyi1OVbnQGVrN0x6DYqmpUf8/bnzan/FOTjd6s0apMCHKFZlixPH6x3QaRgsjnCvnHMVLURVJW4kUYiAGgguRP3ibCt6PJQ1qBbceXX1tHTEjnDPt+HITYnFhCQzPD4/Pj+j3qxBCnyIYnF/2POyE5EYgZTQ/nALnD8/Q2ntatHkcKG8qQsMA3yzL0CJtMlpcci0miitXWW4Pd+KpglzXjEME9JZU+8oNQU+RLFKKwI3jIJR7Go8XNMzLEiLN6Kn14f9lZTWrgZc+YJpNgus5sgtPg0VSGsP3PzUfINSk05XL79VSUGucNes0FFqtWYNUuBDFIllWZSeDdygLs1NEuz3hKe103SXGgQDauHOK4DW+ajNl1Xn4GeBrKQYZEao3lh/CvNSYNBpUNfegzPN6kxrp8CHKFJ1WzfsDhf0WgZzJyQK+ruuop65qnABtZC9ciBQtVevZVDVSmntahCt8yrGoEVBrrqzBinwIYrEXURmj09AjEEr6O+6fHIKtBoGZ5qdqGmjtHYla+1y88XfFgg4kggE0trnZ3M3KAqqlY4fSRT4vAJCO2sU+BCiGNw6DKFvTgBgjdHj4gkJAGhaQun29Z1XU9PjI7KH0lAoa1Aduj1eHK0NrO+5VMA1iRzuvNpX0abKtHYKfIgiRWNhc6jQfXCIcnEBtdDrezihae2UNahcB6va4fWzyLSaMD5RuPU9nLyUWGQlxcDj86NEhWntFPgQxalr70HtuR5oNQzmZQu7vocTmtbu9tINSqm41HKh12FwpqTHIcNqgtvrRwmltStWaEeNYRjBfx/DMLhqSt90lwqLr1LgQxSntO8GMWOcFXECFAHrz0WZFqTEGdHt8eFQdXtUfieJrvZuD042dgIALsmNTkAdmjW493RLVH4niT5uTWI0puY5/HlVrr6AmgIfojjRSGM/H8MwmN83unS4pj1qv5dEz/7Kc2BZIC81NuL7vg1mft++XXReKZOr18d/t9FY2MyZnxO4XlW0OHHO6Yna75UCCnyI4kSrzsr55vYtcD5UfS6qv5dER2mUp7k43Hl1tK4DvT5/VH83Ed6h6nZ4fH6kxhuRmxIbtd+bYDYgr+/3Ha5tj9rvlQIKfIiiNDpcqGztBsMA87KjHfgEelCHqttVWxFVybiFzZdGOaDOTY6FNUYPt9ePEw2dUf3dRHhcpmBBblJU1veEmtMXVB9W2fQ8BT5EUbib0/QMC6wxwmwnMJCZ46zQahg0dbrR0OGK6u8mwnK4enG8XvjtBPqj0TCYnZUAADhUQ6OJShPtDNRQc/nzqj3qv1tMFPgQRRFrOgIIVETNt8UDAC1wVpgDlYHtBLKTzbBZo7e+h8PfoOi8UhSP14+DfVPj0VyTyOFGqQ9Xn4Pfr55Ragp8iKJEu87K+bj1GIepZ64oX0Sxqm5/gudVuyi/nwjjSG07XL1+JMcaMCktLuq/f6otHia9Bg6XFxWt6tkWJSqBz7Zt25CTkwOTyYSCggLs27dvwGOvuuoqMAxzwWPJkiX8MTfddNMFP1+8eHE0PgqRsJYuN8q57QRyRLpBZQXX+RDliNY+SgOZ0zfio8YMHCULrTAf7fU9AKDXajBznBWAuq5Zggc+r776KtavX4/Nmzfj4MGDmD17NoqLi9HU1H/RpDfffBMNDQ3849ixY9Bqtbj++uvDjlu8eHHYcS+//LLQH4VIHLdIMN8Wj8QobCfQnzkhGTgeL2XgKIHT7cXRusD6nmjWWQml5gwcJeMKYop1XgGhSRnqGaUWPPB5+OGHsWbNGqxatQrTp0/H448/DrPZjO3bt/d7fFJSEmw2G//YtWsXzGbzBYGP0WgMOy4xMToFxYh07Yvi/lwDCcvAsTtEaweJnIPV5+DzsxiXEIOsJLNo7ZjDl0toF60NJHK8Pj8OVAWCDbFGEgF1rh8TNPDxeDw4cOAAioqKgr9Qo0FRURFKSkqG9R5PP/00li9fjtjY8PoGe/bsQVpaGqZOnYpbbrkFra0DV590u91wOBxhD6I8X1aJH/hoNAw/LUHrMZThy8rAzUnM8woIvUGpp2euZCfsnej2+GAx6fikCDFwAfXJxk50e9SxYamggU9LSwt8Ph/S09PDnk9PT4fdbh/y9fv27cOxY8dw8803hz2/ePFiPP/889i9ezceeOABfPLJJ7jmmmvg8/W/R9LWrVthtVr5R1ZW1ug/FJEkj9ePk/ZAjZPZ4xNEbctc6pkrCpfGPmu8VdR2cFMSX9W0qyoDR6mO9U2fzhxvhUYT/fU9nAxrDGwWE3x+lt8hXukkndX19NNPY+bMmViwYEHY88uXL8d3v/tdzJw5E8uWLcN7772H/fv3Y8+ePf2+z8aNG9HR0cE/ampqotB6Ek2nGjvR62NhjdFHZXfjwcyhnrmiHKsLjBDPGCdu4BOagXO2RT0ZOEp1rC+gnpEp7nkFhHTWVDJKLWjgk5KSAq1Wi8bGxrDnGxsbYbPZBn2t0+nEK6+8gtWrVw/5e/Ly8pCSkoLy8vJ+f240GmGxWMIeRFm43tOMcRZRsiNCcYFPZWs3ZeDIXHOnG3aHCwwTKIoppvAMHAqq5e6oRAJqIHjNUksFZ0EDH4PBgHnz5mH37t38c36/H7t370ZhYeGgr3399dfhdrvxox/9aMjfU1tbi9bWVmRkZIy5zUSepNR7SjAbkJfal4Gjkh6UUnHnVV5KLGKNOpFbE1Jwjs4rWev1+VHWIJ3AhzuvDlafU8V2O4JPda1fvx5PPvkknnvuOZSVleGWW26B0+nEqlWrAAArV67Exo0bL3jd008/jWXLliE5OXy1e1dXF26//XZ88cUXqKysxO7du7F06VJMmjQJxcXFQn8cIlFS6j0BofV8qGcuZ8e5dRiSOa8SAND6Mbkrb+qCx+tHvFGHbBEzBTlq225H8C7MDTfcgObmZmzatAl2ux1z5szBjh07+AXP1dXV0GjC46+TJ0/is88+w4cffnjB+2m1Whw5cgTPPfcc2tvbkZmZiUWLFuHee++F0WgU+uMQCZJa7wkIZEr882CtaubMleooP4UqnfMKAE7YHej2eGE2iD8KRUaOm5qfnmkRdWEzh9tu53i9A4dr2pGZIO46SaFF5a9m3bp1WLduXb8/629B8tSpUwccbouJicHOnTsj2Twic2eaA72nOIn0noBgz/xwXwaOFC5uZOS4hc0XSWAKFQhm4NgdLhyt7RBlY0sydsfrpdVRAwILnI/XO3Co+hyunansZSOSzuoiZDi4FMyLJNJ7AgLVo016DTpdXpxt6RK7OWQUzjk9qGvvAQBcNE46CRFqy8BRoqMSm0IF1LXdDgU+RPak2HvSaTWYNS4BgDouJErELWzOSTbDYtKL3JogtWXgKI3Pz+Jr/polnYA6dLudXp+yt9uhwIfI3tGQVHYpoZ65vPHTXBIKqAH1ZeAozdnmLvT0+mA2aJGbEv0d2QcStt1OQ6fYzREUBT5E1kJ7T1IaNgaCPfMjtKmkLHEjPlI7r0IzcJo63WI3h4wQd15Nz7BAK5GpeSCw3c7svmvWVwq/ZlHgQ2StokWavScgkLEBAKcau+BV+NCxEvFFMSWysJkTY9Ait2+n9q8baN9BuZFKJfD+cEU6lb7BMgU+RNa4aS6p9Z4AICvRjFiDFh6vHxW0xYCsdPT0oqq1G4D0plABYBp3g1L4lIQSSa1EQqhpGYHNUssUfl5R4ENkTcq9J42GwdS+XZfL7Mq+kCgNtzHp+MQYJJgNIrfmQtxu3krvmSuNX6ILmzlcQH3S3qnojXAp8CGyxvWeLsqU3kUEAPL7LiRlNCUhK8e5gFpi01ycYM+czis5qWx1osvthVGnwaRUaU3NA0BuSiwMWg263F7UnusRuzmCocCHyFZo72nmeKneoLgpCbpByQm/sFni59WZZifcXp/IrSHDdazvejUtwwKdVnq3X71Wg8npgYCsTMGjidL7L0/IMFW1dUu69wQA0/gpCZrqkhOpjyTaLCZYY/Tw+VmcbqQCmXJxXKKlN0Ll25S/fowCHyJb3M1Jqr0nAPwan4YOF9q7PSK3hgxHl9vLL0aX4toxAGAYhp/uoqBaPqRYsfl8aphGlebdgpBhkEPvKd6kR1ZSYMM/pWdKKEVZgwMsC2RYTUiJk+7Gx1zPXMk3KCVhWZYvkSCVvd/6M00FKe0U+BDZOirROivnoxuUvAT3fpP2eRUc8aHzSg5q2nrgcHlh0GowJT1e7OYMiMsYrGrrhtPtFbk1wqDAh8hSaO9JqtMRHDX0oJREqhWbzzeNzxjspK0rZIA7r6ba4mHQSffWmxxnRFq8ESwLnGxU5ii1dP/rEzKI2nOB3pNey0i69wTQAme54VPZJTyFCgBT0uOhYYA2pwfNtHWF5B2TwdQ8J1/hBTIp8CGyxBWYm5Iu7d4TELyInLR30tYVEufq9aG8OZAlJfWpLpM+uHUFFciUvuN9qezTJX5eAcHOmlKn56V