diff --git a/README.md b/README.md index 2967d72..1264a22 100644 --- a/README.md +++ b/README.md @@ -18,13 +18,13 @@ full-semester course **[Introduction to Python & Programming](https://github.com ## Installation To follow this workshop on your own computer, a working installation of -**Python 3.6** or higher is required. +**Python 3.7** or higher is required. A popular and beginner friendly way is to install the [Anaconda Distribution](https://www.anaconda.com/distribution/) that not only ships Python but comes pre-packaged with a lot of third-party libraries from the so-called "scientific stack". Just go to the [download](https://www.anaconda.com/distribution/#download-section) -section and install the latest version (i.e., *2019-10* with Python 3.7 at the +section and install the latest version (i.e., *2020-02* with Python 3.7 at the time of this writing) for your operating system. Then, among others, you will find an entry "Jupyter Notebook" in your start diff --git a/poetry.lock b/poetry.lock index d2097fb..f014c8d 100644 --- a/poetry.lock +++ b/poetry.lock @@ -1,19 +1,50 @@ [[package]] category = "main" description = "Disable App Nap on OS X 10.9" -marker = "sys_platform == \"darwin\" or platform_system == \"Darwin\" or python_version >= \"3.3\" and sys_platform == \"darwin\"" +marker = "sys_platform == \"darwin\" or platform_system == \"Darwin\"" name = "appnope" optional = false python-versions = "*" version = "0.1.0" +[[package]] +category = "main" +description = "The secure Argon2 password hashing algorithm." +name = "argon2-cffi" +optional = false +python-versions = "*" +version = "20.1.0" + +[package.dependencies] +cffi = ">=1.0.0" +six = "*" + +[package.extras] +dev = ["coverage (>=5.0.2)", "hypothesis", "pytest", "sphinx", "wheel", "pre-commit"] +docs = ["sphinx"] +tests = ["coverage (>=5.0.2)", "hypothesis", "pytest"] + +[[package]] +category = "main" +description = "Async generators and context managers for Python 3.5+" +name = "async-generator" +optional = false +python-versions = ">=3.5" +version = "1.10" + [[package]] category = "main" description = "Classes Without Boilerplate" name = "attrs" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" -version = "19.3.0" +version = "20.2.0" + +[package.extras] +dev = ["coverage (>=5.0.2)", "hypothesis", "pympler", "pytest (>=4.3.0)", "six", "zope.interface", "sphinx", "sphinx-rtd-theme", "pre-commit"] +docs = ["sphinx", "sphinx-rtd-theme", "zope.interface"] +tests = ["coverage (>=5.0.2)", "hypothesis", "pympler", "pytest (>=4.3.0)", "six", "zope.interface"] +tests_no_zope = ["coverage (>=5.0.2)", "hypothesis", "pympler", "pytest (>=4.3.0)", "six"] [[package]] category = "main" @@ -21,28 +52,56 @@ description = "Specifications for callback functions passed in to an API" name = "backcall" optional = false python-versions = "*" -version = "0.1.0" +version = "0.2.0" [[package]] category = "main" description = "An easy safelist-based HTML-sanitizing tool." name = "bleach" optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" -version = "3.1.0" +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" +version = "3.2.0" [package.dependencies] +packaging = "*" six = ">=1.9.0" webencodings = "*" +[[package]] +category = "main" +description = "Python package for providing Mozilla's CA Bundle." +name = "certifi" +optional = false +python-versions = "*" +version = "2020.6.20" + +[[package]] +category = "main" +description = "Foreign Function Interface for Python calling C code." +name = "cffi" +optional = false +python-versions = "*" +version = "1.14.3" + +[package.dependencies] +pycparser = "*" + +[[package]] +category = "main" +description = "Universal encoding detector for Python 2 and 3" +name = "chardet" +optional = false +python-versions = "*" +version = "3.0.4" + [[package]] category = "main" description = "Cross-platform colored terminal text." -marker = "python_version >= \"3.3\" and sys_platform == \"win32\" or sys_platform == \"win32\"" +marker = "sys_platform == \"win32\"" name = "colorama" optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" -version = "0.4.1" +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" +version = "0.4.3" [[package]] category = "main" @@ -61,7 +120,7 @@ description = "Decorators for Humans" name = "decorator" optional = false python-versions = ">=2.6, !=3.0.*, !=3.1.*" -version = "4.4.1" +version = "4.4.2" [[package]] category = "main" @@ -79,6 +138,14 @@ optional = false python-versions = ">=2.7" version = "0.3" +[[package]] +category = "main" +description = "Internationalized Domain Names in Applications (IDNA)" +name = "idna" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +version = "2.10" + [[package]] category = "main" description = "Read metadata from Python packages" @@ -86,18 +153,22 @@ marker = "python_version < \"3.8\"" name = "importlib-metadata" optional = false python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,>=2.7" -version = "1.2.0" +version = "1.7.0" [package.dependencies] zipp = ">=0.5" +[package.extras] +docs = ["sphinx", "rst.linker"] +testing = ["packaging", "pep517", "importlib-resources (>=1.3)"] + [[package]] category = "main" description = "IPython Kernel for Jupyter" name = "ipykernel" optional = false -python-versions = ">=3.4" -version = "5.1.3" +python-versions = ">=3.5" +version = "5.3.4" [package.dependencies] appnope = "*" @@ -106,13 +177,16 @@ jupyter-client = "*" tornado = ">=4.2" traitlets = ">=4.1.0" +[package.extras] +test = ["pytest (!=5.3.4)", "pytest-cov", "flaky", "nose"] + [[package]] category = "main" description = "IPython: Productive Interactive Computing" name = "ipython" optional = false -python-versions = ">=3.6" -version = "7.10.1" +python-versions = ">=3.7" +version = "7.18.1" [package.dependencies] appnope = "*" @@ -120,13 +194,24 @@ backcall = "*" colorama = "*" decorator = "*" jedi = ">=0.10" -pexpect = "*" +pexpect = ">4.3" pickleshare = "*" prompt-toolkit = ">=2.0.0,<3.0.0 || >3.0.0,<3.0.1 || >3.0.1,<3.1.0" pygments = "*" setuptools = ">=18.5" traitlets = ">=4.2" +[package.extras] +all = ["Sphinx (>=1.3)", "ipykernel", "ipyparallel", "ipywidgets", "nbconvert", "nbformat", "nose (>=0.10.1)", "notebook", "numpy (>=1.14)", "pygments", "qtconsole", "requests", "testpath"] +doc = ["Sphinx (>=1.3)"] +kernel = ["ipykernel"] +nbconvert = ["nbconvert"] +nbformat = ["nbformat"] +notebook = ["notebook", "ipywidgets"] +parallel = ["ipyparallel"] +qtconsole = ["qtconsole"] +test = ["nose (>=0.10.1)", "requests", "testpath", "pygments", "nbformat", "ipykernel", "numpy (>=1.14)"] + [[package]] category = "main" description = "Vestigial utilities from IPython" @@ -135,53 +220,53 @@ optional = false python-versions = "*" version = "0.2.0" -[[package]] -category = "main" -description = "IPython HTML widgets for Jupyter" -name = "ipywidgets" -optional = false -python-versions = "*" -version = "7.5.1" - -[package.dependencies] -ipykernel = ">=4.5.1" -nbformat = ">=4.2.0" -traitlets = ">=4.3.1" -widgetsnbextension = ">=3.5.0,<3.6.0" - -[package.dependencies.ipython] -python = ">=3.3" -version = ">=4.0.0" - [[package]] category = "main" description = "An autocompletion tool for Python that can be used for text editors." name = "jedi" optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" -version = "0.15.1" +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" +version = "0.17.2" [package.dependencies] -parso = ">=0.5.0" +parso = ">=0.7.0,<0.8.0" + +[package.extras] +qa = ["flake8 (3.7.9)"] +testing = ["Django (<3.1)", "colorama", "docopt", "pytest (>=3.9.0,<5.0.0)"] [[package]] category = "main" description = "A very fast and expressive template engine." name = "jinja2" optional = false -python-versions = "*" -version = "2.10.3" +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" +version = "2.11.2" [package.dependencies] MarkupSafe = ">=0.23" +[package.extras] +i18n = ["Babel (>=0.8)"] + [[package]] category = "main" description = "Lightweight pipelining: using Python functions as pipeline jobs." name = "joblib" optional = false +python-versions = ">=3.6" +version = "0.16.0" + +[[package]] +category = "main" +description = "A Python implementation of the JSON5 data format." +name = "json5" +optional = false python-versions = "*" -version = "0.14.0" +version = "0.9.5" + +[package.extras] +dev = ["hypothesis"] [[package]] category = "main" @@ -201,75 +286,94 @@ six = ">=1.11.0" python = "<3.8" version = "*" -[[package]] -category = "main" -description = "Jupyter metapackage. Install all the Jupyter components in one go." -name = "jupyter" -optional = false -python-versions = "*" -version = "1.0.0" - -[package.dependencies] -ipykernel = "*" -ipywidgets = "*" -jupyter-console = "*" -nbconvert = "*" -notebook = "*" -qtconsole = "*" +[package.extras] +format = ["idna", "jsonpointer (>1.13)", "rfc3987", "strict-rfc3339", "webcolors"] +format_nongpl = ["idna", "jsonpointer (>1.13)", "webcolors", "rfc3986-validator (>0.1.0)", "rfc3339-validator"] [[package]] category = "main" description = "Jupyter protocol implementation and client libraries" name = "jupyter-client" optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" -version = "5.3.4" +python-versions = ">=3.5" +version = "6.1.7" [package.dependencies] jupyter-core = ">=4.6.0" python-dateutil = ">=2.1" -pywin32 = ">=1.0" pyzmq = ">=13" tornado = ">=4.1" traitlets = "*" -[[package]] -category = "main" -description = "Jupyter terminal console" -name = "jupyter-console" -optional = false -python-versions = ">=3.5" -version = "6.0.0" - -[package.dependencies] -ipykernel = "*" -ipython = "*" -jupyter-client = "*" -prompt-toolkit = ">=2.0.0,<2.1.0" -pygments = "*" +[package.extras] +test = ["ipykernel", "ipython", "mock", "pytest", "pytest-asyncio", "async-generator", "pytest-timeout"] [[package]] category = "main" description = "Jupyter core package. A base package on which Jupyter projects rely." name = "jupyter-core" optional = false -python-versions = ">=2.7, !=3.0, !=3.1, !=3.2" -version = "4.6.1" +python-versions = "!=3.0,!=3.1,!=3.2,!=3.3,!=3.4,>=2.7" +version = "4.6.3" [package.dependencies] pywin32 = ">=1.0" traitlets = "*" +[[package]] +category = "main" +description = "The JupyterLab notebook server extension." +name = "jupyterlab" +optional = false +python-versions = ">=3.5" +version = "2.2.8" + +[package.dependencies] +jinja2 = ">=2.10" +jupyterlab-server = ">=1.1.5,<2.0" +notebook = ">=4.3.1" +tornado = "<6.0.0 || >6.0.0,<6.0.1 || >6.0.1,<6.0.2 || >6.0.2" + +[package.extras] +docs = ["jsx-lexer", "recommonmark", "sphinx", "sphinx-rtd-theme", "sphinx-copybutton"] +test = ["pytest", "pytest-check-links", "requests", "wheel", "virtualenv"] + +[[package]] +category = "main" +description = "Pygments theme using JupyterLab CSS variables" +name = "jupyterlab-pygments" +optional = false +python-versions = "*" +version = "0.1.1" + +[package.dependencies] +pygments = ">=2.4.1,<3" + +[[package]] +category = "main" +description = "JupyterLab Server" +name = "jupyterlab-server" +optional = false +python-versions = ">=3.5" +version = "1.2.0" + +[package.dependencies] +jinja2 = ">=2.10" +json5 = "*" +jsonschema = ">=3.0.1" +notebook = ">=4.2.0" +requests = "*" + +[package.extras] +test = ["pytest", "requests"] + [[package]] category = "main" description = "A fast implementation of the Cassowary constraint solver" name = "kiwisolver" optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" -version = "1.1.0" - -[package.dependencies] -setuptools = "*" +python-versions = ">=3.6" +version = "1.2.0" [[package]] category = "main" @@ -285,13 +389,15 @@ description = "Python plotting package" name = "matplotlib" optional = false python-versions = ">=3.6" -version = "3.1.2" +version = "3.3.2" [package.dependencies] +certifi = ">=2020.06.20" cycler = ">=0.10" kiwisolver = ">=1.0.1" -numpy = ">=1.11" -pyparsing = ">=2.0.1,<2.0.4 || >2.0.4,<2.1.2 || >2.1.2,<2.1.6 || >2.1.6" +numpy = ">=1.15" +pillow = ">=6.2.0" +pyparsing = ">=2.0.3,<2.0.4 || >2.0.4,<2.1.2 || >2.1.2,<2.1.6 || >2.1.6" python-dateutil = ">=2.1" [[package]] @@ -304,20 +410,31 @@ version = "0.8.4" [[package]] category = "main" -description = "More routines for operating on iterables, beyond itertools" -marker = "python_version < \"3.8\"" -name = "more-itertools" +description = "A client library for executing notebooks. Formally nbconvert's ExecutePreprocessor." +name = "nbclient" optional = false -python-versions = ">=3.5" -version = "8.0.0" +python-versions = ">=3.6" +version = "0.5.0" + +[package.dependencies] +async-generator = "*" +jupyter-client = ">=6.1.5" +nbformat = ">=5.0" +nest-asyncio = "*" +traitlets = ">=4.2" + +[package.extras] +dev = ["codecov", "coverage", "ipython", "ipykernel", "ipywidgets", "pytest (>=4.1)", "pytest-cov (>=2.6.1)", "check-manifest", "flake8", "mypy", "tox", "bumpversion", "xmltodict", "pip (>=18.1)", "wheel (>=0.31.0)", "setuptools (>=38.6.0)", "twine (>=1.11.0)", "black"] +sphinx = ["Sphinx (>=1.7)", "sphinx-book-theme", "mock", "moto", "myst-parser"] +test = ["codecov", "coverage", "ipython", "ipykernel", "ipywidgets", "pytest (>=4.1)", "pytest-cov (>=2.6.1)", "check-manifest", "flake8", "mypy", "tox", "bumpversion", "xmltodict", "pip (>=18.1)", "wheel (>=0.31.0)", "setuptools (>=38.6.0)", "twine (>=1.11.0)", "black"] [[package]] category = "main" description = "Converting Jupyter Notebooks" name = "nbconvert" optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" -version = "5.6.1" +python-versions = ">=3.6" +version = "6.0.3" [package.dependencies] bleach = "*" @@ -325,20 +442,29 @@ defusedxml = "*" entrypoints = ">=0.2.2" jinja2 = ">=2.4" jupyter-core = "*" +jupyterlab-pygments = "*" mistune = ">=0.8.1,<2" +nbclient = ">=0.5.0,<0.6.0" nbformat = ">=4.4" pandocfilters = ">=1.4.1" -pygments = "*" +pygments = ">=2.4.1" testpath = "*" traitlets = ">=4.2" +[package.extras] +all = ["pytest", "pytest-cov", "pytest-dependency", "ipykernel", "ipywidgets (>=7)", "pyppeteer (0.2.2)", "tornado (>=4.0)", "sphinx (>=1.5.1)", "sphinx-rtd-theme", "nbsphinx (>=0.2.12)", "ipython"] +docs = ["sphinx (>=1.5.1)", "sphinx-rtd-theme", "nbsphinx (>=0.2.12)", "ipython"] +serve = ["tornado (>=4.0)"] +test = ["pytest", "pytest-cov", "pytest-dependency", "ipykernel", "ipywidgets (>=7)", "pyppeteer (0.2.2)"] +webpdf = ["pyppeteer (0.2.2)"] + [[package]] category = "main" description = "The Jupyter Notebook format" name = "nbformat" optional = false -python-versions = "*" -version = "4.4.0" +python-versions = ">=3.5" +version = "5.0.7" [package.dependencies] ipython-genutils = "*" @@ -346,50 +472,81 @@ jsonschema = ">=2.4,<2.5.0 || >2.5.0" jupyter-core = "*" traitlets = ">=4.1" +[package.extras] +test = ["pytest", "pytest-cov", "testpath"] + +[[package]] +category = "main" +description = "Patch asyncio to allow nested event loops" +name = "nest-asyncio" +optional = false +python-versions = ">=3.5" +version = "1.4.0" + [[package]] category = "main" description = "A web-based notebook environment for interactive computing" name = "notebook" optional = false python-versions = ">=3.5" -version = "6.0.2" +version = "6.1.4" [package.dependencies] Send2Trash = "*" +argon2-cffi = "*" ipykernel = "*" ipython-genutils = "*" jinja2 = "*" jupyter-client = ">=5.3.4" -jupyter-core = ">=4.6.0" +jupyter-core = ">=4.6.1" nbconvert = "*" nbformat = "*" prometheus-client = "*" pyzmq = ">=17" -terminado = ">=0.8.1" +terminado = ">=0.8.3" tornado = ">=5.0" traitlets = ">=4.2.1" +[package.extras] +docs = ["sphinx", "nbsphinx", "sphinxcontrib-github-alt"] +test = ["nose", "coverage", "requests", "nose-warnings-filters", "nbval", "nose-exclude", "selenium", "pytest", "pytest-cov", "requests-unixsocket"] + [[package]] category = "main" description = "NumPy is the fundamental package for array computing with Python." name = "numpy" optional = false -python-versions = ">=3.5" -version = "1.17.4" +python-versions = ">=3.6" +version = "1.19.2" + +[[package]] +category = "main" +description = "Core utilities for Python packages" +name = "packaging" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +version = "20.4" + +[package.dependencies] +pyparsing = ">=2.0.2" +six = "*" [[package]] category = "main" description = "Powerful data structures for data analysis, time series, and statistics" name = "pandas" optional = false -python-versions = ">=3.5.3" -version = "0.25.3" +python-versions = ">=3.6.1" +version = "1.1.2" [package.dependencies] -numpy = ">=1.13.3" -python-dateutil = ">=2.6.1" +numpy = ">=1.15.4" +python-dateutil = ">=2.7.3" pytz = ">=2017.2" +[package.extras] +test = ["pytest (>=4.0.2)", "pytest-xdist", "hypothesis (>=3.58)"] + [[package]] category = "main" description = "Utilities for writing pandoc filters in python" @@ -403,17 +560,20 @@ category = "main" description = "A Python Parser" name = "parso" optional = false -python-versions = "*" -version = "0.5.1" +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +version = "0.7.1" + +[package.extras] +testing = ["docopt", "pytest (>=3.0.7)"] [[package]] category = "main" description = "Pexpect allows easy control of interactive console applications." -marker = "python_version >= \"3.3\" and sys_platform != \"win32\" or sys_platform != \"win32\"" +marker = "sys_platform != \"win32\"" name = "pexpect" optional = false python-versions = "*" -version = "4.7.0" +version = "4.8.0" [package.dependencies] ptyprocess = ">=0.5" @@ -426,42 +586,60 @@ optional = false python-versions = "*" version = "0.7.5" +[[package]] +category = "main" +description = "Python Imaging Library (Fork)" +name = "pillow" +optional = false +python-versions = ">=3.5" +version = "7.2.0" + [[package]] category = "main" description = "Python client for the Prometheus monitoring system." name = "prometheus-client" optional = false python-versions = "*" -version = "0.7.1" +version = "0.8.0" + +[package.extras] +twisted = ["twisted"] [[package]] category = "main" description = "Library for building powerful interactive command lines in Python" name = "prompt-toolkit" optional = false -python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*" -version = "2.0.10" +python-versions = ">=3.6.1" +version = "3.0.7" [package.dependencies] -six = ">=1.9.0" wcwidth = "*" [[package]] category = "main" description = "Run a subprocess in a pseudo terminal" -marker = "sys_platform != \"win32\" or os_name != \"nt\" or python_version >= \"3.3\" and sys_platform != \"win32\"" +marker = "sys_platform != \"win32\" or os_name != \"nt\"" name = "ptyprocess" optional = false python-versions = "*" version = "0.6.0" +[[package]] +category = "main" +description = "C parser in Python" +name = "pycparser" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +version = "2.20" + [[package]] category = "main" description = "Pygments is a syntax highlighting package written in Python." name = "pygments" optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" -version = "2.5.2" +python-versions = ">=3.5" +version = "2.7.0" [[package]] category = "main" @@ -469,18 +647,15 @@ description = "Python parsing module" name = "pyparsing" optional = false python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*" -version = "2.4.5" +version = "2.4.7" [[package]] category = "main" description = "Persistent/Functional/Immutable data structures" name = "pyrsistent" optional = false -python-versions = "*" -version = "0.15.6" - -[package.dependencies] -six = "*" +python-versions = ">=3.5" +version = "0.17.3" [[package]] category = "main" @@ -499,7 +674,7 @@ description = "World timezone definitions, modern and historical" name = "pytz" optional = false python-versions = "*" -version = "2019.3" +version = "2020.1" [[package]] category = "main" @@ -508,7 +683,7 @@ marker = "sys_platform == \"win32\"" name = "pywin32" optional = false python-versions = "*" -version = "227" +version = "228" [[package]] category = "main" @@ -525,47 +700,53 @@ description = "Python bindings for 0MQ" name = "pyzmq" optional = false python-versions = ">=2.7,!=3.0.*,!=3.1.*,!=3.2.*" -version = "18.1.1" +version = "19.0.2" [[package]] category = "main" -description = "Jupyter Qt console" -name = "qtconsole" +description = "Python HTTP for Humans." +name = "requests" optional = false -python-versions = "*" -version = "4.6.0" +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" +version = "2.24.0" [package.dependencies] -ipykernel = ">=4.1" -ipython-genutils = "*" -jupyter-client = ">=4.1" -jupyter-core = "*" -pygments = "*" -traitlets = "*" +certifi = ">=2017.4.17" +chardet = ">=3.0.2,<4" +idna = ">=2.5,<3" +urllib3 = ">=1.21.1,<1.25.0 || >1.25.0,<1.25.1 || >1.25.1,<1.26" + +[package.extras] +security = ["pyOpenSSL (>=0.14)", "cryptography (>=1.3.4)"] +socks = ["PySocks (>=1.5.6,<1.5.7 || >1.5.7)", "win-inet-pton"] [[package]] category = "main" description = "A set of python modules for machine learning and data mining" name = "scikit-learn" optional = false -python-versions = ">=3.5" -version = "0.22" +python-versions = ">=3.6" +version = "0.23.2" [package.dependencies] joblib = ">=0.11" -numpy = ">=1.11.0" -scipy = ">=0.17.0" +numpy = ">=1.13.3" +scipy = ">=0.19.1" +threadpoolctl = ">=2.0.0" + +[package.extras] +alldeps = ["numpy (>=1.13.3)", "scipy (>=0.19.1)"] [[package]] category = "main" description = "SciPy: Scientific Library for Python" name = "scipy" optional = false -python-versions = ">=3.5" -version = "1.3.3" +python-versions = ">=3.6" +version = "1.5.2" [package.dependencies] -numpy = ">=1.13.3" +numpy = ">=1.14.5" [[package]] category = "main" @@ -580,8 +761,8 @@ category = "main" description = "Python 2 and 3 compatibility utilities" name = "six" optional = false -python-versions = ">=2.6, !=3.0.*, !=3.1.