9xyBkACftgZsTt35GyrKTzIjRa+H2+lHZtw0CkaYzzV3w+VkkmPVIt0h3YTOHCmTKx6m+aSMuqJAypU/PU+BDZOlUU+AiMiVdmvV7QoVuXaHUC4lScDVxpqTFg2Gktfdbf6ZTgUxZcLh60dDhAgBMlvjUPADkcwvnFbp+jAIfIkun+ob2p8ig9wSoozaGEnCLOafYpB9QA6F7dtFUl5Sd7juvuMKTUpeXEge9lkGnQreuoMCHyE7obudSX9jMod205YG7QcnlvOKmusqbumjrCgk71TeSOFkGI9QAYNBpMClNuUE1BT5EdipbnfD6WcQZdci0msRuzrBQLR954G9QafIIfDKtJlhMOnj9LM40OcVuDhnAKZkF1ICyFzhT4ENk52RfD2Ryepws1mEAwa0r6jtc6OjuFbk1pD/dHi+q2wKLz+WwdgwIbF1BC5yljwt8psoo8MlXcIFMCnyI7PDTETLplQOANUaPcQmBrSuUeCFRgvKmwGhPSpwByRLequJ80xWegaMEcpvqApQ9PU+BD5EdOV5EAFrgLHVym+bi5PNTEsq7QSnBuZACk3LI6OJw0/MVrU50e5S1dQUFPkR2+GFjmWR0cYK1MegGJUVyPa/yacRH0rjzalxCDOKMOpFbM3yp8UakxAW2ruA6BUpBgQ+RFVevD5Wt8sro4tACZ2njblByG0mcmh4PhgFaumjrCik61TeFKpd1Y6GUOkpNgQ+RlbPNTvhZwGLSIS1ePuswgOBiwZONnfD5lVcUTO744oUyC6hjDFrkJvdtXaGwG5QSyK1EQii+TpTCzisKfIishE5HyCWji5OTHAuTXgNXrx9VrZR6LCWdrl7UtQcKtclp0TxH6VsMyBmXhSrHwIc7r5S2FxwFPkRWgtMR8ruIaDUMn85K63yk5XTfdES6xQirWfqVdc8X7JnTeSU1p5vkOZIIBKfnTzQ4FLV1BQU+RFa4RXZyqocRiquGyqVOE2mQ83QEEFyXxO0sT6ShpcuNNqcHDANMSpPfGp+81FhoGMDh8qK5SznrxyjwIbIi1wWoHO7iR4GPtJy0y7dXDgTPqzNNXYrqmcsdt6fghCQzYgxakVszcia9FllJZgDKumZFJfDZtm0bcnJyYDKZUFBQgH379g147LPPPguGYcIeJlP4tgQsy2LTpk3IyMhATEwMioqKcPr0aaE/BhFZt8eLmnNcZV1536CUdBFRgtNN3IiPPAPq7ORY6DQMnB4fvws4ER/fUZPhujHOpNRgUK0Uggc+r776KtavX4/Nmzfj4MGDmD17NoqLi9HU1DTgaywWCxoaGvhHVVVV2M8ffPBBPProo3j88cdRWlqK2NhYFBcXw+WiP3glK2/qAssCybEGpMiosm4oLvA529IFP2V2SYacF6ACgF6rQXay8nrmcneSm5q3yTOgBpTZWRM88Hn44YexZs0arFq1CtOnT8fjjz8Os9mM7du3D/gahmFgs9n4R3p6Ov8zlmXxl7/8Bb/73e+wdOlSzJo1C88//zzq6+vx9ttvC/1xiIjkWrE5VFZiDAzaQGYXl0VExNXR3YsmGVbWPZ8Sb1ByJ/e1YwAwMU1568cEDXw8Hg8OHDiAoqKi4C/UaFBUVISSkpIBX9fV1YXs7GxkZWVh6dKlOH78OP+ziooK2O32sPe0Wq0oKCgY8D3dbjccDkfYg8iPEi4iOq0GuSmBmit0g5KGU03yrKx7vkkKvEHJGcuyypjqUmBALWjg09LSAp/PFzZiAwDp6emw2+39vmbq1KnYvn07/vWvf+GFF16A3+/HwoULUVtbCwD860bynlu3boXVauUfWVlZY/1oRAQnFRD4AMELCbeuhIgrOM0l35FEQJk3KDlrdLjhcHmh1TDIS40Vuzmjxp1Xgc/TK3JrIkNyWV2FhYVYuXIl5syZgyuvvBJvvvkmUlNT8cQTT4z6PTdu3IiOjg7+UVNTE8EWk2iRa2Xd802kG5SkKGEkEQAmpQbar6RFqHLGjfZkJ5th0ssvo4tjMen5KvlKuWYJGvikpKRAq9WisbEx7PnGxkbYbLZhvYder8fcuXNRXl4OAPzrRvKeRqMRFosl7EHkJayyLvXMSQQF147JO/CZmBYYVWh1enDO6RG5NYQLfORYCfx8SrtmCRr4GAwGzJs3D7t37+af8/v92L17NwoLC4f1Hj6fD0ePHkVGRgYAIDc3FzabLew9HQ4HSktLh/2eRH646qdp8UYkmA0it2ZsuPTQcqq5Ign8NigyD3zMBh3GJcQAoHU+UsAHPjZ5n1dAeJ0oJRB8qmv9+vV48skn8dxzz6GsrAy33HILnE4nVq1aBQBYuXIlNm7cyB+/ZcsWfPjhhzh79iwOHjyIH/3oR6iqqsLNN98MIJDxddttt+EPf/gD3nnnHRw9ehQrV65EZmYmli1bJvTHISJRynQEEKiGyiiwGqoctXa50Srjyrrno2lU6TjFT83L/7xS2oiP4CkMN9xwA5qbm7Fp0ybY7XbMmTMHO3bs4BcnV1dXQ6MJxl/nzp3DmjVrYLfbkZiYiHnz5uHzzz/H9OnT+WPuuOMOOJ1OrF27Fu3t7bj88suxY8eOCwodEuVQQio7x6TXYkKSGVWt3Shv6kJaPJ23YuHOq6xEeVbWPd+k1Dh8eqpZMTcouWJZVlGdNaVlDEYld3PdunVYt25dvz/bs2dP2L8feeQRPPLII4O+H8Mw2LJlC7Zs2RKpJhKJU8p0BGdSahyqWrtxpqkLCyemiN0c1TqloJsToLyeuVzVtffA6fFBr2WQkyzfjC4Od17VtHXD1euT9WJtQIJZXYT057SCRnwAukFJBVdSgM4rEkncmsSc5FgYdPK/zabGGWEx6eBngYoWp9jNGTP5fyNE8brcXtgdge1IJqYq4walxGqocnS2OXARV8p5xQU+de096PZ4RW6NenHnlRLWjQGBWRYlBdUU+BDJq+i7iCTHGmSf0cVR0kVEzs70BZ4TZVxgLlRSrAFJsYG/Ee7mS6KPO6/kXLjwfEq6ZlHgQyTvbItyLyJKqoYqN11uLxodgay6PIWM+ADh5RKIOM5ygU+Kgs4rBY1SU+BDJO9MX89VSReR0GqoSqmNITfcSGJKnAHWGL3IrYkcSmkXHzfapsTOmhKuVxT4EMnjek9cZVqlUNLQsRwFRxKVE1ADdF6JrdPVi6ZOJY4kBjIfz7Y44fPLu/AqBT5E8pQ44gMoa+hYjrieq1LW93DovBLXWX4k0aiokcRxiTEw6jTweP2oaesWuzljQoEPkTS/n0WFAtf4AMoaOpajMy3KDqgrW5zo9flFbo36KHFNIoC+XeaVMZpIgQ+RtAaHC65eP/RaBllJZrGbE1G0CFVcSlyHAQCZVhPMBi28fhZVrfLumcuR0kokhFLKaCIFPkTSuPU9E5LM0GuVdbpyF5HqvmqoJHpCRxKVdoNiGIb/TBRUR18w8FFWQA0op7OmrDsJURxuGkhJiwQ5qfFGxPdVQ61spZor0VTf0cOPJI5PjBG7ORHHT6PKvGcuR0qs4cNRysJ5CnyIpJ1tUeZ0BKC8aqhywvXKs5NjoVPYSCKgnBuU3ARGEpW5dgwIX5fIsvLN7FLeXzxRFCXPlwPKGTqWG75XnqK8gBoATXWJpK69B26vHwatRpEjiTkpZmgYoNPt5VP25YgCHyJpZxW2pcD5qGcuDj6gVsheSucLneryy7zmipxwI9TZyWZFjiQadVpk9+02L+drlvK+GaIY3R4v6jsCm5MqcdgYoMBHLHzKsUJHfLKTzdBpGHR7fGjo2+CXCC+4JlGZ5xWgjNFECnyIZHG98qRYAxJjlbE56fm4wKeixUk98ygKprIrM6DWazXI6QvqztIC56g5q9BMwVDcNUvO5xUFPkSy+IXNCu2VA8C4hBjotQzcXj/1zKPE6faioW8kUalTqACQ2/d3wy22JcJTekANBK/HZ2V8XlHgQyRLDcPGOq0GE/oKM3KbZhJhcYFAcqwBCWZljiQCITcoOq+iRsmp7JzcVPkH1BT4EMniehRKHjYGgNwUbrpLvkPHcqKGmxNAIz7R1uX2otERyHSaqNA1iUDwvKpr75Ft4VUKfIhknW1WbvHCUNwNWM5Dx3Ki1E1vz0eBT3RV8JuTGmA1K2dz0vMlxxoQb9KBZQNV5+WIAh8iSX4/q9i9lM5HN6joOquWEZ++z1d7rhturzx75nISzBRUdkDNMIzsp1Ep8CGSZHe40NPrg07D8GtglIoCn+hSelFMTmqcEXHGwJYoNTLtmcuJGtYkcuR+zaLAh0gSd3OakKy8zUnPx/Weatq64fH6RW6Nsvn9bLBnrvAbFMMw/A1Krj1zOTmjkjWJgPzXJSr7jkJkSy3DxkBgs9JYgxZ+Gc+Zy0WDwwVXrx86DYMshY8kAvLvmcuJWqbmAflndlHgQyQpOB2h/IsIwzCyv5DIBbe+J1sFI4kABT7REticVB3JGEBwlFqu55Xy