*" -version = "1.13.0" +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" +version = "1.15.0" [[package]] category = "main" @@ -604,34 +785,59 @@ optional = false python-versions = "*" version = "0.4.4" +[package.extras] +test = ["pathlib2"] + +[[package]] +category = "main" +description = "threadpoolctl" +name = "threadpoolctl" +optional = false +python-versions = ">=3.5" +version = "2.1.0" + [[package]] category = "main" description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." name = "tornado" optional = false python-versions = ">= 3.5" -version = "6.0.3" +version = "6.0.4" [[package]] category = "main" -description = "Traitlets Python config system" +description = "Traitlets Python configuration system" name = "traitlets" optional = false -python-versions = "*" -version = "4.3.3" +python-versions = ">=3.7" +version = "5.0.4" [package.dependencies] -decorator = "*" ipython-genutils = "*" -six = "*" + +[package.extras] +test = ["pytest"] [[package]] category = "main" -description = "Measures number of Terminal column cells of wide-character codes" +description = "HTTP library with thread-safe connection pooling, file post, and more." +name = "urllib3" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, <4" +version = "1.25.10" + +[package.extras] +brotli = ["brotlipy (>=0.6.0)"] +secure = ["certifi", "cryptography (>=1.3.4)", "idna (>=2.0.0)", "pyOpenSSL (>=0.14)", "ipaddress"] +socks = ["PySocks (>=1.5.6,<1.5.7 || >1.5.7,<2.0)"] + +[[package]] +category = "main" +description = "Measures the displayed width of unicode strings in a terminal" name = "wcwidth" optional = false python-versions = "*" -version = "0.1.7" +version = "0.2.5" [[package]] category = "main" @@ -641,91 +847,563 @@ optional = false python-versions = "*" version = "0.5.1" -[[package]] -category = "main" -description = "IPython HTML widgets for Jupyter" -name = "widgetsnbextension" -optional = false -python-versions = "*" -version = "3.5.1" - -[package.dependencies] -notebook = ">=4.4.1" - [[package]] category = "main" description = "Backport of pathlib-compatible object wrapper for zip files" marker = "python_version < \"3.8\"" name = "zipp" optional = false -python-versions = ">=2.7" -version = "0.6.0" +python-versions = ">=3.6" +version = "3.1.0" -[package.dependencies] -more-itertools = "*" +[package.extras] +docs = ["sphinx", "jaraco.packaging (>=3.2)", "rst.linker (>=1.9)"] +testing = ["jaraco.itertools", "func-timeout"] [metadata] -content-hash = "9cd9b6544edeb6eb940f714efb22c3949a030e7d565791ccc9039703169467a1" -python-versions = "^3.6" +content-hash = "7e24cd65e092682db86f62c26adeff3da77639fdc814d54f2319f259cc2e1aa2" +lock-version = "1.0" +python-versions = "^3.7" -[metadata.hashes] -appnope = ["5b26757dc6f79a3b7dc9fab95359328d5747fcb2409d331ea66d0272b90ab2a0", "8b995ffe925347a2138d7ac0fe77155e4311a0ea6d6da4f5128fe4b3cbe5ed71"] -attrs = ["08a96c641c3a74e44eb59afb61a24f2cb9f4d7188748e76ba4bb5edfa3cb7d1c", "f7b7ce16570fe9965acd6d30101a28f62fb4a7f9e926b3bbc9b61f8b04247e72"] -backcall = ["38ecd85be2c1e78f77fd91700c76e14667dc21e2713b63876c0eb901196e01e4", "bbbf4b1e5cd2bdb08f915895b51081c041bac22394fdfcfdfbe9f14b77c08bf2"] -bleach = ["213336e49e102af26d9cde77dd2d0397afabc5a6bf2fed985dc35b5d1e285a16", "3fdf7f77adcf649c9911387df51254b813185e32b2c6619f690b593a617e19fa"] -colorama = ["05eed71e2e327246ad6b38c540c4a3117230b19679b875190486ddd2d721422d", "f8ac84de7840f5b9c4e3347b3c1eaa50f7e49c2b07596221daec5edaabbd7c48"] -cycler = ["1d8a5ae1ff6c5cf9b93e8811e581232ad8920aeec647c37316ceac982b08cb2d", "cd7b2d1018258d7247a71425e9f26463dfb444d411c39569972f4ce586b0c9d8"] -decorator = ["54c38050039232e1db4ad7375cfce6748d7b41c29e95a081c8a6d2c30364a2ce", "5d19b92a3c8f7f101c8dd86afd86b0f061a8ce4540ab8cd401fa2542756bce6d"] -defusedxml = ["6687150770438374ab581bb7a1b327a847dd9c5749e396102de3fad4e8a3ef93", "f684034d135af4c6cbb949b8a4d2ed61634515257a67299e5f940fbaa34377f5"] -entrypoints = ["589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19", "c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451"] -importlib-metadata = ["3a8b2dfd0a2c6a3636e7c016a7e54ae04b997d30e69d5eacdca7a6c2221a1402", "41e688146d000891f32b1669e8573c57e39e5060e7f5f647aa617cd9a9568278"] -ipykernel = ["1a7def9c986f1ee018c1138d16951932d4c9d4da01dad45f9d34e9899565a22f", "b368ad13edb71fa2db367a01e755a925d7f75ed5e09fbd3f06c85e7a8ef108a8"] -ipython = ["c66c7e27239855828a764b1e8fc72c24a6f4498a2637572094a78c5551fb9d51", "f186b01b36609e0c5d0de27c7ef8e80c990c70478f8c880863004b3489a9030e"] -ipython-genutils = ["72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8", "eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8"] -ipywidgets = ["13ffeca438e0c0f91ae583dc22f50379b9d6b28390ac7be8b757140e9a771516", "e945f6e02854a74994c596d9db83444a1850c01648f1574adf144fbbabe05c97"] -jedi = ["786b6c3d80e2f06fd77162a07fed81b8baa22dde5d62896a790a331d6ac21a27", "ba859c74fa3c966a22f2aeebe1b74ee27e2a462f56d3f5f7ca4a59af61bfe42e"] -jinja2 = ["74320bb91f31270f9551d46522e33af46a80c3d619f4a4bf42b3164d30b5911f", "9fe95f19286cfefaa917656583d020be14e7859c6b0252588391e47db34527de"] -joblib = ["006108c7576b3eb6c5b27761ddbf188eb6e6347696325ab2027ea1ee9a4b922d", "6fcc57aacb4e89451fd449e9412687c51817c3f48662c3d8f38ba3f8a0a193ff"] -jsonschema = ["4e5b3cf8216f577bee9ce139cbe72eca3ea4f292ec60928ff24758ce626cd163", "c8a85b28d377cc7737e46e2d9f2b4f44ee3c0e1deac6bf46ddefc7187d30797a"] -jupyter = ["3e1f86076bbb7c8c207829390305a2b1fe836d471ed54be66a3b8c41e7f46cc7", "5b290f93b98ffbc21c0c7e749f054b3267782166d72fa5e3ed1ed4eaf34a2b78", "d9dc4b3318f310e34c82951ea5d6683f67bed7def4b259fafbfe4f1beb1d8e5f"] -jupyter-client = ["60e6faec1031d63df57f1cc671ed673dced0ed420f4377ea33db37b1c188b910", "d0c077c9aaa4432ad485e7733e4d91e48f87b4f4bab7d283d42bb24cbbba0a0f"] -jupyter-console = ["308ce876354924fb6c540b41d5d6d08acfc946984bf0c97777c1ddcb42e0b2f5", "cc80a97a5c389cbd30252ffb5ce7cefd4b66bde98219edd16bf5cb6f84bb3568"] -jupyter-core = ["464769f7387d7a62a2403d067f1ddc616655b7f77f5d810c0dd62cb54bfd0fb9", "a183e0ec2e8f6adddf62b0a3fc6a2237e3e0056d381e536d3e7c7ecc3067e244"] -kiwisolver = ["05b5b061e09f60f56244adc885c4a7867da25ca387376b02c1efc29cc16bcd0f", "210d8c39d01758d76c2b9a693567e1657ec661229bc32eac30761fa79b2474b0", "26f4fbd6f5e1dabff70a9ba0d2c4bd30761086454aa30dddc5b52764ee4852b7", "3b15d56a9cd40c52d7ab763ff0bc700edbb4e1a298dc43715ecccd605002cf11", "3b2378ad387f49cbb328205bda569b9f87288d6bc1bf4cd683c34523a2341efe", "400599c0fe58d21522cae0e8b22318e09d9729451b17ee61ba8e1e7c0346565c", "47b8cb81a7d18dbaf4fed6a61c3cecdb5adec7b4ac292bddb0d016d57e8507d5", "53eaed412477c836e1b9522c19858a8557d6e595077830146182225613b11a75", "58e626e1f7dfbb620d08d457325a4cdac65d1809680009f46bf41eaf74ad0187", "5a52e1b006bfa5be04fe4debbcdd2688432a9af4b207a3f429c74ad625022641", "5c7ca4e449ac9f99b3b9d4693debb1d6d237d1542dd6a56b3305fe8a9620f883", "682e54f0ce8f45981878756d7203fd01e188cc6c8b2c5e2cf03675390b4534d5", "76275ee077772c8dde04fb6c5bc24b91af1bb3e7f4816fd1852f1495a64dad93", "79bfb2f0bd7cbf9ea256612c9523367e5ec51d7cd616ae20ca2c90f575d839a2", "7f4dd50874177d2bb060d74769210f3bce1af87a8c7cf5b37d032ebf94f0aca3", "8944a16020c07b682df861207b7e0efcd2f46c7488619cb55f65882279119389", "8aa7009437640beb2768bfd06da049bad0df85f47ff18426261acecd1cf00897", "9105ce82dcc32c73eb53a04c869b6a4bc756b43e4385f76ea7943e827f529e4d", "933df612c453928f1c6faa9236161a1d999a26cd40abf1dc5d7ebbc6dbfb8fca", "939f36f21a8c571686eb491acfffa9c7f1ac345087281b412d63ea39ca14ec4a", "9491578147849b93e70d7c1d23cb1229458f71fc79c51d52dce0809b2ca44eea", "9733b7f64bd9f807832d673355f79703f81f0b3e52bfce420fc00d8cb28c6a6c", "a02f6c3e229d0b7220bd74600e9351e18bc0c361b05f29adae0d10599ae0e326", "a0c0a9f06872330d0dd31b45607197caab3c22777600e88031bfe66799e70bb0", "aa716b9122307c50686356cfb47bfbc66541868078d0c801341df31dca1232a9", "acc4df99308111585121db217681f1ce0eecb48d3a828a2f9bbf9773f4937e9e", "b64916959e4ae0ac78af7c3e8cef4becee0c0e9694ad477b4c6b3a536de6a544", "d22702cadb86b6fcba0e6b907d9f84a312db9cd6934ee728144ce3018e715ee1", "d3fcf0819dc3fea58be1fd1ca390851bdb719a549850e708ed858503ff25d995", "d52e3b1868a4e8fd18b5cb15055c76820df514e26aa84cc02f593d99fef6707f", "db1a5d3cc4ae943d674718d6c47d2d82488ddd94b93b9e12d24aabdbfe48caee", "e3a21a720791712ed721c7b95d433e036134de6f18c77dbe96119eaf7aa08004", "e8bf074363ce2babeb4764d94f8e65efd22e6a7c74860a4f05a6947afc020ff2", "f16814a4a96dc04bf1da7d53ee8d5b1d6decfc1a92a63349bb15d37b6a263dd9", "f2b22153870ca5cf2ab9c940d7bc38e8e9089fa0f7e5856ea195e1cf4ff43d5a", "f790f8b3dff3d53453de6a7b7ddd173d2e020fb160baff578d578065b108a05f", "fe51b79da0062f8e9d49ed0182a626a7dc7a0cbca0328f612c6ee5e4711c81e4"] -markupsafe = ["00bc623926325b26bb9605ae9eae8a215691f33cae5df11ca5424f06f2d1f473", "09027a7803a62ca78792ad89403b1b7a73a01c8cb65909cd876f7fcebd79b161", "09c4b7f37d6c648cb13f9230d847adf22f8171b1ccc4d5682398e77f40309235", "1027c282dad077d0bae18be6794e6b6b8c91d58ed8a8d89a89d59693b9131db5", "24982cc2533820871eba85ba648cd53d8623687ff11cbb805be4ff7b4c971aff", "29872e92839765e546828bb7754a68c418d927cd064fd4708fab9fe9c8bb116b", "43a55c2930bbc139570ac2452adf3d70cdbb3cfe5912c71cdce1c2c6bbd9c5d1", "46c99d2de99945ec5cb54f23c8cd5689f6d7177305ebff350a58ce5f8de1669e", "500d4957e52ddc3351cabf489e79c91c17f6e0899158447047588650b5e69183", "535f6fc4d397c1563d08b88e485c3496cf5784e927af890fb3c3aac7f933ec66", "62fe6c95e3ec8a7fad637b7f3d372c15ec1caa01ab47926cfdf7a75b40e0eac1", "6dd73240d2af64df90aa7c4e7481e23825ea70af4b4922f8ede5b9e35f78a3b1", "717ba8fe3ae9cc0006d7c451f0bb265ee07739daf76355d06366154ee68d221e", "79855e1c5b8da654cf486b830bd42c06e8780cea587384cf6545b7d9ac013a0b", "7c1699dfe0cf8ff607dbdcc1e9b9af1755371f92a68f706051cc8c37d447c905", "88e5fcfb52ee7b911e8bb6d6aa2fd21fbecc674eadd44118a9cc3863f938e735", "8defac2f2ccd6805ebf65f5eeb132adcf2ab57aa11fdf4c0dd5169a004710e7d", "98c7086708b163d425c67c7a91bad6e466bb99d797aa64f965e9d25c12111a5e", "9add70b36c5666a2ed02b43b335fe19002ee5235efd4b8a89bfcf9005bebac0d", "9bf40443012702a1d2070043cb6291650a0841ece432556f784f004937f0f32c", "ade5e387d2ad0d7ebf59146cc00c8044acbd863725f887353a10df825fc8ae21", "b00c1de48212e4cc9603895652c5c410df699856a2853135b3967591e4beebc2", "b1282f8c00509d99fef04d8ba936b156d419be841854fe901d8ae224c59f0be5", "b2051432115498d3562c084a49bba65d97cf251f5a331c64a12ee7e04dacc51b", "ba59edeaa2fc6114428f1637ffff42da1e311e29382d81b339c1817d37ec93c6", "c8716a48d94b06bb3b2524c2b77e055fb313aeb4ea620c8dd03a105574ba704f", "cd5df75523866410809ca100dc9681e301e3c27567cf498077e8551b6d20e42f", "e249096428b3ae81b08327a63a485ad0878de3fb939049038579ac0ef61e17e7"] -matplotlib = ["08ccc8922eb4792b91c652d3e6d46b1c99073f1284d1b6705155643e8046463a", "161dcd807c0c3232f4dcd4a12a382d52004a498174cbfafd40646106c5bcdcc8", "1f9e885bfa1b148d16f82a6672d043ecf11197f6c71ae222d0546db706e52eb2", "2d6ab54015a7c0d727c33e36f85f5c5e4172059efdd067f7527f6e5d16ad01aa", "5d2e408a2813abf664bd79431107543ecb449136912eb55bb312317edecf597e", "61c8b740a008218eb604de518eb411c4953db0cb725dd0b32adf8a81771cab9e", "80f10af8378fccc136da40ea6aa4a920767476cdfb3241acb93ef4f0465dbf57", "819d4860315468b482f38f1afe45a5437f60f03eaede495d5ff89f2eeac89500", "8cc0e44905c2c8fda5637cad6f311eb9517017515a034247ab93d0cf99f8bb7a", "8e8e2c2fe3d873108735c6ee9884e6f36f467df4a143136209cff303b183bada", "98c2ffeab8b79a4e3a0af5dd9939f92980eb6e3fec10f7f313df5f35a84dacab", "d59bb0e82002ac49f4152963f8a1079e66794a4f454457fd2f0dcc7bf0797d30", "ee59b7bb9eb75932fe3787e54e61c99b628155b0cedc907864f24723ba55b309"] -mistune = ["59a3429db53c50b5c6bcc8a07f8848cb00d7dc8bdb431a4ab41920d201d4756e", "88a1051873018da288eee8538d476dffe1262495144b33ecb586c4ab266bb8d4"] -more-itertools = ["53ff73f186307d9c8ef17a9600309154a6ae27f25579e80af4db8f047ba14bc2", "a0ea684c39bc4315ba7aae406596ef191fd84f873d2d2751f84d64e81a7a2d45"] -nbconvert = ["21fb48e700b43e82ba0e3142421a659d7739b65568cc832a13976a77be16b523", "f0d6ec03875f96df45aa13e21fd9b8450c42d7e1830418cccc008c0df725fcee"] -nbformat = ["b9a0dbdbd45bb034f4f8893cafd6f652ea08c8c1674ba83f2dc55d3955743b0b", "f7494ef0df60766b7cabe0a3651556345a963b74dbc16bc7c18479041170d402"] -notebook = ["399a4411e171170173344761e7fd4491a3625659881f76ce47c50231ed714d9b", "f67d76a68b1074a91693e95dea903ea01fd02be7c9fac5a4b870b8475caed805"] -numpy = ["0a7a1dd123aecc9f0076934288ceed7fd9a81ba3919f11a855a7887cbe82a02f", "0c0763787133dfeec19904c22c7e358b231c87ba3206b211652f8cbe1241deb6", "3d52298d0be333583739f1aec9026f3b09fdfe3ddf7c7028cb16d9d2af1cca7e", "43bb4b70585f1c2d153e45323a886839f98af8bfa810f7014b20be714c37c447", "475963c5b9e116c38ad7347e154e5651d05a2286d86455671f5b1eebba5feb76", "64874913367f18eb3013b16123c9fed113962e75d809fca5b78ebfbb73ed93ba", "683828e50c339fc9e68720396f2de14253992c495fdddef77a1e17de55f1decc", "6ca4000c4a6f95a78c33c7dadbb9495c10880be9c89316aa536eac359ab820ae", "75fd817b7061f6378e4659dd792c84c0b60533e867f83e0d1e52d5d8e53df88c", "7d81d784bdbed30137aca242ab307f3e65c8d93f4c7b7d8f322110b2e90177f9", "8d0af8d3664f142414fd5b15cabfd3b6cc3ef242a3c7a7493257025be5a6955f", "9679831005fb16c6df3dd35d17aa31dc0d4d7573d84f0b44cc481490a65c7725", "a8f67ebfae9f575d85fa859b54d3bdecaeece74e3274b0b5c5f804d7ca789fe1", "acbf5c52db4adb366c064d0b7c7899e3e778d89db585feadd23b06b587d64761", "ada4805ed51f5bcaa3a06d3dd94939351869c095e30a2b54264f5a5004b52170", "c7354e8f0eca5c110b7e978034cd86ed98a7a5ffcf69ca97535445a595e07b8e", "e2e9d8c87120ba2c591f60e32736b82b67f72c37ba88a4c23c81b5b8fa49c018", "e467c57121fe1b78a8f68dd9255fbb3bb3f4f7547c6b9e109f31d14569f490c3", "ede47b98de79565fcd7f2decb475e2dcc85ee4097743e551fe26cfc7eb3ff143", "f58913e9227400f1395c7b800503ebfdb0772f1c33ff8cb4d6451c06cabdf316", "fe39f5fd4103ec4ca3cb8600b19216cd1ff316b4990f4c0b6057ad982c0a34d5"] -pandas = ["00dff3a8e337f5ed7ad295d98a31821d3d0fe7792da82d78d7fd79b89c03ea9d", "22361b1597c8c2ffd697aa9bf85423afa9e1fcfa6b1ea821054a244d5f24d75e", "255920e63850dc512ce356233081098554d641ba99c3767dde9e9f35630f994b", "26382aab9c119735908d94d2c5c08020a4a0a82969b7e5eefb92f902b3b30ad7", "33970f4cacdd9a0ddb8f21e151bfb9f178afb7c36eb7c25b9094c02876f385c2", "4545467a637e0e1393f7d05d61dace89689ad6d6f66f267f86fff737b702cce9", "52da74df8a9c9a103af0a72c9d5fdc8e0183a90884278db7f386b5692a2220a4", "61741f5aeb252f39c3031d11405305b6d10ce663c53bc3112705d7ad66c013d0", "6a3ac2c87e4e32a969921d1428525f09462770c349147aa8e9ab95f88c71ec71", "7458c48e3d15b8aaa7d575be60e1e4dd70348efcd9376656b72fecd55c59a4c3", "78bf638993219311377ce9836b3dc05f627a666d0dbc8cec37c0ff3c9ada673b", "8153705d6545fd9eb6dd2bc79301bff08825d2e2f716d5dced48daafc2d0b81f", "975c461accd14e89d71772e89108a050fa824c0b87a67d34cedf245f6681fc17", "9962957a27bfb70ab64103d0a7b42fa59c642fb4ed4cb75d0227b7bb9228535d", "adc3d3a3f9e59a38d923e90e20c4922fc62d1e5a03d083440468c6d8f3f1ae0a", "bbe3eb765a0b1e578833d243e2814b60c825b7fdbf4cdfe8e8aae8a08ed56ecf", "df8864824b1fe488cf778c3650ee59c3a0d8f42e53707de167ba6b4f7d35f133", "e45055c30a608076e31a9fcd780a956ed3b1fa20db61561b8d88b79259f526f7", "ee50c2142cdcf41995655d499a157d0a812fce55c97d9aad13bc1eef837ed36c"] -pandocfilters = ["b3dd70e169bb5449e6bc6ff96aea89c5eea8c5f6ab5e207fc2f521a2cf4a0da9"] -parso = ["63854233e1fadb5da97f2744b6b24346d2750b85965e7e399bec1620232797dc", "666b0ee4a7a1220f65d367617f2cd3ffddff3e205f3f16a0284df30e774c2a9c"] -pexpect = ["2094eefdfcf37a1fdbfb9aa090862c1a4878e5c7e0e7e7088bdb511c558e5cd1", "9e2c1fd0e6ee3a49b28f95d4b33bc389c89b20af6a1255906e90ff1262ce62eb"] -pickleshare = ["87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", "9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"] -prometheus-client = ["71cd24a2b3eb335cb800c7159f423df1bd4dcd5171b234be15e3f31ec9f622da"] -prompt-toolkit = ["46642344ce457641f28fc9d1c9ca939b63dadf8df128b86f1b9860e59c73a5e4", "e7f8af9e3d70f514373bf41aa51bc33af12a6db3f71461ea47fea985defb2c31", "f15af68f66e664eaa559d4ac8a928111eebd5feda0c11738b5998045224829db"] -ptyprocess = ["923f299cc5ad920c68f2bc0bc98b75b9f838b93b599941a6b63ddbc2476394c0", "d7cc528d76e76342423ca640335bd3633420dc1366f258cb31d05e865ef5ca1f"] -pygments = ["2a3fe295e54a20164a9df49c75fa58526d3be48e14aceba6d6b1e8ac0bfd6f1b", "98c8aa5a9f778fcd1026a17361ddaf7330d1b7c62ae97c3bb0ae73e0b9b6b0fe"] -pyparsing = ["20f995ecd72f2a1f4bf6b072b63b22e2eb457836601e76d6e5dfcd75436acc1f", "4ca62001be367f01bd3e92ecbb79070272a9d4964dce6a48a82ff0b8bc7e683a"] -pyrsistent = ["f3b280d030afb652f79d67c5586157c5c1355c9a58dfc7940566e28d28f3df1b"] -python-dateutil = ["73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c", "75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a"] -pytz = ["1c557d7d0e871de1f5ccd5833f60fb2550652da6be2693c1e02300743d21500d", "b02c06db6cf09c12dd25137e563b31700d3b80fcc4ad23abb7a315f2789819be"] -pywin32 = ["300a2db938e98c3e7e2093e4491439e62287d0d493fe07cce110db070b54c0be", "31f88a89139cb2adc40f8f0e65ee56a8c585f629974f9e07622ba80199057511", "371fcc39416d736401f0274dd64c2302728c9e034808e37381b5e1b22be4a6b0", "47a3c7551376a865dd8d095a98deba954a98f326c6fe3c72d8726ca6e6b15507", "4cdad3e84191194ea6d0dd1b1b9bdda574ff563177d2adf2b4efec2a244fa116", "7c1ae32c489dc012930787f06244426f8356e129184a02c25aef163917ce158e", "7f18199fbf29ca99dff10e1f09451582ae9e372a892ff03a28528a24d55875bc", "9b31e009564fb95db160f154e2aa195ed66bcc4c058ed72850d047141b36f3a2", "a929a4af626e530383a579431b70e512e736e9588106715215bf685a3ea508d4", "c054c52ba46e7eb6b7d7dfae4dbd987a1bb48ee86debe3f245a2884ece46e295", "f27cec5e7f588c3d1051651830ecc00294f90728d19c3bf6916e6dba93ea357c", "f4c5be1a293bae0076d93c88f37ee8da68136744588bc5e2be2f299a34ceb7aa"] -pywinpty = ["1e525a4de05e72016a7af27836d512db67d06a015aeaf2fa0180f8e6a039b3c2", "2740eeeb59297593a0d3f762269b01d0285c1b829d6827445fcd348fb47f7e70", "2d7e9c881638a72ffdca3f5417dd1563b60f603e1b43e5895674c2a1b01f95a0", "33df97f79843b2b8b8bc5c7aaf54adec08cc1bae94ee99dfb1a93c7a67704d95", "5fb2c6c6819491b216f78acc2c521b9df21e0f53b9a399d58a5c151a3c4e2a2d", "8fc5019ff3efb4f13708bd3b5ad327589c1a554cb516d792527361525a7cb78c", "b358cb552c0f6baf790de375fab96524a0498c9df83489b8c23f7f08795e966b", "dbd838de92de1d4ebf0dce9d4d5e4fc38d0b7b1de837947a18b57a882f219139", "dd22c8efacf600730abe4a46c1388355ce0d4ab75dc79b15d23a7bd87bf05b48", "e854211df55d107f0edfda8a80b39dfc87015bef52a8fe6594eb379240d81df2"] -pyzmq = ["01b588911714a6696283de3904f564c550c9e12e8b4995e173f1011755e01086", "0573b9790aa26faff33fba40f25763657271d26f64bffb55a957a3d4165d6098", "0fa82b9fc3334478be95a5566f35f23109f763d1669bb762e3871a8fa2a4a037", "1e59b7b19396f26e360f41411a5d4603356d18871049cd7790f1a7d18f65fb2c", "2a294b4f44201bb21acc2c1a17ff87fbe57b82060b10ddb00ac03e57f3d7fcfa", "355b38d7dd6f884b8ee9771f59036bcd178d98539680c4f87e7ceb2c6fd057b6", "4b73d20aec63933bbda7957e30add233289d86d92a0bb9feb3f4746376f33527", "4ec47f2b50bdb97df58f1697470e5c58c3c5109289a623e30baf293481ff0166", "5541dc8cad3a8486d58bbed076cb113b65b5dd6b91eb94fb3e38a3d1d3022f20", "6fca7d11310430e751f9832257866a122edf9d7b635305c5d8c51f74a5174d3d", "7369656f89878455a5bcd5d56ca961884f5d096268f71c0750fc33d6732a25e5", "75d73ee7ca4b289a2a2dfe0e6bd8f854979fc13b3fe4ebc19381be3b04e37a4a", "80c928d5adcfa12346b08d31360988d843b54b94154575cccd628f1fe91446bc", "83ce18b133dc7e6789f64cb994e7376c5aa6b4aeced993048bf1d7f9a0fe6d3a", "8b8498ceee33a7023deb2f3db907ca41d6940321e282297327a9be41e3983792", "8c69a6cbfa94da29a34f6b16193e7c15f5d3220cb772d6d17425ff3faa063a6d", "8ff946b20d13a99dc5c21cb76f4b8b253eeddf3eceab4218df8825b0c65ab23d", "972d723a36ab6a60b7806faa5c18aa3c080b7d046c407e816a1d8673989e2485", "a6c9c42bbdba3f9c73aedbb7671815af1943ae8073e532c2b66efb72f39f4165", "aa3872f2ebfc5f9692ef8957fe69abe92d905a029c0608e45ebfcd451ad30ab5", "cf08435b14684f7f2ca2df32c9df38a79cdc17c20dc461927789216cb43d8363", "d30db4566177a6205ed1badb8dbbac3c043e91b12a2db5ef9171b318c5641b75", "d5ac84f38575a601ab20c1878818ffe0d09eb51d6cb8511b636da46d0fd8949a", "e37f22eb4bfbf69cd462c7000616e03b0cdc1b65f2d99334acad36ea0e4ddf6b", "e6549dd80de7b23b637f586217a4280facd14ac01e9410a037a13854a6977299", "ed6205ca0de035f252baa0fd26fdd2bc8a8f633f92f89ca866fd423ff26c6f25", "efdde21febb9b5d7a8e0b87ea2549d7e00fda1936459cfb27fb6fca0c36af6c1", "f4e72646bfe79ff3adbf1314906bbd2d67ef9ccc71a3a98b8b2ccbcca0ab7bec"] -qtconsole = ["4de25b8895957d23ceacf2526b6f0a76da4e60e60115611930d387c853f3cb08", "654f423662e7dfe6a9b26fac8ec76aedcf742c339909ac49f1f0c1a1b744bcd1"] -scikit-learn = ["0098757148ee055796370ca5f4c5887940c46f87a4989f7ca9be6a2c42803ef1", "06b78e6f62b6a89b00acc873ee823c99ddf4ee1d461a02ce0d22276a17d2c13e", "07aaa1d639759ebfa33e747022d3fde880eb4343c6a7ddd916478be3a6b98d67", "087fffad9e7604bbbaa078bdfdf6919a96495f0eb742c70dd900820224c20a0a", "09b81c1145437fd5d25a2e8419621185c22b05450a7c77ad0a568194bbd65963", "1632967d8fbae09e6090ef6bd632681c5fc64b95378a858c59fd37b57357425e", "3004fe60aca1f20b80d13698e5d9123e0d500062b548c733a9f230ab943ce334", "314abf60c073c48a1e95feaae9f3ca47a2139bd77cebb5b877c23a45c9e03012", "594e693aef1dca29ab5823781f8db15815f257295cff52868f0602553ee5c66b", "5e426ed57851e60d2edb63a60888cc85e47b129f69f9c26eb872d8b7581c4c63", "63b7c4ddd5a6ed504ee7a6d2670dc8df478b70c4e31a2d165de82c4d6f4b6e1b", "8049f6330bbd1f8dd8db587fbfb69f8150efb36a22ddb4d178a0479c027496c5", "8509da5e03155c872d2e646763f4d42cfbdbd460dad9b803dba7602c32b7a605", "8c524b4567bb4d5ea172aa0d8212fe1b06898c4ad130ac443bbe0e5f4bd9d104", "ab3f791d5663bcc8137ea2339cbbd81907d2c7f51da6ef0402a6a37ef74bd857", "ac81facbda6ac2296e5d7b7518dc15d93858fda34f7d7877a5e9bbc2c8b0b5aa", "bc48a36424a6af3c353827a5d68abdad132f5ca843d721852fdf8b2e8d6277d3", "c252cfb331e15188d731253cffaa04a87fb0ea7aad5bff9f85229b5b883c8290", "ca60076ba9e38ed936a0e7fb5a0d18cffe375840d9dc4e562df7e0f5ee066d4d", "df3111e9a6d1b5009b45d10e98276e1e7fafefc538a6496e4e80042bba27cf68", "e321baa1210d20ac9751f4f8ec5e64affc44c93992a7e61611663884cd3e4b5a"] -scipy = ["0b8c9dc042b9a47912b18b036b4844029384a5b8d89b64a4901ac3e06876e5f6", "18ad034be955df046b5a27924cdb3db0e8e1d76aaa22c635403fe7aee17f1482", "225d0b5e140bb66df23d438c7b535303ce8e533f94454f4e5bde5f8d109103ea", "2f690ba68ed7caa7c30b6dc48c1deed22c78f3840fa4736083ef4f2bd8baa19e", "4b8746f4a755bdb2eeb39d6e253a60481e165cfd74fdfb54d27394bd2c9ec8ac", "4ba2ce1a58fe117e993cf316a149cf9926c7c5000c0cdc4bc7c56ae8325612f6", "546f0dc020b155b8711159d53c87b36591d31f3327c47974a4fb6b50d91589c2", "583f2ccd6a112656c9feb2345761d2b19e9213a094cfced4e7d2c1cae4173272", "64bf4e8ae0db2d42b58477817f648d81e77f0b381d0ea4427385bba3f959380a", "7be424ee09bed7ced36c9457f99c826ce199fd0c0f5b272cf3d098ff7b29e3ae", "869465c7ff89fc0a1e2ea1642b0c65f1b3c05030f3a4c0d53d6a57b2dba7c242", "884e619821f47eccd42979488d10fa1e15dbe9f3b7660b1c8c928d203bd3c1a3", "a42b0d02150ef4747e225c31c976a304de5dc8202ec35a27111b7bb8176e5f13", "a70308bb065562afb936c963780deab359966d71ab4f230368b154dde3136ea4", "b01ea5e4cf95a93dc335089f8fbe97852f56fdb74afff238cbdf09793103b6b7", "b7b8cf45f9a48f23084f19deb9384a1cccb5e92fbc879b12f97dc4d56fb2eb92", "bb0899d3f8b9fe8ef95b79210cf0deb6709542889fadaa438eeb3a28001e09e7", "c008f1b58f99f1d1cc546957b3effe448365e0a217df1f1894e358906e91edad", "cfee99d085d562a7e3c4afe51ac1fe9b434363489e565a130459307f30077973", "dfcb0f0a2d8e958611e0b56536285bb435f03746b6feac0e29f045f7c6caf164", "f5d47351aeb1cb6bda14a8908e56648926a6b2d714f89717c71f7ada41282141"] -send2trash = ["60001cc07d707fe247c94f74ca6ac0d3255aabcb930529690897ca2a39db28b2", "f1691922577b6fa12821234aeb57599d887c4900b9ca537948d2dac34aea888b"] -six = ["1f1b7d42e254082a9db6279deae68afb421ceba6158efa6131de7b3003ee93fd", "30f610279e8b2578cab6db20741130331735c781b56053c59c4076da27f06b66"] -terminado = ["4804a774f802306a7d9af7322193c5390f1da0abb429e082a10ef1d46e6fb2c2", "a43dcb3e353bc680dd0783b1d9c3fc28d529f190bc54ba9a229f72fe6e7a54d7"] -testpath = ["60e0a3261c149755f4399a1fff7d37523179a70fdc3abdf78de9fc2604aeec7e", "bfcf9411ef4bf3db7579063e0546938b1edda3d69f4e1fb8756991f5951f85d4"] -tornado = ["349884248c36801afa19e342a77cc4458caca694b0eda633f5878e458a44cb2c", "398e0d35e086ba38a0427c3b37f4337327231942e731edaa6e9fd1865bbd6f60", "4e73ef678b1a859f0cb29e1d895526a20ea64b5ffd510a2307b5998c7df24281", "559bce3d31484b665259f50cd94c5c28b961b09315ccd838f284687245f416e5", "abbe53a39734ef4aba061fca54e30c6b4639d3e1f59653f0da37a0003de148c7", "c845db36ba616912074c5b1ee897f8e0124df269468f25e4fe21fe72f6edd7a9", "c9399267c926a4e7c418baa5cbe91c7d1cf362d505a1ef898fde44a07c9dd8a5"] -traitlets = ["70b4c6a1d9019d7b4f6846832288f86998aa3b9207c6821f3578a6a6a467fe44", "d023ee369ddd2763310e4c3eae1ff649689440d4ae59d7485eb4cfbbe3e359f7"] -wcwidth = ["3df37372226d6e63e1b1e1eda15c594bca98a22d33a23832a90998faa96bc65e", "f4ebe71925af7b40a864553f761ed559b43544f8f71746c2d756c7fe788ade7c"] -webencodings = ["a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", "b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923"] -widgetsnbextension = ["079f87d87270bce047512400efd70238820751a11d2d8cb137a5a5bdbaf255c7", "bd314f8ceb488571a5ffea6cc5b9fc6cba0adaf88a9d2386b93a489751938bcd"] -zipp = ["3718b1cbcd963c7d4c5511a8240812904164b7f381b647143a89d3b98f9bcd8e", "f06903e9f1f43b12d371004b4ac7b06ab39a44adc747266928ae6debfa7b3335"] +[metadata.files] +appnope = [ + {file = "appnope-0.1.0-py2.py3-none-any.whl", hash = "sha256:5b26757dc6f79a3b7dc9fab95359328d5747fcb2409d331ea66d0272b90ab2a0"}, + {file = "appnope-0.1.0.tar.gz", hash = "sha256:8b995ffe925347a2138d7ac0fe77155e4311a0ea6d6da4f5128fe4b3cbe5ed71"}, +] +argon2-cffi = [ + {file = "argon2-cffi-20.1.0.tar.gz", hash = "sha256:d8029b2d3e4b4cea770e9e5a0104dd8fa185c1724a0f01528ae4826a6d25f97d"}, + {file = "argon2_cffi-20.1.0-cp27-cp27m-macosx_10_6_intel.whl", hash = "sha256:6ea92c980586931a816d61e4faf6c192b4abce89aa767ff6581e6ddc985ed003"}, + {file = "argon2_cffi-20.1.0-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:05a8ac07c7026542377e38389638a8a1e9b78f1cd8439cd7493b39f08dd75fbf"}, + {file = "argon2_cffi-20.1.0-cp27-cp27m-win32.whl", hash = "sha256:0bf066bc049332489bb2d75f69216416329d9dc65deee127152caeb16e5ce7d5"}, + {file = "argon2_cffi-20.1.0-cp27-cp27m-win_amd64.whl", hash = "sha256:57358570592c46c420300ec94f2ff3b32cbccd10d38bdc12dc6979c4a8484fbc"}, + {file = "argon2_cffi-20.1.0-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:7d455c802727710e9dfa69b74ccaab04568386ca17b0ad36350b622cd34606fe"}, + {file = "argon2_cffi-20.1.0-cp35-abi3-manylinux1_x86_64.whl", hash = "sha256:b160416adc0f012fb1f12588a5e6954889510f82f698e23ed4f4fa57f12a0647"}, + {file = "argon2_cffi-20.1.0-cp35-cp35m-win32.whl", hash = "sha256:9bee3212ba4f560af397b6d7146848c32a800652301843df06b9e8f68f0f7361"}, + {file = "argon2_cffi-20.1.0-cp35-cp35m-win_amd64.whl", hash = "sha256:392c3c2ef91d12da510cfb6f9bae52512a4552573a9e27600bdb800e05905d2b"}, + {file = "argon2_cffi-20.1.0-cp36-cp36m-win32.whl", hash = "sha256:ba7209b608945b889457f949cc04c8e762bed4fe3fec88ae9a6b7765ae82e496"}, + {file = "argon2_cffi-20.1.0-cp36-cp36m-win_amd64.whl", hash = "sha256:da7f0445b71db6d3a72462e04f36544b0de871289b0bc8a7cc87c0f5ec7079fa"}, + {file = "argon2_cffi-20.1.0-cp37-abi3-macosx_10_6_intel.whl", hash = "sha256:cc0e028b209a5483b6846053d5fd7165f460a1f14774d79e632e75e7ae64b82b"}, + {file = "argon2_cffi-20.1.0-cp37-cp37m-win32.whl", hash = "sha256:18dee20e25e4be86680b178b35ccfc5d495ebd5792cd00781548d50880fee5c5"}, + {file = "argon2_cffi-20.