//KJLJ1pVn4F1FByHzqWCzUUmAtFGYPRUd/RA1evH3otgywFbk56Pq4qeEuXBx09vSK3ZuQo8CGSpKZhY4B65tGilho+HDqvooO7XmUnxypyc9LzxRl1SIs3AgAqZXhuKf8bIrLT4/Ghrr0HgIp65rQINSr4KVQVrB0Dgj3z5k43Ol3y65nLBV8iQcHb65xPzkE1BT5Ecrg/pESzHkkK3Zz0fHK+iMgJd4OamKaOG5TFpEdKHNczp4XzQuGrzKepI6AG5D2NSoEPkZwzKqnYHIrrmTd1utHl9orcGmXq9nhR37c5qRqyBTnBTSVp/ZhQzqhwxCcnWb6dNQp8iORwf0i5KrqIWGP0SO4b3ZLjnLkccOdVglmPRJWMJAI0mhgNFSpbkwiEnlfyC6ijEvhs27YNOTk5MJlMKCgowL59+wY89sknn8Q3vvENJCYmIjExEUVFRRccf9NNN4FhmLDH4sWLhf4YJEoqVRj4AMHPK8ehYzngpnpUd15RqQRBuXp9/EhirppGErnzqtkJlmVFbs3ICB74vPrqq1i/fj02b96MgwcPYvbs2SguLkZTU1O/x+/Zswc33ngjPv74Y5SUlCArKwuLFi1CXV1d2HGLFy9GQ0MD/3j55ZeF/igkSipa1R34VNACZ0FUcudVskrPKwp8BFHVGgioLSYdEhW8Oen5spLM0DCA0+NDc6db7OaMiOCBz8MPP4w1a9Zg1apVmD59Oh5//HGYzWZs37693+NffPFF/OIXv8CcOXOQn5+Pp556Cn6/H7t37w47zmg0wmaz8Y/ExEShPwqJEm7EJ0dtN6hU+Q4dywF3489RWUCdlyLfnrkchE7NMwwjcmuix6jTYnxioPq53EapBQ18PB4PDhw4gKKiouAv1GhQVFSEkpKSYb1Hd3c3ent7kZSUFPb8nj17kJaWhqlTp+KWW25Ba2vrgO/hdrvhcDjCHkSa2rs9ONcdSLvNSVH+lgKh5F4NVeoqVRr4TEg2g2GATrcXLV0esZujONxIotrOK0C+o4mCBj4tLS3w+XxIT08Pez49PR12u31Y73HnnXciMzMzLHhavHgxnn/+eezevRsPPPAAPvnkE1xzzTXw+Xz9vsfWrVthtVr5R1ZW1ug/FBEU9weUbjHCbNCJ3Jro4tYHnG2hnrkQ1DrVFeiZB6oJy+0GJQdqHaEG5Bv4SPrOcv/99+OVV17Bnj17YDKZ+OeXL1/O//+ZM2di1qxZmDhxIvbs2YOrr776gvfZuHEj1q9fz//b4XBQ8CNRfO9JhReRbK5n7vKi1enh66+QsXO4evnRDrWNJAKBoLqmrQcVLV1YkJs09AvIsJ1VaTIGEFLLR2brEgUd8UlJSYFWq0VjY2PY842NjbDZbIO+9qGHHsL999+PDz/8ELNmzRr02Ly8PKSkpKC8vLzfnxuNRlgslrAHkaaKvswbNaWFckx6LTKt1DMXAtcrT4kzIt6kngWonDzKGBSMWrNQAfmmtAsa+BgMBsybNy9sYTK3ULmwsHDA1z344IO49957sWPHDsyfP3/I31NbW4vW1lZkZGREpN1EPGoeNgbCU0RJ5AQXoKpvtAegjEGhON1eNPVlNKl5jU91Wze8Pr/IrRk+wbO61q9fjyeffBLPPfccysrKcMstt8DpdGLVqlUAgJUrV2Ljxo388Q888ADuvvtubN++HTk5ObDb7bDb7ejqCkSUXV1duP322/HFF1+gsrISu3fvxtKlSzFp0iQUFxcL/XGIwNS8UBCgWj5C4Wr4qDWglutaDKnjrldJsQZYY9Q3kphpjYFBp0Gvj+X3V5QDwdf43HDDDWhubsamTZtgt9sxZ84c7Nixg1/wXF1dDY0mGH/9/e9/h8fjwX//93+Hvc/mzZvx+9//HlqtFkeOHMFzzz2H9vZ2ZGZmYtGiRbj33nthNNKaCDljWVaVVZtDyXXoWOoooA587qrWbvj8LLQa9aRdCykYUKtzJFGjYZCbHIuTjZ042+JEtkw6FlFZ3Lxu3TqsW7eu35/t2bMn7N+VlZWDvldMTAx27twZoZYRKWl1etDp8oJhgAlJ6ryQUM9cGGoPqDMTAj1zj9ePunM9mKDSG3WkqT2gBgJ/UycbO1HR7MQ3p4rdmuGhvbqIZHDrezKtMTDptSK3Rhzc5pmVfT1zEhlqzhYEAK2G4UclaLPSyOEDapWeV4A8t0ShwIdIRrCyrnp7o+MSY6DXMvB4/aiX0Zy5lJ1zetCu0qKYoWg0MfLUWhQzlBzPKwp8iGRUqnSPrlBaDcPPk8vpQiJl3N5vNotJdUUxQ3EFMum8ihy1T6EC8qw4T4EPkQy1Z95w5NiDkrJKGkkEIM8blJQ5XL1odXJFMdV7zeKuV3XtPXD19r97gtRQ4EMkg3pPART4RJaaC8yFyqHzKqK48yo13og4o3pHEpNiDYg3BT4/t1O91FHgQySBZVnKkOjDjXhVtdINKhIqWmkkEQiOeNW398DtlUfPXMpoYXMAwzB8p6JSJtcsCnyIJDR1utHt8UHDAFmJ6p6S4LJvKmXSe5I6WoAakBpnRKxBCz8L1LTRwvmx4qfmVT6FCoBfl1gpk9FECnyIJHC9p/GJZhh06j4tuRt0jczKwEsRy7I01dWHYYIL52k0cexohDooV2adNXXfYYhkUK88yGYxwajTwOuXVxl4KWp1etDpVndRzFDc6ASt8xk7muoK4q7bNOJDyAhwKcd5FPhAo2GQnUw3qEigopjhuHVOclmLIWV8+Y1UumZly+y8osCHSEJwV3bqlQOhC5zlMXQsVWdpmitMTgqdV5EQWhQzO4nOLe7vq6HDJYuUdgp8iCQEFwrSRQSg1ONIoRo+4XKoOGZEcCPUGVYTYgw0kpho1ssqpZ0CHyI6v5+lqs3noSmJyFD7Hl3no5T2yAiOUNN5BYSntMshqKbAh4iuweGC2+uHTsNgXEKM2M2RBO4GJYfek5RV9I0kUkAdQCntkUHJGBeSU/0xCnyI6LiLyIQkM3RaOiWB4EWEUtpHj2VZ/iJMN6iA0JR2uWTgSBFXFDOXplB5wfpj0j+v6C5DRFdBvacLUEr72FFRzP7JrcquFNFU14XktC6RAh8iOiowdyGNhqGFqGPE/XfLSqKimKG4aVQKfEYntChmHqWy8+SUMUhXAyI6qoDaP66WD01JjA71yvsXnOqS/g1KiriimBomEFSTAO7vrKHDhR6PtBfOU+BDRHeWKqD2KzglQTeo0aigkcR+0VTX2HDnVWZCDIw6SmXnJJr1sPSltFe3SfuaRYEPEZXPz6KmjTb764/cqqFKTTCVnc6rUNxIIqW0jw5NzfdPTintFPgQUdW396DXx8Kg0yDTSqnsofi1GBK/iEgVFcXsX3hKu7R75lJEtaEGJpfOGgU+RFTcH8iEJDM0Gkbk1kgL13uqPdeDXkppHxG/n0VVG92g+sMwTMimkhT4jBQ39ZxNI4kXCC5wpsCHkAHRAtSBpceHpLSfo5T2kWjsdMHVGyiKOT6RRhLPR5XBR4+mugaWI5PNlSnwIaLiek+0DuNCoSntdIMaGW4kY3xiDBXF7AeltI9OoCgmN+JDgc/55DKSSFcEIioq/T44WuczOlQiYXA5lNI+Ki1dHnTxqew0kng+LjPX7pB2SjsFPkRUtFBwcMERH7pBjQSdV4OTU5VdKeHWrlAqe/8SQlLauTV2UkSBDxFNIJU9sHaFUtn7l0M1V0YluHaMzqv+cAFhfQeltI8E1YYaXGhKu5RHqSnwIaKpb++Bx+eHQatBBqWy9yuHNpQcFX4dBt2g+pUSZ0CcUQeWUtpHpIoyuoaUI4PCqxT4ENFwoxhZSTHQUip7v7iRsBpKaR82v5+lqa4hBHZp5zJwpHuDkpoKOq+GlC2DzhoFPkQ0XI+Aho0Hlh5vgkmvgY9S2oetqdMNV68fWkplH5Rcaq5ISRUFPkPKlUHGIAU+RDRcj4DSQgem0TDITupbiCrhC4mUcOswxifGQE+p7AOSS80VqQjsyk7b6wxFDhmDUbkqbNu2DTk5OTCZTCgoKMC+ffsGPf71119Hfn4+TCYTZs6ciQ8++CDs5yzLYtOmTcjIyEBMTAyKiopw+vRpIT8CEUAVpRwPC3eRraIb1LBQr3x4uP8+VRJeiyElrc5AKjtDu7IPKkcGKe2CBz6vvvoq1q9fj82bN+PgwYOYPXs2iouL0dTU1O/xn3/+OW688UasXr0ahw4dwrJly7Bs2TIcO3aMP+bBBx/Eo48+iscffxylpaWIjY1FcXExXC6X0B+HRFAFZd4MixwWC0pJBW1OOixy2VBSKrgR6kwrpbIPJjHWAGuMHoB0U9oFD3wefvhhrFmzBqtWrcL06dPx+OOPw2w2Y/v27f0e/9e//hWLFy/G7bffjmnTpuHee+/FxRdfjL/97W8AAqM9f/nLX/C73/0OS5cuxaxZs/D888+jvr4eb7/9ttAfh0RIWCo79cwHxf33oRvU8FTR5qTDkh2S0u7qlWbPXEpoTeLw5Ug8pV3QwMfj8eDAgQMoKioK/kKNBkVFRSgpKen3NSUlJWHHA0BxcTF/fEVFBex2e9gxVqsVBQUFA76n2+2Gw+EIewjhy8o23Pve13h1f7Ug768kDR3BVPbMBFqAOpjglIQ0LyJSQxldwxOa0l57jkYTh8L9/VEq+9ByJJ4xKGjg09LSAp/Ph/T09LDn09PTYbfb+32N3W4f9Hjuf0fynlu3boXVauUfWVlZo/o8Qymzd+Lpzyrw4fFGQd5fSbiFb5TKPjSuh0kp7UML3UuJRnwGF9ilXdo3KCmh4oXDJ/XOmipSHjZu3IiOjg7+UVNTI8jvyaUNJYeNeuXDlxZv5FPaaymlfVBNnW709PoolX2Y5FBzRSpoc9LhWzgxGT+7Mg+LLkof+mAR6IR885SUFGi1WjQ2ho+ANDY2wmaz9fsam8026PHc/zY2NiIjIyPsmDlz5vT7nkajEUajcbQfY9j4YnNtPfD5WRrJGARtTjp83C7tJ+ydqGx1Uo9zEJTKPjLUWRueQCo7N+JDU11DKchLRkFestjNGJCgVwaDwYB58+Zh9+7d/HN+vx+7d+9GYWFhv68pLCwMOx4Adu3axR+fm5sLm80WdozD4UBpaemA7xktGdYYGLQaeHx+1LdTz3ww3EJByrwZHm5dAfXMBxdch0HB4XDw5xUFPoNqc3rQ2ZfKPj6RrllyJ+iIDwCsX78eP/nJTzB//nwsWLAAf/nLX+B0OrFq1SoAwMqVKzFu3Dhs3boVAPDrX/8aV155Jf785z9jyZIleOWVV/Dll1/iH//4B4DAvPRtt92GP/zhD5g8eTJyc3Nx9913IzMzE8uWLRP64wxKq2EwIdmM8qYuVLY6qdbDICqphs+ISD1LQiq4tSq5FFAPS3BDSVrjMxjuepVpjYFJT6nscid44HPDDTegubkZmzZtgt1ux5w5c7Bjxw5+cXJ1dTU0muDA08KFC/HSSy/hd7/7HX77299i8uTJePvttzFjxgz+mDvuuANOpxNr165Fe3s7Lr/8cuzYsQMmk0nojzOknOTYQODT4sQ3JqeK3RxJ8vlZVPMjPhT4DEdwSoJuUIOhEZ+R4QJqLqWdbur9o4rNyiJ44AMA69atw7p16/r92Z49ey547vrrr8f1118/4PsxDIMtW7Zgy5YtkWpixOTwQ8d0gxoIl8qu1zLIsIofrMpBNq3FGBa+KCbdoIYlOTaQ0t7l9qKmrRuT0+PFbpIkVVJArSi0+i/CaEpiaFx2RFaSGTpagDos3JRELaW0DygslZ1uUMMSmtJOnbWB8cUL6bxSBLrrRBhfZZd65gMKblVBF5HhSrdQSvtQuFR2DS1AHZEcSmkfUnBDZTqvlIACnwgLprR3w+dnRW6NNNEmkiPHMAzdoIZQyaeym2HQ0aVtuKizNjiWZfmpLioloQx0dYiwTGsMDDoNen0spbQPoIIWCo5KDq3zGVQlbSkwKtz0vFSr7IqtzelBp4t2ZVcSCnwiTKNhMCGJamMMhkZ8RofWjw2ONpEcHa4gH6W09487ryiVXTko8BEATUkMzO9nUdVGC1BHg9/4jxah9iu4DoPOq5GgXdoHR+t7lIcCHwHk0sZ/A2pwuODxBlLZMxMolX0kaEpicMERH7pBjURyrAHxfbu017TRNet8VVRsVXEo8BFAtsR3phVTVV/vKSuRUtlHihsho5T2CwVS2WnEZzQYhkE231mja9b5aHsd5aE7jwC4NQaUJXGhCuo9jVq6xYgYvRY+P0s98/M0d7rR7QmksmdRKvuI0cL5gVXSmkTFocBHANxNvaatG17qmYeh+fLRYxiG/+9WRet8wnAjFeMSYyiVfRT4PbvovArDsmxINXAKfJSCrhACyLCY+JT2hg6X2M2RFH4TSbqIjApfc4WmJMJQr3xssikho1+hqewTKJVdMSjwEYBGwyA7iebM+0M3qLGhBc79o4B6bLgF4TSSGI52ZVcmCnwEQgucLxS6KzvdoEaHzxikG1SYStoGZUxyKKW9X1RsVZko8BEIpbRfqL49sCu7QatBZkKM2M2RJZqS6B9tKTA2SSEp7dW0cJ5HAbUyUeAjEL7KLo348Lj/FhOSzdBqGJFbI0/BXdq74fHSwnkgUBSTAp+xCezSTkH1+SrovFIkCnwEQumhF6Le09ilxQdS2v1sIPghgN3hgqvXD52GwfhEGkkcLS5jkK5ZQRXNFPgoEQU+AqGU9gudbeEuIjRfPlqhKe10gwrgAuqsJCqKORZ8/TGangcQvis7pbIrC10lBEIp7ReqpHoYEcHXXKEbFICQophUG2pMcighIwwVxVQuCnwEQintF+L3UqKprjHJpmnUMBRQR0YOv0s7nVdA8Lo9PtFMRTEVhr5NAdEC5yCvz89vs0A3qLHJpX2VwlANn8gIprS7KKUdoGkuBaPAR0A0JRFUe64HXj8Lo04Dm4V2ZR+L4JQEnVcAFcWMlKRYA+JNOgCU0g6EBNQ0hao4FPgIiBahBlWE3Jw0lMo+JjmU0s6jopiRwzAMbYkSgqZQlYsCHwHlUrE5XmULpYVGCqW0B1FRzMiiLVGCKuiapVgU+Agom0tpP0cp7dR7ihxKaQ/ibk5UFDMyuMw4tae0U1FMZaPAR0AZFhOMfSnt9e3qTmmv4KcjaL48EqjmSgCt74msHBqlBhAoiun2BopijqORRMWhwEdAGk2wZ362pUvk1oirou/z0w0qMnL4wEft5xUVxYyk4Hml7sCHC/wmUFFMRaJvVGC5tP8NPF4/6s71AKBh40ihjMEAmkKNrLy+/452hwvdHq/IrRFPBaWyKxoFPgLLTYkDoO4eVHVbN/wsEGvQIjXeKHZzFCGPeuYAqChmpCXGGpBg1gNQd1BN+woqGwU+AuNuUGdVfIPiLiLZybFgGFqAGgnciE9de49qi831UlFMQeRSUB1SFJOmUJWIAh+B5abSRYSyIyIvKdYAS1+xObVmdlFRTGHkUsX54JpEumYpEgU+AqOeOdXDEALDMMhN7ZtGbVbnDSq0NhQVxYwcfpRapeeVz8+ipo3WJCqZoIFPW1sbVqxYAYvFgoSEBKxevRpdXQNnobS1teGXv/wlpk6dipiYGEyYMAG/+tWv0NHREXYcwzAXPF555RUhP8qoJfeVgWdZ9ZaBpz1vhKH2adQKWochiOC6RHVmDPJFMXUaZFoplV2JdEK++YoVK9DQ0IBdu3aht7cXq1atwtq1a/HSSy/1e3x9fT3q6+vx0EMPYfr06aiqqsLPf/5z1NfX44033gg79plnnsHixYv5fyckJAj5UUaNYRjkpcTiq9oOnG12Ykp6vNhNirpKmi8XhNrXYlBALQy1n1fc585OMtNIokIJFviUlZVhx44d2L9/P+bPnw8AeOyxx3DttdfioYceQmZm5gWvmTFjBv75z3/y/544cSL++Mc/4kc/+hG8Xi90umBzExISYLPZhGp+ROX2BT5qvJC4en2o7wgMG1PPPLLoBkU1fISQ0/ff81x3L845PUiMNYjcouiigFr5BJvqKikpQUJCAh/0AEBRURE0Gg1KS0uH/T4dHR2wWCxhQQ8A3HrrrUhJScGCBQuwfft2sCwbsbZHmpqHjqtau8GyQLxJhySVXUCFpvbAh6o2C8Ns0CHDGlgsXqHCBc60JlH5BBvxsdvtSEtLC/9lOh2SkpJgt9uH9R4tLS249957sXbt2rDnt2zZgm9961swm8348MMP8Ytf/AJdXV341a9+1e/7uN1uuN1u/t8Oh2OEn2Zs1JzZFXoRoVT2yOIuzG1OD9q7PUgwqyewdHt9VBRTQLkpsWjocKGi2YmLJySK3ZyoorVjyjfiEZ+77rqr38XFoY8TJ06MuWEOhwNLlizB9OnT8fvf/z7sZ3fffTcuu+wyzJ07F3feeSfuuOMO/OlPfxrwvbZu3Qqr1co/srKyxty+kVBzsTnqlQsn1qhDuiVQEFJt51YNFcUUlJpHE4PVwGkKValGHPhs2LABZWVlgz7y8vJgs9nQ1NQU9lqv14u2trYh1+Z0dnZi8eLFiI+Px1tvvQW9Xj/o8QUFBaitrQ0b1Qm1ceNGdHR08I+ampqRfegx4uaKW7o86OjpjervFlslDRsLSq03KK7AXA6NJApCredVr8+Pmr6RxLy+JQpEeUY81ZWamorU1NQhjyssLER7ezsOHDiAefPmAQA++ugj+P1+FBQUDPg6h8OB4uJiGI1GvPPOOzCZhi5MdvjwYSQmJsJo7L/nZzQaB/xZNMQZdUiLN6Kp043KFidmZyWI1pZoo/lyYeWmxOGLs22qu0HRHl3CyktVZ6mE2nM98PlZxOi1/GgqUR7BFjdPmzYNixcvxpo1a7Bv3z7s3bsX69atw/Lly/mMrrq6OuTn52Pfvn0AAkHPokWL4HQ68fTTT8PhcMBut8Nut8PnCxT/e/fdd/HUU0/h2LFjKC8