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:6678bb047373f52bcff02db8afab0d2a77d83bde61cfecea7c5c62e2335cb203"}, + {file = "argon2_cffi-20.1.0-cp38-cp38-win32.whl", hash = "sha256:77e909cc756ef81d6abb60524d259d959bab384832f0c651ed7dcb6e5ccdbb78"}, + {file = "argon2_cffi-20.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:9dfd5197852530294ecb5795c97a823839258dfd5eb9420233c7cfedec2058f2"}, +] +async-generator = [ + {file = "async_generator-1.10-py3-none-any.whl", hash = "sha256:01c7bf666359b4967d2cda0000cc2e4af16a0ae098cbffcb8472fb9e8ad6585b"}, + {file = "async_generator-1.10.tar.gz", hash = "sha256:6ebb3d106c12920aaae42ccb6f787ef5eefdcdd166ea3d628fa8476abe712144"}, +] +attrs = [ + {file = "attrs-20.2.0-py2.py3-none-any.whl", hash = "sha256:fce7fc47dfc976152e82d53ff92fa0407700c21acd20886a13777a0d20e655dc"}, + {file = "attrs-20.2.0.tar.gz", hash = "sha256:26b54ddbbb9ee1d34d5d3668dd37d6cf74990ab23c828c2888dccdceee395594"}, +] +backcall = [ + {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, + {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, +] +bleach = [ + {file = "bleach-3.2.0-py2.py3-none-any.whl", hash = "sha256:769483204d247465c0b001ead257fb86bba6944bce6fe1b6759c812cceb54e3d"}, + {file = "bleach-3.2.0.tar.gz", hash = "sha256:f9e0205cc57b558c21bdfc11034f9d96b14c4052c25be60885d94f4277c792e0"}, +] +certifi = [ + {file = "certifi-2020.6.20-py2.py3-none-any.whl", hash = "sha256:8fc0819f1f30ba15bdb34cceffb9ef04d99f420f68eb75d901e9560b8749fc41"}, + {file = "certifi-2020.6.20.tar.gz", hash = "sha256:5930595817496dd21bb8dc35dad090f1c2cd0adfaf21204bf6732ca5d8ee34d3"}, +] +cffi = [ + {file = "cffi-1.14.3-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:485d029815771b9fe4fa7e1c304352fe57df6939afe835dfd0182c7c13d5e92e"}, + {file = "cffi-1.14.3-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:3cb3e1b9ec43256c4e0f8d2837267a70b0e1ca8c4f456685508ae6106b1f504c"}, + {file = "cffi-1.14.3-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:f0620511387790860b249b9241c2f13c3a80e21a73e0b861a2df24e9d6f56730"}, + {file = "cffi-1.14.3-cp27-cp27m-win32.whl", hash = "sha256:005f2bfe11b6745d726dbb07ace4d53f057de66e336ff92d61b8c7e9c8f4777d"}, + {file = "cffi-1.14.3-cp27-cp27m-win_amd64.whl", hash = "sha256:2f9674623ca39c9ebe38afa3da402e9326c245f0f5ceff0623dccdac15023e05"}, + {file = "cffi-1.14.3-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:09e96138280241bd355cd585148dec04dbbedb4f46128f340d696eaafc82dd7b"}, + {file = "cffi-1.14.3-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:3363e77a6176afb8823b6e06db78c46dbc4c7813b00a41300a4873b6ba63b171"}, + {file = "cffi-1.14.3-cp35-cp35m-macosx_10_9_x86_64.whl", hash = "sha256:52bf29af05344c95136df71716bb60508bbd217691697b4307dcae681612db9f"}, + {file = "cffi-1.14.3-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:0ef488305fdce2580c8b2708f22d7785ae222d9825d3094ab073e22e93dfe51f"}, + {file = "cffi-1.14.3-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:0b1ad452cc824665ddc682400b62c9e4f5b64736a2ba99110712fdee5f2505c4"}, + {file = "cffi-1.14.3-cp35-cp35m-win32.whl", hash = "sha256:85ba797e1de5b48aa5a8427b6ba62cf69607c18c5d4eb747604b7302f1ec382d"}, + {file = "cffi-1.14.3-cp35-cp35m-win_amd64.whl", hash = "sha256:e66399cf0fc07de4dce4f588fc25bfe84a6d1285cc544e67987d22663393926d"}, + {file = "cffi-1.14.3-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:c687778dda01832555e0af205375d649fa47afeaeeb50a201711f9a9573323b8"}, + {file = "cffi-1.14.3-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:15f351bed09897fbda218e4db5a3d5c06328862f6198d4fb385f3e14e19decb3"}, + {file = "cffi-1.14.3-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:4d7c26bfc1ea9f92084a1d75e11999e97b62d63128bcc90c3624d07813c52808"}, + {file = "cffi-1.14.3-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:23e5d2040367322824605bc29ae8ee9175200b92cb5483ac7d466927a9b3d537"}, + {file = "cffi-1.14.3-cp36-cp36m-win32.whl", hash = "sha256:a624fae282e81ad2e4871bdb767e2c914d0539708c0f078b5b355258293c98b0"}, + {file = "cffi-1.14.3-cp36-cp36m-win_amd64.whl", hash = "sha256:de31b5164d44ef4943db155b3e8e17929707cac1e5bd2f363e67a56e3af4af6e"}, + {file = "cffi-1.14.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:03d3d238cc6c636a01cf55b9b2e1b6531a7f2f4103fabb5a744231582e68ecc7"}, + {file = "cffi-1.14.3-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:f92cdecb618e5fa4658aeb97d5eb3d2f47aa94ac6477c6daf0f306c5a3b9e6b1"}, + {file = "cffi-1.14.3-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:22399ff4870fb4c7ef19fff6eeb20a8bbf15571913c181c78cb361024d574579"}, + {file = "cffi-1.14.3-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:f4eae045e6ab2bb54ca279733fe4eb85f1effda392666308250714e01907f394"}, + {file = "cffi-1.14.3-cp37-cp37m-win32.whl", hash = "sha256:b0358e6fefc74a16f745afa366acc89f979040e0cbc4eec55ab26ad1f6a9bfbc"}, + {file = "cffi-1.14.3-cp37-cp37m-win_amd64.whl", hash = "sha256:6642f15ad963b5092d65aed022d033c77763515fdc07095208f15d3563003869"}, + {file = "cffi-1.14.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c2a33558fdbee3df370399fe1712d72464ce39c66436270f3664c03f94971aff"}, + {file = "cffi-1.14.3-cp38-cp38-manylinux1_i686.whl", hash = "sha256:2791f68edc5749024b4722500e86303a10d342527e1e3bcac47f35fbd25b764e"}, + {file = "cffi-1.14.3-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:529c4ed2e10437c205f38f3691a68be66c39197d01062618c55f74294a4a4828"}, + {file = "cffi-1.14.3-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:8f0f1e499e4000c4c347a124fa6a27d37608ced4fe9f7d45070563b7c4c370c9"}, + {file = "cffi-1.14.3-cp38-cp38-win32.whl", hash = "sha256:3b8eaf915ddc0709779889c472e553f0d3e8b7bdf62dab764c8921b09bf94522"}, + {file = "cffi-1.14.3-cp38-cp38-win_amd64.whl", hash = "sha256:bbd2f4dfee1079f76943767fce837ade3087b578aeb9f69aec7857d5bf25db15"}, + {file = "cffi-1.14.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5d9a7dc7cf8b1101af2602fe238911bcc1ac36d239e0a577831f5dac993856e9"}, + {file = "cffi-1.14.3-cp39-cp39-manylinux1_i686.whl", hash = "sha256:cc75f58cdaf043fe6a7a6c04b3b5a0e694c6a9e24050967747251fb80d7bce0d"}, + {file = "cffi-1.14.3-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:bf39a9e19ce7298f1bd6a9758fa99707e9e5b1ebe5e90f2c3913a47bc548747c"}, + {file = "cffi-1.14.3-cp39-cp39-win32.whl", hash = "sha256:d80998ed59176e8cba74028762fbd9b9153b9afc71ea118e63bbf5d4d0f9552b"}, + {file = "cffi-1.14.3-cp39-cp39-win_amd64.whl", hash = "sha256:c150eaa3dadbb2b5339675b88d4573c1be3cb6f2c33a6c83387e10cc0bf05bd3"}, + {file = "cffi-1.14.3.tar.gz", hash = "sha256:f92f789e4f9241cd262ad7a555ca2c648a98178a953af117ef7fad46aa1d5591"}, +] +chardet = [ + {file = "chardet-3.0.4-py2.py3-none-any.whl", hash = "sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691"}, + {file = "chardet-3.0.4.tar.gz", hash = "sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae"}, +] +colorama = [ + {file = "colorama-0.4.3-py2.py3-none-any.whl", hash = "sha256:7d73d2a99753107a36ac6b455ee49046802e59d9d076ef8e47b61499fa29afff"}, + {file = "colorama-0.4.3.tar.gz", hash = "sha256:e96da0d330793e2cb9485e9ddfd918d456036c7149416295932478192f4436a1"}, +] +cycler = [ + {file = "cycler-0.10.0-py2.py3-none-any.whl", hash = "sha256:1d8a5ae1ff6c5cf9b93e8811e581232ad8920aeec647c37316ceac982b08cb2d"}, + {file = "cycler-0.10.0.tar.gz", hash = "sha256:cd7b2d1018258d7247a71425e9f26463dfb444d411c39569972f4ce586b0c9d8"}, +] +decorator = [ + {file = "decorator-4.4.2-py2.py3-none-any.whl", hash = "sha256:41fa54c2a0cc4ba648be4fd43cff00aedf5b9465c9bf18d64325bc225f08f760"}, + {file = "decorator-4.4.2.tar.gz", hash = "sha256:e3a62f0520172440ca0dcc823749319382e377f37f140a0b99ef45fecb84bfe7"}, +] +defusedxml = [ + {file = "defusedxml-0.6.0-py2.py3-none-any.whl", hash = "sha256:6687150770438374ab581bb7a1b327a847dd9c5749e396102de3fad4e8a3ef93"}, + {file = "defusedxml-0.6.0.tar.gz", hash = "sha256:f684034d135af4c6cbb949b8a4d2ed61634515257a67299e5f940fbaa34377f5"}, +] +entrypoints = [ + {file = "entrypoints-0.3-py2.py3-none-any.whl", hash = "sha256:589f874b313739ad35be6e0cd7efde2a4e9b6fea91edcc34e58ecbb8dbe56d19"}, + {file = "entrypoints-0.3.tar.gz", hash = "sha256:c70dd71abe5a8c85e55e12c19bd91ccfeec11a6e99044204511f9ed547d48451"}, +] +idna = [ + {file = "idna-2.10-py2.py3-none-any.whl", hash = "sha256:b97d804b1e9b523befed77c48dacec60e6dcb0b5391d57af6a65a312a90648c0"}, + {file = "idna-2.10.tar.gz", hash = "sha256:b307872f855b18632ce0c21c5e45be78c0ea7ae4c15c828c20788b26921eb3f6"}, +] +importlib-metadata = [ + {file = "importlib_metadata-1.7.0-py2.py3-none-any.whl", hash = "sha256:dc15b2969b4ce36305c51eebe62d418ac7791e9a157911d58bfb1f9ccd8e2070"}, + {file = "importlib_metadata-1.7.0.tar.gz", hash = "sha256:90bb658cdbbf6d1735b6341ce708fc7024a3e14e99ffdc5783edea9f9b077f83"}, +] +ipykernel = [ + {file = "ipykernel-5.3.4-py3-none-any.whl", hash = "sha256:d6fbba26dba3cebd411382bc484f7bc2caa98427ae0ddb4ab37fe8bfeb5c7dd3"}, + {file = "ipykernel-5.3.4.tar.gz", hash = "sha256:9b2652af1607986a1b231c62302d070bc0534f564c393a5d9d130db9abbbe89d"}, +] +ipython = [ + {file = "ipython-7.18.1-py3-none-any.whl", hash = "sha256:2e22c1f74477b5106a6fb301c342ab8c64bb75d702e350f05a649e8cb40a0fb8"}, + {file = "ipython-7.18.1.tar.gz", hash = "sha256:a331e78086001931de9424940699691ad49dfb457cea31f5471eae7b78222d5e"}, +] +ipython-genutils = [ + {file = "ipython_genutils-0.2.0-py2.py3-none-any.whl", hash = "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8"}, + {file = "ipython_genutils-0.2.0.tar.gz", hash = "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8"}, +] +jedi = [ + {file = "jedi-0.17.2-py2.py3-none-any.whl", hash = "sha256:98cc583fa0f2f8304968199b01b6b4b94f469a1f4a74c1560506ca2a211378b5"}, + {file = "jedi-0.17.2.tar.gz", hash = "sha256:86ed7d9b750603e4ba582ea8edc678657fb4007894a12bcf6f4bb97892f31d20"}, +] +jinja2 = [ + {file = "Jinja2-2.11.2-py2.py3-none-any.whl", hash = "sha256:f0a4641d3cf955324a89c04f3d94663aa4d638abe8f733ecd3582848e1c37035"}, + {file = "Jinja2-2.11.2.tar.gz", hash = "sha256:89aab215427ef59c34ad58735269eb58b1a5808103067f7bb9d5836c651b3bb0"}, +] +joblib = [ + {file = "joblib-0.16.0-py3-none-any.whl", hash = "sha256:d348c5d4ae31496b2aa060d6d9b787864dd204f9480baaa52d18850cb43e9f49"}, + {file = "joblib-0.16.0.tar.gz", hash = "sha256:8f52bf24c64b608bf0b2563e0e47d6fcf516abc8cfafe10cfd98ad66d94f92d6"}, +] +json5 = [ + {file = "json5-0.9.5-py2.py3-none-any.whl", hash = "sha256:af1a1b9a2850c7f62c23fde18be4749b3599fd302f494eebf957e2ada6b9e42c"}, + {file = "json5-0.9.5.tar.gz", hash = "sha256:703cfee540790576b56a92e1c6aaa6c4b0d98971dc358ead83812aa4d06bdb96"}, +] +jsonschema = [ + {file = "jsonschema-3.2.0-py2.py3-none-any.whl", hash = "sha256:4e5b3cf8216f577bee9ce139cbe72eca3ea4f292ec60928ff24758ce626cd163"}, + {file = "jsonschema-3.2.0.tar.gz", hash = "sha256:c8a85b28d377cc7737e46e2d9f2b4f44ee3c0e1deac6bf46ddefc7187d30797a"}, +] +jupyter-client = [ + {file = "jupyter_client-6.1.7-py3-none-any.whl", hash = "sha256:c958d24d6eacb975c1acebb68ac9077da61b5f5c040f22f6849928ad7393b950"}, + {file = "jupyter_client-6.1.7.tar.gz", hash = "sha256:49e390b36fe4b4226724704ea28d9fb903f1a3601b6882ce3105221cd09377a1"}, +] +jupyter-core = [ + {file = "jupyter_core-4.6.3-py2.py3-none-any.whl", hash = "sha256:a4ee613c060fe5697d913416fc9d553599c05e4492d58fac1192c9a6844abb21"}, + {file = "jupyter_core-4.6.3.tar.gz", hash = "sha256:394fd5dd787e7c8861741880bdf8a00ce39f95de5d18e579c74b882522219e7e"}, +] +jupyterlab = [ + {file = "jupyterlab-2.2.8-py3-none-any.whl", hash = "sha256:95d0509557881cfa8a5fcdf225f2fca46faf1bc52fc56a28e0b72fcc594c90ab"}, + {file = "jupyterlab-2.2.8.tar.gz", hash = "sha256:c8377bee30504919c1e79949f9fe35443ab7f5c4be622c95307e8108410c8b8c"}, +] +jupyterlab-pygments = [ + {file = "jupyterlab_pygments-0.1.1-py2.py3-none-any.whl", hash = "sha256:c9535e5999f29bff90bd0fa423717dcaf247b71fad505d66b17d3217e9021fc5"}, + {file = "jupyterlab_pygments-0.1.1.tar.gz", hash = "sha256:19a0ccde7daddec638363cd3d60b63a4f6544c9181d65253317b2fb492a797b9"}, +] +jupyterlab-server = [ + {file = "jupyterlab_server-1.2.0-py3-none-any.whl", hash = "sha256:55d256077bf13e5bc9e8fbd5aac51bef82f6315111cec6b712b9a5ededbba924"}, + {file = "jupyterlab_server-1.2.0.tar.gz", hash = "sha256:5431d9dde96659364b7cc877693d5d21e7b80cea7ae3959ecc2b87518e5f5d8c"}, +] +kiwisolver = [ + {file = "kiwisolver-1.2.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:443c2320520eda0a5b930b2725b26f6175ca4453c61f739fef7a5847bd262f74"}, + {file = "kiwisolver-1.2.0-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:efcf3397ae1e3c3a4a0a0636542bcad5adad3b1dd3e8e629d0b6e201347176c8"}, + {file = "kiwisolver-1.2.0-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:fccefc0d36a38c57b7bd233a9b485e2f1eb71903ca7ad7adacad6c28a56d62d2"}, + {file = "kiwisolver-1.2.0-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:be046da49fbc3aa9491cc7296db7e8d27bcf0c3d5d1a40259c10471b014e4e0c"}, + {file = "kiwisolver-1.2.0-cp36-none-win32.whl", hash = "sha256:60a78858580761fe611d22127868f3dc9f98871e6fdf0a15cc4203ed9ba6179b"}, + {file = "kiwisolver-1.2.0-cp36-none-win_amd64.whl", hash = "sha256:556da0a5f60f6486ec4969abbc1dd83cf9b5c2deadc8288508e55c0f5f87d29c"}, + {file = "kiwisolver-1.2.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:7cc095a4661bdd8a5742aaf7c10ea9fac142d76ff1770a0f84394038126d8fc7"}, + {file = "kiwisolver-1.2.0-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:c955791d80e464da3b471ab41eb65cf5a40c15ce9b001fdc5bbc241170de58ec"}, + {file = "kiwisolver-1.2.0-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:603162139684ee56bcd57acc74035fceed7dd8d732f38c0959c8bd157f913fec"}, + {file = "kiwisolver-1.2.0-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:63f55f490b958b6299e4e5bdac66ac988c3d11b7fafa522800359075d4fa56d1"}, + {file = "kiwisolver-1.2.0-cp37-none-win32.whl", hash = "sha256:03662cbd3e6729f341a97dd2690b271e51a67a68322affab12a5b011344b973c"}, + {file = "kiwisolver-1.2.0-cp37-none-win_amd64.whl", hash = "sha256:4eadb361baf3069f278b055e3bb53fa189cea2fd02cb2c353b7a99ebb4477ef1"}, + {file = "kiwisolver-1.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c31bc3c8e903d60a1ea31a754c72559398d91b5929fcb329b1c3a3d3f6e72113"}, + {file = "kiwisolver-1.2.0-cp38-cp38-manylinux1_i686.whl", hash = "sha256:d52b989dc23cdaa92582ceb4af8d5bcc94d74b2c3e64cd6785558ec6a879793e"}, + {file = "kiwisolver-1.2.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:e586b28354d7b6584d8973656a7954b1c69c93f708c0c07b77884f91640b7657"}, + {file = "kiwisolver-1.2.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:38d05c9ecb24eee1246391820ed7137ac42a50209c203c908154782fced90e44"}, + {file = "kiwisolver-1.2.0-cp38-none-win32.whl", hash = "sha256:d069ef4b20b1e6b19f790d00097a5d5d2c50871b66d10075dab78938dc2ee2cf"}, + {file = "kiwisolver-1.2.0-cp38-none-win_amd64.whl", hash = "sha256:18d749f3e56c0480dccd1714230da0f328e6e4accf188dd4e6884bdd06bf02dd"}, + {file = "kiwisolver-1.2.0.tar.gz", hash = "sha256:247800260cd38160c362d211dcaf4ed0f7816afb5efe56544748b21d6ad6d17f"}, +] +markupsafe = [ + {file = "MarkupSafe-1.1.1-cp27-cp27m-macosx_10_6_intel.whl", hash = "sha256:09027a7803a62ca78792ad89403b1b7a73a01c8cb65909cd876f7fcebd79b161"}, + {file = "MarkupSafe-1.1.1-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:e249096428b3ae81b08327a63a485ad0878de3fb939049038579ac0ef61e17e7"}, + {file = "MarkupSafe-1.1.1-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:500d4957e52ddc3351cabf489e79c91c17f6e0899158447047588650b5e69183"}, + {file = "MarkupSafe-1.1.1-cp27-cp27m-win32.whl", hash = "sha256:b2051432115498d3562c084a49bba65d97cf251f5a331c64a12ee7e04dacc51b"}, + {file = "MarkupSafe-1.1.1-cp27-cp27m-win_amd64.whl", hash = "sha256:98c7086708b163d425c67c7a91bad6e466bb99d797aa64f965e9d25c12111a5e"}, + {file = "MarkupSafe-1.1.1-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:cd5df75523866410809ca100dc9681e301e3c27567cf498077e8551b6d20e42f"}, + {file = "MarkupSafe-1.1.1-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:43a55c2930bbc139570ac2452adf3d70cdbb3cfe5912c71cdce1c2c6bbd9c5d1"}, + {file = "MarkupSafe-1.1.1-cp34-cp34m-macosx_10_6_intel.whl", hash = "sha256:1027c282dad077d0bae18be6794e6b6b8c91d58ed8a8d89a89d59693b9131db5"}, + {file = "MarkupSafe-1.1.1-cp34-cp34m-manylinux1_i686.whl", hash = "sha256:62fe6c95e3ec8a7fad637b7f3d372c15ec1caa01ab47926cfdf7a75b40e0eac1"}, + {file = "MarkupSafe-1.1.1-cp34-cp34m-manylinux1_x86_64.whl", hash = "sha256:88e5fcfb52ee7b911e8bb6d6aa2fd21fbecc674eadd44118a9cc3863f938e735"}, + {file = "MarkupSafe-1.1.1-cp34-cp34m-win32.whl", hash = "sha256:ade5e387d2ad0d7ebf59146cc00c8044acbd863725f887353a10df825fc8ae21"}, + {file = "MarkupSafe-1.1.1-cp34-cp34m-win_amd64.whl", hash = "sha256:09c4b7f37d6c648cb13f9230d847adf22f8171b1ccc4d5682398e77f40309235"}, + {file = "MarkupSafe-1.1.1-cp35-cp35m-macosx_10_6_intel.whl", hash = "sha256:79855e1c5b8da654cf486b830bd42c06e8780cea587384cf6545b7d9ac013a0b"}, + {file = "MarkupSafe-1.1.1-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:c8716a48d94b06bb3b2524c2b77e055fb313aeb4ea620c8dd03a105574ba704f"}, + {file = "MarkupSafe-1.1.1-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:7c1699dfe0cf8ff607dbdcc1e9b9af1755371f92a68f706051cc8c37d447c905"}, + {file = "MarkupSafe-1.1.1-cp35-cp35m-win32.whl", hash = "sha256:6dd73240d2af64df90aa7c4e7481e23825ea70af4b4922f8ede5b9e35f78a3b1"}, + {file = "MarkupSafe-1.1.1-cp35-cp35m-win_amd64.whl", hash = "sha256:9add70b36c5666a2ed02b43b335fe19002ee5235efd4b8a89bfcf9005bebac0d"}, + {file = "MarkupSafe-1.1.1-cp36-cp36m-macosx_10_6_intel.whl", hash = "sha256:24982cc2533820871eba85ba648cd53d8623687ff11cbb805be4ff7b4c971aff"}, + {file = "MarkupSafe-1.1.1-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:00bc623926325b26bb9605ae9eae8a215691f33cae5df11ca5424f06f2d1f473"}, + {file = "MarkupSafe-1.1.1-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:717ba8fe3ae9cc0006d7c451f0bb265ee07739daf76355d06366154ee68d221e"}, + {file = "MarkupSafe-1.1.1-cp36-cp36m-win32.whl", hash = "sha256:535f6fc4d397c1563d08b88e485c3496cf5784e927af890fb3c3aac7f933ec66"}, + {file = "MarkupSafe-1.1.1-cp36-cp36m-win_amd64.whl", hash = "sha256:b1282f8c00509d99fef04d8ba936b156d419be841854fe901d8ae224c59f0be5"}, + {file = "MarkupSafe-1.1.1-cp37-cp37m-macosx_10_6_intel.whl", hash = "sha256:8defac2f2ccd6805ebf65f5eeb132adcf2ab57aa11fdf4c0dd5169a004710e7d"}, + {file = "MarkupSafe-1.1.1-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:46c99d2de99945ec5cb54f23c8cd5689f6d7177305ebff350a58ce5f8de1669e"}, + {file = "MarkupSafe-1.1.1-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:ba59edeaa2fc6114428f1637ffff42da1e311e29382d81b339c1817d37ec93c6"}, + {file = "MarkupSafe-1.1.1-cp37-cp37m-win32.whl", hash = "sha256:b00c1de48212e4cc9603895652c5c410df699856a2853135b3967591e4beebc2"}, + {file = "MarkupSafe-1.1.1-cp37-cp37m-win_amd64.whl", hash = "sha256:9bf40443012702a1d2070043cb6291650a0841ece432556f784f004937f0f32c"}, + {file = "MarkupSafe-1.1.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6788b695d50a51edb699cb55e35487e430fa21f1ed838122d722e0ff0ac5ba15"}, + {file = "MarkupSafe-1.1.1-cp38-cp38-manylinux1_i686.whl", hash = "sha256:cdb132fc825c38e1aeec2c8aa9338310d29d337bebbd7baa06889d09a60a1fa2"}, + {file = "MarkupSafe-1.1.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:13d3144e1e340870b25e7b10b98d779608c02016d5184cfb9927a9f10c689f42"}, + {file = "MarkupSafe-1.1.1-cp38-cp38-win32.whl", hash = "sha256:596510de112c685489095da617b5bcbbac7dd6384aeebeda4df6025d0256a81b"}, + {file = "MarkupSafe-1.1.1-cp38-cp38-win_amd64.whl", hash = "sha256:e8313f01ba26fbbe36c7be1966a7b7424942f670f38e666995b88d012765b9be"}, + {file = "MarkupSafe-1.1.1.tar.gz", hash = "sha256:29872e92839765e546828bb7754a68c418d927cd064fd4708fab9fe9c8bb116b"}, +] +matplotlib = [ + {file = "matplotlib-3.3.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:27f9de4784ae6fb97679556c5542cf36c0751dccb4d6407f7c62517fa2078868"}, + {file = "matplotlib-3.3.2-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:06866c138d81a593b535d037b2727bec9b0818cadfe6a81f6ec5715b8dd38a89"}, + {file = "matplotlib-3.3.2-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:5ccecb5f78b51b885f0028b646786889f49c54883e554fca41a2a05998063f23"}, + {file = "matplotlib-3.3.2-cp36-cp36m-win32.whl", hash = "sha256:69cf76d673682140f46c6cb5e073332c1f1b2853c748dc1cb04f7d00023567f7"}, + {file = "matplotlib-3.3.2-cp36-cp36m-win_amd64.whl", hash = "sha256:371518c769d84af8ec9b7dcb871ac44f7a67ef126dd3a15c88c25458e6b6d205"}, + {file = "matplotlib-3.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:793e061054662aa27acaff9201cdd510a698541c6e8659eeceb31d66c16facc6"}, + {file = "matplotlib-3.3.2-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:16b241c3d17be786966495229714de37de04472da472277869b8d5b456a8df00"}, + {file = "matplotlib-3.3.2-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:3fb0409754b26f48045bacd6818e44e38ca9338089f8ba689e2f9344ff2847c7"}, + {file = "matplotlib-3.3.2-cp37-cp37m-win32.whl", hash = "sha256:548cfe81476dbac44db96e9c0b074b6fb333b4d1f12b1ae68dbed47e45166384"}, + {file = "matplotlib-3.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:f0268613073df055bcc6a490de733012f2cf4fe191c1adb74e41cec8add1a165"}, + {file = "matplotlib-3.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:57be9e21073fc367237b03ecac0d9e4b8ddbe38e86ec4a316857d8d93ac9286c"}, + {file = "matplotlib-3.3.2-cp38-cp38-manylinux1_i686.whl", hash = "sha256:be2f0ec62e0939a9dcfd3638c140c5a74fc929ee3fd1f31408ab8633db6e1523"}, + {file = "matplotlib-3.3.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:c5d0c2ae3e3ed4e9f46b7c03b40d443601012ffe8eb8dfbb2bd6b2d00509f797"}, + {file = "matplotlib-3.3.2-cp38-cp38-win32.whl", hash = "sha256:a522de31e07ed7d6f954cda3fbd5ca4b8edbfc592a821a7b00291be6f843292e"}, + {file = "matplotlib-3.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:8bc1d3284dee001f41ec98f59675f4d723683e1cc082830b440b5f081d8e0ade"}, + {file = "matplotlib-3.3.2-pp36-pypy36_pp73-macosx_10_9_x86_64.whl", hash = "sha256:799c421bc245a0749c1515b6dea6dc02db0a8c1f42446a0f03b3b82a60a900dc"}, + {file = "matplotlib-3.3.2-pp36-pypy36_pp73-manylinux2010_x86_64.whl", hash = "sha256:2f5eefc17dc2a71318d5a3496313be5c351c0731e8c4c6182c9ac3782cfc4076"}, + {file = "matplotlib-3.3.2.tar.gz", hash = "sha256:3d2edbf59367f03cd9daf42939ca06383a7d7803e3993eb5ff1bee8e8a3fbb6b"}, +] +mistune = [ + {file = "mistune-0.8.4-py2.py3-none-any.whl", hash = "sha256:88a1051873018da288eee8538d476dffe1262495144b33ecb586c4ab266bb8d4"}, + {file = "mistune-0.8.4.tar.gz", hash = "sha256:59a3429db53c50b5c6bcc8a07f8848cb00d7dc8bdb431a4ab41920d201d4756e"}, +] +nbclient = [ + {file = "nbclient-0.5.0-py3-none-any.whl", hash = "sha256:8a6e27ff581cee50895f44c41936ce02369674e85e2ad58643d8d4a6c36771b0"}, + {file = "nbclient-0.5.0.tar.gz", hash = "sha256:8ad52d27ba144fca1402db014857e53c5a864a2f407be66ca9d74c3a56d6591d"}, +] +nbconvert = [ + {file = "nbconvert-6.0.3-py3-none-any.whl", hash = "sha256:06c64fd45d4b6424e88eb3bf7e5eb205a0fc8a4c0a69666f0b9a2262c76f59e1"}, + {file = "nbconvert-6.0.3.tar.gz", hash = "sha256:d8490f40368a1324521f8e740a0e341dc40bcd6e6926da64fa64b3a8801f16a3"}, +] +nbformat = [ + {file = "nbformat-5.0.7-py3-none-any.whl", hash = "sha256:ea55c9b817855e2dfcd3f66d74857342612a60b1f09653440f4a5845e6e3523f"}, + {file = "nbformat-5.0.7.tar.gz", hash = "sha256:54d4d6354835a936bad7e8182dcd003ca3dc0cedfee5a306090e04854343b340"}, +] +nest-asyncio = [ + {file = "nest_asyncio-1.4.0-py3-none-any.whl", hash = "sha256:ea51120725212ef02e5870dd77fc67ba7343fc945e3b9a7ff93384436e043b6a"}, + {file = "nest_asyncio-1.4.0.tar.gz", hash = "sha256:5773054bbc14579b000236f85bc01ecced7ffd045ec8ca4a9809371ec65a59c8"}, +] +notebook = [ + {file = "notebook-6.1.4-py3-none-any.whl", hash = "sha256:07b6e8b8a61aa2f780fe9a97430470485bc71262bc5cae8521f1441b910d2c88"}, + {file = "notebook-6.1.4.tar.gz", hash = "sha256:687d01f963ea20360c0b904ee7a37c3d8cda553858c8d6e33fd0afd13e89de32"}, +] +numpy = [ + {file = "numpy-1.19.