vx9///nfcd999+OUvfynUR4kItfagKENCWGqt5cMtuqU9uoTBJWRUtjjh90s3cSTSgtvrmGkkUcEErePz4osvYt26dbj66quh0Whw3XXX4dFHH+V/3tvbi5MnT6K7OzBsffDgQT7ja9KkSWHvVVFRgZycHOj1emzbtg2/+c1vwLIsJk2ahIcffhhr1qwR8qOMWV5qLEor2lR1g+r2eNHoCEw/0g1KGHxArbIquzTiI6zxiTHQaRj09PrQ2OlChkoK+dEItToIGvgkJSUNWKwQAHJycsLS0K+66qoh09IXL14cVrhQLtQ44sOVvE+KNcBqHnydFhmdvJCMQZZlVdNL5c4tukEJQ6/VYEKSGWdbnKhodqom8DnbV3KEzitlo726okSNtXy40a08uogIJivJDC3XM3f0v7hfabrcXtgdLgDAxFQ6t4SSq8JpVC6gzkulhc1KRoFPlIROSUi52GIknWkKBHkT6SIiGK5nDgR7q0rHTeslxxpUVbso2tQ4Sn2mmbtmUUCtZBT4RMmEJDM0DOD0+NDcqY6eOT/iQxcRQantBsUFeHReCUtthVe73ME1iTTio2wU+ESJQadBFt8zV8eF5Gwzd4Oii4iQ1LbA+Qw3HUF1VgSltoCa+/tJiTPAGkNrEpWMAp8oUtOFxO9nQ+bLqWcuJDWdV0AwoJ6YRueVkLjAsrqtG70+v8itER4/kkgBteJR4BNFarpB2R0u9PT6oNMw/BoUIgy1bYlCIz7RkW4xIkavhc/PoqatW+zmCI5fk0gBteJR4BNFfLE5FUxJcJ9xQrIZei2dZkLi1mKooWfu97N8ZiSNJAqLYRhVddbOtFBArRZ0R4oiNaW007Bx9KTHmxCj18LrZ1Hbt8+QUjU4XHD1+qHXMvyaOSIcNS1wpql59aDAJ4pCe+ZehffMg6nsdBERmkbD8BWMlR5Uc+t7JiTRSGI0qGVLlPCRROqsKR1dOaIow2KCUadBr49FXbuye+bchZJq+ESHWqZRuYCabk7RoZaMwfqOnuBIYqI6qlSrGQU+UaTRMKqphkrDxtGllrUYVBsqulRzXjVzm5PGQkcjiYpH33CUqaEH1e3x8iNa1DOPDrXdoGgkMTq488rucMHp9orcGuFwFZtpex11oMAnytRwg+I+W6JZj6RY2lIgGtSyCPUsbSkQVQlmA/83XNmq3HOLD6jTKKBWAwp8oiw41aXcRai00V/0cT3Vhg4Xuj3K7Jl3e7yo7whsTkrZgtGTq4L1Y8EsVAqo1YACnyjjgoEzTQq+iPAF5ugiEi2hPXOl3qC4z5UUa0AijSRGDfd3zE0HKRF11tSFAp8om9T3h2V3uNDp6hW5NcI4Q3t0iYKb/ilvUuYNil/YTAF1VHHTP0o9r5xuLxr6RhJpClUdKPCJMqtZj9R4I4Bg6X2l4YaN6SISXZMUfoMKbnpL51U0TVb4ecWti0uONSDBTCOJakCBjwi4UR8lXkhYlqVhY5FMVPB5BYTs0UXnVVRxAfXZFid8flbk1kTeGQqoVYcCHxEouWdud7jQ7fFBS5uTRh1/Xil0LUYwo4sCn2gan2iGQaeBx+tH7TnlbVZKm96qDwU+IlBy4MNvTpoUuFiS6OHOq8oWp+I2K2VZlp+SoJ55dGk1DL+uSpnXLBrxURu6M4mAu0EpMUuC6qyIJ9Maw29WWtWqrJ45N5Koo5FEUaihs0YjiepBgY8IuItIVasTbq9P5NZEFq3DEI9Gw2BimjJ75lz5hwnJtDmpGJQa+AQ2J6WRRLWhK4gI0uKNiDfq4GeByhZl9cyp9Lu4uIXzShtNDBaYo4BaDEpdP9bgcKGnNzCSmEUjiapBgY8IGIZRbG0MyugSl1J75sHpCAqoxRB6XrGscjK7uKl5GklUF/qmRaLEG1SPx4f6jsDmpHSDEocSzysgOIJF6zDEkZsSCw0DdLq8aO50i92ciKH1PepEgY9IlDh0XNHiBMsC1hjanFQsk9LiAQQCBb+Caq4ERxIpoBaDUaflF5UrKaimGj7qRIGPSJRYxJBfh5EaC4ZhRG6NOmUnm6HTMOj2+NDgcIndnIjo8fhQ1x4YSaQpVPEosbPGj/jQ2jFVocBHJHw11OYuxVRDPUuFwESn12qQo7CaK1zWTYKZRhLFpMR1iVTDR50o8BFJVl+BP7fXj7pzPWI3JyJo2FgalDaaSJmC0qC088rp9qK+b3NSGklUFwp8RBJWDbW5U+TWRMapxsAFcUp6vMgtUTelLXA+3Rj4+6DzSlxKO6+4z5ESZ6CRRJWhwEdESho69vr8ONP3OabSDUpUfGVwBZxXAHCSAh9J4K5XTZ1uOFy9Irdm7Oi8Ui9BA5+2tjasWLECFosFCQkJWL16Nbq6Br8YX3XVVWAYJuzx85//POyY6upqLFmyBGazGWlpabj99tvh9XqF/CiCUNLQcVVbNzw+P2L0WoxPjBG7OaqmtEWop2kkURIsJj3SLUYAyrhm0UiieumEfPMVK1agoaEBu3btQm9vL1atWoW1a9fipZdeGvR1a9aswZYtW/h/m83Bipo+nw9LliyBzWbD559/joaGBqxcuRJ6vR733XefYJ9FCEoaOuYuIpPS4qDRUEaXmLg1Vm1OD9qcHlkP47t6fahsDSxunpJO6zDENiktDo0ON8qbunDxhESxmzMm3NT8ZDqvVEewEZ+ysjLs2LEDTz31FAoKCnD55ZfjsccewyuvvIL6+vpBX2s2m2Gz2fiHxWLhf/bhhx/i66+/xgsvvIA5c+bgmmuuwb333ott27bB4/EI9XEEoaRqqCft1CuXCrNBh3EJgVE3uQfVZ5q74GcDGV2p8Uaxm6N6/JYoMj+vAOBUX2eNpubVR7DAp6SkBAkJCZg/fz7/XFFRETQaDUpLSwd97YsvvoiUlBTMmDEDGzduRHd3cD+rkpISzJw5E+np6fxzxcXFcDgcOH78eOQ/iIC4aqgOlxfNXfKuhnqqiRs2pt6TFChlNJGf5kqLp9pQEsCdV6dlfl45XL1o6MvomkyBj+oINtVlt9uRlpYW/st0OiQlJcFutw/4uh/+8IfIzs5GZmYmjhw5gjvvvBMnT57Em2++yb9vaNADgP/3QO/rdrvhdgcDC4fDMarPFGkmvRZZSWZUtXajvKkLafEmsZs0ajRfLi2T0uLwyalm2Qc+XK+cpiOkQSkJGVxAnW4xwhqjF7k1JNpGPOJz1113XbD4+PzHiRMnRt2gtWvXori4GDNnzsSKFSvw/PPP46233sKZM2dG/Z5bt26F1WrlH1lZWaN+r0hTwtCxx+vnixdOsVHgIwVKWeDMT0fQeSUJ3HlVc64brl6fyK0ZvVPUUVO1EY/4bNiwATfddNOgx+Tl5cFms6GpqSnsea/Xi7a2NthstmH/voKCAgBAeXk5Jk6cCJvNhn379oUd09jYCAADvu/GjRuxfv16/t8Oh0Mywc+ktDjsPtEk6x5UZasTXj+LOKMOmVb5jlopiVJS2vkFqGl0g5KC1DgjLCYdHC4vzjY7MT3TMvSLJIgCH3UbceCTmpqK1NTUIY8rLCxEe3s7Dhw4gHnz5gEAPvroI/j9fj6YGY7Dhw8DADIyMvj3/eMf/4impiZ+Km3Xrl2wWCyYPn16v+9hNBphNEpzYeREBfTMT4VkdNE6DGngRhLr2nvgdHsRaxQ0gVMQ3R4vas4F1vfR2jFpYBgGk9LicLC6HeXNXbINfIIlEui8UiPBFjdPmzYNixcvxpo1a7Bv3z7s3bsX69atw/Lly5GZmQkAqKurQ35+Pj+Cc+bMGdx77704cOAAKisr8c4772DlypW44oorMGvWLADAokWLMH36dPz4xz/GV199hZ07d+J3v/sdbr31VskGN4OZrIA581N2yo6QmsRYA5L70ti5aUi5CWQ7BirrJsfJ729bqbjRNzlfs6h4oboJWsDwxRdfRH5+Pq6++mpce+21uPzyy/GPf/yD/3lvby9OnjzJZ20ZDAb85z//waJFi5Cfn48NGzbguuuuw7vvvsu/RqvV4r333oNWq0VhYSF+9KMfYeXKlWF1f+SEG/FpdMi3GirVw5Cm4GiiPLdEoWkuaZL7NGp7twfNnYFkF8roUidBx7+TkpIGLVaYk5MTVr8mKysLn3zyyZDvm52djQ8++CAibRQbVw210eHGmaYuzJVhUbBgKjtdRKRkUloc9lW0ybZnHswUpIBaSuReKoELqMclxCBOhlPAZOxory4J4GtjNMrvQuLq9aGyJTCVQpk30sKt8zklw/MKCJmOoPNKUrjrVUWLE70+v8itGbmTFFCrHgU+EpBvCywQPGGX35TE2WYn/CxgMemQRpV1JSU/IxAwnJTheQXQHl1SxY2UeHx+VLTIb/0Y1RwjFPhIQH5fj7asQRqFFUfidFOwzgpldEnLtL6AurqtG50yWz/W6epFXXsPgEDVZiIdGg3Dj+7K8ZpFqeyEAh8JmJbBjfg4ZLdnFzeaQIsEpScx1gCbJVBXibvYywW3JUK6xQirmSrrSs20DC7wkdd5BQSnfinwUS8KfCRgUloctBoG57p70eiQ155d/EUkjebLpYib7vpaZjcomo6QtuD0vLxGfFq63GhzesAwwbVKRH0o8JEAk16LvJRYAECZzC4kp2gBqqTxNyiZTUmctFOvXMqCIz7yOq+4mmMTksyIMWhFbg0RCwU+EsFPd8moZ97j8YVU1qUblBRxNyi5LZw/3USZN1I2tS+gbnQERlDkgt/0ltaNqRoFPhKRL8MeFFdZNynWgBSqrCtJwYDaAb9fPuvHgruy0w1KiuKMOkxIMgOQ12jiqSbaqoJQ4CMZoQuc5YLqYUhfXkosDFoNnB4fas/1iN2cYekIWes2mdZhSBY/3SWj0UR+ex2amlc1Cnwkgks9PtPshKvXJ3JrhocWoEqfTqvhtxL5WiY9c64S+LiEGMSbKKNLquS2foxlWZrqIgAo8JGMdIsRCWY9fH5WNqXgaTpCHuSWgRM8r2i0R8qCIz7yOK+aOt1wuLzQMEBeaqzYzSEiosBHIhiG4Ud95LIQlUtlp13ZpY1f4CyThfP8dASdV5LGTc+fauyCVwZbV3A1x3JSYmHSU0aXmlHgIyFyWuDc5fYGK+tSz1zSuBuUXHrm/K7sFPhIWlaiGWaDFh6vH5Wt0t+6gi+9QdNcqkeBj4RMk9GUBNd7So03IsFsELk1ZDDclihVrd1wur0it2ZwLMvSonmZCN26Qg4FMrlrFp1XhAIfCeF75g2dkt+64nh9BwBgRqZF5JaQoSTHGfkNZKU+jdrQ4UKb0wOdhqFF8zIQWi5B6o7VB9p40TiryC0hYqPAR0Imp8dBwwBtTg+aO6W9dcXR2r7Ahy4ispAvk3IJR+sC59Xk9HhahyED02zyKJDp6vXxWah0zSIU+EiISa9FXmpgGFbqtTG43hNdRORBLgucj/cFPjPH0UiiHARHqaUdUJ+0d8LrZ5EUa0Cm1SR2c4jIKPCRGG49hpQvJNR7kh9u/ZiUzysgOOJD55U8cHv0NXS40N4t3a0rjvVNzV+UaQHDMCK3hoiNAh+JkcOcOfWe5Cc/ZM8uKa8fo5FEebGY9BifGAMgsDZRqo7xI4l0XhEKfCQnuOuxhC8i1HuSnYmpcdBrGXS5vZLduqLJ4UJzpxsaJjhCRaRPDtvtHKujgJoEUeAjMfn81hVdcHuluXXFMZqOkB29VoNJadKeRuWmuSalxSHGQAub5YJf4CzRzprH6+dT2Wdk0jWLUOAjORlWEywmHbwS3rqC6z3RsLG8TLNJezSReuXylC/xApmnGjvh8flhMemQlRQjdnOIBFDgIzEMw4Ss85HeDYp6T/Il9SkJfmEznVeywp1XJ+2d8Pmlt36Mrzk2zkpT8wQABT6SJOUbFPWe5Ct0gbMUcTeomeMp8JGTCUlmxOi1cEt064qjtLCZnIcCHwmS8gJn6j3JFxdQV7Y60e2R1tYVLV1uNHS4wDDBdhJ50IZsXSHF9WPcFCpVbCYcCnwkiFvg/HWDQ3Kpx7QOQ75S4oxIiTOCZaV3g+IWzOemxCLOqBO5NWSkuM7a8XppnVden58/12l7HcKhwEeC8jPiYdBq0Ob0oKZNWqnHVGBO3mb3TSMdrukQuSXhuBsmTUfI06zxCQCAr2raRW3H+cqbu+D2+hFn1CEnOVbs5hCJoMBHgow6Lab39U4O1ZwTuTVB1HuSv7kTEgAAh6qlc14BIXu/0cJmWeLOq69q2iW1wJkboZ6eaYFGQ1PzJIACH4kK3qDaRW1HKOo9yd/cCYkApHVeASFFMWmPLlmanBaPWIMWTo8Pp5ukszbxGGUKkn5Q4CNRc7ISAACHJDR0TL0n+Zs13gqGAerae9DU6RK7OQCAc04PX036IrpByZJWw/DTXYclFFTzW1WMp4CaBFHgI1EX9/XMv67vgKtXGhWcqfckf/EmPSanxQGQzg2KW9+TnWyGNUYvcmvIaEltlNrnZ/E1PzVP1ywSJGjg09bWhhUrVsBisSAhIQGrV69GV9fA1YgrKyvBMEy/j9dff50/rr+fv/LKK0J+lKgbnxiDlDgDen2sZDIlqPekDHOz+qa7JDKaeKyeFswrAT+NKpF1iRUtXej2+BCj1yIvNU7s5hAJETTwWbFiBY4fP45du3bhvffew6effoq1a9cOeHxWVhYaGhrCHvfccw/i4uJwzTXXhB37zDPPhB23bNkyIT9K1DEMgzl9N6jDErhBUe9JObieuVRGfKhiszJw0/Onm7rQ6eoVtzEIn5rX0tQ8CSFYwYyysjLs2LED+/fvx/z58wEAjz32GK699lo89NBDyMzMvOA1Wq0WNpst7Lm33noLP/jBDxAXFx6xJyQkXHCs0sydkID/lDX2ZeDkitqWihYn9Z4UYg6XgVMbyMAR+6ZwnC+RQCOJcpYab8T4xBjUnuvBkdoOXDYpRdT2BKfm6bwi4QQb8SkpKUFCQgIf9ABAUVERNBoNSktLh/UeBw4cwOHDh7F69eoLfnbrrbciJSUFCxYswPbt2yVX6C8S5nILnCXQM+cuItR7kj8uA6fb48OpRnEzcByuXlS2dgOgER8lCGYNij/dRTXHyEAEC3zsdjvS0tLCntPpdEhKSoLdbh/Wezz99NOYNm0aFi5cGPb8li1b8Nprr2HXrl247rrr8Itf/AKPPfbYgO/jdrvhcDjCHnIwKytBMhk41HtSDq2Gwey+oFrsadTjfdMR4xJikBhrELUtZOzmSuS88vtZfF1PVeZJ/0Yc+Nx1110DLkDmHidOnBhzw3p6evDSSy/1O9pz991347LLLsPcuXNx55134o477sCf/vSnAd9r69atsFqt/CMrK2vM7YuGOKMOU9ICpeDFXo9xpJars0IXESXgyyWI3DM/UtsOgKa5lGJOSGaXmKPwFa1OdLq9MOg0mJRGU/Mk3IgDnw0bNqCsrGzQR15eHmw2G5qamsJe6/V60dbWNqy1OW+88Qa6u7uxcuXKIY8tKChAbW0t3G53vz/fuHEjOjo6+EdNTc3wPqwE8CmiIvagXL0+vgc3PztRtHaQyJFKIcN9FW0AgPnZSaK2g0TGRZkWGLQatIq83Q53Xs3JSoBeS1VbSLgRL25OTU1FamrqkMcVFhaivb0dBw4cwLx58wAAH330Efx+PwoKCoZ8/dNPP43vfve7w/pdhw8fRmJiIoxGY78/NxqNA/5M6uZOSMAr+2tEHfE5XNMOj8+P1HgjclOoYrMScCM+5c1dcLh6YTFFv36Oz89iX2XgBlWQR4GPEnDb7RyuacehmnOYkGwWpR2lZ1sBAJfm0nlFLiRYKDxt2jQsXrwYa9aswb59+7B3716sW7cOy5cv5zO66urqkJ+fj3379oW9try8HJ9++iluvvnmC9733XffxVNPPYVjx46hvLwcf//733Hffffhl7/8pVAfRVRcSjuXgSOG0rN9N6fcJDAMLWxWAi4Dh2WBIyJtWFrW4ECny4s4ow7TM2iqSynmiJyUwbIsSiu4gDpZlDYQaRN0DPDFF19Efn4+rr76alx77bW4/PLL8Y9//IP/eW9vL06ePInu7u6w123fvh3jx4/HokWLLnhPvV6Pbdu2obCwEHPmzMETTzyBhx9+GJs3bxbyo4hmUloc4ow6UTNwSisCvSe6iCiL2Bk43M1pfk4idDQdoRhiT8/XtPWgocMFvZbhK+ATEkqwOj4AkJSUhJdeemnAn+fk5PS7AO6+++7Dfffd1+9rFi9ejMWLF0esjVIXyMCxYm95Kw7XtGNalHvGHq8fB/tujDRsrCxzsxLw7lf1omXgcNMRBbkUUCsJF2yU1Tvg9vpg1Gmj+vu/6OuozRqfgBhDdH83kQfqZskAv8WACD3zI7XtcPX6kRxroOwIhQntmUc7A8cfsr5nAQXUisJtt+Px+UXZboebmqfzigyEAh8ZEHPOnJuOWEDrexRnel8GTpvTg+q27qFfEEGnm7rQ3t2LGL0Ws8ZTiQQlCWy3kwBArGsWN5JIgQ/pHwU+MsDVxuAycKLpi7N0EVEqLgMHiP4Nirs5zctOpHRjBRJr/Vhdew9qz/VAq2EwP4euWaR/dMWRgZQ4IyYkmaOegdPr8+NAVeDCtYDWYSgSv2FplNf5hGYKEuURq4Izt25sRqYFcUZBl7ASGaPARya4G9S+vp5yNByvd6Db44M1Ro98W3zUfi+JHq5nzk1pRkMg3ZgyBZVsVlYCNAxQe64H9e3RK2S4j9LYyTBQ4CMT3E7Hn5xqjtrv5HpPl+QkQUMbkyrSwomBG0RZgwNNjujsB3em2YmWLg+MOg1mZ9H6HiWKM+r4dT5RvWZV0EgiGRoFPjJx1ZRABesjdR1o7ep/a45I4y4il1JVXcVKiTPyi4v3ROkGxY32zJ2QEPVUZxI9V00NbFK952TTEEdGRpPDhYoWJxgGtL6HDIoCH5lIs5gwPcMClgU+PS38DcrnZ7Gf7z3RsLGScUH1JyejE/js4zMF6bxSsqumBs6rveWt8Hj9gv++L/rOq2k2C6wx0d+ChcgHBT4ywl1I9kThBlXW4ECn24t4o47P/CHKdGVfz/z/TjfD6xP2BsWyLL+wmQpiKtuMTCtS4gzocnv5JAkh8QUxaYSaDIECHxnhho4/PdUs+L5dXBr7/JxEaGl9j6LNyUpAglkPh8sr+DYD1W3dsDsC2wnMpe0EFE2jYXDF5L7O2inhp7tKaYSaDBMFPjIyd0IC4o06nOvuxZHadkF/F23ypx5aDYNvcDcogddjcKM9s2k7AVW4cmp0plFbutwob+oCQBWbydAo8JERvVaDyycLn93l97PYX0nZEWrCr/MReIHzFxU0HaEm35icCoYBTtg7Ye8QLmuQWzc2NT0eSbEGwX4PUQYKfGQmGut8TjZ2or27F2aDFjPGUbqxGlzRF/gcq3OgqVOYG1To+h6ajlCHpFgDZo9PAAB8IuB0F63vISNBgY/MXDklsM7nq9p2tDk9gvyOXV83AggMGdN2AuqQGm/EzL4g99NTLYL8jrKGTtS198Cg02BeNq3vUQuhO2ssy+I/ZYGgiqtLRchg6K4mMzarCfm2eLBsIAtHCO8dqQcALJmZIcj7E2kK3qCE6Zlz59W3pqYhlrYTUA0uKeOz0y3oFSBr8GB1O+raexBr0PK/i5DBUOAjQ8HCYJEPfE7aO3GqsQsGrQaLLrJF/P2JdHGBz/+dbol4WjvLsni3L/D59mwKqNVk1jgrkmIN6HR7cVCAtPZ3vwqcV/81PR0mPS2YJ0OjwEeGuBvUp6ea4Y9wWjt3EbliSioVAVOZOVmJsMbo0dHTi68inDX4VW0Hatp6YDZo8a186pWrSSCtPZCUEenq4D4/i/ePNgAAvjM7M6LvTZSLAh8ZmpediHijDq1OD47WRW639tBe+XeoV646gbT2vhtUhEcTuYC6aFo6zAaa5lIboUap91W0obnTDYtJx5dkIGQoFPjIkF6r4TctjeSF5FidA1Wt3TDpNSialh6x9yXyIcQNyu9n8f4R6pWr2RVTAmntZQ0ONEZwM1yuo3bNjAwYdHQ7I8NDZ4pM8QtRI5giyl1Erp6WTotPVeqKKYGA+mhdB5o7I7MZ7pdV52B3uBBv0vHvT9QlKdaAWVxae4SC6l6fH/+maS4yChT4yBRXEfVwTTuqW7vH/H5+P4v3+qYjvjOLprnUKi3ehBnjAnuzvd8XCI8VN81VfJGNdmNXsW/2XbPejdB59fmZVpzr7kVyrAGXUv0eMgIU+MhUhjUGV0xJBcsCz5VUjvn9DlafQ32HC3FGHaWEqtwN87MAAM+VVI158bzX58cH1CsnAK67eDw0TCBr8FRj55jfjwuor52ZAR3VGyMjQGeLjK26LAcA8Nr+GnS5vWN6r/f61mAsopRQ1fv+xeMRb9KhosU55qnUL862odXpQVKsgYrLqVxWkhn/NT2wdvCZvZVjei+314edx+0AKKAmI0eBj4xdOTkVeamx6HR78caXNaN+H5+f5QMfuoiQWKMONy6YAADY/lnlmN6L65VfM8NGVcAJfnpZLgDgrUO1ODeGyvOfnmpBp8sLm8WE+VQFnIwQXYlkTKNhsGphDgDg2c8rRz0tUXq2FS1dbiSY9Xy2GFG3lYXZ0DDAZ+Wjn5bweP349zEKqEnQgtwkTM+wwNXrx8v7q0f9PlxA/e1ZGdBomEg1j6gEBT4y9/2Lx8Ni0qGytRsfj3KrAW6x4eKLbJQSSgAA4xPNKO6r3P3M3opRvcf/nW6Gw+VFWrwRl+TQ4lMCMAyDn14eGPX535KqUW1h0ePx4T9lgf0Ev00BNRkFusvJXKxRh+XctMQoblA1bd1461AdAOqVk3Cr+qYl3jxYN+JpCb+fxbaPywEAS2ZlQEu9ctLnO7MzkBJnQEOHCzuO2Uf8+u17K9Dt8WFCkhmzx1sFaCFROgp8FICblthb3oqT9pFNS9z73tdw9fpRkJtEi09JmEtyEjFjnAVurx8v7RvZtMQbB2pxsLodsQYtfnbFRIFaSOTIqNNiRUE2gJGPJtae68ZjH50GAPzmvyaDYSigJiNHgY8CjHZa4uMTTfjw60ZoNQzuXTaDLiIkDMMwWLVw5NMS7d0e3L/jBADgtqIpsFlNgrWRyNOKSydAr2VwsLodh2vah/06rqO2IDcJy+aME66BRNEo8FEIbt78rUN1aBvGtISr14fN7xwPvPayHExJjxe0fUSevj07AylxRtgdw5+W+NPOk2hzejAlPQ439ZVcICRUWryJn1ofbmft45NN2Hm8r6O2lDpqZPQo8FGI+dnBaYkHd5wAyw6e4fX4J2dQ3daNdIsRvy6aEqVWErkx6rT40aWBNWR/3X0a7d2DB9Vf1bTz02Jbls6gFHYyIC61/f0jDdhf2Tbosa5eH34f0lGbaqOOGhk9wa5Kf/zjH7Fw4UKYzWYkJCQM6zUsy2LTpk3IyMhATEwMioqKcPr06bBj2trasGLFClgsFiQkJGD16tXo6uoS4BPIC8MwuO3qKWAY4JX9Nfj9O8cHDH6qWp34nz1nAAB3f3s64mhfLjKIH1+ajZQ4I8qburDiqdIBgx+fn8Xd/zoGlgW+N3ccLs2jNWNkYDPGWfFf09Ph9bO4afu+QYOfxz85g6pW6qiRyBAs8PF4PLj++utxyy23DPs1Dz74IB599FE8/vjjKC0tRWxsLIqLi+FyBXfzXbFiBY4fP45du3bhvffew6effoq1a9cK8RFkp2h6Oh74/iwwTGC7gf6CH5Zl8ft3jsPj9ePySSlYMpP25SKDS44z4uU1BUiJM+B4vWPA4OflfdU4UtuBeKMOG6/NF6GlRG4eXT4Xl01KhtPjGzD4Ce2o/W4JddTI2DHsUHMiY/Tss8/itttuQ3t7+6DHsSyLzMxMbNiwAf/v//0/AEBHRwfS09Px7LPPYvny5SgrK8P06dOxf/9+zJ8/HwCwY8cOXHvttaitrUVm5vDSsR0OB6xWKzo6OmCxWMb0+aTotf01uPPNI2BZ4CeF2fj9dy9Co8OND4424P2jDThQdQ56LYMdt12BialxYjeXyMTpxk7c+OQXaOny4KJMC168uQAGnQYfn2jGB0cbsKusER6vH5u/M51PhSdkKD0eH25+fj/2lrci1qDFsz9dgHkTEnGw+hzeP9qA9440oLnTjcsnpeB/Vy+gtT0qF4n7t2RC54qKCtjtdhQVFfHPWa1WFBQUoKSkBMuXL0dJSQkSEhL4oAcAioqKoNFoUFpaiu9973tiNF1yfnBJYJPJO988gudKqvB/p1twtsUZdswdxfkU9JARmZwej5fXXIobn/wCx+sduPav/4dz3b3o6fXxx1w+KQU/vjRbxFYSuYkxaPHUykv44Ocn2/fBYtLD7giO9KfFG7Fl6UUU9JCIkEzgY7cHMkbS09PDnk9PT+d/ZrfbkZYWvnO4TqdDUlISf0x/3G433G43/2+HwxGpZktWaPDDBT3zsxNx7cwMXDPThgxrjJjNIzIVGvzUdwRuTFlJMbh2Zga+PTMTM8ZZ6OZERuz84Kfb40O8UYei6elYMjMD35iSAqOONk8mkTGiwOeuu+7CAw88MOgxZWVlyM+X1vz+1q1bcc8994jdjKj7wSVZSLeaUN3WjaJpaRTskIiYnB6Pf96yEDuO2bFwYgoFOyQiYgxaPP2TS/DyvmqMTzTjCgp2iEBGFPhs2LABN91006DH5OXljaohNlugAF9jYyMyMoILbhsbGzFnzhz+mKam8P2ovF4v2tra+Nf3Z+PGjVi/fj3/b4fDgaysrFG1U26unJIqdhOIAmUnx+JnV1JFZhJZJr2W1ocRwY0o8ElNTUVqqjA30tzcXNhsNuzevZsPdBwOB0pLS/nMsMLCQrS3t+PAgQOYN28eAOCjjz6C3+9HQUHBgO9tNBphNBoFaTchhBBC5EOwdPbq6mocPnwY1dXV8Pl8OHz4MA4fPhxWcyc/Px9vvfUWgL46NLfdhj/84Q945513cPToUaxcuRKZmZlYtmwZAGDatGlYvHgx1qxZg3379mHv3r1Yt24dli9fPuyMLkIIIYSol2CLmzdt2oTnnnuO//fcuXMBAB9//DGuuuoqAMDJkyfR0dHBH3PHHXfA6XRi7dq1aG9vx+WXX44dO3bAZAru9fPiiy9i3bp1uPrqq6HRaHDdddfh0UcfFepjEEIIIURBBK/jI0VKr+NDCCGEKFEk7t+0kQ4hhBBCVIMCH0IIIYSoBgU+hBBCCFENCnwIIYQQohoU+BBCCCFENSjwIYQQQohqUOBDCCGEENWgwIcQQgghqkGBDyGEEEJUQ7AtK6SMK1btcDhEbgkhhBBChou7b49l0wlVBj6dnZ0AgKysLJFbQgghhJCR6uzshNVqHdVrVblXl9/vR319PeLj48EwTL/HOBwOZGVloaamRhX7eanp86rpswL0eZWOPq+yqenzDuezsiyLzs5OZGZmQqMZ3WodVY74aDQajB8/fljHWiwWxZ9sodT0edX0WQH6vEpHn1fZ1PR5h/qsox3p4dDiZkIIIYSoBgU+hBBCCFENCnwGYDQasXnzZhiNRrGbEhVq+rxq+qwAfV6lo8+rbGr6vNH6rKpc3EwIIYQQdaIRH0IIIYSoBgU+hBBCCFENCnwIIYQQohoU+BBCCCFENVQb+Pzxj3/EwoULYTabkZCQ0O8x1dXVWLJkCcxmM9LS0nD77bfD6/UO+r5tbW1YsWIFLBYLEhISsHr1anR1dQnwCUZvz549YBim38f+/fsHfN1VV111wfE///nPo9jy0cvJybmg7ffff/+gr3G5XLj11luRnJyMuLg4XHfddWhsbIxSi0evsrISq1evRm5uLmJiYjBx4kRs3rwZHo9n0NfJ6fvdtm0bcnJyYDKZUFBQgH379g16/Ouvv478/HyYTCbMnDkTH3zwQZRaOjZbt27FJZdcgvj4eKSlpWHZsmU4efLkoK959tlnL/geTSZTlFo8Nr///e8vaHt+fv6gr5Hrdwv0f11iGAa33nprv8fL6bv99NNP8Z3vfAeZmZlgGAZvv/122M9ZlsWmTZuQkZGBmJgYFBUV4fTp00O+70j/9vuj2sDH4/Hg+uuvxy233NLvz30+H5YsWQKPx4PPP/8czz33HJ599lls2rRp0PddsWIFjh8/jl27duG9997Dp59+irVr1wrxEUZt4cKFaGhoCHvcfPPNyM3Nxfz58wd97Zo1a8Je9+CDD0ap1WO3ZcuWsLb/8pe/HPT43/zmN3j33Xfx+uuv45NPPkF9fT2+//3vR6m1o3fixAn4/X488cQTOH78OB555BE8/vjj+O1vfzvka+Xw/b766qtYv349Nm/ejIMHD2L27NkoLi5GU1NTv8d//vnnuPHGG7F69WocOnQIy5Ytw7Jly3Ds2LEot3zkPvnkE9x666344osvsGvXLvT29mLRokVwOp2Dvs5isYR9j1VVVVFq8dhddNFFYW3/7LPPBjxWzt8tAOzfvz/ss+7atQsAcP311w/4Grl8t06nE7Nnz8a2bdv6/fmDDz6IRx99FI8//jhKS0sRGxuL4uJiuFyuAd9zpH/7A2JV7plnnmGtVusFz3/wwQesRqNh7XY7/9zf//531mKxsG63u9/3+vrrr1kA7P79+/nn/v3vf7MMw7B1dXURb3ukeDweNjU1ld2yZcugx1155ZXsr3/96+g0KsKys7PZRx55ZNjHt7e3s3q9nn399df558rKylgAbElJiQAtFNaDDz7I5ubmDnqMXL7fBQsWsLfeeiv/b5/Px2ZmZrJbt27t9/gf/OAH7JIlS8KeKygoYH/2s58J2k4hNDU1sQDYTz75ZMBjBrqmycHmzZvZ2bNnD/t4JX23LMuyv/71r9mJEyeyfr+/35/L9bsFwL711lv8v/1+P2uz2dg//elP/HPt7e2s0WhkX3755QHfZ6R/+wNR7YjPUEpKSjBz5kykp6fzzxUXF8PhcOD48eMDviYhISFs1KSoqAgajQalpaWCt3m03nnnHbS2tmLVqlVDHvviiy8iJSUFM2bMwMaNG9Hd3R2FFkbG/fffj+TkZMydOxd/+tOfBp22PHDgAHp7e1FUVMQ/l5+fjwkTJqCkpCQazY2ojo4OJCUlDXmc1L9fj8eDAwcOhH0vGo0GRUVFA34vJSUlYccDgb9luX6PAIb8Lru6upCdnY2srCwsXbp0wGuWFJ0+fRqZmZnIy8vDihUrUF1dPeCxSvpuPR4PXnjhBfz0pz8dcPNsQN7fLaeiogJ2uz3su7NarSgoKBjwuxvN3/5AVLlJ6XDY7fawoAcA/2+73T7ga9LS0sKe0+l0SEpKGvA1UvD000+juLh4yI1bf/jDHyI7OxuZmZk4cuQI7rzzTpw8eRJvvvlmlFo6er/61a9w8cUXIykpCZ9//jk2btyIhoYGPPzww/0eb7fbYTAYLlj/lZ6eLunvsj/l5eV47LHH8NBDDw16nBy+35aWFvh8vn7/Nk+cONHvawb6W5bb9+j3+3Hbbbfhsssuw4wZMwY8burUqdi+fTtmzZqFjo4OPPTQQ1i4cCGOHz8+7M2ZxVJQUIBnn30WU6dORUNDA+655x584xvfwLFjxxAfH3/B8Ur5bgHg7bffRnt7O2666aYBj5HzdxuK+35G8t2N5m9/IIoKfO666y488MADgx5TVlY25GI5uRrN56+trcXOnTvx2muvDfn+oWuVZs6ciYyMDFx99dU4c+YMJk6cOPqGj9JIPu/69ev552bNmgWDwYCf/exn2Lp1q2xKwY/m+62rq8PixYtx/fXXY82aNYO+VmrfLwl366234tixY4OueQGAwsJCFBYW8v9euHAhpk2bhieeeAL33nuv0M0ck2uuuYb//7NmzUJBQQGys7Px2muvYfXq1SK2THhPP/00rrnmGmRmZg54jJy/WylRVOCzYcOGQaNlAMjLyxvWe9lstgtWi3MZPTabbcDXnL/Iyuv1oq2tbcDXRNJoPv8zzzyD5ORkfPe73x3x7ysoKAAQGFEQ48Y4lu+7oKAAXq8XlZWVmDp16gU/t9ls8Hg8aG9vDxv1aWxsjMp32Z+Rft76+np885vfxMKFC/GPf/xjxL9P7O+3PykpKdBqtRdk1w32vdhsthEdL0Xr1q3jkyVG2rPX6/WYO3cuysvLBWqdcBISEjBlypQB266E7xYAqqqq8J///GfEo6ty/W6576exsREZGRn8842NjZgzZ06/rxnN3/6ARrQiSIGGWtzc2NjIP/fEE0+wFouFdblc/b4Xt7j5yy+/5J/buXOnZBc3+/1+Njc3l92wYcOoXv/ZZ5+xANivvvoqwi0T3gsvvMBqNBq2ra2t359zi5vfeOMN/rkTJ07IZnFzbW0tO3nyZHb58uWs1+sd1XtI9ftdsGABu27dOv7fPp+PHTdu3KCLm7/97W+HPVdYWCiLBbB+v5+99dZb2czMTPbUqVOjeg+v18tOnTqV/c1vfhPh1gmvs7OTTUxMZP/617/2+3M5f7ehNm/ezNpsNra3t3dEr5PLd4sBFjc/9NBD/HMdHR3DWtw8kr/9AdszoqMVpKqqij106BB7zz33sHFxceyhQ4fYQ4cOsZ2dnSzLBk6oGTNmsIsWLWIPHz7M7tixg01NTWU3btzIv0dpaSk7depUtra2ln9u8eLF7Ny5c9nS0lL2s88+YydPnszeeOONUf98w/Gf//yHBcCWlZVd8LPa2lp26tSpbGlpKcuyLFteXs5u2bKF/fLLL9mKigr2X//6F5uXl8deccUV0W72iH3++efsI488wh4+fJg9c+YM+8ILL7CpqansypUr+WPO/7wsy7I///nP2QkTJrAfffQR++WXX7KFhYVsYWGhGB9hRGpra9lJkyaxV199NVtbW8s2NDTwj9Bj5Pr9vvLKK6zRaGSfffZZ9uuvv2bXrl3LJiQk8BmYP/7xj9m77rqLP37v3r2sTqdjH3roIbasrIzdvHkzq9fr2aNHj4r1EYbtlltuYa1WK7tnz56w77G7u5s/5vzPe88997A7d+5kz5w5wx44cIBdvnw5azKZ2OPHj4vxEUZkw4YN7J49e9iKigp27969bFFREZuSksI2NTWxLKus75bj8/nYCRMmsHfeeecFP5Pzd9vZ2cnfVwGwDz/8MHvo0CG2qqqKZVmWvf/++9mEhAT2X//6F3vkyBF26dKlbG5uLtvT08O/x7e+9S32scce4/891N/+cKk28PnJT37CArjg8fHHH/PHVFZWstdccw0bExPDpqSksBs2bAiLyD/++GMWAFtRUcE/19rayt54441sXFwca7FY2FWrVvHBlNTceOON7MKFC/v9WUVFRdh/j+rqavaKK65gk5KSWKPRyE6aNIm9/fbb2Y6Ojii2eHQOHDjAFhQUsFarlTWZTOy0adPY++67L2zk7vzPy7Is29PTw/7iF79gExMTWbPZzH7ve98LCx6k6plnnun33A4d4JX79/vYY4+xEyZMYA0GA7tgwQL2iy++4H925ZVXsj/5yU/Cjn/ttdfYKVOmsAaDgb3ooovY999/P8otHp2BvsdnnnmGP+b8z3vbbbfx/23S09PZa6+9lj148GD0Gz8KN9xwA5uRkcEaDAZ23Lhx7A033MCWl5fzP1fSd8vZuXMnC4A9efLkBT+T83fL3R/Pf3Cfx+/3s3fffTebnp7OGo1G9uqrr77gv0F2dja7efPmsOcG+9sfLoZlWXZkk2OEEEIIIfJEdXwIIYQQohoU+BBCCCFENSjwIYQQQohqUOBDCCGEENWgwIcQQgghqkGBDyGEEEJUgwIfQgghhKgGBT6EEEIIUQ0KfAghhBCiGhT4EEIIIUQ1KPAhhBBCiGpQ4EMIIYQQ1fj/ARldMSLQYWJwAAAAAElFTkSuQmCC",
"text/plain": [
- "