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:b594f76771bc7fc8a044c5ba303427ee67c17a09b36e1fa32bde82f5c419d17a"}, + {file = "numpy-1.19.2-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:e6ddbdc5113628f15de7e4911c02aed74a4ccff531842c583e5032f6e5a179bd"}, + {file = "numpy-1.19.2-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:3733640466733441295b0d6d3dcbf8e1ffa7e897d4d82903169529fd3386919a"}, + {file = "numpy-1.19.2-cp36-cp36m-manylinux2010_i686.whl", hash = "sha256:4339741994c775396e1a274dba3609c69ab0f16056c1077f18979bec2a2c2e6e"}, + {file = "numpy-1.19.2-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:7c6646314291d8f5ea900a7ea9c4261f834b5b62159ba2abe3836f4fa6705526"}, + {file = "numpy-1.19.2-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:7118f0a9f2f617f921ec7d278d981244ba83c85eea197be7c5a4f84af80a9c3c"}, + {file = "numpy-1.19.2-cp36-cp36m-win32.whl", hash = "sha256:9a3001248b9231ed73894c773142658bab914645261275f675d86c290c37f66d"}, + {file = "numpy-1.19.2-cp36-cp36m-win_amd64.whl", hash = "sha256:967c92435f0b3ba37a4257c48b8715b76741410467e2bdb1097e8391fccfae15"}, + {file = "numpy-1.19.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:d526fa58ae4aead839161535d59ea9565863bb0b0bdb3cc63214613fb16aced4"}, + {file = "numpy-1.19.2-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:eb25c381d168daf351147713f49c626030dcff7a393d5caa62515d415a6071d8"}, + {file = "numpy-1.19.2-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:62139af94728d22350a571b7c82795b9d59be77fc162414ada6c8b6a10ef5d02"}, + {file = "numpy-1.19.2-cp37-cp37m-manylinux2010_i686.whl", hash = "sha256:0c66da1d202c52051625e55a249da35b31f65a81cb56e4c69af0dfb8fb0125bf"}, + {file = "numpy-1.19.2-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:2117536e968abb7357d34d754e3733b0d7113d4c9f1d921f21a3d96dec5ff716"}, + {file = "numpy-1.19.2-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:54045b198aebf41bf6bf4088012777c1d11703bf74461d70cd350c0af2182e45"}, + {file = "numpy-1.19.2-cp37-cp37m-win32.whl", hash = "sha256:aba1d5daf1144b956bc87ffb87966791f5e9f3e1f6fab3d7f581db1f5b598f7a"}, + {file = "numpy-1.19.2-cp37-cp37m-win_amd64.whl", hash = "sha256:addaa551b298052c16885fc70408d3848d4e2e7352de4e7a1e13e691abc734c1"}, + {file = "numpy-1.19.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:58d66a6b3b55178a1f8a5fe98df26ace76260a70de694d99577ddeab7eaa9a9d"}, + {file = "numpy-1.19.2-cp38-cp38-manylinux1_i686.whl", hash = "sha256:59f3d687faea7a4f7f93bd9665e5b102f32f3fa28514f15b126f099b7997203d"}, + {file = "numpy-1.19.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:cebd4f4e64cfe87f2039e4725781f6326a61f095bc77b3716502bed812b385a9"}, + {file = "numpy-1.19.2-cp38-cp38-manylinux2010_i686.whl", hash = "sha256:c35a01777f81e7333bcf276b605f39c872e28295441c265cd0c860f4b40148c1"}, + {file = "numpy-1.19.2-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:d7ac33585e1f09e7345aa902c281bd777fdb792432d27fca857f39b70e5dd31c"}, + {file = "numpy-1.19.2-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:04c7d4ebc5ff93d9822075ddb1751ff392a4375e5885299445fcebf877f179d5"}, + {file = "numpy-1.19.2-cp38-cp38-win32.whl", hash = "sha256:51ee93e1fac3fe08ef54ff1c7f329db64d8a9c5557e6c8e908be9497ac76374b"}, + {file = "numpy-1.19.2-cp38-cp38-win_amd64.whl", hash = "sha256:1669ec8e42f169ff715a904c9b2105b6640f3f2a4c4c2cb4920ae8b2785dac65"}, + {file = "numpy-1.19.2-pp36-pypy36_pp73-manylinux2010_x86_64.whl", hash = "sha256:0bfd85053d1e9f60234f28f63d4a5147ada7f432943c113a11afcf3e65d9d4c8"}, + {file = "numpy-1.19.2.zip", hash = "sha256:0d310730e1e793527065ad7dde736197b705d0e4c9999775f212b03c44a8484c"}, +] +packaging = [ + {file = "packaging-20.4-py2.py3-none-any.whl", hash = "sha256:998416ba6962ae7fbd6596850b80e17859a5753ba17c32284f67bfff33784181"}, + {file = "packaging-20.4.tar.gz", hash = "sha256:4357f74f47b9c12db93624a82154e9b120fa8293699949152b22065d556079f8"}, +] +pandas = [ + {file = "pandas-1.1.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:eb0ac2fd04428f18b547716f70c699a7cc9c65a6947ed8c7e688d96eb91e3db8"}, + {file = "pandas-1.1.2-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:02ec9f5f0b7df7227931a884569ef0b6d32d76789c84bcac1a719dafd1f912e8"}, + {file = "pandas-1.1.2-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:1edf6c254d2d138188e9987159978ee70e23362fe9197f3f100844a197f7e1e4"}, + {file = "pandas-1.1.2-cp36-cp36m-win32.whl", hash = "sha256:b821f239514a9ce46dd1cd6c9298a03ed58d0235d414ea264aacc1b14916bbe4"}, + {file = "pandas-1.1.2-cp36-cp36m-win_amd64.whl", hash = "sha256:ab6ea0f3116f408a8a59cd50158bfd19d2a024f4e221f14ab1bcd2da4f0c6fdf"}, + {file = "pandas-1.1.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:474fa53e3b2f3a543cbca81f7457bd1f44e7eb1be7171067636307e21b624e9c"}, + {file = "pandas-1.1.2-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:9e135ce9929cd0f0ba24f0545936af17ba935f844d4c3a2b979354a73c9440e0"}, + {file = "pandas-1.1.2-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:188cdfbf8399bc144fa95040536b5ce3429d2eda6c9c8b238c987af7df9f128c"}, + {file = "pandas-1.1.2-cp37-cp37m-win32.whl", hash = "sha256:08783a33989a6747317766b75be30a594a9764b9f145bb4bcc06e337930d9807"}, + {file = "pandas-1.1.2-cp37-cp37m-win_amd64.whl", hash = "sha256:f7008ec22b92d771b145150978d930a28fab8da3a10131b01bbf39574acdad0b"}, + {file = "pandas-1.1.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:59df9f0276aa4854d8bff28c5e5aeb74d9c6bb4d9f55d272b7124a7df40e47d0"}, + {file = "pandas-1.1.2-cp38-cp38-manylinux1_i686.whl", hash = "sha256:eeb64c5b3d4f2ea072ca8afdeb2b946cd681a863382ca79734f1b520b8d2fa26"}, + {file = "pandas-1.1.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:c9235b37489168ed6b173551c816b50aa89f03c24a8549a8b4d47d8dc79bfb1e"}, + {file = "pandas-1.1.2-cp38-cp38-win32.whl", hash = "sha256:0936991228241db937e87f82ec552a33888dd04a2e0d5a2fa3c689f92fab09e0"}, + {file = "pandas-1.1.2-cp38-cp38-win_amd64.whl", hash = "sha256:026d764d0b86ee53183aa4c0b90774b6146123eeada4e24946d7d24290777be1"}, + {file = "pandas-1.1.2.tar.gz", hash = "sha256:b64ffd87a2cfd31b40acd4b92cb72ea9a52a48165aec4c140e78fd69c45d1444"}, +] +pandocfilters = [ + {file = "pandocfilters-1.4.2.tar.gz", hash = "sha256:b3dd70e169bb5449e6bc6ff96aea89c5eea8c5f6ab5e207fc2f521a2cf4a0da9"}, +] +parso = [ + {file = "parso-0.7.1-py2.py3-none-any.whl", hash = "sha256:97218d9159b2520ff45eb78028ba8b50d2bc61dcc062a9682666f2dc4bd331ea"}, + {file = "parso-0.7.1.tar.gz", hash = "sha256:caba44724b994a8a5e086460bb212abc5a8bc46951bf4a9a1210745953622eb9"}, +] +pexpect = [ + {file = "pexpect-4.8.0-py2.py3-none-any.whl", hash = "sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937"}, + {file = "pexpect-4.8.0.tar.gz", hash = "sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c"}, +] +pickleshare = [ + {file = "pickleshare-0.7.5-py2.py3-none-any.whl", hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"}, + {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, +] +pillow = [ + {file = "Pillow-7.2.0-cp35-cp35m-macosx_10_10_intel.whl", hash = "sha256:1ca594126d3c4def54babee699c055a913efb01e106c309fa6b04405d474d5ae"}, + {file = "Pillow-7.2.0-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:c92302a33138409e8f1ad16731568c55c9053eee71bb05b6b744067e1b62380f"}, + {file = "Pillow-7.2.0-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:8dad18b69f710bf3a001d2bf3afab7c432785d94fcf819c16b5207b1cfd17d38"}, + {file = "Pillow-7.2.0-cp35-cp35m-manylinux2014_aarch64.whl", hash = "sha256:431b15cffbf949e89df2f7b48528be18b78bfa5177cb3036284a5508159492b5"}, + {file = "Pillow-7.2.0-cp35-cp35m-win32.whl", hash = "sha256:09d7f9e64289cb40c2c8d7ad674b2ed6105f55dc3b09aa8e4918e20a0311e7ad"}, + {file = "Pillow-7.2.0-cp35-cp35m-win_amd64.whl", hash = "sha256:0295442429645fa16d05bd567ef5cff178482439c9aad0411d3f0ce9b88b3a6f"}, + {file = "Pillow-7.2.0-cp36-cp36m-macosx_10_10_x86_64.whl", hash = "sha256:ec29604081f10f16a7aea809ad42e27764188fc258b02259a03a8ff7ded3808d"}, + {file = "Pillow-7.2.0-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:612cfda94e9c8346f239bf1a4b082fdd5c8143cf82d685ba2dba76e7adeeb233"}, + {file = "Pillow-7.2.0-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:0a80dd307a5d8440b0a08bd7b81617e04d870e40a3e46a32d9c246e54705e86f"}, + {file = "Pillow-7.2.0-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:06aba4169e78c439d528fdeb34762c3b61a70813527a2c57f0540541e9f433a8"}, + {file = "Pillow-7.2.0-cp36-cp36m-win32.whl", hash = "sha256:f7e30c27477dffc3e85c2463b3e649f751789e0f6c8456099eea7ddd53be4a8a"}, + {file = "Pillow-7.2.0-cp36-cp36m-win_amd64.whl", hash = "sha256:ffe538682dc19cc542ae7c3e504fdf54ca7f86fb8a135e59dd6bc8627eae6cce"}, + {file = "Pillow-7.2.0-cp37-cp37m-macosx_10_10_x86_64.whl", hash = "sha256:94cf49723928eb6070a892cb39d6c156f7b5a2db4e8971cb958f7b6b104fb4c4"}, + {file = "Pillow-7.2.0-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:6edb5446f44d901e8683ffb25ebdfc26988ee813da3bf91e12252b57ac163727"}, + {file = "Pillow-7.2.0-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:52125833b070791fcb5710fabc640fc1df07d087fc0c0f02d3661f76c23c5b8b"}, + {file = "Pillow-7.2.0-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:9ad7f865eebde135d526bb3163d0b23ffff365cf87e767c649550964ad72785d"}, + {file = "Pillow-7.2.0-cp37-cp37m-win32.whl", hash = "sha256:c79f9c5fb846285f943aafeafda3358992d64f0ef58566e23484132ecd8d7d63"}, + {file = "Pillow-7.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:d350f0f2c2421e65fbc62690f26b59b0bcda1b614beb318c81e38647e0f673a1"}, + {file = "Pillow-7.2.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:6d7741e65835716ceea0fd13a7d0192961212fd59e741a46bbed7a473c634ed6"}, + {file = "Pillow-7.2.0-cp38-cp38-manylinux1_i686.whl", hash = "sha256:edf31f1150778abd4322444c393ab9c7bd2af271dd4dafb4208fb613b1f3cdc9"}, + {file = "Pillow-7.2.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:d08b23fdb388c0715990cbc06866db554e1822c4bdcf6d4166cf30ac82df8c41"}, + {file = "Pillow-7.2.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:5e51ee2b8114def244384eda1c82b10e307ad9778dac5c83fb0943775a653cd8"}, + {file = "Pillow-7.2.0-cp38-cp38-win32.whl", hash = "sha256:725aa6cfc66ce2857d585f06e9519a1cc0ef6d13f186ff3447ab6dff0a09bc7f"}, + {file = "Pillow-7.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:a060cf8aa332052df2158e5a119303965be92c3da6f2d93b6878f0ebca80b2f6"}, + {file = "Pillow-7.2.0-pp36-pypy36_pp73-macosx_10_10_x86_64.whl", hash = "sha256:9c87ef410a58dd54b92424ffd7e28fd2ec65d2f7fc02b76f5e9b2067e355ebf6"}, + {file = "Pillow-7.2.0-pp36-pypy36_pp73-manylinux2010_x86_64.whl", hash = "sha256:e901964262a56d9ea3c2693df68bc9860b8bdda2b04768821e4c44ae797de117"}, + {file = "Pillow-7.2.0-pp36-pypy36_pp73-win32.whl", hash = "sha256:25930fadde8019f374400f7986e8404c8b781ce519da27792cbe46eabec00c4d"}, + {file = "Pillow-7.2.0.tar.gz", hash = "sha256:97f9e7953a77d5a70f49b9a48da7776dc51e9b738151b22dacf101641594a626"}, +] +prometheus-client = [ + {file = "prometheus_client-0.8.0-py2.py3-none-any.whl", hash = "sha256:983c7ac4b47478720db338f1491ef67a100b474e3bc7dafcbaefb7d0b8f9b01c"}, + {file = "prometheus_client-0.8.0.tar.gz", hash = "sha256:c6e6b706833a6bd1fd51711299edee907857be10ece535126a158f911ee80915"}, +] +prompt-toolkit = [ + {file = "prompt_toolkit-3.0.7-py3-none-any.whl", hash = "sha256:83074ee28ad4ba6af190593d4d4c607ff525272a504eb159199b6dd9f950c950"}, + {file = "prompt_toolkit-3.0.7.tar.gz", hash = "sha256:822f4605f28f7d2ba6b0b09a31e25e140871e96364d1d377667b547bb3bf4489"}, +] +ptyprocess = [ + {file = "ptyprocess-0.6.0-py2.py3-none-any.whl", hash = "sha256:d7cc528d76e76342423ca640335bd3633420dc1366f258cb31d05e865ef5ca1f"}, + {file = "ptyprocess-0.6.0.tar.gz", hash = "sha256:923f299cc5ad920c68f2bc0bc98b75b9f838b93b599941a6b63ddbc2476394c0"}, +] +pycparser = [ + {file = "pycparser-2.20-py2.py3-none-any.whl", hash = "sha256:7582ad22678f0fcd81102833f60ef8d0e57288b6b5fb00323d101be910e35705"}, + {file = "pycparser-2.20.tar.gz", hash = "sha256:2d475327684562c3a96cc71adf7dc8c4f0565175cf86b6d7a404ff4c771f15f0"}, +] +pygments = [ + {file = "Pygments-2.7.0-py3-none-any.whl", hash = "sha256:2df50d16b45b977217e02cba6c8422aaddb859f3d0570a88e09b00eafae89c6e"}, + {file = "Pygments-2.7.0.tar.gz", hash = "sha256:2594e8fdb06fef91552f86f4fd3a244d148ab24b66042036e64f29a291515048"}, +] +pyparsing = [ + {file = "pyparsing-2.4.7-py2.py3-none-any.whl", hash = "sha256:ef9d7589ef3c200abe66653d3f1ab1033c3c419ae9b9bdb1240a85b024efc88b"}, + {file = "pyparsing-2.4.7.tar.gz", hash = "sha256:c203ec8783bf771a155b207279b9bccb8dea02d8f0c9e5f8ead507bc3246ecc1"}, +] +pyrsistent = [ + {file = "pyrsistent-0.17.3.tar.gz", hash = "sha256:2e636185d9eb976a18a8a8e96efce62f2905fea90041958d8cc2a189756ebf3e"}, +] +python-dateutil = [ + {file = "python-dateutil-2.8.1.tar.gz", hash = "sha256:73ebfe9dbf22e832286dafa60473e4cd239f8592f699aa5adaf10050e6e1823c"}, + {file = "python_dateutil-2.8.1-py2.py3-none-any.whl", hash = "sha256:75bb3f31ea686f1197762692a9ee6a7550b59fc6ca3a1f4b5d7e32fb98e2da2a"}, +] +pytz = [ + {file = "pytz-2020.1-py2.py3-none-any.whl", hash = "sha256:a494d53b6d39c3c6e44c3bec237336e14305e4f29bbf800b599253057fbb79ed"}, + {file = "pytz-2020.1.tar.gz", hash = "sha256:c35965d010ce31b23eeb663ed3cc8c906275d6be1a34393a1d73a41febf4a048"}, +] +pywin32 = [ + {file = "pywin32-228-cp27-cp27m-win32.whl", hash = "sha256:37dc9935f6a383cc744315ae0c2882ba1768d9b06700a70f35dc1ce73cd4ba9c"}, + {file = "pywin32-228-cp27-cp27m-win_amd64.whl", hash = "sha256:11cb6610efc2f078c9e6d8f5d0f957620c333f4b23466931a247fb945ed35e89"}, + {file = "pywin32-228-cp35-cp35m-win32.whl", hash = "sha256:1f45db18af5d36195447b2cffacd182fe2d296849ba0aecdab24d3852fbf3f80"}, + {file = "pywin32-228-cp35-cp35m-win_amd64.whl", hash = "sha256:6e38c44097a834a4707c1b63efa9c2435f5a42afabff634a17f563bc478dfcc8"}, + {file = "pywin32-228-cp36-cp36m-win32.whl", hash = "sha256:ec16d44b49b5f34e99eb97cf270806fdc560dff6f84d281eb2fcb89a014a56a9"}, + {file = "pywin32-228-cp36-cp36m-win_amd64.whl", hash = "sha256:a60d795c6590a5b6baeacd16c583d91cce8038f959bd80c53bd9a68f40130f2d"}, + {file = "pywin32-228-cp37-cp37m-win32.whl", hash = "sha256:af40887b6fc200eafe4d7742c48417529a8702dcc1a60bf89eee152d1d11209f"}, + {file = "pywin32-228-cp37-cp37m-win_amd64.whl", hash = "sha256:00eaf43dbd05ba6a9b0080c77e161e0b7a601f9a3f660727a952e40140537de7"}, + {file = "pywin32-228-cp38-cp38-win32.whl", hash = "sha256:fa6ba028909cfc64ce9e24bcf22f588b14871980d9787f1e2002c99af8f1850c"}, + {file = "pywin32-228-cp38-cp38-win_amd64.whl", hash = "sha256:9b3466083f8271e1a5eb0329f4e0d61925d46b40b195a33413e0905dccb285e8"}, + {file = "pywin32-228-cp39-cp39-win32.whl", hash = "sha256:ed74b72d8059a6606f64842e7917aeee99159ebd6b8d6261c518d002837be298"}, + {file = "pywin32-228-cp39-cp39-win_amd64.whl", hash = "sha256:8319bafdcd90b7202c50d6014efdfe4fde9311b3ff15fd6f893a45c0868de203"}, +] +pywinpty = [ + {file = "pywinpty-0.5.7-cp27-cp27m-win32.whl", hash = "sha256:b358cb552c0f6baf790de375fab96524a0498c9df83489b8c23f7f08795e966b"}, + {file = "pywinpty-0.5.7-cp27-cp27m-win_amd64.whl", hash = "sha256:1e525a4de05e72016a7af27836d512db67d06a015aeaf2fa0180f8e6a039b3c2"}, + {file = "pywinpty-0.5.7-cp35-cp35m-win32.whl", hash = "sha256:2740eeeb59297593a0d3f762269b01d0285c1b829d6827445fcd348fb47f7e70"}, + {file = "pywinpty-0.5.7-cp35-cp35m-win_amd64.whl", hash = "sha256:33df97f79843b2b8b8bc5c7aaf54adec08cc1bae94ee99dfb1a93c7a67704d95"}, + {file = "pywinpty-0.5.7-cp36-cp36m-win32.whl", hash = "sha256:e854211df55d107f0edfda8a80b39dfc87015bef52a8fe6594eb379240d81df2"}, + {file = "pywinpty-0.5.7-cp36-cp36m-win_amd64.whl", hash = "sha256:dbd838de92de1d4ebf0dce9d4d5e4fc38d0b7b1de837947a18b57a882f219139"}, + {file = "pywinpty-0.5.7-cp37-cp37m-win32.whl", hash = "sha256:5fb2c6c6819491b216f78acc2c521b9df21e0f53b9a399d58a5c151a3c4e2a2d"}, + {file = "pywinpty-0.5.7-cp37-cp37m-win_amd64.whl", hash = "sha256:dd22c8efacf600730abe4a46c1388355ce0d4ab75dc79b15d23a7bd87bf05b48"}, + {file = "pywinpty-0.5.7-cp38-cp38-win_amd64.whl", hash = "sha256:8fc5019ff3efb4f13708bd3b5ad327589c1a554cb516d792527361525a7cb78c"}, + {file = "pywinpty-0.5.7.tar.gz", hash = "sha256:2d7e9c881638a72ffdca3f5417dd1563b60f603e1b43e5895674c2a1b01f95a0"}, +] +pyzmq = [ + {file = "pyzmq-19.0.2-cp27-cp27m-macosx_10_9_intel.whl", hash = "sha256:59f1e54627483dcf61c663941d94c4af9bf4163aec334171686cdaee67974fe5"}, + {file = "pyzmq-19.0.2-cp27-cp27m-win32.whl", hash = "sha256:c36ffe1e5aa35a1af6a96640d723d0d211c5f48841735c2aa8d034204e87eb87"}, + {file = "pyzmq-19.0.2-cp27-cp27m-win_amd64.whl", hash = "sha256:0a422fc290d03958899743db091f8154958410fc76ce7ee0ceb66150f72c2c97"}, + {file = "pyzmq-19.0.2-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:c20dd60b9428f532bc59f2ef6d3b1029a28fc790d408af82f871a7db03e722ff"}, + {file = "pyzmq-19.0.2-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:d46fb17f5693244de83e434648b3dbb4f4b0fec88415d6cbab1c1452b6f2ae17"}, + {file = "pyzmq-19.0.2-cp35-cp35m-macosx_10_9_intel.whl", hash = "sha256:f1a25a61495b6f7bb986accc5b597a3541d9bd3ef0016f50be16dbb32025b302"}, + {file = "pyzmq-19.0.2-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:ab0d01148d13854de716786ca73701012e07dff4dfbbd68c4e06d8888743526e"}, + {file = "pyzmq-19.0.2-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:720d2b6083498a9281eaee3f2927486e9fe02cd16d13a844f2e95217f243efea"}, + {file = "pyzmq-19.0.2-cp35-cp35m-win32.whl", hash = "sha256:29d51279060d0a70f551663bc592418bcad7f4be4eea7b324f6dd81de05cb4c1"}, + {file = "pyzmq-19.0.2-cp35-cp35m-win_amd64.whl", hash = "sha256:5120c64646e75f6db20cc16b9a94203926ead5d633de9feba4f137004241221d"}, + {file = "pyzmq-19.0.2-cp36-cp36m-macosx_10_9_intel.whl", hash = "sha256:8a6ada5a3f719bf46a04ba38595073df8d6b067316c011180102ba2a1925f5b5"}, + {file = "pyzmq-19.0.2-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:fa411b1d8f371d3a49d31b0789eb6da2537dadbb2aef74a43aa99a78195c3f76"}, + {file = "pyzmq-19.0.2-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:00dca814469436455399660247d74045172955459c0bd49b54a540ce4d652185"}, + {file = "pyzmq-19.0.2-cp36-cp36m-win32.whl", hash = "sha256:046b92e860914e39612e84fa760fc3f16054d268c11e0e25dcb011fb1bc6a075"}, + {file = "pyzmq-19.0.2-cp36-cp36m-win_amd64.whl", hash = "sha256:99cc0e339a731c6a34109e5c4072aaa06d8e32c0b93dc2c2d90345dd45fa196c"}, + {file = "pyzmq-19.0.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:e36f12f503511d72d9bdfae11cadbadca22ff632ff67c1b5459f69756a029c19"}, + {file = "pyzmq-19.0.2-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:c40fbb2b9933369e994b837ee72193d6a4c35dfb9a7c573257ef7ff28961272c"}, + {file = "pyzmq-19.0.2-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:5d9fc809aa8d636e757e4ced2302569d6e60e9b9c26114a83f0d9d6519c40493"}, + {file = "pyzmq-19.0.2-cp37-cp37m-win32.whl", hash = "sha256:3fa6debf4bf9412e59353defad1f8035a1e68b66095a94ead8f7a61ae90b2675"}, + {file = "pyzmq-19.0.2-cp37-cp37m-win_amd64.whl", hash = "sha256:73483a2caaa0264ac717af33d6fb3f143d8379e60a422730ee8d010526ce1913"}, + {file = "pyzmq-19.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:36ab114021c0cab1a423fe6689355e8f813979f2c750968833b318c1fa10a0fd"}, + {file = "pyzmq-19.0.2-cp38-cp38-manylinux1_i686.whl", hash = "sha256:8b66b94fe6243d2d1d89bca336b2424399aac57932858b9a30309803ffc28112"}, + {file = "pyzmq-19.0.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:654d3e06a4edc566b416c10293064732516cf8871a4522e0a2ba00cc2a2e600c"}, + {file = "pyzmq-19.0.2-cp38-cp38-win32.whl", hash = "sha256:276ad604bffd70992a386a84bea34883e696a6b22e7378053e5d3227321d9702"}, + {file = "pyzmq-19.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:09d24a80ccb8cbda1af6ed8eb26b005b6743e58e9290566d2a6841f4e31fa8e0"}, + {file = "pyzmq-19.0.2-pp27-pypy_73-macosx_10_9_x86_64.whl", hash = "sha256:c1a31cd42905b405530e92bdb70a8a56f048c8a371728b8acf9d746ecd4482c0"}, + {file = "pyzmq-19.0.2-pp36-pypy36_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a7e7f930039ee0c4c26e4dfee015f20bd6919cd8b97c9cd7afbde2923a5167b6"}, + {file = "pyzmq-19.0.2.tar.gz", hash = "sha256:296540a065c8c21b26d63e3cea2d1d57902373b16e4256afe46422691903a438"}, +] +requests = [ + {file = "requests-2.24.0-py2.py3-none-any.whl", hash = "sha256:fe75cc94a9443b9246fc7049224f75604b113c36acb93f87b80ed42c44cbb898"}, + {file = "requests-2.24.0.tar.gz", hash = "sha256:b3559a131db72c33ee969480840fff4bb6dd111de7dd27c8ee1f820f4f00231b"}, +] +scikit-learn = [ + {file = "scikit-learn-0.23.2.tar.gz", hash = "sha256:20766f515e6cd6f954554387dfae705d93c7b544ec0e6c6a5d8e006f6f7ef480"}, + {file = "scikit_learn-0.23.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:98508723f44c61896a4e15894b2016762a55555fbf09365a0bb1870ecbd442de"}, + {file = "scikit_learn-0.23.2-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:a64817b050efd50f9abcfd311870073e500ae11b299683a519fbb52d85e08d25"}, + {file = "scikit_learn-0.23.2-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:daf276c465c38ef736a79bd79fc80a249f746bcbcae50c40945428f7ece074f8"}, + {file = "scikit_learn-0.23.2-cp36-cp36m-win32.whl", hash = "sha256:cb3e76380312e1f86abd20340ab1d5b3cc46a26f6593d3c33c9ea3e4c7134028"}, + {file = "scikit_learn-0.23.2-cp36-cp36m-win_amd64.whl", hash = "sha256:0a127cc70990d4c15b1019680bfedc7fec6c23d14d3719fdf9b64b22d37cdeca"}, + {file = "scikit_learn-0.23.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:2aa95c2f17d2f80534156215c87bee72b6aa314a7f8b8fe92a2d71f47280570d"}, + {file = "scikit_learn-0.23.2-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:6c28a1d00aae7c3c9568f61aafeaad813f0f01c729bee4fd9479e2132b215c1d"}, + {file = "scikit_learn-0.23.2-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:da8e7c302003dd765d92a5616678e591f347460ac7b53e53d667be7dfe6d1b10"}, + {file = "scikit_learn-0.23.2-cp37-cp37m-win32.whl", hash = "sha256:d9a1ce5f099f29c7c33181cc4386660e0ba891b21a60dc036bf369e3a3ee3aec"}, + {file = "scikit_learn-0.23.2-cp37-cp37m-win_amd64.whl", hash = "sha256:914ac2b45a058d3f1338d7736200f7f3b094857758895f8667be8a81ff443b5b"}, + {file = "scikit_learn-0.23.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:7671bbeddd7f4f9a6968f3b5442dac5f22bf1ba06709ef888cc9132ad354a9ab"}, + {file = "scikit_learn-0.23.2-cp38-cp38-manylinux1_i686.whl", hash = "sha256:d0dcaa54263307075cb93d0bee3ceb02821093b1b3d25f66021987d305d01dce"}, + {file = "scikit_learn-0.23.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:5ce7a8021c9defc2b75620571b350acc4a7d9763c25b7593621ef50f3bd019a2"}, + {file = "scikit_learn-0.23.2-cp38-cp38-win32.whl", hash = "sha256:0d39748e7c9669ba648acf40fb3ce96b8a07b240db6888563a7cb76e05e0d9cc"}, + {file = "scikit_learn-0.23.2-cp38-cp38-win_amd64.whl", hash = "sha256:1b8a391de95f6285a2f9adffb7db0892718950954b7149a70c783dc848f104ea"}, +] +scipy = [ + {file = "scipy-1.5.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:cca9fce15109a36a0a9f9cfc64f870f1c140cb235ddf27fe0328e6afb44dfed0"}, + {file = "scipy-1.5.2-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:1c7564a4810c1cd77fcdee7fa726d7d39d4e2695ad252d7c86c3ea9d85b7fb8f"}, + {file = "scipy-1.5.2-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:07e52b316b40a4f001667d1ad4eb5f2318738de34597bd91537851365b6c61f1"}, + {file = "scipy-1.5.2-cp36-cp36m-win32.whl", hash = "sha256:d56b10d8ed72ec1be76bf10508446df60954f08a41c2d40778bc29a3a9ad9bce"}, + {file = "scipy-1.5.2-cp36-cp36m-win_amd64.whl", hash = "sha256:8e28e74b97fc8d6aa0454989db3b5d36fc27e69cef39a7ee5eaf8174ca1123cb"}, + {file = "scipy-1.5.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:6e86c873fe1335d88b7a4bfa09d021f27a9e753758fd75f3f92d714aa4093768"}, + {file = "scipy-1.5.2-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:a0afbb967fd2c98efad5f4c24439a640d39463282040a88e8e928db647d8ac3d"}, + {file = "scipy-1.5.2-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:eecf40fa87eeda53e8e11d265ff2254729d04000cd40bae648e76ff268885d66"}, + {file = "scipy-1.5.2-cp37-cp37m-win32.whl", hash = "sha256:315aa2165aca31375f4e26c230188db192ed901761390be908c9b21d8b07df62"}, + {file = "scipy-1.5.2-cp37-cp37m-win_amd64.whl", hash = "sha256:ec5fe57e46828d034775b00cd625c4a7b5c7d2e354c3b258d820c6c72212a6ec"}, + {file = "scipy-1.5.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:fc98f3eac993b9bfdd392e675dfe19850cc8c7246a8fd2b42443e506344be7d9"}, + {file = "scipy-1.5.2-cp38-cp38-manylinux1_i686.whl", hash = "sha256:a785409c0fa51764766840185a34f96a0a93527a0ff0230484d33a8ed085c8f8"}, + {file = "scipy-1.5.2-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:0a0e9a4e58a4734c2eba917f834b25b7e3b6dc333901ce7784fd31aefbd37b2f"}, + {file = "scipy-1.5.2-cp38-cp38-win32.whl", hash = "sha256:dac09281a0eacd59974e24525a3bc90fa39b4e95177e638a31b14db60d3fa806"}, + {file = "scipy-1.5.2-cp38-cp38-win_amd64.whl", hash = "sha256:92eb04041d371fea828858e4fff182453c25ae3eaa8782d9b6c32b25857d23bc"}, + {file = "scipy-1.5.2.tar.gz", hash = "sha256:066c513d90eb3fd7567a9e150828d39111ebd88d3e924cdfc9f8ce19ab6f90c9"}, +] +send2trash = [ + {file = "Send2Trash-1.5.0-py3-none-any.whl", hash = "sha256:f1691922577b6fa12821234aeb57599d887c4900b9ca537948d2dac34aea888b"}, + {file = "Send2Trash-1.5.0.tar.gz", hash = "sha256:60001cc07d707fe247c94f74ca6ac0d3255aabcb930529690897ca2a39db28b2"}, +] +six = [ + {file = "six-1.15.0-py2.py3-none-any.whl", hash = "sha256:8b74bedcbbbaca38ff6d7491d76f2b06b3592611af620f8426e82dddb04a5ced"}, + {file = "six-1.15.0.tar.gz", hash = "sha256:30639c035cdb23534cd4aa2dd52c3bf48f06e5f4a941509c8bafd8ce11080259"}, +] +terminado = [ + {file = "terminado-0.8.3-py2.py3-none-any.whl", hash = "sha256:a43dcb3e353bc680dd0783b1d9c3fc28d529f190bc54ba9a229f72fe6e7a54d7"}, + {file = "terminado-0.8.3.tar.gz", hash = "sha256:4804a774f802306a7d9af7322193c5390f1da0abb429e082a10ef1d46e6fb2c2"}, +] +testpath = [ + {file = "testpath-0.4.4-py2.py3-none-any.whl", hash = "sha256:bfcf9411ef4bf3db7579063e0546938b1edda3d69f4e1fb8756991f5951f85d4"}, + {file = "testpath-0.4.4.tar.gz", hash = "sha256:60e0a3261c149755f4399a1fff7d37523179a70fdc3abdf78de9fc2604aeec7e"}, +] +threadpoolctl = [ + {file = "threadpoolctl-2.1.0-py3-none-any.whl", hash = "sha256:38b74ca20ff3bb42caca8b00055111d74159ee95c4370882bbff2b93d24da725"}, + {file = "threadpoolctl-2.1.0.tar.gz", hash = "sha256:ddc57c96a38beb63db45d6c159b5ab07b6bced12c45a1f07b2b92f272aebfa6b"}, +] +tornado = [ + {file = "tornado-6.0.4-cp35-cp35m-win32.whl", hash = "sha256:5217e601700f24e966ddab689f90b7ea4bd91ff3357c3600fa1045e26d68e55d"}, + {file = "tornado-6.0.4-cp35-cp35m-win_amd64.whl", hash = "sha256:c98232a3ac391f5faea6821b53db8db461157baa788f5d6222a193e9456e1740"}, + {file = "tornado-6.0.4-cp36-cp36m-win32.whl", hash = "sha256:5f6a07e62e799be5d2330e68d808c8ac41d4a259b9cea61da4101b83cb5dc673"}, + {file = "tornado-6.0.4-cp36-cp36m-win_amd64.whl", hash = "sha256:c952975c8ba74f546ae6de2e226ab3cc3cc11ae47baf607459a6728585bb542a"}, + {file = "tornado-6.0.4-cp37-cp37m-win32.whl", hash = "sha256:2c027eb2a393d964b22b5c154d1a23a5f8727db6fda837118a776b29e2b8ebc6"}, + {file = "tornado-6.0.4-cp37-cp37m-win_amd64.whl", hash = "sha256:5618f72e947533832cbc3dec54e1dffc1747a5cb17d1fd91577ed14fa0dc081b"}, + {file = "tornado-6.0.4-cp38-cp38-win32.whl", hash = "sha256:22aed82c2ea340c3771e3babc5ef220272f6fd06b5108a53b4976d0d722bcd52"}, + {file = "tornado-6.0.4-cp38-cp38-win_amd64.whl", hash = "sha256:c58d56003daf1b616336781b26d184023ea4af13ae143d9dda65e31e534940b9"}, + {file = "tornado-6.0.4.tar.gz", hash = "sha256:0fe2d45ba43b00a41cd73f8be321a44936dc1aba233dee979f17a042b83eb6dc"}, +] +traitlets = [ + {file = "traitlets-5.0.4-py3-none-any.whl", hash = "sha256:9664ec0c526e48e7b47b7d14cd6b252efa03e0129011de0a9c1d70315d4309c3"}, + {file = "traitlets-5.0.4.tar.gz", hash = "sha256:86c9351f94f95de9db8a04ad8e892da299a088a64fd283f9f6f18770ae5eae1b"}, +] +urllib3 = [ + {file = "urllib3-1.25.10-py2.py3-none-any.whl", hash = "sha256:e7983572181f5e1522d9c98453462384ee92a0be7fac5f1413a1e35c56cc0461"}, + {file = "urllib3-1.25.10.tar.gz", hash = "sha256:91056c15fa70756691db97756772bb1eb9678fa585d9184f24534b100dc60f4a"}, +] +wcwidth = [ + {file = "wcwidth-0.2.5-py2.py3-none-any.whl", hash = "sha256:beb4802a9cebb9144e99086eff703a642a13d6a0052920003a230f3294bbe784"}, + {file = "wcwidth-0.2.5.tar.gz", hash = "sha256:c4d647b99872929fdb7bdcaa4fbe7f01413ed3d98077df798530e5b04f116c83"}, +] +webencodings = [ + {file = "webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78"}, + {file = "webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923"}, +] +zipp = [ + {file = "zipp-3.1.0-py3-none-any.whl", hash = "sha256:aa36550ff0c0b7ef7fa639055d797116ee891440eac1a56f378e2d3179e0320b"}, + {file = "zipp-3.1.0.tar.gz", hash = "sha256:c599e4d75c98f6798c509911d08a22e6c021d074469042177c8c86fb92eefd96"}, +] diff --git a/pyproject.toml b/pyproject.toml index 07c30ad..55e5a0c 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,20 +1,20 @@ -[tool.poetry] -name = "workshop-machine-learning-for-beginners" -version = "0.1.0" -description = "An introductory workshop on machine learning" -authors = ["Alexander Hess "] -license = "MIT" - -[tool.poetry.dependencies] -python = "^3.6" -jupyter = "^1.0" -numpy = "^1.17" -matplotlib = "^3.1" -pandas = "^0.25" -scikit-learn = "^0.22" - -[tool.poetry.dev-dependencies] - [build-system] requires = ["poetry>=0.12"] build-backend = "poetry.masonry.api" + +[tool.poetry] +name = "workshop-machine-learning-for-beginners" +version = "0.1.0" + +authors = ["Alexander Hess "] +description = "An introductory workshop on machine learning" +license = "MIT" + +[tool.poetry.dependencies] +python = "^3.7" + +jupyterlab = "^2.2.8" +matplotlib = "^3.3.2" +numpy = "^1.19.2" +pandas = "^1.1.2" +scikit-learn = "^0.23.2" diff --git a/workshop.ipynb b/workshop.ipynb index f138d12..16f69e8 100644 --- a/workshop.ipynb +++ b/workshop.ipynb @@ -588,7 +588,7 @@ { "data": { "text/plain": [ - "[]" + "[]" ] }, "execution_count": 16, @@ -597,7 +597,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAD4CAYAAAAHHSreAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO29d3hc13Xo+1sYdGDQKwk2kADYSUkURTdJlmRZtPMk90h5eZFj++o6ieMb5yaO9Pk9x5/T5OTFzkuuHVtxkx1Hkq246DqUZUmW6CJTYjELQKKxohDAoM+gY2a/P8454AgESAAzc8rM/n3ffJg5deGUvfYqe21RSqHRaDQaTTRpTgug0Wg0GvehlYNGo9ForkIrB41Go9FchVYOGo1Go7kKrRw0Go1GcxXpTguwEsrKytT69eudFkOj0Wg8xdGjR/uVUuVL2daTymH9+vUcOXLEaTE0Go3GU4jIxaVuq91KGo1Go7kKrRw0Go1GcxVaOWg0Go3mKrRy0Gg0Gs1VaOWg0Wg0mquIi3IQka+LSJ+INC6yXkTkn0WkXUROisiNUeseFJE28/NgPOTRaDQaTWzEy3L4JnDPNdbvB+rMz0PAvwKISAnwl8AtwF7gL0WkOE4yaTQajWaFxEU5KKV+DgxeY5P7gG8pg0NAkYhUA28HnldKDSqlhoDnubaS0djIpYFx/uPVS5zsHHZaFI3JxHSYl5r7eOrwJaZnI06LowGUUrT3Bfn2oYu09gadFidu2DUIbjXQEfW701y22PKrEJGHMKwO1q5dmxgpNQA89vOzPHm4g3OBMQAyfMLn3ruT99xY47BkqUtrb5C/O3CGV84OMGUqhR8d7+Zff/cmCnMyHJYuNYlEFF94oZUfHu+iY3ACgJwMH//rd27gzi2VDksXO54JSCulHlNK7VFK7SkvX9Lob80K+N8nuvnbA82U5mXy6d/ayn99/M3cvL6EP/3uCf75xTb05FD2MzEd5qPfPsrxjmEe2LuWb31oL3//3p28dn6Q93/5FbqGJ5wWMSV5/NcX+JeftbO+NI+/ftd2fvzHb2ZTRT7/7VtH+PahJQ9Edi12WQ5dwJqo3zXmsi7g9nnLX7ZJJs08ekYm+b9/2MjuNUU88d/2ke4z+g7f/P29PPyfJ/n8862MTc/yyP4tDkuaWjz67BnO9Y/xHx+5hTduKptbXlOcw3//96O8+4u/4scffzMV/mwHpUwt2vuCPPpsM3dsruBrD+5BRAB48qF9fPyJ3/D//LCRqZkwH3lLrcOSrhy7LIdngN8zs5b2ASNKqcvAc8DdIlJsBqLvNpdpbEYpxZ8/fYKp2TCf/8CuOcUAkJmexj9+YBfvu6mGr/3iPB2D4w5Kmlr8vDXA47++yIfetOF1igHgjZvKePKhfQyMTfOVg+cckjD1mAlH+MRTJ8jN9PHoe3fMKQaAvKx0vvJ/3cQdmyv4pxfaGB6fdlDS2IhXKusTwK+BBhHpFJEPi8hHReSj5iYHgHNAO/BvwB8CKKUGgb8CDpufz5rLNDbz7UMX+UVbP59651Zqy/OvWi8i/NndDaSJ8KWX2x2QMPUYHp/mz58+QV1FPp+8p2HBbbatKuTdN6zm3w9dpC84abOEqcm/vNjGqa4R/u49Oxa01tJ9afzFPZsJTc3ytV+ed0DC+BCvbKUHlFLVSqkMpVSNUuprSqkvK6W+bK5XSqk/UkptVErtUEodidr360qpTebnG/GQR7M8RsZn+LsDzdxaX87v3rJ4sL+qMJsH9q7he0c6tfVgA//fi20MhKb5wm/vJjvDt+h2H3vrJmYjSlsPNtAxOM4XXz7Le25czT3bqxfdrqHKzzt3VPONX13wrPXgmYC0JnH88HgXEzNhPvn2hteZyAvxB7dv0taDDUzOhPnPo528Y0c121cXXnPb9WV52nqwie8e6SCiFH9298KWXDQfv7PO09aDVg4pjlKKJ167xLZVBddthEBbD3bxk8YeRidnuf/mNdffGG092MFsOML3jnRyW305q4pyrru9160HrRxSnJOdIzT3BLl/79LHjmjrIfE88dol1pXmsq+2dEnba+sh8RxsDdAzOsn9Ny/9XfGy9aCVQ4rz5OFL5GT4uG/3qiXvU1WYzbtuWMUzx7uZnAknULrU5FwgxKvnB/ntm9eQlnZtN180H72tlqnZCD8+cTmB0qUuT7zWQVl+FnduqVjyPg1Vfu7YXMHTRzuJRLw1RkgrhxRmbGqWZ453886d1RRkL2+U7W/tXMXYdJiftwYSJF3q8tThDnxpwvuWOSJ9U4WfzVV+nm3UyiHe9I5O8lJLH++7qYYM3/Kazd/aWc3lkUlOeKwMjVYOKcyPT3YzNh3mgb1L82tH84aNpRTmZPCTxp4ESJa6TM9G+M9jndy5uYKKguUPatu/vZojF4foG9WupXjy9NFOwhG15BhQNHduqSTDJ557V7RySGGeeK2DTRX53Lh2+YVwM3xpvG1rJc+f6WVqVruW4sWLZ3rpD03zwDJiQNHs31GFUvBck7caIjcTiSiePHyJN9SWsr4sb9n7F+Zk8KZNZRxovOyp8jNaOaQolwbGOd4xzG/vWXPd9NXFeMeOKoKTs7zSPhBn6VKXHx3vprIgi1vrV1Y/rK4in43leRw4pZVDvPhNxzAdgxN84OaVF558x/ZqOgYnaOoejaNkiUUrhxTlYGsfAHdtXXn1yDdtKsOfla593HFiJhzhV+393LG5At8yAtHRiAjv2FHNq+cHGAhNxVnC1ORgSx9pAm9tWHogej5v21qJL004cMo774pWDinKwdYAa0tyWV+au+JjZKX7uHNLBT893ctMWM8tECvHLg4RnJrltvqVN0IA92yvIqLgp6d74yRZanOwNcDuNUUU5Wau+BjFeZm8obaUZxt7PONa0sohBZmaDfPK2QFubyhfsUvJYv+OaobHZzh0TruWYuVga4D0NOGNm5Y2tmExtlYXsK4011O9VLcyEJriZNcIt8dgNVjcs72K8/1jtHhkQiCtHFKQIxeGGJ8Oc9sK/drR3FZfTm6mj2c9lonhRg62BrhxXfGy04rnIyLs317Nr88OeHJkrpv4ZXs/ShGXd+Xt26oQwTPxIK0cUpCDrQEyfWlLHn17LbIzfLx1cwXPn+71jLnsRvqCkzR1j8alEQLYv72K2Yji5RY9DiUWDrYEKMnLZMcSSstcj3J/FjevL+F5j7j7tHJIQQ62BLh5QzF5WfGZ6+nNm8oIBKc41z8Wl+OlIr9o7Qfi00MF2L66kILsdO3ui4FIRPHztgBvqStb1kj1a/HmTWU094x6wqLTyiHFuDwyQUtvMG6NEDBngeiGaOW83Bqg3J/FtlUFcTmeL03Yu6FU35MYaOoepT80Hfd3RSl49bz7p63RyiHFsMpdxJoRE8360lwqC7I4dM79D7wbCUcUv2gLcGtd7AkC0eyrLeHCwDiXR/Qc0yvBSvd+S138lMOuNYVkpad5QmnHaya4e0SkRUTaReThBdZ/QUSOm59WERmOWheOWvdMPOTRLM7B1gBVBdnUV14929tKERH21Rq9VB13WD4nO4cZHp/htob4NUJwxaJ7VSvtFXGwNcD21QWU+7PidsysdB83rSv2REcqZuUgIj7gi8B+YCvwgIhsjd5GKfUJpdRupdRu4F+A70etnrDWKaXujVUezeLMhiP8oq2f2+rj20MFoyEKBKc4r+MOy+Zga4A0gbfMmyM6VrZUF+i4wwoZmZjh2KXhuLqULPbVlnoi7hAPy2Ev0K6UOqeUmgaeBO67xvYPAE/E4byaZdLYPUpwcpa31Me3EYLouIP7e0Ru45X2AXasLqQ4b+WDrBZCxx1WzmvnBwlHVFxdShZW3OE1l8cd4qEcVgMdUb87zWVXISLrgA3Az6IWZ4vIERE5JCLvWuwkIvKQud2RQECn562EoxeHALh5fUncj72+NJcKf5ZuiJbJ9GyEE53D7EnAPQEdd1gpxy4NkZ4m7F5TFPdjX4k7JL9yWA73A08rpaLLeK5TSu0Bfgf4JxHZuNCOSqnHlFJ7lFJ7ysvjr81TgWOXhlhdlEPlCkpBXw8dd1gZZy6PMjUb4aZ1y6+MuxR03GFlHL04xLbVhWRn+OJ+7CtxB3d3pOKhHLqA6CLnNeayhbifeS4lpVSX+fcc8DJwQxxk0izAsYtDCWuEwGiI+nTcYVlY1lyi7suW6gL8Ou6wLGbCEU50DHPTCkrZL5V9taWccXncIR7K4TBQJyIbRCQTQwFclXUkIpuBYuDXUcuKRSTL/F4GvAk4HQeZNPPoHp7g8sgkN66Nv5lssa/WcI243Vx2E0cTaM2BEXe4ZUOJJ/Lq3cLpbsOau3FdIt8V98cdYlYOSqlZ4GPAc8AZ4LtKqSYR+ayIRGcf3Q88qV7vc9gCHBGRE8BLwKNKKa0cEsCVHmpifNsAG8rydNxhmRy7OMSNCbTmwGiIzveP0TOiZ4dbCscuJdaaA2/EHeJSP0EpdQA4MG/Zp+f9/swC+70C7IiHDJprc/TiEDkZPjZX+xN2Divu8Op5I+4Q73TZZMOy5m5KoDUHUXGH8wPct3vBXBFNFEcvDrGqMJvqwpyEncOKO7x63r0dKT1COkU4dmmIXWsKlz05+nK5aV0xvaNT9Og5jK+LHdYcwOYqPzkZPn5zyVsT3DuFHdYcGO9Kc0+QiWl3TrOrlUMKMDEd5nT3aELNZIudNUb1yhMduiG6HscuJd6aA0j3pbF9dQEnO/U9uR7dwxN0j0za9K4UEY4oTl8eSfi5VoJWDinAyc5hZiOKGxOYfWGxpbqA9DThRKc7H3g3ceziEDtrEm/NgdEQNXWP6hn7roMVb7DjXdlldqSOd7jzXdHKIQU4aj7wN9jwwGebPWHdS702E9Nhmmyy5sCw6KZmI7T0eGMWMqc4dnGY7Iw0tsapOu61qCjIpqog27XvilYOKcCxi0PUludREufyDIuxq6aIk50jRCJ6MNxiWNacXcrBGul7Ult01+TopSF21hTZYs2BkbXk1nuilUOSo5Ti2KXEDuiZz66aIoKTs5wf0IPhFsNOaw5gbUkuRbkZru2luoHJmTBNXSO2KWww3H3n+8cYmZix7ZxLRSuHJOfCwDiDY9P2PvBrDF+qbogW59jFYVutORFhx+pCHQu6Bic7RwxrzuaOFMApF94XrRySHKuB3lmT2Fz6aDaV55OT4eOESwNtbuBU1/Bcw2AXu2qKaO11b+qk05zqMp5Xq3NjBzus7D4XdqS0ckhymrpHyUxPoy6Ok/tcD506eW36gpP0jk6xPQ6T1i+HnTWFhCOKpm6ttBeiqWuEyoIsKvyJKWWyEIU5GWwoy3Nl6rdWDklOY9cIm6v8tgXYLHbp1MlFaeoeBYjbfNFLxQpKa9fSwjR2j7B9lb0KG4yUVjcGpbVySGKUUjR2jbDNgQd+55oinTq5CE2m+8KOdMlo3J466SQT02Ha+0K2K2wwXL49o5P0uayqgFYOSUzn0ASjk7NsX23/A28N8HFjj8hpmrpHWV+aS0F2hu3n3unSXqrTNPeMElGwzWZXHxjprOA+i04rhyTG8i07YSrr1MnFaewecaQRAti1xkydHHdf6qSTNJquPrvjQABbqwvxpYnr4g5aOSQxjV2j+NKEhqrE1u5ZCBFhZ00Rx132wDvNyPgMHYMTjrgv4Erq5MkufV+iaeoaoTg3g1WF9gWjLXIyfTRU+l2XsaSVQxLT2D1CXUV+QqY6XAq7agpp6wvp1MkonLTm4ErqpHYtvZ7GbiM251SZ+V1rCjnVNeKqKXbjohxE5B4RaRGRdhF5eIH1HxSRgIgcNz8fiVr3oIi0mZ8H4yGPxqCpe9SRYLTF1uoCwhFFa68OSls4lalkUZiTQU1xDqcvjzpyfjcyPRuhtSfENgdicxZbqwsYHp/hsosmZIpZOYiID/gisB/YCjwgIlsX2PQppdRu8/NVc98S4C+BW4C9wF+KiH3DE5OYvtFJAsEpxxohMCq0ApzRDdEcjd0jVBdmU5qf5ZgMW6oL9D2Joq0vyHQ44pg1B+58V+JhOewF2pVS55RS08CTwH1L3PftwPNKqUGl1BDwPHBPHGRKeRot94VDgU8wgtJ5mT5XPfBO41RqcTRbqwu40D+m3X0mTV3OBaMtNiepclgNdET97jSXzee9InJSRJ4WkTXL3FezTBrNB97uXPpo0sxg+JnL2q0EMDY1y7n+MUdSi6PZUl1AREGLdvcBRkcqPyuddSW5jsmQn5XO2pJcV70rdgWk/zewXim1E8M6eHy5BxCRh0TkiIgcCQQCcRcw2WjqHqG2LI/8rLhME75itlQXcKZn1FWBNqdo7hlFKeeC0RZbXdhLdZKm7lG2VheQlubsnOdbqv2uuifxUA5dwJqo3zXmsjmUUgNKqSnz51eBm5a6b9QxHlNK7VFK7SkvL4+D2MlNY9eoo1aDxdZVBQQnZ+kcmnBaFMexrDknA58ANcU55Gelu6ohcopwRHG6e9TxewLGeIfzA2OMT886LQoQH+VwGKgTkQ0ikgncDzwTvYGIVEf9vBc4Y35/DrhbRIrNQPTd5jJNDAyNTdM1POGoD9XCjYE2p2jsGqE0L5OqAvtz6aNJSxM2V7mrl+oU5/tDTMyEHbfmwLAclMI1JWdiVg5KqVngYxiN+hngu0qpJhH5rIjca272cRFpEpETwMeBD5r7DgJ/haFgDgOfNZdpYsBKU3QyU8lic5UfEVzlS3WKpm7DmnMqlz4aI2MpmPKz9c2lFrvAcrA6Um5JM46LQ1opdQA4MG/Zp6O+PwI8ssi+Xwe+Hg85NAZWj9B62JwkNzOd9aV5Kd9LnQlHaO8L8Za69U6LAhjPxrcPXaRzaIK1pc4FYp3mzOUgGT5hY7l9Je0Xo6Y4B3+2e9x9eoR0EtLSE6QsP5MyB3Ppo9lS7edMjzseeKe40D/GdDjiSCmThdhSbcjhll6qUzT3jLKxPN/2kvYLISJsqSpwjZXt/BXRxJ3mnqBrGiGALVUFXBwYJzTljkCbE5wx/chuuS8Nc+6+1FYOLT1BNrvknoChtJsvj7rC3aeVQ5JhlavYXOW8S8nCcm+1pLD10NJjFEHcVOG8+wIMd9+GstR2942Y5SoaXPaujE2H6Rgad1oUrRySjYsDY0zNusd9AbBllRVoc4e57AQtPUFqy/LISnemCOJCWGNQUhVrEKC7LAf3ZPdp5ZBkWGlwbnrgVxVmU+CiQJsTuM3VB8ZguI7BCYKTqTm3g2XJuum+NFT5SRN3dKS0ckgymnuCiEBdhXseeBFJ6WJvoSljEKCbFDZcCUo3uySv3m6ae4L4s9OpdmAOh8XIzvC5xt2nlUOS0dITZH1pHjmZ7nFfgGEut/SkZl59y1ww2j2+bXCXC8MJrGC0G8adROOWjpRWDklGS2+Qhkp39VDBcGGMT4e5OOh8oM1u3OjqA6gqyKYoN8MVDZHdKKWMd8Vl9wQM5WDM/+6su08rhyRiYjrMhYExVz7w9aZMqTjxT0vPKHmZPlYX5TgtyusQEeor/bT2hpwWxXa6RyYJTs66zpoD5jp3bQ7fF60ckoi2viBKua+HClBnpnC2paByaO4JUl/ld7zq50LUV+bT2htMuaq5VjB6iwvflfo55eDsu6KVQxLR7LKBVtHkZaVTU5xDS4r1Ui33hRsVNhi91ODkLD2j7pme0g6sd6XehfelpjiHnAyf4/NtaOWQRLT0BMnOSGNdaZ7ToixIQ6Wf1hTLjOkLTjE8PuPKOBBAXaXl7kstpd18OcjqohwKsjOcFuUq0tKE+sp87VbSxI+WniB1FX58LnRfgNEQnesPMROOOC2KbTS7NFPJwnJhpJrSbnHhuJNo6ir92nLQxI9ml9WJmU9DVT4zYcWF/jGnRbENy7ft1vtSkpdJuT8rpRIFpmcjnA2EXK0cGir9BIJTDI1NOyaDVg5JwkBoiv7QlKsf+PoUdGE09wSpLMiiOC/TaVEWxQpKpwrn+kPMRpRrFTa4I7tPK4ck4UouvTvdFwAby/NJk9Sa2N5wX7j3ngBz6aypMkCxxcWJGxb1lUZ2n+eVg4jcIyItItIuIg8vsP5PReS0iJwUkRdFZF3UurCIHDc/z8zfV7M0rAa3vsodVT8XIjvDx/rSvJTxb4cjiva+EA2V7r0nYCiHiZkwXcOpMc93S0+Q9DShtsy996WqIBt/drqjVnbMykFEfMAXgf3AVuABEdk6b7PfAHuUUjuBp4G/j1o3oZTabX7uRbMi2vpCFOVmUO6SCX4Wo64yn9a+1FAOHYPjTM1G5jKC3Irl7nPL3MWJpq0vxPqyPDLT3es4sQYoOmllx+Pq7AXalVLnlFLTwJPAfdEbKKVeUkpZdRMOATVxOK8mirbeIPUV7qsTM5+GSj8X+seYnAk7LUrCsVwC9S5XDnWWCyNFlHZbb3DObeNm6iv9tDk4QDEeymE10BH1u9NcthgfBp6N+p0tIkdE5JCIvGuxnUTkIXO7I4FAIDaJkwylFK29ITZ54YGv8hNRcDaQ/EHptj7jf3TLBD+LUZCdwarC7JRw903OGPW9NrmoavFiNFTmMzQ+QyA05cj5bbWrROR3gT3AP0QtXqeU2gP8DvBPIrJxoX2VUo8ppfYopfaUl5fbIK13CISmGJmYod7ljRBElwZIAeXQawy0ys9Kd1qU62Lk1Sf/PTkbCKEUnrEcAFp7nLkv8VAOXcCaqN815rLXISJ3AZ8C7lVKzalCpVSX+fcc8DJwQxxkSimshtbt7guA9aV5ZPgkJTKWWntDrrcaLBqq/JwNhJhN8gGKXnpXnE5njYdyOAzUicgGEckE7gdel3UkIjcAX8FQDH1Ry4tFJMv8Xga8CTgdB5lSCuvh8YJbKTM9jQ1lyZ+xFI4ozgZCnuihgtFYTs9Gkr6kelufkam03qUlZqIpy8+iJC/Tu8pBKTULfAx4DjgDfFcp1SQinxURK/voH4B84HvzUla3AEdE5ATwEvCoUkorh2XilUwli/pKf9IHP+cylTzg24YrbhanK4EmmtZe92cqRePkAMW4OEOVUgeAA/OWfTrq+12L7PcKsCMeMqQybb1B6iryXZ+pZNFQ6efHJy8zNjVLngf88SvBeqHrPGI5bKrIRwRaekLcs91paRJHW29wbgY8L9BQ6ef7x7pQStn+fntDfWoWxcpUcnsufTSWrFY2TzJi/W9euS+5memsKc5N6jIakzNhLg2Oe+aegPH8BKdm6R6xv6S6Vg4ex0uZShZWb7o9mZVDb5BVhdmeyFSyqKvIT+p7cjYQIuKRTCULa5IsJ+6LVg4ex8q+8FJvaF1JLpm+NNqSOO7Q1uctaw6ulFRP1owlq4H1ShwInJ0VTisHj+M13zZAui+N2vI82pM0r96qqVTnIWsOjF7qTFglbcZSa28QX5qwocz9mUoWxXmZlOVnastBs3za+kIU5ngnU8liU0V+0sYcrEwlL+TSR1M3l7GUnPeltTfE+tJcz2QqWTj1rnjrKmmuwqoT45VMJYu6Cj8dQ+NMTCdfjaW5shkesubAKKkO0J6k7r72vpDnFDYY74oTNZa0cvAwXsxUsqirzEclaY2lOVefx9xKeVnprC7KSUqLbnImzMWBMc++K6OTswSC9tZY0srBw1iZSl5rhMDZLIxE094XorowG78LJ6+/HnUumNg+EZwLjBFR3lPYcKVwo91KWysHD+OlOjHzWVeaR3qaJGXGUmtv0JM9VDAaz7OBEOEkmxXOes68+K5Y2VV2Zyxp5eBh2jzqvgCjxtL6sryk66VaNZW8eE/AaIimZiN0DiVXxlJbb8hzmUoWZfmZFOVmaMtBs3TmMpX83spUskjGQVddQxNMzkQ8NdAqmk1JmrHU1hf0ZKYSGLPC1VXY7+7z3pXSzNFm5tJ7LVPJoq4inwsDY0zNJk/GkuW+8MJkMgvhlH870RjvijfvCRjPU2ufvRlLWjl4mPY+78wXsBCbKo1Z4c73jzktStzwyuxvi1GQnUFVQXZSxYKmZsNcHBj37D0BoyM1PD7DwNi0befUysGjDISmGByb9vwDD8nlwmjrDVHhz6Iwx3uZShZ1lcnl7rvQP044ojxVRWA+TgxQ1MrBo3it6udCbCjLI02Sy4XR3hf0dCMEhtXT3hcikiQZS1dcfd69L5ZLzM4Bilo5eJQrRcS8+8BnZ/hYV5qXNCNylbJqKnlXYYPREI1Ph+kemXBalLjQ3hdC5MoIcC9SWZCFPyvd1o5UXJSDiNwjIi0i0i4iDy+wPktEnjLXvyoi66PWPWIubxGRt8dDnlSgvS9EXqaP6sJsp0WJiU0OZGEkissjk4xNhz3dQ4UoF0aSWHRtfSHWluSSneFzWpQVIyJssnmAYszKQUR8wBeB/cBW4AER2Tpvsw8DQ0qpTcAXgM+Z+27FmHN6G3AP8CXzeJrr0NYXZFOl37OZShZ1Ffmc7x9jJgnKRLclgTUHsMmqsZQkSru917vjTqKps7kAXzwsh71Au1LqnFJqGngSuG/eNvcBj5vfnwbuFKNVuw94Uik1pZQ6D7Sbx0sIX3ypnUefbU7U4W2lLVke+Mp8ZiOKC0mQsTQ3KNHDcSCwykRnJcWscLPhCOf6Q55NLY6mrsJPf2iKIZsyluKhHFYDHVG/O81lC26jlJoFRoDSJe4LgIg8JCJHRORIIBBYkaDNPUH+61T3ivZ1EyPjM/QFpzzvvoDoQJv3e6ntfSFK8jIpyct0WpSYqavIpz0JiiJeHBxnJqyS4l3ZXO2nodJvWzqrZwLSSqnHlFJ7lFJ7ysvLV3SMuop8OocmGJ+ejbN09tIe8G7ZjPlsLDcmtk8G/3abx8edRFNXmU97b8j2MtHxZm6mxCS4L2+pK+e5T9xq2zMWD+XQBayJ+l1jLltwGxFJBwqBgSXuGzfqKowy0ecC3nZheHG6w8XIyfRRU+z9MtFXMpW83wiB8a4Ep2bpHbW3THS8sUrCb0yS+2In8VAOh4E6EdkgIpkYAeZn5m3zDPCg+f19wM+U0SV5BrjfzGbaANQBr8VBpgW5koXhbV9qW2+I7Iw0VhfnOC1KXLAmM/EyXi6fvhCWj97770qQ1UU55GelOy2K54hZOZgxhI8BzwFngO8qpZpE5LMicq+52deAUk5RmEcAACAASURBVBFpB/4UeNjctwn4LnAa+AnwR0qphBXaWVeaR4ZPPJ862dYXYmN5Pr40b2cqWdRV5HOuf8zTE9tbmT1eD0ZbJMuUocnk6rObuKhTpdQB4MC8ZZ+O+j4JvH+Rff8G+Jt4yHE9MnxpbCjL87wLo70vxM3ri50WI25sqshnejZCx9CEJ0sqQ/KksVqU5mVS7ECZ6HgSjhiuvjfUljotiifxTEA6XnjdhRGamqVreCKpekNWb9vL96WtL4g/O92z5dPnY5SJ9nt69HrX0ARTs5GkelfsJOWUw6aKfC4NjjM5480y0Wfnqn4mh/sCkqNMtDXuxOuDEqPZVJlPq4czlqx4iddrXTlFyimHusp8Ih7OWJrLVEqiBz4/K51VhdmethyM2d+SR2GD4SIbmZghEPJmxpL1rmwqT677Yheppxw8noXR2hckwyesK8l1WpS4sqnS71nLYXBsmv6Qt8unL8TcAEWPBqVbe0OU+7MozPVu+XQnSTnlsL4sF1+aeHZEbntviNqyfNJ9yXXrrClDvTix/ZWyGUmmHDxegK+9L+jZ6VrdQHK1MEsgK93HutJcz6botSbBfAELUVeRz9RshK4h75WJbjUbz/okSWO1qPBn4c9O96SVHYkoz08N6jQppxzAqm7ovQd+fHqWzqGJpHzgvTxAsb03SH5WuufLp8/HqYnt40H3yATj0+Gk7EjZRYoqBz8XBsaZnvXWoKuzfWMoRVKaylbQ0IsujNZeY6BVMmUqWRjprN67J5ZCSzZrzk5SUzlU5hOOKC4MeCtjqTVJSkIvRGFuBhX+LE/2UtuS2LddV5nPwNg0Ax7LWJp7V5IsScBOUlI5zOXVe6whausLGZlKpcmVqWRhTGzvLbeSlamUjK4+uPKueM16aOszMpWKcr1fPt0pUlI5XCkT7a2GqK03SG1ZPhlJlqlkUVdhpLN6adBVsmYqWcyNXveacuhNXmvOLpKzlbkO2Rk+1pbkeu6Bb+0LsimJH/hNFfnmxPaTTouyZJI1U8liVWE2eZk+T1kOOlMpPqSkcgAzY8lDI3KtTKX6JH7gLf+wl6anTNZMJQsRYVNFvqfuic5Uig+pqxwq/Z6a2D6ZM5UsrN63l0bkJnOmkkWdx0av60yl+JCyyqGh0s9M2DsT26dCEbHivEzK/Vm0eKiX2tYXSmqFDca7EghOMWjT3MWxMveu6EylmEhZ5WA1sl5piFp7rUwlb853sFTqK73jwhgam6Y/NJX0vu36KuP/88p9sWoq6Uyl2IhJOYhIiYg8LyJt5t+rZqARkd0i8msRaRKRkyLy21Hrviki50XkuPnZHYs8y2FjeT5pYjxIXqCtN8iGsrykzVSyqK/009YbIuKBGkutSZ6pZFE/NyucN5RDW29QWw1xINaW5mHgRaVUHfCi+Xs+48DvKaW2AfcA/yQiRVHr/1wptdv8HI9RniWTneFjfVkerT0eeeD7Qkk5+G0+DZV+JmbCdHqgxlJbkmcqWVQVZOPPTveEla2UMl19yX1P7CBW5XAf8Lj5/XHgXfM3UEq1KqXazO/dQB9QHuN540J9hZ9WD4x1mJgO0zE0ntSZShaWAvSCC6MtyTOVLESE+kq/J6zsrmGdqRQvYlUOlUqpy+b3HqDyWhuLyF4gEzgbtfhvTHfTF0Rk0TkWReQhETkiIkcCgUCMYhvUV/m50D/m+lnhzgZCKJX87gu44sLwQi/Vmrw+mTOVLAzlEHT9AMUrc3knf0cq0VxXOYjICyLSuMDnvujtlPHULPrkiEg18G3g95VSVv7oI8Bm4GagBPiLxfZXSj2mlNqjlNpTXh4fw6PenBXubMDdPSKrF53sWTEA/uwMVhVme8JyaO1N/kwli4bKfIbHZwgE3V1jqU3XVIob6dfbQCl112LrRKRXRKqVUpfNxr9vke0KgP8CPqWUOhR1bMvqmBKRbwB/tizpY6RhbmL7ENtWFdp56mWRKplKFvVV7ndhpEqmkkX9nLsvREWBe91orb0hyvKzKM7TmUqxEqtb6RngQfP7g8CP5m8gIpnAD4BvKaWenreu2vwrGPGKxhjlWRbry/LI8InrXRitSV5TaT71lX7O9oWYdfEAReuZsdI8kx3r//TCu9JQpa2GeBBra/Mo8DYRaQPuMn8jIntE5KvmNh8AbgU+uEDK6ndE5BRwCigD/jpGeZZFhi+N2jL3l9Fo6QnSkCKNEBjKYToc4eLguNOiLEqLmeW2OUXuS1l+FqV5ma5+V8IRZSiHygKnRUkKrutWuhZKqQHgzgWWHwE+Yn7/d+DfF9n/jljOHw/qq/wc7xhyWoxFGZ2coWt4gt+5Za3TotiG5e5r7QmysdydvcDmniBF5hwUqUJdZb6rLYdLg+NMzkRSRmEnmtTwU1yD+op8OgYnGJuadVqUBWlNsR4qYGYAuduF0dIzSkOlPyUylSwazAGKbs1YaukZBUgpKzuRaOVgPkhuLUncbCqHVHrgczLNkuouDUpHIorW3lBKKWww3pXQ1KxrS6o39wQRSf5BiXahlUOluwNtLT1B/FnprC7KcVoUW6mr8Lv2nnQNTxCamqWhKrV82/VR7j430tITZF1JLjmZPqdFSQpSXjmsLcklKz3N1Q98fVVquS8AGqryOd8/xtSs+wYopqI1B8yN0Her0k61xI1Ek/LKwZcm1FXmz83o5SaUUjT3jKac+wKMXmo4ojjvwpLqqerbLszNoKrAnQMUJ2fCXBgYY3OKWXOJJOWVAxg9IuuFdxM9o5OMTs6mrHKAKymjbqK5J0hNcQ75WTEl+3mSusp8V96Ttt4QEZVaiRuJRisHjB5g7+gUQy6bzOSK+yL1ekO15Xmkp8ncNXATLT3BlG2ENlcZs8K5bYBic4pac4lEKwdgS7XR+J657C7rweqhNaRg9kVWuo9NFfmuuydTs2HO9Y+lbCO0pbqA6dmI69x9LT1BsjPSUqbEjB1o5cAV5XDaZQ1RS0+Q6sJsCnMznBbFEbZWF7hOOZztGyMcUSlpzYGL35XeIHUVfnxpqZW4kUi0cgDK/VmU+7M4c9ldLozmFM++2FJdQO/oFAMh91QCbek1GsVUdSttLM8nwyeuUw6p/q4kAq0cTLa4rJc6E47Q3pfaD/wVd597lHZzT5AMn7ChLDXdF5npaWyq8LvqngyEpggEp1JWYScKrRxMtlT7ae8LMeOSQNv5/jFmwiqlH/gt1cb/7ial3WLWe0qVCrkLsaXa77p7AjoYHW9S9wmfx9bqAqbDEddM/DOXqZTCFSZL87Oo8Ge5riFKZYUNxrsSCE7R7xJ3X6oOSkw0WjmYuC1jqaVnFF+asLEiNd0XFluqC1zj3x4Zn+HyyGTKBqMt3PeuBCnJy6Q8P3Uq5NqBVg4mtWV5ZKanucaX2nw5SG1ZHlnpqV0nZkt1AWcDIaZnnXf3nelJ7WC0hduUQ3MKVsi1g5iUg4iUiMjzItJm/i1eZLtw1EQ/z0Qt3yAir4pIu4g8Zc4a5wjpvjTqK92TV9/UPcr21e6dutQutlT7mQkrV1TNbeo2no1tq1PbcijJy6SqINsVHamZcIQzPUG2p/g9SQSxWg4PAy8qpeqAF83fCzGhlNptfu6NWv454AtKqU3AEPDhGOWJiS1VBZzuHnW8Xn0gOEXP6CTbVukHfquLeqlNXSNU+LOo8Lt3DmW7cEtQ2rIqdUcq/sSqHO4DHje/P44xD/SSMOeNvgOw5pVe1v6JYEt1AQNj0wSCzgbamrpHANi2Sj/wG+bcfc43RI3dI7oRMtlSXUB7X8jxqrmNXaY1p9+VuBOrcqhUSl02v/cAlYtsly0iR0TkkIhYCqAUGFZKWVOwdQKrY5QnJtwy+tNyX2zVlgPpvjQaKv1z/n6nmJgO094X0tacyZbqAmYjzrv7mrpHyMnwpey4k0RyXeUgIi+ISOMCn/uit1OGL2Yxf8w6pdQe4HeAfxKRjcsVVEQeMhXMkUAgsNzdl8RWlwy6auoeYV1pLoU5qVk2Yz6GCyPoqLuvuWeUiNI9VAu3DFBs6hpl66oCXTYjAVxXOSil7lJKbV/g8yOgV0SqAcy/fYsco8v8ew54GbgBGACKRMSqe1wDdF1DjseUUnuUUnvKy8uX8S8uncLcDFYX5TjuwmjsGmW7boTm2FpdwODYNH0OuvsaTWtOBz4NNpTlkZ3hrLsvElE0dY+wXVtzCSFWt9IzwIPm9weBH83fQESKRSTL/F4GvAk4bVoaLwHvu9b+duN0oG1kYoZLg+PapRSFG9x9p7tHKDI7DxpjkqyGSmfflQsDY4xNh9mm40AJIVbl8CjwNhFpA+4yfyMie0Tkq+Y2W4AjInICQxk8qpQ6ba77C+BPRaQdIwbxtRjliZkt1QWc6x9jYtqZQNvpuR6qfuAtNlvKodu5hqixa5Rtqwp0Ln0U1gBFp9x9ljWn40CJIaaprJRSA8CdCyw/AnzE/P4KsGOR/c8Be2ORId7sWF1IOKI4fXmEm9aV2H7+K5lK+oG3KMzJYH1pLic7hx05//RshJaeIL//pvWOnN+t7Kgp5MnDHXQMTrC2NNf28zd1j5DpS6OuIrUHJSYKPUJ6HrvWFAFwomPEkfM3do1QVZBNmS4F8Dp21hRxstOZe9LWF2Q6HNHui3nsqjHfFYeUdlPXKA1VfjLTdTOWCPRVnUdlQTaVBVmO9VKNkdHaapjPzppCLo9M0jc6afu5rdRiHfh8PVbD7MS7opQyx53oe5IotHJYAKd6qePTs5wNhHS65ALMWXQO3JemrhHyMn2s11NQvo4MXxrbVhU4YmV3DU8wPD7DVv2uJAytHBZgV00h5/rHGJmYsfW8Zy4HzVx63Ruaz7ZVBaQJjvRSG7uNXPo0nUt/FbtqimjsHiEcsTcobY2M1tZc4tDKYQGsXuopm3upVjBaZypdTW5mOvWVftsth3BEcbp7VFtzi7CzppBxc/S4nZzuHsGXJnNpzpr4o5XDAuxc7UygralrlJK8TKoLdWG3hdhVU8TJzmFbUyfP948xMRPWCnsRdjoUlG7sHmVTeT7ZGald0j6RaOWwAIW5zqROnugc1rn012DnmkKGx2foGJyw7ZzWM6ADnwtTW5aHPyvd1ndFKcXJzuGUL52eaLRyWAS7g9LByRlaeoPctG7BKTE0XEmdPG5jQ3T04hD+rHSdS78IaWnCjppCW4PSlwbH6Q9N63clwWjlsAhzqZNBe1Inj3cMoxT6gb8Gc6mTHfYqh91ri3Rht2uws6aI5p5R28p3H704BOh3JdFo5bAIu82g9EmbekRHLw4hcuW8mquxUiftsui0Nbc0dtUUMhNWtlVo1dacPWjlsAjbVhXiSxPbAm1HLw7RUOnHn63LdF+LXTVFnOoaYTac+DmlT3SMaGtuCVjZfXbFHY5dGtbWnA1o5bAIOZk+6irybUmdjEQUxy8Nc6NuhK7LzppCJmbCtAcSnzqprbmlUV1olHs5boO7Lzg5Q0vPKDeu1e9KotHK4RrYlTrZ1hciODXLTfqBvy5W6qQd7r6jl7Q1txREhF01hba4+050jBDR1pwtaOVwDXavLWJ4fIbz/WMJPY8OsC2d2rI8/NnpHLs0lNDzRCKK31wc0tbcEtm9poizgRAj44mtKjBnza3V1lyi0crhGuzdYJTsfvX8YELPc/TiEKV5maxzoOyx10hLE/auL0n4PdHW3PLYu6EEpeC1Cwl+V0xrrkBbcwlHK4drUFuWR7k/i0PnBhJ6nmOXjB6qHvy2NPbVlnK+f4yekcSlGVuWibbmlsauNUVkpacl9F2JRBS/uaStObuISTmISImIPC8ibebfq+6aiLxVRI5HfSZF5F3mum+KyPmodbtjkSfeiAj7aks5dG4gYXGHgdAU5/vHdCO0DPbVlgLw6vnENUTamlse2Rk+blxbnFDl0B4IEZzU1pxdxGo5PAy8qJSqA140f78OpdRLSqndSqndwB3AOPDTqE3+3FqvlDoeozxxZ19tCb2jU1wYGE/I8Y9dMjI8dPbF0tm6qgB/VjqHziXOhXHs4hA3rNXW3HLYV1vK6cujCYs7WLE5bTnYQ6zK4T7gcfP748C7rrP9+4BnlVKJaWkTgNVLTVSP6OjFIdLThJ01urDbUvGlCXs3lPBqgu7J4Ng057Q1t2z21SY27nD04hAleZms19acLcSqHCqVUpfN7z1A5XW2vx94Yt6yvxGRkyLyBRFZdG5MEXlIRI6IyJFAIBCDyMsj0XGHYxeH2La6UFeXXCb7aks51z9GbwJmhjums8dWRKLjDscuDnGjtuZs47rKQUReEJHGBT73RW+nDKf8oo55EakGdgDPRS1+BNgM3AyUAH+x2P5KqceUUnuUUnvKy8uvJ3bcSGTcITQ1y7FLQ+yrLYnrcVOBRFp0v2zvJzsjTVtzyyQ7w8cNa4sSck86h8Y51z+m3xUbua5yUErdpZTavsDnR0Cv2ehbjX/fNQ71AeAHSqk5h6RS6rIymAK+AeyN7d9JDImKO7zS3s9sRHF7fUVcj5sKJDLucLA1wBtqS7U1twISFXf4eWs/ALc32NcxTHVidSs9Azxofn8Q+NE1tn2AeS6lKMUiGPGKxhjlSQhz2TFx7hEdbA2Ql+nT7osVkKi4w8WBMc73j3F7g1bYK2FfbSlKweE4xx0OtvaxuiiHjeX5cT2uZnFiVQ6PAm8TkTbgLvM3IrJHRL5qbSQi64E1wMF5+39HRE4Bp4Ay4K9jlCchJCLuoJTiYGuAN24qIzNdDzdZCVbcoS+OcYeftxrxrNvqdQ91JexeU0RmnOMOM+EIv2of4LaGch1vsJH0WHZWSg0Ady6w/AjwkajfF4DVC2x3Ryznt4srcYdBlFJxeUDPBsboHJrgo7dtjIOEqclc3OH8IPfuWhWXY77cEmBdaS7ry/LicrxUwxjvUMShOI5BOXpxiNDUrFbYNqO7rEtkX20JPaOTnA3Ep87SQd1DjZmtqwrwZ6fzq7b+uBxvajbMK2cH9D2JkX21pTR1jzI4Nh2X4x1sDZCeJrxxY2lcjqdZGlo5LJG3mj7o55p64nK8g60BasvzWFOic7ZXii9NuL2hghfO9BKOxJ5JduTCEBMzYa0cYuTOzZUoBS+c7o3L8Q62BLhpXbGujmszWjkskVVFOexeU8RPGmNXDpMzYV49N6CzlOLA/u1VDIxN81ocCvEdbA2Q6Uubc1dpVsb21QXUFOfwbOPl6298HfpGJzl9eZTbdJaS7WjlsAzesaOKU10jdAzGltJ66NwAU7MR/cDHgdsbysnOSItLQ3SwJcDNG4rJy4opFJfyiAj7t1fxy/Z+RiZiS2n9ueky1Nac/WjlsAz2b68GiNl6ONgaICs9jVs26AE9sZKbmc5bGyp4trGHSAyupcsjE7T0BnUjFCf276hmJqz4WXNsrqWDrQHK/VlsrS6Ik2SapaKVwzJYU5LL9tUFHIihl6qU4qXmPm7Rg6zixj3bqwgEpzgawwRAP2s2xm/eqpVDXNhdU0R1YTYHTq28IzU9G+EXbQHeUlemU1gdQCuHZbJ/ezW/uTTM5ZGJFe1/5OIQFwbG+a2d1XGWLHW5Y3MFmelpPBtDQ/S9I51sqsinodIfR8lSl7Q04e3bqjjYGiA0NbuiY7x4ppfh8Rn+j53xSVPWLA+tHJbJ/u1VwMpdS0+8don8rHStHOKIPzuDW+vKeLbx8opcS809oxzvGOb+m9foHmoceceOaqZnI7zUfK2qOovzxOEOqguztTXnEFo5LJPa8nw2V/lX1EsdmZjhwKnL3Lt7FbmZOugZT/Zvr+byyCQnOoeXve+Tr3WQ6UvjPTfWJECy1OWmdcWU+7NWlCzQMTjOL9oCvH/PGnxpWmE7gVYOK2D/9moOXxxcdrnoZ453MTkT4YGb1yZIstTlri2VZPiEA6eW1xBNzoT5wW+6uHtbJSV5mQmSLjXxpQn3bKvipeYA49PLcy1972gnAB/YoxW2U2jlsALu3W34QL/xqwtL3kcpxROvdbBtVQE7dCnouFOYm8Edmyt46nAHo5NLT5/8SWMPIxMzPLBXK+xE8K4bVjMxE+Y/Xr205H3CEcX3jnRwa105NcV6kKhTaOWwAjaU5XHvrlV869cXGAhNLWmfU10jnL48yv03r0mscCnMH99Rx+jkLN9chtJ+8vAl1pTk8AY98C0h3LSumDduLOXLB88xMR1e0j4HW/u4PDKp3xWH0cphhfzxHXVMzIT5t1+cX9L2Tx7uIDsjjftuuKr+oCZObF9dyF1bKvnqL84tyXo43z/GoXOD3H/zWtK0Xzth/I876+gPTfGdVy8uafsnX+ugLD+TO7dcb2JJTSLRymGFbKrIX7L10DE4zg9/08U7d6yiQNeHSSh/cpdhPTy+BOvhf/2sHV+a8L6btF87kdxSW7pk6+F09ygvNvfx3ptqdCl7h9FXPwaWYj2EI4r/+d0TpInwibfV2ShdajJnPfzy/DWth5829fCfxzr577fWUlmQbaOEqclSrIfJmTCfeOo4JXmZfPRWXcreabRyiIFo62GxCWe++otzvHZhkM/cu00H12ziT+6qY2Rihq8uorQDwSke+f4ptq0q4E/uqrdZutQk2noILqK0//GnLbT0Bvn79+2kWGeOOU5MykFE3i8iTSISEZE919juHhFpEZF2EXk4avkGEXnVXP6UiHjuifj4nXWEI4r3f+XXnAuEXrfuzOVR/vGnrbx9WyXvvVHHGuxi++pC3rmzmn9+sY1/ffksSl0ZGKeU4pHvnyQ4NcsXfnu3dl3YyP+8u56h8Wk+8JVD9Iy8vjP167MDfPWX5/k/b1k7Vx5f4yyxvhmNwHuAny+2gYj4gC8C+4GtwAMistVc/TngC0qpTcAQ8OEY5bGdjeX5PPHQPoKTs7znX1/hyIVBOofG+fahi/zhd45RkJPB3757hx55azOf/8Au7t21is/9pJlP/bCR8elZDrYG+OTTJ3nhTB+ffHsD9bpUhq3ctK6Er3/wZi4NjPHuL/2K5p5RzveP8bVfnucTTx1nXUkun3rnFqfF1JhIdK9qxQcReRn4M3N60Pnr3gB8Rin1dvP3I+aqR4EAUKWUmp2/3bXYs2ePOnLkqlM5ysWBMT74jcNcHBjDquCwtiSXR9+zgzduKnNWuBQlElH8vz9t4UsvnyVNIKIgKz2Nd9+wmr999w6doeQQp7tH+dA3D9MXnJx7V+oq8vn8B3brMUAJRkSOKqUW9fJEY0cNh9VAR9TvTuAWoBQYVkrNRi1f1PciIg8BDwGsXeu+AUvrSvP4/h+8kS+93E5lQTa3N1SwsTxPWwwOkpYmfPKezWyuLuBExzBvrivjDboaruNsXVXAD/7ojXzl4Dlqy/O4vb6CtaU6Huc2rqscROQFoGqBVZ9SSv0o/iItjFLqMeAxMCwHu867HIrzMvnUO7def0ONrdy7axX37tKVPd1EdWEOn7l3m9NiaK7BdZWDUuquGM/RBUQPdawxlw0ARSKSbloP1nKNRqPROIwdqRqHgTozMykTuB94RhnBjpeA95nbPQjYZoloNBqNZnFiTWV9t4h0Am8A/ktEnjOXrxKRAwCmVfAx4DngDPBdpVSTeYi/AP5URNoxYhBfi0UejUaj0cSHuGQr2Y0bs5U0Go3G7SwnW0mPANJoNBrNVWjloNFoNJqr0MpBo9FoNFehlYNGo9ForsKTAWkRCQAL1f4tA/ptFmc5aPlix+0yul0+cL+MWr7YWUzGdUqp8qUcwJPKYTFE5MhSI/FOoOWLHbfL6Hb5wP0yavliJx4yareSRqPRaK5CKweNRqPRXEWyKYfHnBbgOmj5YsftMrpdPnC/jFq+2IlZxqSKOWg0Go0mPiSb5aDRaDSaOKCVg0aj0WiuwnPKQUTeLyJNIhIRkT3z1j0iIu0i0iIiC043apYOf9Xc7imzjHiiZH1KRI6bnwsicnyR7S6IyClzO9sqCorIZ0SkK0rGdyyy3T3mNW0XkYftks889z+ISLOInBSRH4hI0SLb2XoNr3dNRCTLvP/t5vO2PtEyRZ17jYi8JCKnzXflfyywze0iMhJ17z9tl3xRMlzznonBP5vX8KSI3GijbA1R1+a4iIyKyJ/M28b2aygiXxeRPhFpjFpWIiLPi0ib+bd4kX0fNLdpE5EHr3sypZSnPsAWoAF4GdgTtXwrcALIAjYAZwHfAvt/F7jf/P5l4A9skvsfgU8vsu4CUObAtfwMxtzf19rGZ17LWiDTvMZbbZTxbiDd/P454HNOX8OlXBPgD4Evm9/vB56y8ZpVAzea3/1A6wLy3Q782O5nbjn3DHgH8CwgwD7gVYfk9AE9GAPIHL2GwK3AjUBj1LK/Bx42vz+80DsClADnzL/F5vfia53Lc5aDUuqMUqplgVX3AU8qpaaUUueBdmBv9AZiTOh8B/C0uehx4F2JlDfqvB8Ankj0uRLAXqBdKXVOKTUNPIlxrW1BKfVTdWWe8UMYMwY6zVKuyX0YzxcYz9udYtOE4kqpy0qpY+b3IMY8KovOz+5i7gO+pQwOYcwcWe2AHHcCZ5VSC1VlsBWl1M+BwXmLo5+1xdq0twPPK6UGlVJDwPPAPdc6l+eUwzVYDXRE/e7k6heiFBiOamwW2iYRvAXoVUq1LbJeAT8VkaMi8pAN8kTzMdNk//oi5uhSrqtdfAijJ7kQdl7DpVyTuW3M520E4/mzFdOddQPw6gKr3yAiJ0TkWRFxYkLn690ztzx797N4x87pawhQqZS6bH7vASoX2GbZ1/K6c0g7gYi8AFQtsOpTSilXTSW6RFkf4NpWw5uVUl0iUgE8LyLNZg8hofIB/wr8FcZL+lcYrq8PxeO8y2Ep11BEPgXMAt9Z5DAJu4ZeRUTygf8E/kQpNTpv9TEMN0nIjDX9EKizWUTX3zMzJnkv8MgCq91wDV+HUkqJSFzGJ7hSOSil7lrBbl3AmqjfNeayaAYwTNN0sze30DbL4nqyikg6T9+IIAAAAk5JREFU8B7gpmsco8v82yciP8BwW8TlJVnqtRSRfwN+vMCqpVzXmFjCNfwg8FvAncp0oC5wjIRdwwVYyjWxtuk0n4FCjOfPFkQkA0MxfEcp9f3566OVhVLqgIh8SUTKlFK2FZRbwj1L+LO3BPYDx5RSvfNXuOEamvSKSLVS6rLpdutbYJsujBiJRQ1G3HZRksmt9Axwv5klsgFDg78WvYHZsLwEvM9c9CCQaEvkLqBZKdW50EoRyRMRv/UdIwDbuNC28Wae//bdi5z3MFAnRpZXJoaJ/Ywd8oGRFQR8ErhXKTW+yDZ2X8OlXJNnMJ4vMJ63ny2m2OKNGdv4GnBGKfX5RbapsmIgIrIXoy2wU3kt5Z49A/yembW0DxiJcp/YxaJWv9PXMIroZ22xNu054G4RKTbdx3ebyxbHzkh7PD4YjVgnMAX0As9FrfsURhZJC7A/avkBYJX5vRZDabQD3wOyEizvN4GPzlu2CjgQJc8J89OE4Uqx61p+GzgFnDQfsOr58pm/34GR8XLWTvnMc7dj+EqPm58vz5fRiWu40DUBPouhxACyzeer3Xzeam28Zm/GcBWejLpu7wA+aj2LwMfMa3UCI9D/Rpvv64L3bJ6MAnzRvManiMpOtEnGPIzGvjBqmaPXEENRXQZmzHbwwxixrBeBNuAFoMTcdg/w1ah9P2Q+j+3A71/vXLp8hkaj0WiuIpncShqNRqOJE1o5aDQajeYqtHLQaDQazVVo5aDRaDSaq9DKQaPRaDRXoZWDRqPRaK5CKweNRqPRXMX/D4Oc6m0DA82PAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAD4CAYAAAAHHSreAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABCWUlEQVR4nO29d3hc13Xo+1sz6MCgVxJsIAGwk5Ioim6SLMmyaOdJ7pHy8iLH9tV1Esc3zk0c6fN7jj+nycmLnZdcO7biJjuOJFtx0XUoy5Is0UWmxGIWgERjAdEx6DPomNnvjzkHHIEACWBmTpnZv++bDzOnLpyy115lry1KKTQajUajicZjtwAajUajcR5aOWg0Go3mKrRy0Gg0Gs1VaOWg0Wg0mqvQykGj0Wg0V5FmtwCrobS0VG3cuNFuMTQajcZVHD9+fEApVbacbV2pHDZu3MixY8fsFkOj0WhchYi0L3db7VbSaDQazVVo5aDRaDSaq9DKQaPRaDRXoZWDRqPRaK5CKweNRqPRXEVclIOIfF1E+kWkYYn1IiL/LCJtInJaRG6MWvegiLQanwfjIY9Go9FoYiNelsM3gXuusf4gUGt8HgL+FUBEioG/BG4B9gN/KSJFcZJJo9FoNKskLspBKfVzYOgam9wHfEtFOAIUikgV8HbgeaXUkFJqGHieaysZjYVcHpzgP169zOnOEbtF0RhMzoR4qamfp45eZmYubLc4GkApRVt/gG8faaelL2C3OHHDqkFwa4GOqN+dxrKlll+FiDxExOpg/fr1iZFSA8BjPz/Pk0c7uOAfByDdK3zuvbt5z43VNkuWurT0Bfi7Q+d45fwg04ZS+NHJbv71d2+iIDvdZulSk3BY8YUXWvjhyS46hiYByE738r9+5wbu3FZhs3Sx45qAtFLqMaXUPqXUvrKyZY3+1qyC/32qm7891ERJbgaf/q3t/NfH38zNG4v50++e4p9fbEVPDmU9kzMhPvrt45zsGOGB/ev51of28/fv3c1rF4d4/5dfoWtk0m4RU5LHf32Jf/lZGxtLcvnrd+3kx3/8ZraU5/HfvnWMbx9Z9kBkx2KV5dAFrIv6XW0s6wJuX7D8ZYtk0iygd3SK//uHDexdV8gT/+0Aad5I3+Gbv7+fh//zNJ9/voXxmTkeObjNZklTi0efPceFgXH+4yO38MYtpfPLq4uy+e//fpx3f/FX/Pjjb6bcl2WjlKlFW3+AR59t4o6t5XztwX2ICABPPnSAjz/xG/6fHzYwPRviI2+psVnS1WOV5fAM8HtG1tIBYFQp1QM8B9wtIkVGIPpuY5nGYpRS/PnTp5ieC/H5D+yZVwwAGWke/vEDe3jfTdV87RcX6RiasFHS1OLnLX4e/3U7H3rTptcpBoA3binlyYcOMDg+w1cOX7BJwtRjNhTmE0+dIifDy6Pv3TWvGAByM9P4yv91E3dsLeefXmhlZGLGRkljI16prE8AvwbqRaRTRD4sIh8VkY8amxwCLgBtwL8BfwiglBoC/go4anw+ayzTWMy3j7Tzi9YBPvXO7dSU5V21XkT4s7vr8YjwpZfbbJAw9RiZmOHPnz5FbXken7ynftFtdqwp4N03rOXfj7TTH5iyWMLU5F9ebOVM1yh/955di1praV4Pf3HPVoLTc3ztlxdtkDA+xCtb6QGlVJVSKl0pVa2U+ppS6stKqS8b65VS6o+UUpuVUruUUsei9v26UmqL8flGPOTRrIzRiVn+7lATt9aV8bu3LB3sryzI4oH96/jesU5tPVjA//diK4PBGb7w23vJSvcuud3H3rqFubDS1oMFdAxN8MWXz/OeG9dyz86qJberr/Txzl1VfONXl1xrPbgmIK1JHD882cXkbIhPvr3+dSbyYvzB7Vu09WABU7Mh/vN4J+/YVcXOtQXX3HZjaa62Hiziu8c6CCvFn929uCUXzcfvrHW19aCVQ4qjlOKJ1y6zY03+dRsh0NaDVfykoZexqTnuv3nd9TdGWw9WMBcK871jndxWV8aawuzrbu9260ErhxTndOcoTb0B7t+//LEj2npIPE+8dpkNJTkcqClZ1vbaekg8h1v89I5Ncf/Ny39X3Gw9aOWQ4jx59DLZ6V7u27tm2ftUFmTxrhvW8MzJbqZmQwmULjW54A/y6sUhfvvmdXg813bzRfPR22qYngvz41M9CZQudXnitQ5K8zK5c1v5svepr/Rxx9Zynj7eSTjsrjFCWjmkMOPTczxzspt37q4iP2tlo2x/a/caxmdC/LzFnyDpUpenjnbg9QjvW+GI9C3lPrZW+ni2QSuHeNM3NsVLzf2876Zq0r0razZ/a3cVPaNTnHJZGRqtHFKYH5/uZnwmxAP7l+fXjuYNm0soyE7nJw29CZAsdZmZC/OfJzq5c2s55fkrH9R2cGcVx9qH6R/TrqV48vTxTkJhtewYUDR3bqsg3Suue1e0ckhhnnitgy3ledy4fuWFcNO9Ht62vYLnz/UxPaddS/HixXN9DARneGAFMaBoDu6qRCl4rtFdDZGTCYcVTx69zBtqSthYmrvi/Quy03nTllIONfS4qvyMVg4pyuXBCU52jPDb+9ZdN311Kd6xq5LA1ByvtA3GWbrU5Ucnu6nIz+TWutXVD6stz2NzWS6HzmjlEC9+0zFCx9AkH7h59YUn37Gzio6hSRq7x+IoWWLRyiFFOdzSD8Bd21dfPfJNW0rxZaZpH3ecmA2F+VXbAHdsLce7gkB0NCLCO3ZV8erFQQaD03GWMDU53NyPR+Ct9csPRC/kbdsr8HqEQ2fc865o5ZCiHG7xs744h40lOas+Rmaalzu3lfPTs33MhvTcArFyon2YwPQct9WtvhECuGdnJWEFPz3bFyfJUpvDLX72riukMCdj1ccoys3gDTUlPNvQ6xrXklYOKcj0XIhXzg9ye33Zql1KJgd3VTEyMcuRC9q1FCuHW/ykeYQ3blne2Ial2F6Vz4aSHFf1Up3KYHCa012j3B6D1WByz85KLg6M0+ySCYG0ckhBjl0aZmImxG2r9GtHc1tdGTkZXp51WSaGEznc4ufGDUUrTiteiIhwcGcVvz4/6MqRuU7il20DKEVc3pW376hEBNfEg7RySEEOt/jJ8HqWPfr2WmSle3nr1nKeP9vnGnPZifQHpmjsHotLIwRwcGclc2HFy816HEosHG72U5ybwa5llJa5HmW+TG7eWMzzLnH3aeWQghxu9nPzpiJyM+Mz19Obt5TiD0xzYWA8LsdLRX7RMgDEp4cKsHNtAflZadrdFwPhsOLnrX7eUlu6opHq1+LNW0pp6h1zhUWnlUOK0TM6SXNfIG6NEDBvgeiGaPW83OKnzJfJjjX5cTme1yPs31Si70kMNHaPMRCcifu7ohS8etH509Zo5ZBimOUuYs2IiWZjSQ4V+ZkcueD8B96JhMKKX7T6ubU29gSBaA7UFHNpcIKeUT3H9Gow073fUhs/5bBnXQGZaR5XKO14zQR3j4g0i0ibiDy8yPoviMhJ49MiIiNR60JR656JhzyapTnc4qcyP4u6iqtne1stIsKBmkgvVccdVs7pzhFGJma5rT5+jRBcsehe1Up7VRxu8bNzbT5lvsy4HTMzzctNG4pc0ZGKWTmIiBf4InAQ2A48ICLbo7dRSn1CKbVXKbUX+Bfg+1GrJ811Sql7Y5VHszRzoTC/aB3gtrr49lAh0hD5A9Nc1HGHFXO4xY9H4C0L5oiOlW1V+TrusEpGJ2c5cXkkri4lkwM1Ja6IO8TDctgPtCmlLiilZoAngfuusf0DwBNxOK9mhTR0jxGYmuMtdfFthCA67uD8HpHTeKVtkF1rCyjKXf0gq8XQcYfV89rFIUJhFVeXkokZd3jN4XGHeCiHtUBH1O9OY9lViMgGYBPws6jFWSJyTESOiMi7ljqJiDxkbHfM79fpeavhePswADdvLI77sTeW5FDuy9QN0QqZmQtzqnOEfQm4J6DjDqvlxOVh0jzC3nWFcT/2lbhD8iuHlXA/8LRSKrqM5wal1D7gd4B/EpHNi+2olHpMKbVPKbWvrCz+2jwVOHF5mLWF2VSsohT09dBxh9VxrmeM6bkwN21YeWXc5aDjDqvjePswO9YWkJXujfuxr8QdnN2Riody6AKii5xXG8sW434WuJSUUl3G3wvAy8ANcZBJswgn2ocT1ghBpCHq13GHFWFac4m6L9uq8vHpuMOKmA2FOdUxwk2rKGW/XA7UlHDO4XGHeCiHo0CtiGwSkQwiCuCqrCMR2QoUAb+OWlYkIpnG91LgTcDZOMikWUD3yCQ9o1PcuL4wYec4UBNxjTjdXHYSxxNozUEk7nDLpmJX5NU7hbPdEWvuxg2FCTuHG+IOMSsHpdQc8DHgOeAc8F2lVKOIfFZEorOP7geeVK/3OWwDjonIKeAl4FGllFYOCeBKDzUxvm2ATaW5Ou6wQk60D3NjAq05iDREFwfG6R3Vs8MthxOXE2vNgTviDnGpn6CUOgQcWrDs0wt+f2aR/V4BdsVDBs21Od4+THa6l61VvoSdw4w7vHoxEneId7pssmFaczcl0JqDqLjDxUHu27torogmiuPtw6wpyKKqIDth5zDjDq9edG5HSo+QThFOXB5mz7qCFU+OvlJu2lBE39g0vXoO4+tihTUHsLXSR3a6l99cHknoeZIFK6w5iLwrTb0BJmecOc2uVg4pwORMiLPdYwk1k012V0eqV57qGEn4udzOicuJt+YA0rwedq7N53TnSELPkwx0j0zSPTpl0btSSCisONszmvBzrQatHFKA050jzIUVNyYw+8JkW1U+aR7hVKczH3gncaJ9mN3VibfmINIQNXaP6Rn7roMZb7DiXdljdKROdjjzXdHKIQU4bjzwN1jwwGcZPWHdS702kzMhGi2y5iBi0U3PhWnudccsZHZxon2ErHQP2+NUHfdalOdnUZmf5dh3RSuHFOBE+zA1ZbkUx7k8w1LsqS7kdOco4bAeDLcUpjVnlXIwR/qe1hbdNTl+eZjd1YWWWHMQyVpy6j3RyiHJUUpx4nJiB/QsZE91IYGpOS4O6sFwS2GlNQewvjiHwpx0x/ZSncDUbIjGrlHLFDZE3H0XB8YZnZy17JzLRSuHJOfS4ARD4zPWPvDrIr5U3RAtzYn2EUutORFh19oCHQu6Bqc7RyPWnMUdKYAzDrwvWjkkOWYDvdt4CK1gS1ke2eleTjk00OYEznSNzDcMVrGnupCWPuemTtrNma7I82p2bqxgl5nd58COlFYOSU5j9xgZaR5q4zi5z/XQqZPXpj8wRd/YNDvjMGn9SthdXUAorGjs1kp7MRq7RqnIz6Tcl5hSJotRkJ3OptJcR6Z+a+WQ5DR0jbK10mdZgM1kj06dXJLG7jGAuM0XvVzMoLR2LS1OQ/coO9dYq7AhktLqxKC0Vg5JjFKKhq5RdtjwwO9eV6hTJ5eg0XBfWJEuGY3TUyftZHImRFt/0HKFDRGXb+/YFP0OqyqglUMS0zk8ydjUHDvXWv/AmwN8nNgjspvG7jE2luSQn5Vu+bl3O7SXajdNvWOEFeyw2NUHkXRWcJ5Fp5VDEmP6lu0wlXXq5NI0dI/a0ggB7FlnpE5OOC910k4aDFef1XEggO1VBXg94ri4g1YOSUxD1xhej1BfmdjaPYshIuyuLuSkwx54uxmdmKVjaNIW9wVcSZ083TViy/mdSmPXKEU56awpsC4YbZKd4aW+wue4jCWtHJKYhu5RasvzEjLV4XLYU11Aa39Qp05GYac1B1dSJ7Vr6fU0dEdic3aVmd+zroAzXaOOmmI3LspBRO4RkWYRaRORhxdZ/0ER8YvISePzkah1D4pIq/F5MB7yaCI0do/ZEow22V6VTyisaOnTQWkTuzKVTAqy06kuyuZsz5gt53ciM3NhWnqD7LAhNmeyvSqfkYlZehw0IVPMykFEvMAXgYPAduABEdm+yKZPKaX2Gp+vGvsWA38J3ALsB/5SRKwbnpjE9I9N4Q9M29YIQaRCK8A53RDN09A9SlVBFiV5mbbJsK0qX9+TKFr7A8yEwrZZc+DMdyUelsN+oE0pdUEpNQM8Cdy3zH3fDjyvlBpSSg0DzwP3xEGmlKfBdF/YFPiESFA6N8PrqAfebuxKLY5me1U+lwbGtbvPoLHLvmC0ydYkVQ5rgY6o353GsoW8V0ROi8jTIrJuhftqVkiD8cBbnUsfjccIhp/r0W4lgPHpOS4MjNuSWhzNtqp8wgqatbsPiHSk8jLT2FCcY5sMeZlprC/OcdS7YlVA+n8DG5VSu4lYB4+v9AAi8pCIHBORY36/P+4CJhuN3aPUlOaSlxmXacJXzbaqfM71jjkq0GYXTb1jKGVfMNpkuwN7qXbS2D3G9qp8PB575zzfVuVz1D2Jh3LoAtZF/a42ls2jlBpUSk0bP78K3LTcfaOO8ZhSap9Sal9ZWVkcxE5uGrrGbLUaTLavyScwNUfn8KTdotiOac3ZGfgEqC7KJi8zzVENkV2Ewoqz3WO23xOIjHe4ODjOxMyc3aIA8VEOR4FaEdkkIhnA/cAz0RuISFXUz3uBc8b354C7RaTICETfbSzTxMDw+AxdI5O2+lBNnBhos4uGrlFKcjOozLc+lz4aj0fYWumsXqpdXBwIMjkbst2ag4jloBSOKTkTs3JQSs0BHyPSqJ8DvquUahSRz4rIvcZmHxeRRhE5BXwc+KCx7xDwV0QUzFHgs8YyTQyYaYp2ZiqZbK30IYKjfKl20dgdsebsyqWPJpKxFEj52frmU4sdYDmYHSmnpBnHxSGtlDoEHFqw7NNR3x8BHlli368DX4+HHJoIZo/QfNjsJCcjjY0luSnfS50NhWnrD/KW2o12iwJEno1vH2mnc3iS9SX2BWLt5lxPgHSvsLnMupL2S1FdlI0vyznuPj1COglp7g1QmpdBqY259NFsq/JxrtcZD7xdXBoYZyYUtqWUyWJsq4rI4ZReql009Y6xuSzP8pL2iyEibKvMd4yVbf8V0cSdpt6AYxohgG2V+bQPThCcdkagzQ7OGX5kp9yX+nl3X2orh+beAFsdck8gorSbesYc4e7TyiHJMMtVbK2036VkYrq3mlPYemjujRRB3FJuv/sCIu6+TaWp7e4bNcpV1DvsXRmfCdExPGG3KFo5JBvtg+NMzznHfQGwbY0ZaHOGuWwHzb0BakpzyUyzpwjiYphjUFIVcxCgsywH52T3aeWQZJhpcE564NcUZJHvoECbHTjN1QeRwXAdQ5MEplJzbgfTknXSfamv9OERZ3SktHJIMpp6A4hAbblzHngRSelib8HpyCBAJylsuBKUbnJIXr3VNPUG8GWlUWXDHA5LkZXudYy7TyuHJKO5N8DGklyyM5zjvoCIudzcm5p59c3zwWjn+LbBWS4MOzCD0U4YdxKNUzpSWjkkGc19AeornNVDhYgLY2ImRPuQ/YE2q3Giqw+gMj+Lwpx0RzREVqOUirwrDrsnEFEOkfnf7XX3aeWQREzOhLg0OO7IB77OkCkVJ/5p7h0jN8PL2sJsu0V5HSJCXYWPlr6g3aJYTvfoFIGpOcdZc8B8567V5vuilUMS0dofQCnn9VABao0UztYUVA5NvQHqKn22V/1cjLqKPFr6AilXNdcMRm9z4LtSN68c7H1XtHJIIpocNtAqmtzMNKqLsmlOsV6q6b5wosKGSC81MDVH75hzpqe0AvNdqXPgfakuyiY73Wv7fBtaOSQRzb0BstI9bCjJtVuURamv8NGSYpkx/YFpRiZmHRkHAqitMN19qaW0m3oCrC3MJj8r3W5RrsLjEeoq8rRbSRM/mnsD1Jb78DrQfQGRhujCQJDZUNhuUSyjyaGZSiamCyPVlHazA8edRFNb4dOWgyZ+NDmsTsxC6ivzmA0pLg2M2y2KZZi+bafel+LcDMp8mSmVKDAzF+a8P+ho5VBf4cMfmGZ4fMY2GbRySBIGg9MMBKcd/cDXpaALo6k3QEV+JkW5GXaLsiRmUDpVuDAQZC6sHKuwwRnZfVo5JAlXcumd6b4A2FyWh0dSa2L7iPvCufcEmE9nTZUBis0OTtwwqauIZPe5XjmIyD0i0iwibSLy8CLr/1REzorIaRF5UUQ2RK0LichJ4/PMwn01y8NscOsqnVH1czGy0r1sLMlNGf92KKxo6w9SX+HcewIR5TA5G6JrJDXm+W7uDZDmEWpKnXtfKvOz8GWl2Wplx6wcRMQLfBE4CGwHHhCR7Qs2+w2wTym1G3ga+PuodZNKqb3G5140q6K1P0hhTjplDpngZylqK/Jo6U8N5dAxNMH0XHg+I8ipmO4+p8xdnGha+4NsLM0lI825jhNzgKKdVnY8rs5+oE0pdUEpNQM8CdwXvYFS6iWllFk34QhQHYfzaqJo7QtQV+68OjELqa/wcWlgnKnZkN2iJBzTJVDncOVQa7owUkRpt/YF5t02TqauwkerjQMU46Ec1gIdUb87jWVL8WHg2ajfWSJyTESOiMi7ltpJRB4ytjvm9/tjEjjZUErR0hdkixse+EofYQXn/ckflG7tj/yPTpngZynys9JZU5CVEu6+qdlIfa8tDqpavBT1FXkMT8ziD07bcn5L7SoR+V1gH/APUYs3KKX2Ab8D/JOIbF5sX6XUY0qpfUqpfWVlZRZI6x78wWlGJ2epc3gjBNGlAVJAOfRFBlrlZabZLcp1ieTVJ/89Oe8PohSusRwAWnrtuS/xUA5dwLqo39XGstchIncBnwLuVUrNq0KlVJfx9wLwMnBDHGRKKcyG1unuC4CNJbmkeyUlMpZa+oKOtxpM6it9nPcHmUvyAYpuelfsTmeNh3I4CtSKyCYRyQDuB16XdSQiNwBfIaIY+qOWF4lIpvG9FHgTcDYOMqUU5sPjBrdSRpqHTaXJn7EUCivO+4Ou6KFCpLGcmQsnfUn11v5IptJGh5aYiaY0L5Pi3Az3Kgel1BzwMeA54BzwXaVUo4h8VkTM7KN/APKA7y1IWd0GHBORU8BLwKNKKa0cVohbMpVM6ip8SR/8nM9UcoFvG664WeyuBJpoWvqcn6kUjZ0DFOPiDFVKHQIOLVj26ajvdy2x3yvArnjIkMq09gWoLc9zfKaSSX2Fjx+f7mF8eo5cF/jjV4P5Qte6xHLYUp6HCDT3Brlnp93SJI7WvsD8DHhuoL7Cx/dPdKGUsvz9dof61CyJmank9Fz6aExZzWyeZMT839xyX3Iy0lhXlJPUZTSmZkNcHppwzT2ByPMTmJ6je9T6kupaObgcN2UqmZi96bZkVg59AdYUZLkiU8mktjwvqe/JeX+QsEsylUzMSbLsuC9aObgcM/vCTb2hDcU5ZHg9tCZx3KG1313WHFwpqZ6sGUtmA+uWOBDYOyucVg4ux22+bYA0r4easlzakjSv3qypVOsiaw4ivdTZkErajKWWvgBej7Cp1PmZSiZFuRmU5mVoy0Gzclr7gxRkuydTyWRLeV7SxhzMTCU35NJHUzufsZSc96WlL8jGkhzXZCqZ2PWuuOsqaa7CrBPjlkwlk9pyHx3DE0zOJF+NpfmyGS6y5iBSUh2gLUndfW39QdcpbIi8K3bUWNLKwcW4MVPJpLYiD5WkNZbmXX0ucyvlZqaxtjA7KS26qdkQ7YPjrn1Xxqbm8AesrbGklYOLMTOV3NYIgb1ZGImmrT9IVUEWPgdOXn89ah0wsX0iuOAfJ6zcp7DhSuFGq5W2Vg4uxk11YhayoSSXNI8kZcZSS1/AlT1UiDSe5/1BQkk2K5z5nLnxXTGzq6zOWNLKwcW0utR9AZEaSxtLc5Oul2rWVHLjPYFIQzQ9F6ZzOLkyllr7gq7LVDIpzcugMCddWw6a5TOfqeRzV6aSSTIOuuoanmRqNuyqgVbRbEnSjKXW/oArM5UgMitcbbn17j73XSnNPK1GLr3bMpVMasvzuDQ4zvRc8mQsme4LN0wmsxh2+bcTTeRdcec9gcjz1NJvbcaSVg4upq3fPfMFLMaWisiscBcHxu0WJW64Zfa3pcjPSqcyPyupYkHTcyHaBydce08g0pEamZhlcHzGsnNq5eBSBoPTDI3PuP6Bh+RyYbT2BSn3ZVKQ7b5MJZPaiuRy910amCAUVq6qIrAQOwYoauXgUtxW9XMxNpXm4pHkcmG09Qdc3QhBxOpp6w8STpKMpSuuPvfeF9MlZuUARa0cXMqVImLufeCz0r1sKMlNmhG5Spk1ldyrsCHSEE3MhOgenbRblLjQ1h9E5MoIcDdSkZ+JLzPN0o5UXJSDiNwjIs0i0iYiDy+yPlNEnjLWvyoiG6PWPWIsbxaRt8dDnlSgrT9IboaXqoIsu0WJiS02ZGEkip7RKcZnQq7uoUKUCyNJLLrW/iDri3PISvfaLcqqERG2WDxAMWblICJe4IvAQWA78ICIbF+w2YeBYaXUFuALwOeMfbcTmXN6B3AP8CXjeJrr0NofYEuFz7WZSia15XlcHBhnNgnKRLcmgTUHsMWssZQkSrutz73jTqKptbgAXzwsh/1Am1LqglJqBngSuG/BNvcBjxvfnwbulEirdh/wpFJqWil1EWgzjpcQvvhSG48+25Sow1tKa7I88BV5zIUVl5IgY2l+UKKL40BglonOTIpZ4eZCYS4MBF2bWhxNbbmPgeA0wxZlLMVDOawFOqJ+dxrLFt1GKTUHjAIly9wXABF5SESOicgxv9+/KkGbegP815nuVe3rJEYnZukPTLvefQHRgTb391Lb+oMU52ZQnJthtygxU1ueR1sSFEVsH5pgNqSS4l3ZWuWjvsJnWTqrawLSSqnHlFL7lFL7ysrKVnWM2vI8OocnmZiZi7N01tLmd2/ZjIVsLotMbJ8M/u1Wl487iaa2Io+2vqDlZaLjzfxMiUlwX95SW8Zzn7jVsmcsHsqhC1gX9bvaWLboNiKSBhQAg8vcN27UlkfKRF/wu9uF4cbpDpciO8NLdZH7y0RfyVRyfyMEkXclMD1H35i1ZaLjjVkSfnOS3BcriYdyOArUisgmEckgEmB+ZsE2zwAPGt/fB/xMRbokzwD3G9lMm4Ba4LU4yLQoV7Iw3O1Lbe0LkpXuYW1Rtt2ixAVzMhM34+by6Yth+ujd/64EWFuYTV5mmt2iuI6YlYMRQ/gY8BxwDviuUqpRRD4rIvcam30NKBGRNuBPgYeNfRuB7wJngZ8Af6SUSlihnQ0luaR7xfWpk639QTaX5eH1uDtTyaS2PI8LA+OuntjezOxxezDaJFmmDE0mV5/VxEWdKqUOAYcWLPt01Pcp4P1L7Ps3wN/EQ47rke71sKk01/UujLb+IDdvLLJbjLixpTyPmbkwHcOTriypDMmTxmpSkptBkQ1louNJKBxx9b2hpsRuUVyJawLS8cLtLozg9BxdI5NJ1Rsye9tuvi+t/QF8WWmuLZ++kEiZaJ+rR693DU8yPRdOqnfFSlJOOWwpz+Py0ARTs+4sE31+vupncrgvIDnKRJvjTtw+KDGaLRV5tLg4Y8mMl7i91pVdpJxyqK3II+zijKX5TKUkeuDzMtNYU5DlasshMvtb8ihsiLjIRidn8QfdmbFkvitbypLrvlhF6ikHl2dhtPQHSPcKG4pz7BYlrmyp8LnWchgan2Eg6O7y6YsxP0DRpUHplr4gZb5MCnLcWz7dTlJOOWwszcHrEdeOyG3rC1JTmkeaN7lunTllqBsntr9SNiPJlIPLC/C19QdcO12rE0iuFmYZZKZ52VCS49oUvZYkmC9gMWrL85ieC9M17L4y0S1G41mXJGmsJuW+THxZaa60ssNh5fqpQe0m5ZQDmNUN3ffAT8zM0Tk8mZQPvJsHKLb1BcjLTHN9+fSF2DWxfTzoHp1kYiaUlB0pq0hR5eDj0uAEM3PuGnR1vn8cpUhKU9kMGrrRhdHSFxlolUyZSiaRdFb33RNToSWbNWclqakcKvIIhRWXBt2VsdSSJCWhF6MgJ51yX6Yre6mtSezbrq3IY3B8hkGXZSzNvytJliRgJSmpHObz6l3WELX2ByOZSiXJlalkEpnY3l1uJTNTKRldfXDlXXGb9dDaH8lUKsxxf/l0u0hJ5XClTLS7GqLWvgA1pXmkJ1mmkklteSSd1U2DrpI1U8lkfvS625RDX/Jac1aRnK3MdchK97K+OMd1D3xLf4AtSfzAbynPMya2n7JblGWTrJlKJmsKssjN8LrKctCZSvEhJZUDGBlLLhqRa2Yq1SXxA2/6h900PWWyZiqZiAhbyvNcdU90plJ8SF3lUOFz1cT2yZypZGL2vt00IjeZM5VMal02el1nKsWHlFUO9RU+ZkPumdg+FYqIFeVmUObLpNlFvdTW/mBSK2yIvCv+wDRDFs1dHCvz74rOVIqJlFUOZiPrloaopc/MVHLnfAfLpa7CPS6M4fEZBoLTSe/brquM/H9uuS9mTSWdqRQbMSkHESkWkedFpNX4e9UMNCKyV0R+LSKNInJaRH47at03ReSiiJw0PntjkWclbC7LwyORB8kNtPYF2FSam7SZSiZ1FT5a+4KEXVBjqSXJM5VM6uZnhXOHcmjtC2irIQ7E2tI8DLyolKoFXjR+L2QC+D2l1A7gHuCfRKQwav2fK6X2Gp+TMcqzbLLSvWwszaWl1yUPfH8wKQe/LaS+wsfkbIhOF9RYak3yTCWTyvwsfFlprrCylVKGqy+574kVxKoc7gMeN74/Drxr4QZKqRalVKvxvRvoB8piPG9cqCv30eKCsQ6TMyE6hieSOlPJxFSAbnBhtCZ5ppKJiFBX4XOFld01ojOV4kWsyqFCKdVjfO8FKq61sYjsBzKA81GL/8ZwN31BRJacY1FEHhKRYyJyzO/3xyh2hLpKH5cGxh0/K9x5fxClkt99AVdcGG7opZqT1ydzppJJRDkEHD9A8cpc3snfkUo011UOIvKCiDQs8rkvejsVeWqWfHJEpAr4NvD7Sikzf/QRYCtwM1AM/MVS+yulHlNK7VNK7Ssri4/hUWfMCnfe7+wekdmLTvasGABfVjprCrJcYTm09CV/ppJJfUUeIxOz+APOrrHUqmsqxY20622glLprqXUi0iciVUqpHqPx719iu3zgv4BPKaWORB3btDqmReQbwJ+tSPoYqZ+f2D7IjjUFVp56RaRKppJJXaXzXRipkqlkUjfv7gtSnu9cN1pLX5DSvEyKcnWmUqzE6lZ6BnjQ+P4g8KOFG4hIBvAD4FtKqacXrKsy/gqReEVDjPKsiI2luaR7xfEujJYkr6m0kLoKH+f7g8w5eICi+cyYaZ7Jjvl/uuFdqa/UVkM8iLW1eRR4m4i0AncZvxGRfSLyVWObDwC3Ah9cJGX1OyJyBjgDlAJ/HaM8KyLd66Gm1PllNJp7A9SnSCMEEeUwEwrTPjRhtyhL0mxkuW1NkftSmpdJSW6Go9+VUFhFlENFvt2iJAXXdStdC6XUIHDnIsuPAR8xvv878O9L7H9HLOePB3WVPk52DNstxpKMTc3SNTLJ79yy3m5RLMN097X0Bthc5sxeYFNvgEJjDopUobYiz9GWw+WhCaZmwymjsBNNavgprkFdeR4dQ5OMT8/ZLcqitKRYDxUwMoCc7cJo7h2jvsKXEplKJvXGAEWnZiw1944BpJSVnUi0cjAeJKeWJG4ylEMqPfDZGUZJdYcGpcNhRUtfMKUUNkTeleD0nGNLqjf1BhBJ/kGJVqGVQ4WzA23NvQF8mWmsLcy2WxRLqS33OfaedI1MEpyeo74ytXzbdVHuPifS3BtgQ3EO2Rleu0VJClJeOawvziEzzePoB76uMrXcFwD1lXlcHBhnes55AxRT0ZoD5kfoO1Vpp1riRqJJeeXg9Qi1FXnzM3o5CaUUTb1jKee+gEgvNRRWXHRgSfVU9W0X5KRTme/MAYpTsyEuDY6zNcWsuUSS8soBIj0i84V3Er1jU4xNzaWscoArKaNOoqk3QHVRNnmZMSX7uZLaijxH3pPWviBhlVqJG4lGKwciPcC+sWmGHTaZyRX3Rer1hmrKcknzyPw1cBLNvYGUbYS2VkZmhXPaAMWmFLXmEolWDsC2qkjje67HWdaD2UOrT8Hsi8w0L1vK8xx3T6bnQlwYGE/ZRmhbVT4zc2HHufuaewNkpXtSpsSMFWjlwBXlcNZhDVFzb4CqgiwKctLtFsUWtlflO045nO8fJxRWKWnNgYPflb4AteU+vJ7UStxIJFo5AGW+TMp8mZzrcZYLoynFsy+2VeXTNzbNYNA5lUCb+yKNYqq6lTaX5ZHuFccph1R/VxKBVg4G2xzWS50NhWnrT+0H/oq7zzlKu6k3QLpX2FSamu6LjDQPW8p9jrong8Fp/IHplFXYiUIrB4NtVT7a+oPMOiTQdnFgnNmQSukHfltV5H93ktJuNuo9pUqF3MXYVuVz3D0BHYyON6n7hC9ge1U+M6GwYyb+mc9USuEKkyV5mZT7Mh3XEKWywobIu+IPTDPgEHdfqg5KTDRaORg4LWOpuXcMr0fYXJ6a7guTbVX5jvFvj07M0jM6lbLBaBPnvSsBinMzKMtLnQq5VqCVg0FNaS4ZaR7H+FKbegLUlOaSmZbadWK2VeVz3h9kZs5+d9+53tQORps4TTk0pWCFXCuISTmISLGIPC8ircbfoiW2C0VN9PNM1PJNIvKqiLSJyFPGrHG2kOb1UFfhnLz6xu4xdq517tSlVrGtysdsSDmiam5jd+TZ2LE2tS2H4twMKvOzHNGRmg2FOdcbYGeK35NEEKvl8DDwolKqFnjR+L0Yk0qpvcbn3qjlnwO+oJTaAgwDH45RnpjYVpnP2e4x2+vV+wPT9I5NsWONfuC3O6iX2tg1Srkvk3Kfc+dQtgqnBKVNq1J3pOJPrMrhPuBx4/vjROaBXhbGvNF3AOa80ivaPxFsq8pncHwGf8DeQFtj9ygAO9boB37TvLvP/oaooXtUN0IG26ryaesP2l41t6HLsOb0uxJ3YlUOFUqpHuN7L1CxxHZZInJMRI6IyLuMZSXAiFLKnIKtE1gbozwx4ZTRn6b7Yru2HEjzeqiv8M37++1iciZEW39QW3MG26rymQvb7+5r7B4lO92bsuNOEsl1lYOIvCAiDYt87oveTkV8MUv5YzYopfYBvwP8k4hsXqmgIvKQoWCO+f3+le6+LLY7ZNBVY/coG0pyKMhOzbIZC4m4MAK2uvuaescIK91DNXHKAMXGrjG2r8nXZTMSwHWVg1LqLqXUzkU+PwL6RKQKwPjbv8Qxuoy/F4CXgRuAQaBQRMy6x9VA1zXkeEwptU8pta+srGwF/+LyKchJZ21htu0ujIauMXbqRmie7VX5DI3P0G+ju6/BsOZ04DPCptJcstLtdfeFw4rG7lF2amsuIcTqVnoGeND4/iDwo4UbiEiRiGQa30uBNwFnDUvjJeB919rfauwOtI1OznJ5aEK7lKJwgrvvbPcohUbnQROZJKu+wt535dLgOOMzIXboOFBCiFU5PAq8TURagbuM34jIPhH5qrHNNuCYiJwiogweVUqdNdb9BfCnItJGJAbxtRjliZltVflcGBhncsaeQNvZ+R6qfuBNtprKodu+hqiha4wda/J1Ln0U5gBFu9x9pjWn40CJIaaprJRSg8Cdiyw/BnzE+P4KsGuJ/S8A+2ORId7sWltAKKw42zPKTRuKLT//lUwl/cCbFGSns7Ekh9OdI7acf2YuTHNvgN9/00Zbzu9UdlUX8OTRDjqGJllfkmP5+Ru7R8nweqgtT+1BiYlCj5BewJ51hQCc6hi15fwNXaNU5mdRqksBvI7d1YWc7rTnnrT2B5gJhbX7YgF7qgsBOGWT0m7sGqO+0kdGmm7GEoG+qguoyM+iIj/Ttl5qZGS0thoWsru6gJ7RKfrHpiw/t5larAOfr8dsmO14V5RSxrgTfU8ShVYOi2BXL3ViZo7z/qBOl1yEeYvOhvvS2DVKboaXjXoKyteR7vWwY02+LVZ218gkIxOzbNfvSsLQymER9lQXcGFgnNHJWUvPe64nYOTS697QQnasyccj2NJLbeiO5NJ7dC79VeypLqShe5RQ2NqgtDkyWltziUMrh0Uwe6lnLO6lmsFonal0NTkZadRV+Cy3HEJhxdnuMW3NLcHu6gImjNHjVnK2exSvR+bTnDXxRyuHRdi9thCwPtDW2DVGcW4GVQW6sNti7Kku5HTniKWpkxcHxpmcDWmFvQS7bQpKN3SPsaUsj6z01C5pn0i0cliEghx7UidPdY7oXPprsHtdASMTs3QMTVp2TvMZ0IHPxakpzcWXmWbpu6KU4nTnSMqXTk80WjksgdVB6cDULM19AW7asOiUGBqupE6etLAhOt4+jC8zTefSL4HHI+yqLrA0KH15aIKB4Ix+VxKMVg5LMJ86GbAmdfJkxwhKoR/4azCfOtkxYtk5j7cPs3d9oS7sdg12VxfS1DtmWfnu4+3DgH5XEo1WDkuw1whKn7aoR3S8fRiRK+fVXI2ZOmmVRaetueWxp7qA2ZCyrEKrtuasQSuHJdixpgCvRywLtB1vH6a+wocvS5fpvhZ7qgs50zXKXCjxc0qf6hjV1twyMLP7rIo7nLg8oq05C9DKYQmyM7zUludZkjoZDitOXh7hRt0IXZfd1QVMzoZo8yc+dVJbc8ujqiBS7uWkBe6+wNQszb1j3LhevyuJRiuHa2BV6mRrf5DA9Bw36Qf+upipk1a4+45f1tbcchAR9lQXWOLuO9UxSlhbc5aglcM12Lu+kJGJWS4OjCf0PDrAtnxqSnPxZaVx4vJwQs8TDit+0z6srbllsnddIef9QUYnEltVYN6aW1+Y0PNotHK4Jvs3RUp2v3pxKKHnOd4+TEluBhtsKHvsNjweYf/G4oTfE23NrYz9m4pRCl67lOB3xbDm8rU1l3C0crgGNaW5lPkyOXJhMKHnOXE50kPVg9+Wx4GaEi4OjNM7mrg0Y9My0dbc8tizrpDMNE9C35VwWPGby9qas4qYlIOIFIvI8yLSavy96q6JyFtF5GTUZ0pE3mWs+6aIXIxatzcWeeKNiHCgpoQjFwYTFncYDE5zcWBcN0Ir4EBNCQCvXkxcQ6StuZWRle7lxvVFCVUObf4ggSltzVlFrJbDw8CLSqla4EXj9+tQSr2klNqrlNoL3AFMAD+N2uTPzfVKqZMxyhN3DtQU0zc2zaXBiYQc/8TlEQCdfbECtq/Jx5eZxpELiXNhnGgf5ob12ppbCQdqSjjbM5awuIMZm9OWgzXEqhzuAx43vj8OvOs6278PeFYplZiWNgGYvdRE9YiOtw+T5hF2V+vCbsvF6xH2byrm1QTdk6HxGS5oa27FHKhJbNzhePswxbkZbNTWnCXEqhwqlFI9xvdeoOI6298PPLFg2d+IyGkR+YKILDk3pog8JCLHROSY3++PQeSVkei4w4n2YXasLdDVJVfIgZoSLgyM05eAmeFO6OyxVZHouMOJ9mFu1NacZVxXOYjICyLSsMjnvujtVMQpv6RjXkSqgF3Ac1GLHwG2AjcDxcBfLLW/UuoxpdQ+pdS+srKy64kdNxIZdwhOz3Hi8jAHaorjetxUIJEW3S/bBshK92hrboVkpXu5YX1hQu5J5/AEFwbG9btiIddVDkqpu5RSOxf5/AjoMxp9s/Hvv8ahPgD8QCk175BUSvWoCNPAN4D9sf07iSFRcYdX2gaYCyturyuP63FTgUTGHQ63+HlDTYm25lZBouIOP28ZAOD2eus6hqlOrG6lZ4AHje8PAj+6xrYPsMClFKVYhEi8oiFGeRLCfHZMnHtEh1v85GZ4tftiFSQq7tA+OM7FgXFur9cKezUcqClBKTga57jD4ZZ+1hZms7ksL67H1SxNrMrhUeBtItIK3GX8RkT2ichXzY1EZCOwDji8YP/viMgZ4AxQCvx1jPIkhETEHZRSHG7x88YtpWSk6eEmq8GMO/THMe7w85ZIPOu2Ot1DXQ171xWSEee4w2wozK/aBrmtvkzHGywkLZadlVKDwJ2LLD8GfCTq9yVg7SLb3RHL+a3iStxhCKVUXB7Q8/5xOocn+ehtm+MgYWoyH3e4OMS9e9bE5ZgvN/vZUJLDxtLcuBwv1YiMdyjkSBzHoBxvHyY4PacVtsXoLusyOVBTTO/YFOf98amzdFj3UGNm+5p8fFlp/Kp1IC7Hm54L8cr5QX1PYuRATQmN3WMMjc/E5XiHW/ykeYQ3bi6Jy/E0y0Mrh2XyVsMH/Vxjb1yOd7jFT01ZLuuKdc72avF6hNvry3nhXB+hcOyZZMcuDTM5G9LKIUbu3FqBUvDC2b64HO9ws5+bNhTp6rgWo5XDMllTmM3edYX8pCF25TA1G+LVC4M6SykOHNxZyeD4DK/FoRDf4RY/GV7PvLtKszp2rs2nuiibZxt6rr/xdegfm+Jszxi36Swly9HKYQW8Y1clZ7pG6RiKLaX1yIVBpufC+oGPA7fXl5GV7olLQ3S42c/Nm4rIzYwpFJfyiAgHd1byy7YBRidjS2n9ueEy1Nac9WjlsAIO7qwCiNl6ONziJzPNwy2b9ICeWMnJSOOt9eU829BLOAbXUs/oJM19Ad0IxYmDu6qYDSl+1hSba+lwi58yXybbq/LjJJlmuWjlsALWFeewc20+h2LopSqleKmpn1v0IKu4cc/OSvyBaY7HMAHQz5oi4zdv1cohLuytLqSqIItDZ1bfkZqZC/OLVj9vqS3VKaw2oJXDCjm4s4rfXB6hZ3RyVfsfax/m0uAEv7W7Ks6SpS53bC0nI83DszE0RN871smW8jzqK3xxlCx18XiEt++o5HCLn+D03KqO8eK5PkYmZvk/dscnTVmzMrRyWCEHd1YCq3ctPfHaZfIy07RyiCO+rHRurS3l2YaeVbmWmnrHONkxwv03r9M91Djyjl1VzMyFeanpWlV1luaJox1UFWRpa84mtHJYITVleWyt9K2qlzo6OcuhMz3cu3cNORk66BlPDu6somd0ilOdIyve98nXOsjwenjPjdXxFyyFuWlDEWW+zFUlC3QMTfCLVj/v37cOr0crbDvQymEVHNxZxdH2oRWXi37mZBdTs2EeuHl9giRLXe7aVkG6Vzh0ZmUN0dRsiB/8pou7d1RQnJuRIOlSE69HuGdHJS81+ZmYWZlr6XvHOwH4wD6tsO1CK4dVcO/eiA/0G7+6tOx9lFI88VoHO9bks0uXgo47BTnp3LG1nKeOdjA2tfz0yZ809DI6OcsD+7XCTgTvumEtk7Mh/uPVy8veJxRWfO9YB7fWllFdpAeJ2oVWDqtgU2ku9+5Zw7d+fYnB4PSy9jnTNcrZnjHuv3ldgqVLXf74jlrGpub45gqU9pNHL7OuOJs36IFvCeGmDUW8cXMJXz58gcmZ0LL2OdzST8/olH5XbEYrh1Xyx3fUMjkb4t9+cXFZ2z95tIOsdA/33XBV/UFNnNi5toC7tlXw1V9cWJb1cHFgnCMXhrj/5vV4tF87YfyPO2sZCE7znVfbl7X9k691UJqXwZ3brjexpCaRaOWwSraU5y3beugYmuCHv+ninbvWkK/rwySUP7krYj08vgzr4X/9rA2vR3jfTdqvnUhuqSlZtvVwtnuMF5v6ee9N1bqUvc3oqx8Dy7EeQmHF//zuKTwifOJttRZKl5rMWw+/vHhN6+Gnjb3854lO/vutNVTkZ1koYWqyHOthajbEJ546SXFuBh+9VZeytxutHGIg2npYasKZr/7iAq9dGuIz9+7QwTWL+JO7ahmdnOWrSyhtf2CaR75/hh1r8vmTu+osli41ibYeAkso7X/8aTPNfQH+/n27KdKZY7YTk3IQkfeLSKOIhEVk3zW2u0dEmkWkTUQejlq+SUReNZY/JSKueyI+fmctobDi/V/5NRf8wdetO9czxj/+tIW376jgvTfqWINV7FxbwDt3V/HPL7byry+fR6krA+OUUjzy/dMEpuf4wm/v1a4LC/mfd9cxPDHDB75yhN7R13emfn1+kK/+8iL/5y3r58vja+wl1jejAXgP8POlNhARL/BF4CCwHXhARLYbqz8HfEEptQUYBj4cozyWs7ksjyceOkBgao73/OsrHLs0ROfwBN8+0s4ffucE+dnp/O27d+mRtxbz+Q/s4d49a/jcT5r41A8bmJiZ43CLn08+fZoXzvXzybfXU6dLZVjKTRuK+foHb+by4Djv/tKvaOod4+LAOF/75UU+8dRJNhTn8Kl3brNbTI2BRPeqVn0QkZeBPzOmB1247g3AZ5RSbzd+P2KsehTwA5VKqbmF212Lffv2qWPHrjqVrbQPjvPBbxylfXAcs4LD+uIcHn3PLt64pdRe4VKUcFjx//60mS+9fB6PQFhBZpqHd9+wlr999y6doWQTZ7vH+NA3j9IfmJp/V2rL8/j8B/bqMUAJRkSOK6WW9PJEY0UNh7VAR9TvTuAWoAQYUUrNRS1f0vciIg8BDwGsX++8AUsbSnL5/h+8kS+93EZFfha315ezuSxXWww24vEIn7xnK1ur8jnVMcKba0t5g66Gazvb1+Tzgz96I185fIGaslxurytnfYmOxzmN6yoHEXkBqFxk1aeUUj+Kv0iLo5R6DHgMIpaDVeddCUW5GXzqnduvv6HGUu7ds4Z79+jKnk6iqiCbz9y7w24xNNfguspBKXVXjOfoAqKHOlYbywaBQhFJM6wHc7lGo9FobMaKVI2jQK2RmZQB3A88oyLBjpeA9xnbPQhYZoloNBqNZmliTWV9t4h0Am8A/ktEnjOWrxGRQwCGVfAx4DngHPBdpVSjcYi/AP5URNqIxCC+Fos8Go1Go4kPcclWshonZitpNBqN01lJtpIeAaTRaDSaq9DKQaPRaDRXoZWDRqPRaK5CKweNRqPRXIUrA9Ii4gcWq/1bCgxYLM5K0PLFjtNldLp84HwZtXyxs5SMG5RSZcs5gCuVw1KIyLHlRuLtQMsXO06X0enygfNl1PLFTjxk1G4ljUaj0VyFVg4ajUajuYpkUw6P2S3AddDyxY7TZXS6fOB8GbV8sROzjEkVc9BoNBpNfEg2y0Gj0Wg0cUArB41Go9FcheuUg4i8X0QaRSQsIvsWrHtERNpEpFlEFp1u1Cgd/qqx3VNGGfFEyfqUiJw0PpdE5OQS210SkTPGdpZVFBSRz4hIV5SM71hiu3uMa9omIg9bJZ9x7n8QkSYROS0iPxCRwiW2s/QaXu+aiEimcf/bjOdtY6Jlijr3OhF5SUTOGu/K/1hkm9tFZDTq3n/aKvmiZLjmPZMI/2xcw9MicqOFstVHXZuTIjImIn+yYBvLr6GIfF1E+kWkIWpZsYg8LyKtxt+iJfZ90NimVUQevO7JlFKu+gDbgHrgZWBf1PLtwCkgE9gEnAe8i+z/XeB+4/uXgT+wSO5/BD69xLpLQKkN1/IzROb+vtY2XuNa1gAZxjXebqGMdwNpxvfPAZ+z+xou55oAfwh82fh+P/CUhdesCrjR+O4DWhaR73bgx1Y/cyu5Z8A7gGcBAQ4Ar9okpxfoJTKAzNZrCNwK3Ag0RC37e+Bh4/vDi70jQDFwwfhbZHwvuta5XGc5KKXOKaWaF1l1H/CkUmpaKXURaAP2R28gkQmd7wCeNhY9DrwrgeJGn/cDwBOJPlcC2A+0KaUuKKVmgCeJXGtLUEr9VF2ZZ/wIkRkD7WY51+Q+Is8XRJ63O8WiCcWVUj1KqRPG9wCReVSWnJ/dwdwHfEtFOEJk5sgqG+S4EzivlFqsKoOlKKV+DgwtWBz9rC3Vpr0deF4pNaSUGgaeB+651rlcpxyuwVqgI+p3J1e/ECXASFRjs9g2ieAtQJ9SqnWJ9Qr4qYgcF5GHLJAnmo8ZJvvXlzBHl3NdreJDRHqSi2HlNVzONZnfxnjeRok8f5ZiuLNuAF5dZPUbROSUiDwrInZM6Hy9e+aUZ+9+lu7Y2X0NASqUUj3G916gYpFtVnwtrzuHtB2IyAtA5SKrPqWUctRUosuU9QGubTW8WSnVJSLlwPMi0mT0EBIqH/CvwF8ReUn/iojr60PxOO9KWM41FJFPAXPAd5Y4TMKuoVsRkTzgP4E/UUqNLVh9goibJGjEmn4I1FosouPvmRGTvBd4ZJHVTriGr0MppUQkLuMTHKkclFJ3rWK3LmBd1O9qY1k0g0RM0zSjN7fYNivierKKSBrwHuCmaxyjy/jbLyI/IOK2iMtLstxrKSL/Bvx4kVXLua4xsYxr+EHgt4A7leFAXeQYCbuGi7Cca2Ju02k8AwVEnj9LEJF0IorhO0qp7y9cH60slFKHRORLIlKqlLKsoNwy7lnCn71lcBA4oZTqW7jCCdfQoE9EqpRSPYbbrX+RbbqIxEhMqonEbZckmdxKzwD3G1kim4ho8NeiNzAalpeA9xmLHgQSbYncBTQppToXWykiuSLiM78TCcA2LLZtvFngv333Euc9CtRKJMsrg4iJ/YwV8kEkKwj4JHCvUmpiiW2svobLuSbPEHm+IPK8/WwpxRZvjNjG14BzSqnPL7FNpRkDEZH9RNoCK5XXcu7ZM8DvGVlLB4DRKPeJVSxp9dt9DaOIftaWatOeA+4WkSLDfXy3sWxprIy0x+NDpBHrBKaBPuC5qHWfIpJF0gwcjFp+CFhjfK8hojTagO8BmQmW95vARxcsWwMcipLnlPFpJOJKsepafhs4A5w2HrCqhfIZv99BJOPlvJXyGeduI+IrPWl8vrxQRjuu4WLXBPgsESUGkGU8X23G81Zj4TV7MxFX4emo6/YO4KPmswh8zLhWp4gE+t9o8X1d9J4tkFGALxrX+AxR2YkWyZhLpLEviFpm6zUkoqh6gFmjHfwwkVjWi0Ar8AJQbGy7D/hq1L4fMp7HNuD3r3cuXT5Do9FoNFeRTG4ljUaj0cQJrRw0Go1GcxVaOWg0Go3mKrRy0Gg0Gs1VaOWg0Wg0mqvQykGj0Wg0V6GVg0aj0Wiu4v8Hg5zqbaUp4PoAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -627,7 +627,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 17, @@ -636,7 +636,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAfH0lEQVR4nO3df5Ac9Xnn8fejZW0v2PGKoBC0IIuKOXG2KdBli5DC5wJsIyzjoCPOBYpzQYxPjs+us10+xeLOFRJyVyilihPfcWei2JxxHcHEQWw4QyyrDFUYn3+tWHECgw5i41gjgkRgMZh1vJKe+2N7xOyoe7Z7uqf72z2fV9XW7vTMzjwz0/30t5/vt79t7o6IiDTXsqoDEBGRwVKiFxFpOCV6EZGGU6IXEWk4JXoRkYY7ruoA4px00km+evXqqsMQEamNXbt2PevuK+LuCzLRr169munp6arDEBGpDTP7UdJ9Kt2IiDTckonezE4zs/vN7Ptm9qiZfTRafqKZ7TSzJ6LfyxP+/+roMU+Y2dVFvwEREektTYv+EPAJd38TcB7wYTN7E7AZ+Lq7nwF8Pbq9iJmdCFwP/BpwLnB90g5BREQGY8lE7+5Pu/tD0d8vAo8BE8BlwK3Rw24FNsT8+zpgp7s/5+7PAzuBS4oIXERE0slUozez1cBa4DvAye7+dHTXPwAnx/zLBPDjjtv7omVxz73RzKbNbPrgwYNZwhIRkR5Sj7oxs9cCdwIfc/efmNnR+9zdzSzX7Gjuvg3YBjA5OamZ1qQ2pmZabN2xl/2zc6wcH2PTujVsWBvbnhGpRKoWvZmNspDkb3P37dHiZ8zslOj+U4ADMf/aAk7ruH1qtEykEaZmWly3fQ+t2TkcaM3Ocd32PUzNaDWXcKQZdWPA54HH3P3THXfdDbRH0VwN/E3Mv+8ALjaz5VEn7MXRMpFG2LpjL3Pzhxctm5s/zNYdeyuKSORYaVr05wPvAy4ys93Rz3pgC/BOM3sCeEd0GzObNLPPAbj7c8AfAd+Lfm6Ilok0wv7ZuUzLRaqwZI3e3R8ELOHut8c8fhr4QMftW4Bb+g1QJGQrx8doxST1leNjFUQjEk9nxorksGndGsZGRxYtGxsdYdO6NRVFJHKsIOe6EamL9ugajbqRkCnRi+S0Ye2EErsETaUbEZGGU6IXEWk4JXoRkYZTohcRaTglehGRhlOiFxFpOCV6EZGGU6IXEWk4JXoRkYZTohcRaTglehGRhlOiFxFpOCV6EZGGU6IXEWk4JXoRkYZTohcRabglLzxiZrcAlwIH3P0t0bI7gPa10saBWXc/J+Z/nwJeBA4Dh9x9sqC4RUQkpTRXmPoCcBPwxfYCd//t9t9m9ifACz3+/0J3f7bfAEVEJJ8lE727P2Bmq+PuMzMD/jVwUbFhiYhIUfLW6P8l8Iy7P5FwvwNfM7NdZrax1xOZ2UYzmzaz6YMHD+YMS0RE2vIm+iuB23vc/1Z3/xfAu4APm9nbkh7o7tvcfdLdJ1esWJEzLBERaes70ZvZccDlwB1Jj3H3VvT7AHAXcG6/ryciIv3J06J/B/C4u++Lu9PMTjCz17X/Bi4GHsnxeiIi0oclE72Z3Q58C1hjZvvM7NrorivoKtuY2Uozuze6eTLwoJk9DHwXuMfdv1pc6CIikkaaUTdXJiy/JmbZfmB99PcPgLNzxiciIjnpzFgRkYZTohcRaTglehGRhkszBYKI5DA102Lrjr3sn51j5fgYm9atYcPaiarDkiGiRC8yQFMzLa7bvoe5+cMAtGbnuG77HgAl+4h2hIOn0o3IAG3dsfdokm+bmz/M1h17K4ooLO0dYWt2DueVHeHUTKvq0BpFiV5kgPbPzmVaPmy0IyyHEr3IAK0cH8u0fNhoR1gOJXqRAdq0bg1joyOLlo2NjrBp3ZqE/xgu2hGWQ4leZIA2rJ3gxsvPYmJ8DAMmxse48fKz1NkY0Y6wHBp1IzJgG9ZOKLEnaH8uGnUzWEr0IlIp7QgHT6UbEZGGU6IXEWk4JXoRkYZTohcRaTglehGRhlOiFxFpuDTXjL3FzA6Y2SMdy/7AzFpmtjv6WZ/wv5eY2V4ze9LMNhcZuIiIpJOmRf8F4JKY5X/q7udEP/d232lmI8B/B94FvAm40szelCdYERHJbslE7+4PAM/18dznAk+6+w/c/efAl4DL+ngeERHJIU+N/iNm9n+j0s7ymPsngB933N4XLYtlZhvNbNrMpg8ePJgjLBER6dRvov8s8CvAOcDTwJ/kDcTdt7n7pLtPrlixIu/TiYhIpK9E7+7PuPthdz8C/AULZZpuLeC0jtunRstERKREfSV6Mzul4+a/Ah6Jedj3gDPM7HQzexVwBXB3P68nIiL9W3L2SjO7HbgAOMnM9gHXAxeY2TmAA08BH4weuxL4nLuvd/dDZvYRYAcwAtzi7o8O5F2IiEgic/eqYzjG5OSkT09PVx2GiEhtmNkud5+Mu09nxoqINJwSvYhIwynRi4g0nBK9iEjDKdGLiDScEr2ISMMp0YuINJwSvYhIwynRi4g0nBK9iEjDKdGLiDTckpOaiYiEYGqmxdYde9k/O8fK8TE2rVvDhrWJ1zKSDkr0IhK8qZkW123fw9z8YQBas3Nct30PgJJ9Ckr0Ijmppdm/tJ/d1h17jyb5trn5w2zdsVefdQpK9CI5qKXZvyyf3f7ZudjnSFoui6kzViSHXi1N6S3LZ7dyfCz2OZKWy2JK9CI5qKXZvyyf3aZ1axgbHVm0bGx0hE3r1gwktqZRohfJQS3N/mX57DasneDGy89iYnwMAybGx7jx8rNUHktJNXqRHDatW7OozgxqaaaV9bPbsHZCib1PaS4OfgtwKXDA3d8SLdsKvAf4OfB3wO+4+2zM/z4FvAgcBg4lXc9QpK7aiUejbrLTZ1eeJS8ObmZvA14CvtiR6C8G7nP3Q2b2xwDu/smY/30KmHT3Z7MEpYuDi4hkk+vi4O7+APBc17Kvufuh6Oa3gVNzRykiIgNRRI3+/cAdCfc58DUzc+DP3X1b0pOY2UZgI8CqVasKCEskDDqhSqqWK9Gb2X8CDgG3JTzkre7eMrNfAnaa2ePREcIxop3ANlgo3eSJSyQUOqFKQtD38Eozu4aFTtqrPKHQ7+6t6PcB4C7g3H5fT6SOdEKVhKCvRG9mlwC/B/yGu7+c8JgTzOx17b+Bi4FH+g1UpI50QpWEYMlEb2a3A98C1pjZPjO7FrgJeB0L5ZjdZnZz9NiVZnZv9K8nAw+a2cPAd4F73P2rA3kXIoHSCVUSgiVr9O5+Zczizyc8dj+wPvr7B8DZuaITqTmdUCUh0JmxIl2KHCWjk4IkBEr0Ih0GMUpGp+5L1TSpmUgHjZKRJlKiF+mgUTLSREr0Ih00SkaaSIlepIMucCFNpM5YkQ4aJSNNpEQv0kWjZKRpVLoREWk4tehFJJamV24OJfqAaMOSUGh65WZR6SYQ7Q2rNTuH88qGNTXTqjo0GUI6caxZ1KIPRK8NSy0oKVvdTxzT0fFiatEHou4bljRLnU8c09HxsZToA1HnDUsWksv5W+7j9M33cP6W+2qfVOp84pjKTsdS6SYQmre8PrrLAheeuYI7d7Ua1XFZ5xPHdHR8LCX6QNR5wxomcaNRbvv239N90eQm9K/U9cSxleNjtGKS+jAfHSvRB6SuG9YwiSsLdCf5tmFuQVZJR8fHSlWjN7NbzOyAmT3SsexEM9tpZk9Ev5cn/O/V0WOeMLOriwpcpApZkvcwtyCrtGHtBDdefhYT42MYMDE+xo2XnzXUjai0LfovsHBB8C92LNsMfN3dt5jZ5uj2Jzv/ycxOBK4HJllo+Owys7vd/fm8gYtUIaksYCxu2Q97C7JqOjpeLFWL3t0fAJ7rWnwZcGv0963Ahph/XQfsdPfnouS+E7ikz1iF5o3uqJuk0ShXnbcqiBak1g+Jk6dGf7K7Px39/Q/AyTGPmQB+3HF7X7TsGGa2EdgIsGrVqhxhNZdOS69eyJ3madcPnUw0fArpjHV3N7OkPqm0z7EN2AYwOTmZ67maSmfPhiHUskCa9UONheGU54SpZ8zsFIDo94GYx7SA0zpunxotkz5ofLD0kmb90MlEwylPor8baI+iuRr4m5jH7AAuNrPl0aici6Nl0gedPSu9pFk/1FgYTmmHV94OfAtYY2b7zOxaYAvwTjN7AnhHdBszmzSzzwG4+3PAHwHfi35uiJZJH+p8Wnpd1aFzsx1ja3YO67qve/1QY2E4mXt45fDJyUmfnp6uOowgqSOtPN31bFhInCGNyY6LsT3Uc3xsFDOYfXn+6LoCBP+epD9mtsvdJ2PvU6JvribvFMp4b+1WcreJ8TG+ufmiQl+rX0kxjo+N8k+HjsQmdEgeNdTkdabpeiV6TYHQUE0eXVHWe6uynp024SbFMjs3f8yydqfrNzdfFPtcTV5nhp0SfUM1bShmZ+JbZsbhriPRQby3qibHypJwk2JM0msnVdQ6o6OC8Gg++oZq0uiK7gtJdCf5tqLfW1Wd31mGQCbFuPz40djn7rWTKmKdSbrox6em9gTfqd1katE3VJ2mal2qBRiX+OIU/d6qOgs2S8JNihHiO1177aSKWGeSdlKdUzmrJFQ+JfqGqstUrWnKFGlalIN6b1WcBZuUcF8/Ft9K7xVjlp1UEetM0nfVxPn660SJvqFCnpOlU5q6cFLiGzHjiHuw761fm9atYdOXH2b+yOL0+NOfH2JqppX6fWbdSRWxzmTpM6hjGbGulOgbLNQ5WTqlKVMktTSrGPtdRkfjhrUT/OH/fpTnX148cmb+sA+8FZx3nYn7rrqncG5LUxJSx24xlOilUmnqwqEcnZQ5/HC2K8m3VdkKTpN0476r7mvqQrqSkIZ7FkeJXiqVti4cwtFJmUNWQ+tMz5J0476ryTecmHlHnfR5f+KvHo59XUmmRC+VCqW1nkaZQ1ZD60zPu5PrZ0ed9LkedlfLPiMleqlcCK31NMpsZZe5A0xTkqnivIxeHbsatZONEr1ISmW3ssvYAaYtySQl3fGEE7OKEPd5d9KonfR0ZqxIShvWTnDj5WcFcW3YoqQ9C3fTujWMjnRPggwv/ezQwM5ybX/eI3bs60KYJ/+FSi16GTp5hux1t7Lbc8GH3r+QJG1JZsPaCf7g7kePmSxt/shgh3y2nzek/oo6UqKXoVLkkL0mDP/L0u/wQsyMmDD4EkqdOuxDpUQvQ6XIIZJNmCE0S79DlUM+69Jh369BnximRC9DJW2pItSRKEXL0lq+8MwViyYnA5VQilDGkaESvQyVNK3SvCNR6tZJmKa1PDXT4s5drUVJ3oDf/NVmt7TLUMaRYd+jbsxsjZnt7vj5iZl9rOsxF5jZCx2P+f38IUtTVHHh7TRzzGcZiTIsF2uP+0wcuP/xg9UE1CBlHBn23aJ3973AOQBmNgK0gLtiHvoNd7+039eRZqqqIzNNqSLLSJSlnqspmlCmClUZR4ZFlW7eDvydu/+ooOeThquyI3OpUkWWDa/pnYRtTSlThaiME/GKSvRXALcn3PfrZvYwsB/4D+7+aNyDzGwjsBFg1apVBYUloQq5hZhnw5uaaS0ab778+FGuf8+ba7Ez6NUBHdrcO01SxpGhecL1N1M/gdmrWEjib3b3Z7ru+wXgiLu/ZGbrgc+4+xlLPefk5KRPT0/nikuyKXve7/O33BfbQpwYH+Obmy+qfB7yfl5/aqYVe8GQ0RFj63vPDjrZd5fS4Ng5/7s/kwvPXMH9jx9sfNmqLsxsl7tPxt5XQKK/DPiwu1+c4rFPAZPu/myvxynRl+tTU3tih80N8vT+XokF4s+EDH26gaSdF7yyAwvVUjvebml2DFKuXom+iLluriShbGNmv2y2MFGFmZ0bvd4/FvCaUpCpmdYxSR7iR5kUqde8MWlHvQxCnpFAvcpOIZSkeslaSqvyO5LsctXozewE4J3ABzuW/S6Au98MvBf4kJkdAuaAKzzvIYQUauuOvbGXeYNyTm2Pa/0Nqn6/VDkmzUigXs/Ra1rdsjsts5aesna2FvEdVV2eGya5Er27/xT4xa5lN3f8fRNwU57XkMHqtWFWNaKiqBEenYnk9WOj/PTnh5g/vLBbi0viS40EWmpHkHRR79ERK7TTsogdVresna15v6O6zhNU152TpikeQp3liWUJU8AaVDaioogTkdqJpDU7hwOzc/NHk3xbd6lhqVbqUuWKDWsn2PpbZzM+9soc7cuPH+27IzaujNT9vtoJsrPE1E9ZJesUzHm/ozqWftJ89qHSFAhDprsldTimkmbAVeetqqylUsRws7hEEqc1O8f5W+5j07o1S7ZS05QrihpXn9TiffVxy5Y8/6DfskqW2PN+R2UNr+3VAs/aOq/zJHZK9EMmKQGOmHHEPZjD0bwJM0vCaCfR3/zVCe7c1UosX5R50lBSUklztaWy4szzHZURY6/yEJC5dBTyuR9LUelmyCStlEfc+eGWd/PNzRdVnuT70V3myHqJu7n5w9z/+MGe5Ysy57bJmjw6E2RIc/AkjWIqI8ZeLfB+SkdJO6E6nB2sFv2QaeKp7HEtt9FlxuiILarLjy4zXvua43j+5eQLaPRqpZY5t03S97T8+FF+Nn+kZ6dpKHPwpOlwHWSM/bTAe91X57ODleiHTJ1X1iRxrbP5I8742CgnvPq4YxJJ0slBaXZ2/ZYrstaDk76n69/zZmDpBBnCHDxL1bQHHeNSjZqs60AoO9B+KNEPmTqvrEmSWmEvzM2z+/pjT9gue2fXz1DCpb6nfr+vMocHVl3TXup77mcdCGEH2o/GJPq6jm+tQmgra97vLms5quydXb+jNYr+nsoeu151mTDN9zwsOSP3XDeDkHWuG827UV9FfHehf/+rN98Tu9yAH255d2lxZJ3PJq/Qv5emGfRcN5Wr48kXsqCI7y7ryT5lmpppEX9KWvkd4GWXUkL+XoZNI0o3VdcCpX9FfXehlaPakuYSquLM4ypKKaF+L8OmEYm+6lqg9C/E767I/p6kHZZT/pwug+iELrpvTH1tg9GI0k1IJ4hINqF9d0XPZ5K0w5ooYEeWdUrlokspRX9WdZ5LJnSNaNE3ccjgsAjtuyt6PpNBDeXsdwRNkaWUoj+rOs8lEyeko5NGJHpQLbDOQvrukkotrdk5Tt98T+YNdlA7shCSYtF9Y03qawttGubGJHoZHoNsKfW6eEhnOQHSb7CD2JGFkBSL7l8Jsb+mXyHsiDs1okYvw2PQddy4PoNuIQzdDWGCraL7V0Lrr8kjhB1xJyV6qZVBnzPR3WGZpOpyQghJsejO3SaNuw9hR9wpd+nGzJ4CXgQOA4e6z8yKLg7+GWA98DJwjbs/lPd1ZTiV0VLqLLXkmQBtkELpxC66LBVSf00/2mXF1uwcBovOoajy6KSoGv2F7v5swn3vAs6Ifn4N+Gz0WySzsuu4Ic/2WfekWKQQRrh0d8A6HE32E0Mw6uYy4Iu+MKnOt81s3MxOcfenS3jtoRHCil6GshNvKC1nSRbKCJe4smI7yQ9iLqEsikj0DnzNzBz4c3ff1nX/BPDjjtv7omVK9AUJZUUvQxWJt04t50Hs8ENvRIQywiW0DthORST6t7p7y8x+CdhpZo+7+wNZn8TMNgIbAVatWlVAWMMjlBW9LHVKvGUaxA6/Do2IUBJsyMNDc4+6cfdW9PsAcBdwbtdDWsBpHbdPjZZ1P882d59098kVK1bkDWuohLKiS7UGMSKpDjPDhjLCJYSRUElytejN7ARgmbu/GP19MXBD18PuBj5iZl9ioRP2hWGrzw/60DeklkToh/lN1s8Of6nvqw6NiFA6zEPuz8lbujkZuGthBCXHAX/p7l81s98FcPebgXtZGFr5JAvDK38n52vWShmHvqGs6J+a2sNt3/77o0PKQjzMb7KsO/w062ZIjYgkISXYUMuKjbjCVMjKuqpP1S3pqZkWH79jd+zc61nfa9XvpShlv4+sV3RKs27qKlH10esKU5rrZsDKOvStuiWRdIENyPZe69D5l0YV7yNryzbNuhlSa1n6p0Q/YHU49C1Cr2Se5b2GPIIoSwu93/cR9xrt50vzull2+GnXzbIaEU05kguR5roZsJB74ouUlMyzXjIv1M6/rJOp9dsx2v0am/76YTZ9+eGBTOIW0rqpi44MlhL9gDVpoqZe4pKGAVedtyrTew1lqFy3rMMM+3kfca8xf9iZP7K4KFbU8MaQ1s06DOOsM5VuSlB1/bwMRdVyQxlB1C1rC72f95HlqKWoI5xQ1s1Qj+SaQoleClNE0gi18y9rX0vW9zE102KZGYdTjoLLeoQTev17WPqyqqLhlVK50JMQDHaYYdxzt42OGDiLyjdZXzfu+UeXGa99zXHMvjwfxGeuYZz5aXilBKsuwykHeaQRV58GGDFj63vPzv26sbX/I87zL88DYXzmoR7JNYVa9FKpsk4oC9npm++JPQfBgB9ueffAnr/bMH3mTdSrRa9RN1IpdcINfqRR2ucZps982CjRS6VCHU5ZpkGNZ5+aaR09Yup1/du2YfrMh40SvVQqpJN2qjKI8eydJyDBK5e1AxgfG13o5O0wbJ/5sFFnrFRKnXALih7PvtRl7eow0kmKo0QvlRv0STvDmNSW6vsI5UQpKYcSvTRa1cM3q9rJ6AQk6aQavTRalXOoVDlRl/o+pJNa9FJLaVvKVQ7frHLKZfV9SCcleqmdLOWYKksYVZ8joDq8tKl0I7WTpRxTZQlD5whIKPpO9GZ2mpndb2bfN7NHzeyjMY+5wMxeMLPd0c/v5wtXmqB9Is/pm+/h/C33Za5ZZ2kpVznnuurkEoo8pZtDwCfc/SEzex2wy8x2uvv3ux73DXe/NMfrSIMUMQqmnymDqyhhqE4uoeg70bv708DT0d8vmtljwATQnehFjiqigzLUi5PEUZ1cQlBIjd7MVgNrge/E3P3rZvawmf2tmb25x3NsNLNpM5s+ePBgEWFJgIrooAzpEngidZB71I2ZvRa4E/iYu/+k6+6HgDe4+0tmth6YAs6Iex533wZsg4VpivPGJWEqahSMWsoi6eVq0ZvZKAtJ/jZ33959v7v/xN1fiv6+Fxg1s5PyvKbUmzooBydvJ7c0V98tejMz4PPAY+7+6YTH/DLwjLu7mZ3Lwo7lH/t9Tak/dVAORtVTPUjY8pRuzgfeB+wxs93Rsv8IrAJw95uB9wIfMrNDwBxwhYd4SSsplcouxavyLFwJX55RNw9C7+sZuPtNwE39voaIpFP1WbgSNk2BINIAmq2yGnWZAltTIIg0gDq5y1fl7KRZKdGLNIDOLShflVNgZ6XSjUhDqJO7XHXqF1GLXkSkD3WanVSJXkSkD3XqF1HpRkSkD3U6+U+JXkSkT3XpF1HpRkSk4ZToRUQaToleRKThlOhFRBpOiV5EpOEsxFmDzewg8KMCn/Ik4NkCn29Q6hBnHWIExVmkOsQI9YhzkDG+wd1XxN0RZKIvmplNu/tk1XEspQ5x1iFGUJxFqkOMUI84q4pRpRsRkYZTohcRabhhSfTbqg4gpTrEWYcYQXEWqQ4xQj3irCTGoajRi4gMs2Fp0YuIDC0lehGRhmtcojez15jZd83sYTN71Mz+sOv+/2pmL1UVXxRDbIy24L+Y2f8zs8fM7N8HGufbzewhM9ttZg+a2RurjDOKacTMZszsK9Ht083sO2b2pJndYWavqjpGiI3zNjPba2aPmNktZjYaWowdyyvfdjrFfJZBbT9tMXGWvv00LtED/wRc5O5nA+cAl5jZeQBmNgksrzK4SFKM1wCnAWe6+z8HvlRdiEBynJ8FrnL3c4C/BD5VYYxtHwUe67j9x8CfuvsbgeeBayuJ6ljdcd4GnAmcBYwBH6giqC7dMYa07XTqjvMawtp+2rrjLH37aVyi9wXtVsdo9ONmNgJsBX6vsuAiSTECHwJucPcj0eMOVBQi0esnxenAL0TLXw/sryC8o8zsVODdwOei2wZcBPx19JBbgQ3VRPeK7jgB3P3e6HN24LvAqVXFB/ExhrTttMXFSWDbDyTGWfr207hED0cPlXYDB4Cd7v4d4CPA3e7+dLXRLUiI8VeA3zazaTP7WzM7o9ooE+P8AHCvme0D3gdsqTJG4M9YSEJHotu/CMy6+6Ho9j4ghKtDdMd5VFSyeR/w1bKD6hIXY1DbTiQuzuC2H+LjLH37aWSid/fD0WHRqcC5ZvY24LeA/1ZtZK+IifEtwKuBn0WnSP8FcEuVMUJinB8H1rv7qcD/BD5dVXxmdilwwN13VRVDGini/B/AA+7+jRLDWiQuRjNbSWDbTo/PMqjtp0ecpW8/jb6UoLvPmtn9wIXAG4EnF47qOd7Mnozqt5XqiPESFlqe26O77mJhJQhCR5zvAs6OWvYAd1BtK/R84DfMbD3wGhYOiT8DjJvZcVGr/lSgVWGMEBOnmf0vd/83ZnY9sAL4YKURxn+Wj7LQVxPSthP7WRLe9hMX5z0s9CGUu/24e6N+WNhgxqO/x4BvAJd2PealEGNk4RDu/dHyC4DvBRrns8A/i5ZfC9xZ9ffe8Zl9Jfr7y8AV0d83A/+u6vgS4vwA8H+AsarjSoqxa3ml284Sn2VQ209cnCw0rkvffprYoj8FuDXqQFoG/JW7f2WJ/ylbbIxm9iBwm5l9HHiJ6kdgJMX5b4E7zewICyNa3l9lkAk+CXzJzP4zMAN8vuJ4ktzMwpTc34pazNvd/YZqQ6qtLYS1/RzD3Q9Vsf1oCgQRkYZrZGesiIi8QoleRKThlOhFRBpOiV5EpOGU6EVEGk6JXkSk4ZToRUQa7v8DjTgNROpRV4YAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAakElEQVR4nO3df5BdZX3H8feXJMKmVVfKlsLGEEZpbCuF6I5jm46D4DQoVDPaoo46pWLT6S+R2tBgnVocHdOmrfTHVIcKwowRgxDiD6yRAWZQFHRDQgNCrFMFWdAsldgqaw3h2z/2btzc3HPvuff8ep7nfF4zDLv33uz97t1zvud5vs+PY+6OiIjE65imAxARkWKUyEVEIqdELiISOSVyEZHIKZGLiERuaZ1vdsIJJ/iqVavqfEsRkejt2rXrcXefyHq+1kS+atUqpqen63xLEZHomdlD/Z5XaUVEJHJK5CIikVMiFxGJnBK5iEjklMhFRCJX66wVkbx27J5hy859PHpgjpPHx9i4bjXr10w2HZZIkJTIJTg7ds9w2fa9zB08BMDMgTku274XQMlcpAeVViQ4W3buO5zEF8wdPMSWnfsaikgkbErkEpxHD8wN9bhI2ymRS3BOHh8b6nGRtlMil+BsXLeasWVLjnhsbNkSNq5b3VBEImHTYKcEZ2FAU7NWRPJRIpcgrV8zqcQtkpNKKyIikVMiFxGJ3MBEbmZXm9l+M7uvx3PvNDM3sxOqCU9ERAbJ0yK/Bji3+0Ezey7wm8DDJcckIiJDGDjY6e53mNmqHk99ELgU+FTZQbWR9hYRkVGNNGvFzF4DzLj7vWZWckjto71FRKSIoQc7zWw58C7gr3K+foOZTZvZ9Ozs7LBv1wraW0REihhl1srzgFOBe83s28AK4B4z+4VeL3b3K919yt2nJiYybwLdatpbRESKGLq04u57gZ9f+L6TzKfc/fES42qVk8fHmOmRtLW3iIjkkWf64XXAV4DVZvaImV1UfVjtor1FRKSIPLNW3jjg+VWlRdNS2ltERIrQXiuB0N4iIjIqLdEXEYmcErmISOSUyEVEIqdELiISOSVyEZHIKZGLiEROiVxEJHJK5CIikVMiFxGJnBK5iEjklMhFRCKnRC4iEjklchGRyCmRi4hETolcRCRySuQiIpFTIhcRiZwSuYhI5HSrNxE5yo7dM7qHbESUyEXkCDt2z3DZ9r3MHTwEwMyBOS7bvhdAyTxQKq2IyBG27Nx3OIkvmDt4iC079zUUkQyiRC4iR3j0wNxQj0vzBiZyM7vazPab2X2LHttiZg+a2X+Y2U1mNl5plCJSm5PHx4Z6XJqXp0V+DXBu12O3AC90918FvgFcVnJcItKQjetWM7ZsyRGPjS1bwsZ1qxuKSAYZONjp7neY2aqux76w6Nu7gN8uOS5JhGY/xGfh76O/WzzKmLXyVmBb1pNmtgHYALBy5coS3k5iodkP8Vq/ZlJ/o4gUGuw0s78EngK2Zr3G3a909yl3n5qYmCjydhIZzX4QqcfILXIzuxA4HzjH3b20iCQZmv0gUo+RWuRmdi5wKfBqd3+y3JAkFZr9IFKPPNMPrwO+Aqw2s0fM7CLgX4BnAreY2R4z+3DFcUqENPtBpB55Zq28scfDV1UQiyQmpdkPmn0jIdNeK1KpFGY/aPaNhE5L9EUG0OwbCZ0SucgAmn0joVMiFxlAs28kdErkIgNo9o2EToOdIgOkNPtG0qRELpJDCrNvJF0qrYiIRE6JXEQkckrkIiKRUyIXEYmcErmISOQ0a0W0IZRI5JTIWy7EDaF0YREZjkorLRfahlALF5aZA3M4P72w7Ng900g8IjFQizwxw7ZmQ9sQqt+FRa1ykd7UIk/IKK3Z0DaECu3CIhIDJfKEjFImCW1DqNAuLCIxUCJPyCit2fVrJvnAa09ncnwMAybHx/jAa09vrIwR2oVFJAaqkSfk5PExZnok7UGt2ZA2hNJOgyLDUyJPyMZ1q4+YSghxtmZDurCIxECJPCFqzYq008BEbmZXA+cD+939hZ3Hjge2AauAbwMXuPsT1YVZr5gXpKg1G5+YjzcJQ57BzmuAc7se2wTc6u6nAbd2vk+CFqRInXS8SRkGJnJ3vwP4ftfDrwGu7Xx9LbC+3LCaM2gK347dM6zdfBunbrqZtZtvS+KES/F3ikVoK2slTqPWyE9098c6X38XODHrhWa2AdgAsHLlyhHfrj79pvCFuC9JUSn+TjGJbQGUykBhKjyP3N0d8D7PX+nuU+4+NTExUfTtKtdvQUqKracUf6eYxLQASmWgcI2ayL9nZicBdP6/v7yQmtVvQUpsrac8UvydYhLTAihd9MM1amnl08DvAps7//9UaRE1rN8Uvi0794204CZkoy4iKltMXfYyY41pyqgu+uHKM/3wOuAs4AQzewR4D/MJ/Hozuwh4CLigyiDrljWFL5UFN4uF8DvFVKevItZYpoyGctGXo+WZtfJGdz/J3Ze5+wp3v8rd/9vdz3H309z9Fe7ePaslSaHtS1KGEH6nmLrsMcVatpjKQG0T/crOurvksbSehtH07xRTlz2mWMsWUxmobaJO5DF1ySVbkS573RdylRckRFFvY9vmbm5KRu2yNzEdrs3lBU0/DFfUibzN3dyUjFqnb+JCHsKYQlPUcApX1KUVdXPT0V2nX9g2oF/JpKkLedNjCk1RwylcUbfI29zNTVneLnyTqyLbuD9NTKtQ2ybqRN7mbm7K8nbhm7qQt7VWrIZTuKIurUB7u7kpy9uFb2o6XL8LTcrHoqYfhiv6RC7pGWbso4kLedaFplfMqVHDKUxRl1YkTaF34bNqwgbJl1ckTErkEpzQxz42rluN9XjcQVPxpBEqrUiQhunCN7FNwzu27en5nKbiSRPUIpeoNTWDZFJT8SQgSuQStaZWG/aq4xvw8heEfxcsSY9KKxK1Jld3Tj/0fbbe9fDh+xw6cOOuGaZOOT6Yen6Z8pawYrpJSCrUIpeoNbna8PYHZ4+6WW2qe4/kLWG1dbFU05TIJbcQl6U3OVWxTXuP5C1haWOtZqi0IrmEuvd7k6sN27RpW96LVpsubiFRIpdcQl6W3tRqwxDud1qXvBetNl3cQqLSiuTSr6UVYsmlDt0Ll8bHlnHcsmO4ZNue5D6HvCWs0Fflpkotcsklq6U1vnxZkCWXuiz0BkItPZUlbwlLG2s1w9y7x92rMzU15dPT07W9n5SnO1HBfEvr2KXHcGDu4FGvnxwf485NZ9cZYqPWbr6t54Uu9M9BUwXjYGa73H0q6/lCpRUzu8TM7jez+8zsOjM7rsjPk3Bl7X/ygx5JHNo3uBXjIJ+mCqZj5NKKmU0Cbwd+2d3nzOx64A3ANSXFJiUpq9XVa1Bxy859GtwizkG+kAewZThFBzuXAmNmthRYDjxaPCSB8uZsV93q0uDWvCo/h6oGk2PsRUhvIydyd58B/g54GHgM+IG7f6H7dWa2wcymzWx6dnZ29EhbpMzkW/UCjdC3nK1LVZ9DlRdi3YMzHSMPdprZc4AbgdcDB4BPAje4+8ey/o0GO/Mpc+Ds1E03H7WMHOY3ePrW5vNGC1BqU+UgatYAdhsvxKEbNNhZZPrhK4Bvufts5422A78OZCZyyafMLm+MtduUFB2fqLL8oamC6SiSyB8GXmpmy4E54BxAze0SlJl827T6MDRlzC2v+kKse3CmoUiN/G7gBuAeYG/nZ11ZUlytVubAWZM17KxBurasBC1jfEKDyZKHFgQFKvaFGln119e9eJIbd820oi5b1vhE7MeCFFdljVwqFHuXN6s1et3d3+FQV+Mh1bnLZZVFYj8WpHraNEtGMqg8kjUY153EB70+ZiqLSF3UIpeh5RnEy2qNLjHrmcxTnEVT16wQlV5EiVyGlmdpd9ZsmawaeVYrNfYkVXVZJPVdFyUfJXIZWp65zf1ao1OnHJ/7Jr6pJ6miFyrtlyKgRH6EKlp/sbcoe8k7iJfVGs3bSk09SZVxodJ+KQIa7Dysij0tUt0mtNcgnjH/+4W2qVPIc9bLmGeu/VIElMgPq2JzqVTvKL54kRHMJ/GF4cuQNnUadCFtOsmXcaHSzJjw1XGcKZF3VNFFTbnbu37NJHduOpvJ8bGjFr2UdbEqmqT6XUhD6C2V0ZrW7pNhq+s4U428o4o9LbJ+5jFm7Ng9k8TJFvKmTr0++4XYhqm/VzXOUdY+OFowFK66xnmUyDuq2Fyq18+E+UUxqcy+CHVTpx27Z44o+Sx28vhY7gtQrwHJd2zbw+WfuZ/3/NavFPr7affB9NXVK1ci76jipFr4t++8/t5kl6WHurvilp37Mvc52bhude5b1PVqUQE88eTBUi7Gak2nra5tpJXIF6nipFq/ZpJLtu3p+VwqtXIIr1WZ9dk6P405zwWo398olYuxVKeuho4SeQ1Sv7lDiK3KrM98YaZN3gtQ1s9ZkMLFWKpTV0NHibwGoZYfUpbnM89zAcoa51iQysVYqlNHQ0eJvAahlh9SVtZnvvD6v/70/RyYO3jEc7oYSyiCv7FEikvcJU55j8VRj1kd65Il6htLtGHTJInHoC7yjt0zXP6Z+3niyZ+23PMes1Uf67pIpC3olZ2pLnGX9Cwk4sVJfEGeY7bKYz2EVaxSraATecpL3CUtWfPNFww6Zqs81tUgSl/QiVw7u0ksBiXcQcdslce6GkTpCzqRx7qzW9O76kn9BiXcQcdslce6GkTpK5TIzWzczG4wswfN7AEz+7WyAoM4d3ZTPbKdNq5bjWU895zlywYes1Ue67E2iCS/QtMPzexa4Ivu/hEzewaw3N0PZL1+lOmHsVm7+bbMFYV3bjq78M/X7IPqjfoZv3vHXrbe9fARe7yMLVsSRONDx03cKpt+aGbPBl4GXAjg7j8BfjLqz0tFlfXIsqao6aTOVuQzft/603Pfj7RuIW6jIOUpMo/8VGAW+KiZnQHsAi529x8tfpGZbQA2AKxcubLA28Whyn1VytjbeJhE1caEX/QzblPCbOPxEaoiNfKlwIuAD7n7GuBHwKbuF7n7le4+5e5TExMTBd4uDlXWI8to7eeditbWWr9meOTT1uMjVEUS+SPAI+5+d+f7G5hP7K1W5aBVGbMP8iaqts49DnWGR2gzodp6fIRq5NKKu3/XzL5jZqvdfR9wDvD18kKLV1Xd6zJ2Ucxb+mlryzTEnSpD3KqircdHqIrutfKnwNbOjJX/An6veEiSpYwd/fImqtT3UM9S1U6VC/XkmQNzLDHjkDuTOX92Xfd9zNKrFt7W4yNUhRK5u+8BMqfESPl6tfaHGXTKm6hCbJnWpeweVXeLeuG2f3lb1k22frN6A6978SQ37ppp5fERoqB3P5TBRul250lUC88v3s3v2KVBLwQOVr99WOYOHuLyz9zf98LaZOs3qzdw+4OzfOC1p2vWSiCUyCNXdbf7xwefPvz1gblybjjcNoNazk88efDwxbLXhbjJ3lG/3kCbplqGTok8cmV3uxeXaY7p1HIXC+GGw7HNXx50389u3Z9xk3eYUi08DkrkkSvzRMuq5XarqjabJ0HXOYOjrAvGoPt+9tL9GTfV+m3zWElMVPSMXJkLkAbtqb2gitZY3gUmdc1fLnPBy+K1BQBLbH57rcnxMcbHlvX8N6G0eGPcuK6N1CKP1OLW4vjyZRy79Bh+MHewUMsxT0u7qtZY3lp/XTM4yh57yGpRd/cwILwWb7/eQGxlrlQpkUeo++R/4smDjC1bwgdff2ahkyirTLPEjKfdKz1R8yboumq2dV0wYp4dFOJCpbaK44iRI1RVXsgq0/z9BWfwrc3nceemsys7QfMuja9rb+26l+r3mh3U9DL8QbRMPxxK5A0psndGVa3FJuuheRN0XTHWeTOGYRNi3mOn6v1ZtEw/HCqtNKBol7TK8kJTsyOGmWJXR4x1TvkbJiHmPXbqKHtoamI4lMhHUHSAp+hAWqpTwvIm6LoG2Oq6qA2TEPMeO3Xsz5LqcRgjlVaGVMa0tKJd0jZPCUtxH+xhyjh5j506yh5tPg5Doxb5kMpo6ahLOlyrOobVpkUMU8bJe+zUdYxpmX4YlMiHVEZLp2iXdFD9M/S5vcPebq7J1aZ1yZsQ8x47Knu0ixL5kMpo6RQdSBs0yyH0ub3D9GqaXG0aorzHTpP7s0j9lMiHVFZLp0iXtF+voOmbEOQxTK+mydWmo6q6R5T32FHZoz2STeRVnUwhtHT69QpimNs7TK+mydWmo9BqR2lCkom86pOp6ZZOv17Bwu3EuhUpPZR9URymV5P12lBnR8TQI5L0JDn9MPWlw/2mfZW9IrGK6X7DTFuLbYpbDD0iSU+SLfI2nExZvYKySz9VtTCH6dU03QMahqaWShOSTORtP5nKTHypXxSbLBs1KfQpqjKcJEsrdW54lLq6dwGsU9Nlo6b0+r0v2baHd+/Y23RoMqLCLXIzWwJMAzPufn7xkIoLYWZJKmJpYY4ihLJRE3r93g5svethpk45PujYpbcySisXAw8AzyrhZ5Um9JNpVHV3iVO+KKZeNsqS9fs5aHZNpAolcjNbAZwHvB/4s1IikkxNzVFO9aLY1rGUrN8b0r+IpapojfwK4FLg6QGvkxKkPq2ybm0dS9m4bjWW8VzqF7FUjZzIzex8YL+77xrwug1mNm1m07Ozs6O+ndDeUkBVYhiYrML6NZO86aUrj0rmbbiIpco8Yze5gf/Q7APAW4CngOOYr5Fvd/c3Z/2bqakpn56eHun9BNZuvq1nl3hyfIw7N53dQEQSM01BjIeZ7XL3qcznR03kXW9yFvDng2atKJEX010jh7CXq4tIOQYl8iQXBKUq5RkkIjK6UlrkealFLiKLqbyTj1rkIhIkbflbniSX6ItI+DSdtjxK5CLSCE2nLY9KKzVTTVBkXltX1lZBLfIaVbHbXpmxrd18G6duupm1m28LIiZJW1tX1lZBibxGodYEQ77ASLraurK2Ciqt1CjUmqDuMylNSXVDtrqpRV6jUG/SEOoFRkTyUSKvUag1wVAvMFXQWICkqBWJPJSTN9SaYKgXmLJpLEBSlXyNPLTVYyHWBNuyh0sTYwGabip1SD6RayAvnxAvMGWreywgtEaEpCv50ooG8uJXVmms7rGAUKebSnqST+RtGshLUZl17brHAtSIkLokn8jbMpCXqjJbtXUPNqsRIXVJvkbeloG8VJXdqq1zLGDjutU97+ikRoSULflEDu0YyEtVzBsrqREhdWlFIpd4xd6qVSNC6qBELkFTq1ZkMCVyCZ5atSL9JT9rRUQkdWqRS3K0LF7aRolckqJl8dJGI5dWzOy5Zna7mX3dzO43s4vLDEziEMrOkgu0LF7aqEiL/Cngne5+j5k9E9hlZre4+9dLik0CF2LrV8vipY1GbpG7+2Pufk/n6/8FHgDUd22REFu/WhYvbVTKrBUzWwWsAe7u8dwGM5s2s+nZ2dky3k4CEWLrV3vrSBsVTuRm9rPAjcA73P1/up939yvdfcrdpyYmJoq+nQQkxNZvqHdhEqlSoVkrZraM+SS+1d23lxOSxCLU5fNaQCRtM3IiNzMDrgIecPd/KC8kiYWWz4uEoUiLfC3wFmCvme3pPPYud/9c4agkGmr9ijRv5ETu7l8CrMRYRERkBNprRUQkckrkIiKRUyIXEYmcErmISOTM3et7M7NZ4KEh/skJwOMVhVOVGGOGOOOOMWaIM+4YY4Y44+4V8ynunrmistZEPiwzm3b3qabjGEaMMUOccccYM8QZd4wxQ5xxjxKzSisiIpFTIhcRiVzoifzKpgMYQYwxQ5xxxxgzxBl3jDFDnHEPHXPQNXIRERks9Ba5iIgMoEQuIhK5IBK5mR1nZl81s3s7N3K+vPO4mdn7zewbZvaAmb296VgX6xP3OWZ2j5ntMbMvmdnzm461m5ktMbPdZvbZzvenmtndZvZNM9tmZs9oOsZuPWLeamb7zOw+M7u6sz9+cLrjXvT4P5nZD5uKq58en3XQ5+KCHnHHcC5+28z2dmKc7jx2vJndYmb/2fn/c/r9jCASOfB/wNnufgZwJnCumb0UuBB4LvACd/8l4BONRdhbVtwfAt7k7mcCHwfe3ViE2S5m/j6rC/4G+KC7Px94Ariokaj66455K/AC4HRgDHhbE0Hl0B03ZjYF9D05G9Yd84WEfS4u6I47hnMR4OXufuai+eObgFvd/TTg1s73mYJI5D5voWWyrPOfA38IvNfdn+68bn9DIfbUJ24HntV5/NnAow2El8nMVgDnAR/pfG/A2cANnZdcC6xvJLgM3TEDuPvnOn8DB74KrGgqviy94jazJcAW4NKm4uqnV8wEfi5CZtxBn4t9vIb58xBynI9BJHI43CXaA+wHbnH3u4HnAa/v3Lz5383stEaD7CEj7rcBnzOzR5i/+cbmBkPs5Qrmk8jTne9/Djjg7k91vn8ECO1uEVdwZMyHdUoqbwE+X3NMeVzB0XH/CfBpd3+skYgGu4KjYw7+XKR33KGfizB/sfmCme0ysw2dx05cdHx8Fzix3w8IJpG7+6FO92cF8BIzeyFwLPDjTnfj34CrGwyxp4y4LwFe5e4rgI8CwdwKz8zOB/a7+66mY8krR8z/Ctzh7l+sMayBesVtZicDvwP8c2OB9dHnsw76XOwTd7Dn4iK/4e4vAl4J/LGZvWzxk50eZ9954oVuvlwFdz9gZrcD5zLfMly4qfNNzP8hgrQo7lcCZ3Ra5gDbCKuluBZ4tZm9CjiO+W7nPwLjZra00ypfAcw0GGO3o2I2s4+5+5vN7D3ABPAHjUbYW6/P+n7mx1a+OV/RYrmZfbMzNhGCnp814Z+LveK+mfmafqjnIgDuPtP5/34zuwl4CfA9MzvJ3R8zs5OY7/H3/SGN/8f8iTje+XoM+CJwPvPdoLd2Hj8L+FrTseaM+3HgFzuPXwTc2HSsGfGfBXy28/UngTd0vv4w8EdNx5cj5rcBXwbGmo5rmLi7Hv9h07Hl/KyDPhd7xc18QzXocxH4GeCZi77+MvON2C3Aps7jm4C/7fdzQmmRnwRc2xkEOga43t0/a2ZfAraa2SXADwlvVkJW3L8P3GhmTzM/A+StTQaZ018AnzCz9wG7gasajiePDzO/LfJXOq3b7e7+3mZDStZmwj4Xj+LuT0VwLp4I3NQ5fpcCH3f3z5vZ14Drzewi5o/xC/r9EC3RFxGJXDCDnSIiMholchGRyCmRi4hETolcRCRySuQiIpFTIhcRiZwSuYhI5P4fh6Hpoim3qBEAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -706,7 +706,13 @@ { "data": { "text/plain": [ - "['DESCR', 'data', 'feature_names', 'filename', 'target', 'target_names']" + "['DESCR',\n", + " 'data',\n", + " 'feature_names',\n", + " 'filename',\n", + " 'frame',\n", + " 'target',\n", + " 'target_names']" ] }, "execution_count": 20, @@ -1005,7 +1011,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEGCAYAAAB8Ys7jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAZxUlEQVR4nO3df3RU9bnv8fcDiYYItShpjYQIPS0gEDAQBY+noiDVo6nWpVzai1agLkQUtVot2lawq7ftWbdLj+teqkVFvMpBadD21NVbBQ7Uq6VKkoLhh4hi1ATkZ0VAfhh57h+zoUmAZDKzk8k3fF5rzcrMnv3j2Un4sPOdvZ9t7o6IiISnU6YLEBGR1CjARUQCpQAXEQmUAlxEJFAKcBGRQGW15cZ69OjhvXv3bstNiogEr6KiYru75zWe3qYB3rt3b8rLy9tykyIiwTOz9481XUMoIiKBUoCLiARKAS4iEqg2HQMXkY7ls88+o6amhv3792e6lA4hJyeHgoICsrOzk5pfAS4iKaupqaFbt2707t0bM8t0OUFzd3bs2EFNTQ19+vRJahkNoYhIyvbv38/pp5+u8I6BmXH66ae36K8ZBbiIpEXhHZ+Wfi8V4CIigVKAi0hszOJ9xG3u3Lls2rQp/hVnyAkZ4Jn4xRGRzFOAi4i0I3v37uWKK65gyJAhDBo0iOeee46KigpGjhzJsGHDuPTSS9m8eTNlZWWUl5czfvx4zjnnHPbt28eSJUsoLi6mqKiISZMmceDAAQCmT5/OgAEDGDx4MD/4wQ8A+MMf/sDw4cMpLi7mkksuYcuWLZnc7QR3b7PHsGHDvD2A5h8i0ry1a9c2eJ3Mv62WPJJRVlbmN95445HXH3/8sZ9//vm+detWd3d/9tlnfeLEie7uPnLkSF+xYoW7u+/bt88LCgp8/fr17u5+/fXX+0MPPeTbt2/3vn37+qFDh9zd/e9//7u7u+/cufPItMcee8zvvPPOFL9rTWv8PXV3B8r9GJmq88BFJGhFRUXcdddd/PCHP6S0tJTu3buzevVqxowZA8Dnn39Ofn7+UcutX7+ePn360LdvXwBuuOEGZs2axa233kpOTg7f+973KC0tpbS0FEic8z5u3Dg2b97MwYMHkz5XuzVpCEVEgta3b18qKyspKirixz/+MQsXLmTgwIGsXLmSlStXUlVVxcsvv5z0+rKysnjjjTe49tprefHFF7nssssAmDZtGrfeeitVVVX85je/aRdXnyrARSRomzZtIjc3l+uuu467776b119/nW3btrF8+XIgcbn/mjVrAOjWrRu7d+8GoF+/flRXV/POO+8A8PTTTzNy5Ej27NnDrl27uPzyy3nooYdYtWoVALt27aJnz54APPXUU229m8ekIRQRiY1722+zqqqKu+++m06dOpGdnc0jjzxCVlYWt912G7t27aKuro477riDgQMHMmHCBKZMmUKXLl1Yvnw5Tz75JGPHjqWuro5zzz2XKVOmsHPnTq666ir279+Pu/Pggw8CMHPmTMaOHUv37t0ZNWoU7733XtvvbCPmbfgdLykp8fZwQ4dkThPMxC+iSGjWrVvH2WefnekyOpRjfU/NrMLdSxrPqyEUEZFAKcBFRAKlABcRCZQCXEQkUM0GuJnNMbOtZra63rT/aWZvmdmbZvaCmX2xdcsUEZHGkjkCnwtc1mjaImCQuw8G3gbujbkuERFpRrMB7u6vADsbTXvZ3euil38FClqhNhEJTXvvJ5uE+++/n8WLF7d4uWXLlh257L6txHEhzyTguRjWIyLSJg43g+rU6ehj2J/+9KdtUkNdXR1ZWelFcFpLm9mPgDpgXhPzTAYmAxQWFqazORFpAXug5UewPiOsK9imT59Or169uOWWW4DE1ZJdu3bF3VmwYAEHDhzg6quv5oEHHqC6uppLL72U4cOHU1FRwR//+EdmzJhBeXk5ZsakSZP4/ve/z4QJEygtLeXaa69lxYoV3H777ezdu5eTTz6ZJUuWkJ2dzc0330x5eTlZWVk8+OCDXHzxxQ3q2rlzJ5MmTWLjxo3k5uYye/ZsBg8ezMyZM3n33XfZuHEjhYWFzJ8/P639T/ksFDObAJQC472Jyzndfba7l7h7SV5eXqqbExE5yrhx41iwYMGR1wsWLCAvL48NGzbwxhtvsHLlSioqKnjllVcA2LBhA1OnTmXNmjVs376d2tpaVq9eTVVVFRMnTmyw7oMHDzJu3DgefvhhVq1axeLFi+nSpQuzZs3CzKiqqmL+/PnccMMNRzW2mjFjBsXFxbz55pv8/Oc/57vf/e6R99auXcvixYvTDm9I8QjczC4D7gFGuvunaVchIpKC4uJitm7dyqZNm9i2bRvdu3c/0n2wuLgYgD179rBhwwYKCws566yzGDFiBABf+cpX2LhxI9OmTeOKK67gG9/4RoN1r1+/nvz8fM4991wAvvCFLwDw6quvMm3aNAD69+/PWWedxdtvv91g2VdffZWFCxcCMGrUKHbs2MEnn3wCwJVXXkmXLl1i2f9mA9zM5gMXAT3MrAaYQeKsk5OBRdFdlP/q7lNiqUhEpAXGjh1LWVkZH330EePGjeP999/n3nvv5aabbmowX3V1NaeccsqR1927d2fVqlW89NJLPProoyxYsIA5c+a0er31a0hXMmehfMfd8909290L3P0Jd/+qu/dy93Oih8JbRDJi3LhxPPvss5SVlTF27FguvfRS5syZw549ewCora1l69atRy23fft2Dh06xDXXXMPPfvYzKisrG7zfr18/Nm/ezIoVKwDYvXs3dXV1fP3rX2fevMTHfm+//TYffPAB/fr1a7Bs/XmWLVtGjx49jhzBx0ntZEUkPhlo4zlw4EB2795Nz549yc/PJz8/n3Xr1nH++ecD0LVrV5555hk6d+7cYLna2lomTpzIoUOHAPjFL37R4P2TTjqJ5557jmnTprFv3z66dOnC4sWLmTp1KjfffDNFRUVkZWUxd+5cTj755AbLzpw5k0mTJjF48GByc3NbrX+42skeh9rJSuja4iwUtZONn9rJioicABTgIiKBUoCLiARKAS4iEigFuIhIoBTgIiKB0nngIhKbVE5dbEoqzbU2bdrEbbfdRllZWYuWu/HGG7nzzjsZMGDAced59NFHyc3NbdDbJJMU4CLSoZx55pnHDO/m2rc+/vjjza57ypT2ddG5hlBEJFjTp09n1qxZR17PnDmTX/3qVwwaNAiAuXPncuWVVzJq1ChGjx7NoUOHmDp1Kv3792fMmDFcfvnlR8L+oosu4vCFhl27duVHP/oRQ4YMYcSIEWzZsqXB+gHeeecdLrnkEoYMGcLQoUN599132bNnD6NHj2bo0KEUFRXx+9//vlX3XwEuIsE6VjvZ4cOHN5insrKSsrIy/vznP/P8889TXV3N2rVrefrpp1m+fPkx17t3715GjBjBqlWruPDCC3nssceOmmf8+PHccsstrFq1ir/85S/k5+eTk5PDCy+8QGVlJUuXLuWuu+6iNa921xCKiATrWO1ke/Xq1WCeMWPGcNpppwGJNq9jx46lU6dOnHHGGUfdiOGwk0466cjt0YYNG8aiRYsavL97925qa2u5+uqrAcjJyQHgs88+47777uOVV16hU6dO1NbWsmXLFs4444xY9/swBbiIBK1xO9nGUmnfmp2dTdQqm86dO1NXV9fMEgnz5s1j27ZtVFRUkJ2dTe/evY+62UOcNIQiIkFr3E62KRdccAELFy7k0KFDbNmyhWXLlqW0zW7dulFQUMDvfvc7AA4cOMCnn37Krl27+NKXvkR2djZLly7l/fffT2n9ydIRuIjEJhP31GzcTra6uvq4815zzTUsWbKEAQMG0KtXL4YOHcqpp56a0naffvppbrrpJu6//36ys7P57W9/y/jx4/nmN79JUVERJSUl9O/fP8W9So7ayR6H2slK6NRO9tj27NlD165d2bFjB+eddx6vvfZaq41Rp6Il7WR1BC4iJ5TS0lI+/vhjDh48yE9+8pN2Fd4tpQAXkRNKquPe7ZE+xBSRtLTlMGxH19LvpQJcRFKWk5PDjh07FOIxcHd27Nhx5JzyZGgIRURSVlBQQE1NDdu2bct0KR1CTk4OBQUFSc+vABeRlGVnZ9OnT59Ml3HCanYIxczmmNlWM1tdb9ppZrbIzDZEX7u3bpkiItJYMmPgc4HLGk2bDixx968BS6LXIiLShpoNcHd/BdjZaPJVwFPR86eAb8Vcl4iINCPVs1C+7O6bo+cfAV+OqR4REUlS2qcReuL8oeOeQ2Rmk82s3MzK9Um1CIleDsk+RJqQaoBvMbN8gOjr1uPN6O6z3b3E3Uvy8vJS3JyIiDSWaoD/J3BD9PwGoHXvGyQiIkdJ5jTC+cByoJ+Z1ZjZ94BfAmPMbANwSfRaRETaULMX8rj7d47z1uiYaxERkRZQLxQRkUApwEVEAqUAFxEJlAJcRCRQCnARkUApwEVEAqUAFxEJlAJcRCRQCnARkUApwEVEAqV7YopIyuyBlre89Rm6g31cdAQuIhIoBbiISKAU4CIigVKAi4gESgEuIhIoBbiISKAU4CIigVKAi4gESgEuIhIoBbiISKAU4CIigVKAi4gEKq0AN7Pvm9kaM1ttZvPNLCeuwkREpGkpB7iZ9QRuA0rcfRDQGfh2XIWJiEjT0h1CyQK6mFkWkAtsSr8kERFJRsr9wN291sx+BXwA7ANedveXG89nZpOByQCFhYWpbk4kPtaCHtau3tVxa2kPcfUPP750hlC6A1cBfYAzgVPM7LrG87n7bHcvcfeSvLy81CsVEZEG0hlCuQR4z923uftnwPPAP8dTloiINCedAP8AGGFmuWZmwGhgXTxliYhIc1IOcHd/HSgDKoGqaF2zY6pLRESakdZNjd19BjAjplpERKQFdCWmiEigFOAiIoFSgIuIBEoBLiISKAW4iEigFOAiIoFSgIuIBEoBLiISKAW4iEigFOAiIoFK61L6ELSk9XNzy6k19Ako2V+g1vrlUO9yaYKOwEVEAqUAFxEJlAJcRCRQCnARkUApwEVEAqUAFxEJlAJcRCRQCnARkUApwEVEAqUAFxEJlAJcRCRQCnARkUClFeBm9kUzKzOzt8xsnZmdH1dhIiLStHS7ET4M/MndrzWzk4DcGGoSEZEkpBzgZnYqcCEwAcDdDwIH4ylLRESak84QSh9gG/Ckmf3NzB43s1Maz2Rmk82s3MzKt23blsbmRNoxs+QfIjFJJ8CzgKHAI+5eDOwFpjeeyd1nu3uJu5fk5eWlsTkREakvnQCvAWrc/fXodRmJQBcRkTaQcoC7+0fAh2bWL5o0GlgbS1UiItKsdM9CmQbMi85A2QhMTL8kERFJRloB7u4rgZKYahERkRbQlZgiIoFSgIuIBEoBLiISKAW4iEigFOAiIoFSgIuIBEoBLiISKAW4iEigFOAiIoFSgIuIBCrdXigi0kZsZjMzPNAxe41bC/fLZ3grVdL+6AhcRCRQCnARkUApwEVEAqUAFxEJlAJcRCRQCnARkUApwEVEAqUAFxEJlAJcRCRQCnARkUApwEVEAqUAFxEJVNoBbmadzexvZvZiHAWJiEhy4jgCvx1YF8N6RESkBdIKcDMrAK4AHo+nHBERSVa6/cD/HbgH6Ha8GcxsMjAZoLCwMM3NZZY1akvsJ07bYTlBtLT3tmRWykfgZlYKbHX3iqbmc/fZ7l7i7iV5eXmpbk5ERBpJZwjlAuBKM6sGngVGmdkzsVQlIiLNSjnA3f1edy9w997At4H/cvfrYqtMRESapPPARUQCFctNjd19GbAsjnWJiEhydAQuIhIoBbiISKAU4CIigVKAi4gESgEuIhIoBbiISKAU4CIigVKAi4gESgEuIhIoBbiISKBiuZRepFU0bsDeFDVnlzaUSt90nxH/76iOwEVEAqUAFxEJlAJcRCRQCnARkUApwEVEAqUAFxEJlAJcRCRQCnARkUApwEVEAqUAFxEJlAJcRCRQCnARkUClHOBm1svMlprZWjNbY2a3x1mYiIg0LZ1uhHXAXe5eaWbdgAozW+Tua2OqTUREmpDyEbi7b3b3yuj5bmAd0DOuwkREpGmx9AM3s95AMfD6Md6bDEwGKCwsjGNzTdTRqqtPuQa1qq6ntX5I7eGHL+1Ce+nV3RbS/hDTzLoCC4E73P2Txu+7+2x3L3H3kry8vHQ3JyIikbQC3MyySYT3PHd/Pp6SREQkGemchWLAE8A6d38wvpJERCQZ6RyBXwBcD4wys5XR4/KY6hIRkWak/CGmu78K6JMjEZEM0ZWYIiKBUoCLiARKAS4iEigFuIhIoBTgIiKBUoCLiARKAS4iEigFuIhIoBTgIiKBUoCLiAQqln7gbUHtntsx/XBSYjMzXYEclkoP8fZAR+AiIoFSgIuIBEoBLiISKAW4iEigFOAiIoFSgIuIBEoBLiISKAW4iEigFOAiIoFSgIuIBEoBLiISKAW4iEig0gpwM7vMzNab2TtmNj2uokREpHkpB7iZdQZmAf8KDAC+Y2YD4ipMRESals4R+HnAO+6+0d0PAs8CV8VTloiINCedfuA9gQ/rva4BhjeeycwmA5Ojl3vMbH2K2+sBbE9x2VaRbBvs48zX7vYnDR1pX6Ct9mdmq2/hsI708wl2X2zmMYMg2f0561gTW/2GDu4+G5id7nrMrNzdS2IoqV3oSPvTkfYFtD/tWUfaF0h/f9IZQqkFetV7XRBNExGRNpBOgK8AvmZmfczsJODbwH/GU5aIiDQn5SEUd68zs1uBl4DOwBx3XxNbZUdLeximnelI+9OR9gW0P+1ZR9oXSHN/zN3jKkRERNqQrsQUEQmUAlxEJFDtPsDNbI6ZbTWz1ZmuJV1m1svMlprZWjNbY2a3Z7qmdJhZjpm9YWarov15INM1pcvMOpvZ38zsxUzXki4zqzazKjNbaWblma4nXWb2RTMrM7O3zGydmZ2f6ZpSYWb9op/J4ccnZnZHSutq72PgZnYhsAf4P+4+KNP1pMPM8oF8d680s25ABfAtd1+b4dJSYmYGnOLue8wsG3gVuN3d/5rh0lJmZncCJcAX3L000/Wkw8yqgRJ3D/LCl8bM7Cng/7n749GZb7nu/nGm60pH1JKkFhju7u+3dPl2fwTu7q8AOzNdRxzcfbO7V0bPdwPrSFzRGiRP2BO9zI4e7fuIoAlmVgBcATye6VqkITM7FbgQeALA3Q+GHt6R0cC7qYQ3BBDgHZWZ9QaKgdczW0l6oiGHlcBWYJG7h7w//w7cAxzKdCExceBlM6uIWlqErA+wDXgyGuJ63MxOyXRRMfg2MD/VhRXgGWBmXYGFwB3u/kmm60mHu3/u7ueQuBL3PDMLcpjLzEqBre5ekelaYvQv7j6URMfQW6LhyFBlAUOBR9y9GNgLBN3COhoGuhL4barrUIC3sWiseCEwz92fz3Q9cYn+nF0KXJbpWlJ0AXBlNG78LDDKzJ7JbEnpcffa6OtW4AUSHURDVQPU1PsLr4xEoIfsX4FKd9+S6goU4G0o+tDvCWCduz+Y6XrSZWZ5ZvbF6HkXYAzwVmarSo273+vuBe7em8Sftf/l7tdluKyUmdkp0QflREMN3wCCPZPL3T8CPjSzftGk0UCQH/7X8x3SGD6BNuhGmC4zmw9cBPQwsxpghrs/kdmqUnYBcD1QFY0bA9zn7n/MYE3pyAeeij5J7wQscPfgT7/rIL4MvJA4ZiAL+A93/1NmS0rbNGBeNPSwEZiY4XpSFv2nOga4Ka31tPfTCEVE5Ng0hCIiEigFuIhIoBTgIiKBUoCLiARKAS4iEigFuLQrZjbBzM5MYr65ZnZtstNjqOu+es97J9sd08zuMLPvxrD9W81sUrrrkY5FAS7tzQSg2QDPgPuan6UhM8sCJgH/EcP255A4D1rkCAW4tJroSPUtM5sX9W8uM7Pc6L1hZvbnqNHSS2aWHx05l5C4WGOlmXUxs/vNbIWZrTaz2dHVrMlu/6htRNOXmdm/Rb3M3zazr0fTc81sQdSv/QUze93MSszsl0CXqKZ50eo7m9ljUR/0l6MrURsbReJS6bpo/V81s8VR//RKM/snM7soqvH3ZrbRzH5pZuOj2qrM7J8A3P1ToNrMQr4cXmKmAJfW1g/4tbufDXwCTI36wfwv4Fp3H0bi6PJ/uHsZUA6Md/dz3H0f8L/d/dyoF3wXIKke3cfbRr1Zstz9POAOYEY0bSrwd3cfAPwEGAbg7tOBfVFN46N5vwbMcveBwMfANcco4wISPd8PmxctMwT4Z2BzNH0IMAU4m8SVun2j2h6n4VF3OfD1ZPZfTgzt/lJ6Cd6H7v5a9PwZ4DbgT8AgYFF0QN2Zf4RZYxeb2T1ALnAasAb4QxLb7dfMNg43EqsAekfP/wV4GMDdV5vZm02s/z13P9wOof466ssn0fOdqC9JT3d/IVr//mg6wAp33xy9fhd4OVq+Cri43vq2Av2bqElOMApwaW2NezU4YMAad2/yllhmlgP8msRdZT40s5lATpLbbW4bB6Kvn5Pav4MD9Z5/TuKvg8b2kVy99dd1qN7rQ41qy4nWKQJoCEVaX6H9496F/53EbdfWA3mHp5tZtpkNjObZDXSLnh8Ov+1RD/WWnF3S1DaO5zXgv0XzDwCK6r33WTQs0xLrgK/CkTsw1ZjZt6L1n3z484AW6EvAHQUlfgpwaW3rSdxMYB3QnURD/oMkwvjfzGwVsJLEmDDAXODRqFvjAeAxEqH1ErAi2Y02s43j+TWJ0F8L/IzEcM2u6L3ZwJv1PsRMxv8lcRuww64HbouGZv4CnNGCdUFiTH1RC5eRDkzdCKXVWOK2cS+GcjPqqC1utrvvj87+WAz0i/4zSHWdLwD3uPuGNGsrBu509+vTWY90LBoDF/mHXGBpNFRiwNR0wjsyncSHmWkFONCDxJkxIkfoCFxEJFAaAxcRCZQCXEQkUApwEZFAKcBFRAKlABcRCdT/B0xotC+yqX/eAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEGCAYAAAB8Ys7jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZfklEQVR4nO3de3RV9bnu8e8LiQaUCkrqiYQI3S0oN4lEqbqViiBsZWAdQmmPWi5tqSIXa6vFnh7BtqftHqdDtuMcsEVFrCKXHerYuw53BdylHnetkqTBQBBRjBpAw6UiIHfe88ea0CRAsrLWTFZ+4fmMsUbWmmte3pmEh5nfmvOd5u6IiEh42mW6ABERSY0CXEQkUApwEZFAKcBFRAKlABcRCVRWS26sa9eu3qNHj5bcpIhI8EpLS3e4e2796S0a4D169KCkpKQlNykiEjwze/9U0zWEIiISKAW4iEigFOAiIoFq0TFwEWlbDh8+THV1NQcOHMh0KW1CTk4O+fn5ZGdnJzW/AlxEUlZdXU2nTp3o0aMHZpbpcoLm7uzcuZPq6mp69uyZ1DIaQhGRlB04cIALLrhA4R0DM+OCCy5o0l8zCnARSYvCOz5N/V4qwEVEAqUAF5HYmMX7iNvChQvZunVr/CvOkDMywDPxiyMimacAFxFpRfbt28fNN9/MZZddRr9+/Vi6dCmlpaUMGTKEQYMGMWLECLZt20ZxcTElJSXcfvvtDBw4kP379/Pyyy9TWFhI//79mTRpEgcPHgRg5syZ9OnThwEDBvCDH/wAgN///vcMHjyYwsJChg0bxscff5zJ3U5w9xZ7DBo0yFsDaPwhIo2rrKys8zqZf1tNeSSjuLjYv/3tb594/cknn/hVV13lNTU17u6+ZMkSnzhxoru7DxkyxNesWePu7vv37/f8/HzfuHGju7vfeeedPmfOHN+xY4f36tXLjx075u7uf/vb39zdfdeuXSemPf74437fffel9k1rRP3vqbs7UOKnyFSdBy4iQevfvz/f//73+eEPf8ioUaPo0qUL69atY/jw4QAcPXqUvLy8k5bbuHEjPXv2pFevXgCMHz+euXPnMnXqVHJycvjWt77FqFGjGDVqFJA4533cuHFs27aNQ4cOJX2udnPSEIqIBK1Xr16UlZXRv39/fvzjH7N8+XL69u1LeXk55eXlVFRUsGLFiqTXl5WVxRtvvMGYMWN44YUXGDlyJADTpk1j6tSpVFRU8Jvf/KZVXH2qABeRoG3dupWOHTtyxx13cP/99/P666+zfft2XnvtNSBxuf/69esB6NSpE3v27AGgd+/eVFVV8c477wDwzDPPMGTIEPbu3cvu3bu56aabmDNnDmvXrgVg9+7ddOvWDYCnn366pXfzlDSEIiKxcW/5bVZUVHD//ffTrl07srOzeeyxx8jKymL69Ons3r2bI0eOcO+999K3b18mTJjAXXfdRYcOHXjttdd46qmnGDt2LEeOHOGKK67grrvuYteuXdxyyy0cOHAAd+eRRx4BYPbs2YwdO5YuXbowdOhQ3nvvvZbf2XrMW/A7XlRU5K3hhg7JnCaYiV9EkdBs2LCBSy+9NNNltCmn+p6aWam7F9WfV0MoIiKBUoCLiARKAS4iEigFuIhIoBoNcDNbYGY1Zrau1rT/bWZvmdmbZva8mXVu1ipFROQkyRyBLwRG1pu2Eujn7gOAt4EHY65LREQa0WiAu/srwK5601a4+5Ho5V+A/GaoTURC09r7ySbhoYceYtWqVU1ebvXq1Scuu28pcVzIMwlYGsN6RERaxPFmUO3anXwM+5Of/KRFajhy5AhZWelFcFpLm9n/AI4AixqYZzIwGaCgoCCdzYlIE9jDTT+C9VlhXcE2c+ZMunfvzj333AMkrpY899xzcXeWLVvGwYMHufXWW3n44YepqqpixIgRDB48mNLSUl588UVmzZpFSUkJZsakSZP43ve+x4QJExg1ahRjxoxhzZo1zJgxg3379nH22Wfz8ssvk52dzd13301JSQlZWVk88sgjXH/99XXq2rVrF5MmTWLz5s107NiR+fPnM2DAAGbPns27777L5s2bKSgoYPHixWntf8pnoZjZBGAUcLs3cDmnu8939yJ3L8rNzU11cyIiJxk3bhzLli078XrZsmXk5uayadMm3njjDcrLyyktLeWVV14BYNOmTUyZMoX169ezY8cOtmzZwrp166ioqGDixIl11n3o0CHGjRvHo48+ytq1a1m1ahUdOnRg7ty5mBkVFRUsXryY8ePHn9TYatasWRQWFvLmm2/y85//nG9+85sn3qusrGTVqlVphzekeARuZiOBB4Ah7v5Z2lWIiKSgsLCQmpoatm7dyvbt2+nSpcuJ7oOFhYUA7N27l02bNlFQUMDFF1/Ml7/8ZQC+8IUvsHnzZqZNm8bNN9/MjTfeWGfdGzduJC8vjyuuuAKAz33ucwC8+uqrTJs2DYBLLrmEiy++mLfffrvOsq+++irLly8HYOjQoezcuZNPP/0UgNGjR9OhQ4dY9r/RADezxcBXgK5mVg3MInHWydnAyuguyn9x97tiqUhEpAnGjh1LcXExH330EePGjeP999/nwQcf5Lvf/W6d+aqqqjjnnHNOvO7SpQtr167lpZde4te//jXLli1jwYIFzV5v7RrSlcxZKN9w9zx3z3b3fHd/0t2/6O7d3X1g9FB4i0hGjBs3jiVLllBcXMzYsWMZMWIECxYsYO/evQBs2bKFmpqak5bbsWMHx44d47bbbuNnP/sZZWVldd7v3bs327ZtY82aNQDs2bOHI0eOcO2117JoUeJjv7fffpsPPviA3r1711m29jyrV6+ma9euJ47g46R2siISnwy08ezbty979uyhW7du5OXlkZeXx4YNG7jqqqsAOPfcc3n22Wdp3759neW2bNnCxIkTOXbsGAC/+MUv6rx/1llnsXTpUqZNm8b+/fvp0KEDq1atYsqUKdx9993079+frKwsFi5cyNlnn11n2dmzZzNp0iQGDBhAx44dm61/uNrJnobayUroWuIsFLWTjZ/ayYqInAEU4CIigVKAi4gESgEuIhIoBbiISKAU4CIigdJ54CISm1ROXWxIKs21tm7dyvTp0ykuLm7ScjfddBPPPfccnTt3Pu08Dz30ENdddx3Dhg1rcl3NQQEuIm3KRRdddMrwbqx964svvtjouluq1WyyNIQiIsGaOXMmc+fOPfF69uzZ/OpXv6Jfv34ALFy4kNGjRzN06FBuuOEGPvvsM772ta/Rp08fbr31VgYPHszxiwt79OjBjh07qKqq4tJLL+U73/kOffv25cYbb2T//v0ATJgw4cR/DmvWrOHqq6/msssu48orr2TPnj1UVVVx7bXXcvnll3P55Zfz5z//uVn3XwEuIsE6VTvZwYMH15mnrKyM4uJi/vSnPzFv3jy6dOlCZWUlP/3pTyktLT3lejdt2sQ999zD+vXr6dy584nOgsedrtXs5z//eVauXElZWRlLly5l+vTp8e90LRpCEZFgnaqdbPfu3evMM3z4cM4//3wg0eZ1xowZAPTr148BAwaccr09e/Zk4MCBAAwaNIiqqqo675+u1ey+ffuYOnUq5eXltG/f/qQ2s3FTgItI0Oq3k60vlfattZtTtW/f/sQQSmPmzJnDhRdeyNq1azl27Bg5OTlN3nZTaAhFRIJWv51sQ6655poTQy6VlZVUVFSktM3TtZrdvXs3eXl5tGvXjmeeeYajR4+mtP5k6QhcRGKTiXtq1m8nW3+4o7YpU6Ywfvx4+vTpwyWXXELfvn0577zzmrzNhlrN3nbbbfz2t79l5MiRsd684VTUTvY01E5WQqd2sic7evQohw8fJicnh3fffZdhw4axceNGzjrrrEyXdkJT2snqCFxEzhifffYZ119/PYcPH8bdmTdvXqsK76ZSgIvIGaNTp060hlGAuOhDTBFJS0sOw7Z1Tf1eKsBFJGU5OTns3LlTIR4Dd2fnzp1NOvVQQygikrL8/Hyqq6vZvn17pktpE3JycsjPz096fgW4iKQsOzubnj17ZrqMM1ajQyhmtsDMasxsXa1p55vZSjPbFH3t0rxliohIfcmMgS8ERtabNhN42d2/BLwcvRYRkRbUaIC7+yvArnqTbwGejp4/DXw13rJERKQxqZ6FcqG7b4uefwRcGFM9IiKSpLRPI/TE+UOnPYfIzCabWYmZleiTahESvRySfYg0INUA/9jM8gCirzWnm9Hd57t7kbsX5ebmprg5ERGpL9UA/3dgfPR8PPBv8ZQjIiLJSuY0wsXAa0BvM6s2s28BvwSGm9kmYFj0WkREWlCjF/K4+zdO89YNMdciIiJNoF4oIiKBUoCLiARKAS4iEigFuIhIoBTgIiKBUoCLiARKAS4iEigFuIhIoBTgIiKBUoCLiARK98QUkZTZw01veeuzdAf7uOgIXEQkUApwEZFAKcBFRAKlABcRCZQCXEQkUApwEZFAKcBFRAKlABcRCZQCXEQkUApwEZFAKcBFRAKlABcRCVRaAW5m3zOz9Wa2zswWm1lOXIWJiEjDUg5wM+sGTAeK3L0f0B74elyFiYhIw9IdQskCOphZFtAR2Jp+SSIikoyU+4G7+xYz+xXwAbAfWOHuK+rPZ2aTgckABQUFqW5OJD7WhB7Wrt7VcWtqD3H1Dz+9dIZQugC3AD2Bi4BzzOyO+vO5+3x3L3L3otzc3NQrFRGROtIZQhkGvOfu2939MPA74Op4yhIRkcakE+AfAF82s45mZsANwIZ4yhIRkcakHODu/jpQDJQBFdG65sdUl4iINCKtmxq7+yxgVky1iIhIE+hKTBGRQCnARUQCpQAXEQmUAlxEJFAKcBGRQCnARUQCpQAXEQmUAlxEJFAKcBGRQCnARUQCldal9CFoSuvnxpZTa+gzULK/QM31y6He5dIAHYGLiARKAS4iEigFuIhIoBTgIiKBUoCLiARKAS4iEigFuIhIoBTgIiKBUoCLiARKAS4iEigFuIhIoBTgIiKBSivAzayzmRWb2VtmtsHMroqrMBERaVi63QgfBf7g7mPM7CygYww1iYhIElIOcDM7D7gOmADg7oeAQ/GUJSIijUlnCKUnsB14ysz+amZPmNk59Wcys8lmVmJmJdu3b09jcyKtmFnyD5GYpBPgWcDlwGPuXgjsA2bWn8nd57t7kbsX5ebmprE5ERGpLZ0Arwaq3f316HUxiUAXEZEWkHKAu/tHwIdm1juadANQGUtVIiLSqHTPQpkGLIrOQNkMTEy/JBERSUZaAe7u5UBRPKWIiEhT6EpMEZFAKcBFRAKlABcRCZQCXEQkUApwEZFAKcBFRAKlABcRCZQCXEQkUApwEZFAKcBFRAKVbi8UEWkhNruRGR5um73GrYn75bO8mSppfXQELiISKAW4iEigFOAiIoFSgIuIBEoBLiISKAW4iEigFOAiIoFSgIuIBEoBLiISKAW4iEigFOAiIoFSgIuIBCrtADez9mb2VzN7IY6CREQkOXEcgc8ANsSwHhERaYK0AtzM8oGbgSfiKUdERJKVbj/wfwEeADqdbgYzmwxMBigoKEhzc5ll9doS+5nTdljOEE3tvS2ZlfIRuJmNAmrcvbSh+dx9vrsXuXtRbm5uqpsTEZF60hlCuQYYbWZVwBJgqJk9G0tVIiLSqJQD3N0fdPd8d+8BfB34T3e/I7bKRESkQToPXEQkULHc1NjdVwOr41iXiIgkR0fgIiKBUoCLiARKAS4iEigFuIhIoBTgIiKBUoCLiARKAS4iEigFuIhIoBTgIiKBUoCLiAQqlkvpRZpF/QbsDVFzdmlBqfRN91nx/47qCFxEJFAKcBGRQCnARUQCpQAXEQmUAlxEJFAKcBGRQCnARUQCpQAXEQmUAlxEJFAKcBGRQCnARUQCpQAXEQlUygFuZt3N7I9mVmlm681sRpyFiYhIw9LpRngE+L67l5lZJ6DUzFa6e2VMtYmISANSPgJ3923uXhY93wNsALrFVZiIiDQsln7gZtYDKAReP8V7k4HJAAUFBXFsroE6mnX1KdegVtW1NNcPqTX88KVVaC29ultC2h9imtm5wHLgXnf/tP777j7f3YvcvSg3NzfdzYmISCStADezbBLhvcjdfxdPSSIikox0zkIx4Elgg7s/El9JIiKSjHSOwK8B7gSGmll59LgpprpERKQRKX+I6e6vAvrkSEQkQ3QlpohIoBTgIiKBUoCLiARKAS4iEigFuIhIoBTgIiKBUoCLiARKAS4iEigFuIhIoBTgIiKBiqUfeEtQu+dWTD+clNjsTFcgx6XSQ7w10BG4iEigFOAiIoFSgIuIBEoBLiISKAW4iEigFOAiIoFSgIuIBEoBLiISKAW4iEigFOAiIoFSgIuIBEoBLiISqLQC3MxGmtlGM3vHzGbGVZSIiDQu5QA3s/bAXOCfgD7AN8ysT1yFiYhIw9I5Ar8SeMfdN7v7IWAJcEs8ZYmISGPS6QfeDfiw1utqYHD9mcxsMjA5ernXzDamuL2uwI4Ul20WybbBPs18rW5/0tCW9gVaan9mN/sWjmtLP59g98VmnzIIkt2fi081sdlv6ODu84H56a7HzErcvSiGklqFtrQ/bWlfQPvTmrWlfYH09yedIZQtQPdar/OjaSIi0gLSCfA1wJfMrKeZnQV8Hfj3eMoSEZHGpDyE4u5HzGwq8BLQHljg7utjq+xkaQ/DtDJtaX/a0r6A9qc1a0v7Amnuj7l7XIWIiEgL0pWYIiKBUoCLiASq1Qe4mS0wsxozW5fpWtJlZt3N7I9mVmlm681sRqZrSoeZ5ZjZG2a2NtqfhzNdU7rMrL2Z/dXMXsh0LekysyozqzCzcjMryXQ96TKzzmZWbGZvmdkGM7sq0zWlwsx6Rz+T449PzezelNbV2sfAzew6YC/wW3fvl+l60mFmeUCeu5eZWSegFPiqu1dmuLSUmJkB57j7XjPLBl4FZrj7XzJcWsrM7D6gCPicu4/KdD3pMLMqoMjdg7zwpT4zexr4f+7+RHTmW0d3/yTDZaUlakmyBRjs7u83dflWfwTu7q8AuzJdRxzcfZu7l0XP9wAbSFzRGiRP2Bu9zI4erfuIoAFmlg/cDDyR6VqkLjM7D7gOeBLA3Q+FHt6RG4B3UwlvCCDA2yoz6wEUAq9nuJS0REMO5UANsNLdQ96ffwEeAI5luI64OLDCzEqjlhYh6wlsB56KhrieMLNzMl1UDL4OLE51YQV4BpjZucBy4F53/zTT9aTD3Y+6+0ASV+JeaWZBDnOZ2Sigxt1LM11LjP7R3S8n0TH0nmg4MlRZwOXAY+5eCOwDgm5hHQ0DjQb+NdV1KMBbWDRWvBxY5O6/y3Q9cYn+nP0jMDLDpaTqGmB0NG68BBhqZs9mtqT0uPuW6GsN8DyJDqKhqgaqa/2FV0wi0EP2T0CZu3+c6goU4C0o+tDvSWCDuz+S6XrSZWa5ZtY5et4BGA68ldGiUuTuD7p7vrv3IPFn7X+6+x0ZLitlZnZO9EE50VDDjUCwZ3K5+0fAh2bWO5p0AxDkh/+1fIM0hk+gBboRpsvMFgNfAbqaWTUwy92fzGxVKbsGuBOoiMaNAX7k7i9mrqS05AFPR5+ktwOWuXvwp9+1ERcCzyeOGcgCnnP3P2S2pLRNAxZFQw+bgYkZridl0X+qw4HvprWe1n4aoYiInJqGUEREAqUAFxEJlAJcRCRQCnARkUApwEVEAqUAl1bFzCaY2UVJzLfQzMYkOz2Gun5U63mPZLtjmtm9ZvbNGLY/1cwmpbseaVsU4NLaTAAaDfAM+FHjs9RlZlnAJOC5GLa/gMR50CInKMCl2URHqm+Z2aKof3OxmXWM3htkZn+KGi29ZGZ50ZFzEYmLNcrNrIOZPWRma8xsnZnNj65mTXb7J20jmr7azP456mX+tpldG03vaGbLon7tz5vZ62ZWZGa/BDpENS2KVt/ezB6P+qCviK5ErW8oiUulj0Tr/6KZrbJE//QyM/sHM/tKVOO/mdlmM/ulmd0e1VZhZv8A4O6fAVVmFvLl8BIzBbg0t97APHe/FPgUmBL1g/k/wBh3H0Ti6PJ/uXsxUALc7u4D3X0/8H/d/YqoF3wHIKke3afbRq1Zstz9SuBeYFY0bQrwN3fvA/xPYBCAu88E9kc13R7N+yVgrrv3BT4BbjtFGdeQ6Pl+3KJomcuAq4Ft0fTLgLuAS0lcqdsrqu0J6h51lwDXJrP/cmZo9ZfSS/A+dPf/ip4/C0wH/gD0A1ZGB9Tt+XuY1Xe9mT0AdATOB9YDv09iu70b2cbxRmKlQI/o+T8CjwK4+zoze7OB9b/n7uWnWEdteSR6vhP1Jenm7s9H6z8QTQdY4+7botfvAiui5SuA62utrwa4pIGa5AyjAJfmVr9XgwMGrHf3Bm+JZWY5wDwSd5X50MxmAzlJbrexbRyMvh4ltX8HB2s9P0rir4P69pNcvbXXdazW62P1asuJ1ikCaAhFml+B/f3ehf+dxG3XNgK5x6ebWbaZ9Y3m2QN0ip4fD78dUQ/1ppxd0tA2Tue/gK9F8/cB+td673A0LNMUG4Avwok7MFWb2Vej9Z99/POAJuhFwB0FJX4KcGluG0ncTGAD0IVEQ/5DJML4n81sLVBOYkwYYCHw66hb40HgcRKh9RKwJtmNNrKN05lHIvQrgZ+RGK7ZHb03H3iz1oeYyfgPErcBO+5OYHo0NPNn4L81YV2QGFNf2cRlpA1TN0JpNpa4bdwLodyMOmqLm+3uB6KzP1YBvaP/DFJd5/PAA+6+Kc3aCoH73P3OdNYjbYvGwEX+riPwx2ioxIAp6YR3ZCaJDzPTCnCgK4kzY0RO0BG4iEigNAYuIhIoBbiISKAU4CIigVKAi4gESgEuIhKo/w9BBrU98XxLCAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1044,7 +1050,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEGCAYAAABhMDI9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3de3wU9bn48c+TTShEFFHpTyqSSK1YIdy9IG2lBo/WC57+lIP9RQVbT0pS9Vhr1ZYW0Dbtae1Raytoaq3W5Hgpaqu22oqVem0VEIhCUasEAS+IGkRQgTy/P2aC2c3uZmd2d3Z29nm/XvNK5rtz+c7Mki8zz3eer6gqxhhjTJeyQlfAGGNMuFjDYIwxJo41DMYYY+JYw2CMMSaONQzGGGPilBe6Al7tt99+Wl1dXehqGGNMUVm6dOlbqjook2WLrmGorq5myZIlha6GMcYUFRFpz3RZe5RkjDEmjjUMxhhj4uS1YRCRb4rI8yLynIjcJiJ9Ez7/hIjcISIvicg/RKQ6n/UxxhjTu7zFGETkAOAC4DBV3S4idwJnADd3W+xrwDuqerCInAH8BJjudV87duxg/fr1fPDBBzmouenbty9DhgyhoqKi0FUxxhRAvoPP5UA/EdkBVAIbEz4/FZjn/r4Q+KWIiHpM4LR+/Xr23HNPqqurEZFs61zSVJXNmzezfv16DjrooEJXxxhTAHl7lKSqG4CfAeuA14AOVf1LwmIHAK+6y+8EOoB9E7clIvUiskRElmzatKnHvj744AP23XdfaxRyQETYd9997e7LmBKWt4ZBRAbi3BEcBHwK2ENEzvSzLVVtVtUJqjph0KDk3XCtUcgdO5fGlLZ8Bp+nAK+o6iZV3QHcDRydsMwG4EAAESkHBgCb81gnY0wItLa1Un1NNWWXl1F9TTWtba2FrpLpJp8NwzrgKBGpFOe/oLXA6oRl7gVmuL+fDvzVa3yhGN18881s3JgYbjGmNLS2tVJ/Xz3tHe0oSntHO/X31VvjECL5jDH8AyegvAxoc/fVLCJXiMhUd7FfA/uKyEvARcBl+apPmFjDYErZ7Idns23HtriybTu2Mfvh2QWqkUmU1/cYVHWuqh6qqiNV9SxV/VBV56jqve7nH6jqNFU9WFWPUNWX81mfLq2tUF0NZWXOz9Yc/Efl/fff56STTmL06NGMHDmSO+64g6VLl3LMMccwfvx4jj/+eF577TUWLlzIkiVLqKurY8yYMWzfvp2HH36YsWPHUlNTw1e/+lU+/PBDAC677DIOO+wwRo0axcUXXwzAfffdx5FHHsnYsWOZMmUKb7zxRvaVNyZA6zrWeSo3BaCqRTWNHz9eE61atapHWSotLaqVlarw8VRZ6ZRnY+HChXruuefunn/33Xd14sSJ+uabb6qq6u23367nnHOOqqoec8wx+swzz6iq6vbt23XIkCG6Zs0aVVU966yz9Oqrr9a33npLDznkEO3s7FRV1XfeeUdVVd9+++3dZb/61a/0oosuyq7iKXg5p8Z4UXV1lTKPHlPV1VWFrlqkAUs0w7+zJZcSY/Zs2BZ/F8u2bU55NmpqanjooYe49NJLeeyxx3j11Vd57rnnOO644xgzZgw//OEPWb9+fY/11qxZw0EHHcQhhxwCwIwZM3j00UcZMGAAffv25Wtf+xp33303lZWVgPPOxvHHH09NTQ1XXnklzz//fHYVNyZgTbVNVFZUxpVVVlTSVNtUoBqZRCXXMKxLcbeaqjxThxxyCMuWLaOmpobvfe973HXXXYwYMYLly5ezfPly2tra+MtfEl/jSK28vJynn36a008/nfvvv58TTjgBgPPPP5/zzjuPtrY2brjhBnvfwBSdupo6mk9ppmpAFYJQNaCK5lOaqaupK3TVjKvo0m5na+hQaE+SfHbo0Oy2u3HjRvbZZx/OPPNM9t57b+bPn8+mTZt46qmnmDhxIjt27OCFF15gxIgR7Lnnnrz33nsADB8+nLVr1/LSSy9x8MEHc+utt3LMMcewdetWtm3bxoknnsikSZMYNmwYAB0dHRxwwAEA3HLLLdlV2pgCqaups4YgxEquYWhqgvr6+MdJlZVOeTba2tr49re/TVlZGRUVFSxYsIDy8nIuuOACOjo62LlzJxdeeCEjRoxg5syZzJo1i379+vHUU0/xm9/8hmnTprFz504OP/xwZs2axdtvv82pp57KBx98gKpy1VVXATBv3jymTZvGwIEDOfbYY3nllVeyq7gxxiQQLbLXBiZMmKCJA/WsXr2az372sxlvo7XViSmsW+fcKTQ1QZ395yWO13NqjAk3EVmqqhMyWbbk7hjAaQSsITDGmORKLvhsMhdE2oKo7MN4Y9ck3EryjsH07v2P3qf+j/W731DtSlsA5Cxo2JUaodj3YbyxaxJ+dsdgknrng3fynrYgiNQIln4hfOyahJ81DCapXZ27kpbnMm1BEKkRLP1C+Ng1CT9rGExSsbJY0vKhA7J84SODbRXbPow3dk3CzxqGkJozZw6LFi3yvN7ixYs5+eSTs97/wL4D8562IIjUCJZ+IXzsmoSfNQwFpKp0dnYm/eyKK65gypQpea/Dzp07k5bv0WePvKctCCI1Ql1NHTNGzyAmzh1QTGLMGD3DgpwFZCkxikCm2fbCMmWbXVVVnVSqVVWqIs7PLFOrXnrppfrLX/5y9/zcuXP1yiuv1J/+9Kc6YcIEramp0Tlz5qiq6iuvvKKHHHKInnXWWXrYYYfp2rVrdcaMGTpixAgdOXKkXnXVVaqqOmPGDP3d736nqqpPP/20Tpw4UUeNGqWHH364btmyRbdv364zZ87UkSNH6pgxY/Svf/2rqqo+8sgjetJJJ6mq6ubNm/XUU0/VmpoaPfLII3XFihW763fmmWfq0UcfrWeccUbSY4pKdtWWlS1a2VQZl8WzsqlSW1ZmmU7XmCKDZVdNo7XVyYnR3u5k3W5vd+azGJRh+vTp3Hnnnbvn77zzTgYNGsSLL77I008/zfLly1m6dCmPPvooAC+++CKNjY08//zzvPXWW2zYsIHnnnuOtrY2zjnnnLhtf/TRR0yfPp2f//znrFixgkWLFtGvXz+uu+46RIS2tjZuu+02ZsyY0SOh3ty5cxk7diwrV67kRz/6EWefffbuz1atWsWiRYu47bbbfB93MbAeMMZ4V3oNQx7ybo8dO5Y333yTjRs3smLFCgYOHLg7m+rYsWMZN24c//znP3nxxRcBqKqq4qijjgJg2LBhvPzyy5x//vk8+OCD7LXXXnHbXrNmDYMHD+bwww8HYK+99qK8vJzHH3+cM888E4BDDz2UqqoqXnjhhbh1H3/8cc466ywAjj32WDZv3syWLVsAmDp1Kv369fN9zMXCesAY413pveCWp7zb06ZNY+HChbz++utMnz6d9vZ2vvOd7/D1r389brm1a9eyxx577J4fOHAgK1as4M9//jPXX389d955JzfddFNWdclE9zpE2dABQ2nv6JlO13rAGJNa3u4YRGS4iCzvNm0RkQsTlpksIh3dlpmTr/rsliq/dpZ5t6dPn87tt9/OwoULmTZtGscffzw33XQTW7duBWDDhg28+eabPdZ766236Ozs5LTTTuOHP/why5Yti/t8+PDhvPbaazzzzDMAvPfee+zcuZPPf/7ztLqPv1544QXWrVvH8OHD49btvszixYvZb7/9etyRRJ31gDHGu7zdMajqGmAMgIjEgA3APUkWfUxVs+9fmak85d0eMWIE7733HgcccACDBw9m8ODBrF69mokTJwLQv39/WlpaiMXi3w/YsGED55xzzu7eST/+8Y/jPu/Tpw933HEH559/Ptu3b6dfv34sWrSIxsZGGhoaqKmpoby8nJtvvplPfOITcevOmzePr371q4waNYrKysqSHL+hq6fL7Idns65jHUMHDKWptsl6wBiTRiBpt0Xk34C5qjopoXwycLGXhiEXabct73bvLO22MdESxrTbZwCpur9MFJEVwEacRqLHIMYiUg/UAwzNdqg1sLzbxhiTRt57JYlIH2Aq8LskHy8DqlR1NPAL4PfJtqGqzao6QVUnDBo0KH+VNcYYE0h31S8By1T1jcQPVHWLqm51f/8TUCEi+wVQJ2OMMSkE0TB8hRSPkURkfxER9/cj3PpsDqBOJiRswBZjwievMQYR2QM4Dvh6t7JZAKp6PXA60CAiO4HtwBkaRDTchIIN2GJMOOW1YVDV94F9E8qu7/b7L4Ff5rMOJrzSpauwhsGYwim9lBgB2bhxI6effrrn9c4991xWrVqVdpnrr7+e3/72t36rFhqWrsKYcCq9lBgB+dSnPsXChQt7lO/cuZPy8tSn/cYbb+x127NmzcqqbmFh6SqMCaeSvGPIdcDzsssu47rrrts9P2/ePH72s58xcuRIAG6++WamTp3KscceS21tLZ2dnTQ2NnLooYdy3HHHceKJJ+5uRCZPnkzXC3z9+/dn9uzZjB49mqOOOoo33ngjbvsAL730ElOmTGH06NGMGzeOf/3rX2zdupXa2lrGjRtHTU0Nf/jDH7I6vnzxm67CAtbG5FfJNQxdAc/2jnYU3R3wzOaPS7K020ceeWTcMsuWLWPhwoX87W9/4+6772bt2rWsWrWKW2+9laeeeirpdt9//32OOuooVqxYwRe+8AV+9atf9Vimrq6Ob3zjG6xYsYInn3ySwYMH07dvX+655x6WLVvGI488wre+9S3CGNP3M2BLPq6fMSZeyT1KykfAs3va7U2bNjFw4EAOPPDAuGWOO+449tlnH8BJhz1t2jTKysrYf//9+eIXv5h0u3369Nk9TOf48eN56KGH4j5/77332LBhA1/+8pcB6Nu3LwA7duzgu9/9Lo8++ihlZWVs2LCBN954g/3339/X8eVTXU2dp/NuAWtj8q/kGoZ8BTwT024n8pPmuqKiAvc1D2KxWMphOBO1trayadMmli5dSkVFBdXV1T0G8SlWFrA2Jv9K7lFSqsBmtgHPxLTb6UyaNIm77rqLzs5O3njjDRYvXuxrn3vuuSdDhgzh9793Mol8+OGHbNu2jY6ODj75yU9SUVHBI488Qnt7zwBvscrX9TPGfKzkGoZ85edPTLudzmmnncaQIUM47LDDOPPMMxk3bhwDBgzwtd9bb72Va6+9llGjRnH00Ufz+uuvU1dXx5IlS6ipqeG3v/0thx56qK9th5Gf6xdEsDoqAfGoHIfJTiBpt3MpF2m3W9taC56ff+vWrfTv35/NmzdzxBFH8MQTT4QqBhDmtNterl/i29XgNCS9Bbm91iff+whCVI7DJOcl7XZJNgxhMHnyZN59910++ugjLrnkEmbOnFnoKsUpxnOaTPU11UnflagaUMXaC9cWzT6CEJXjMMmFcTwGk8BvXMF4E0SwOioB8agch8leZGIMxXbnE2ZROpdBBKujEhCPynGY7EWiYejbty+bN2+O1B+0QlFVNm/evPudiGKXr84GQe8jCFE5DpO9SDxKGjJkCOvXr2fTpk2Frkok9O3blyFDhhS6GjlRV1PHE+ueoHlpM7t0FzGJMWP0jJwGU7u2VegODdmKynGY7EUi+GxMKtbTxhiHl+BzJB4lGZNKuhQaxpjkrGEwkWY9bYzxzhoGE2nW08YY7/LWMIjIcBFZ3m3aIiIXJiwjInKtiLwkIitFZFy+6mNKU2A9bVpboboaysqcn62WSsIUr7z1SlLVNcAYABGJARuAexIW+xLwGXc6Eljg/jQmJwLpadPaCvX1sM2NZbS3O/MAdRbgNsUnkF5JIvJvwFxVnZRQfgOwWFVvc+fXAJNV9bVU27JeSSZ0qqudxiBRVRWsXRt0bYxJKoy9ks4AbktSfgDwarf59W5ZHBGpF5ElIrLE3lUwobMuRSA7VbkxIZf3hkFE+gBTgd/53YaqNqvqBFWdMGjQoNxVzphcGJoikJ2q3JiQC+KO4UvAMlV9I8lnG4DuY2AOccuMKR5NTVAZH+CmstIpN6YIBZES4yskf4wEcC9wnojcjhN07kgXXzAmKI1XTaG542F2CcQU6gfUMv+iRckXrqujdcsTzH65mXV77GLo+zGahs2gzgLPpkjl9Y5BRPYAjgPu7lY2S0RmubN/Al4GXgJ+BTTmsz7GZKLxqiks2PIwu8oAgV1lsGDLwzReNSXp8q1trdS/cwvt/XehAu39d1H/zi02+pkpWpYryZgE5XPFaRQSxDph5+U9/73YADemGISxV5IxRWOXeCu3tBsmatI2DCIyUUSuc99K3iQi60TkTyLyDRHxN3q9MSEXS3ETnarc0m6YqEnZMIjIA8C5wJ+BE4DBwGHA94C+wB9EZGoQlTQRFkAqida2Vqqvqabs8jKqr6nu9dl//YBaSGwE3AB0Mk21TVSUVcSVVZRV2AA3pmil65V0lqq+lVC2FVjmTv8jIvvlrWYm+gJIJZE4HkN7Rzv19zn7SJUWY/5Fi8BLryRARNLOG1NMMg4+i8hedGtIVPXtfFUqHQs+R0gAqSSCCAxb8NkUAy/B517fYxCRrwOXAx/w8Q22AsN819AYCCSVRBCBYQs+m6jJpFfSxcBIVa1W1YPcyRoFk70AUkkEERi24LOJmkwahn8B23pdyoSe1yBs3gWQSqKptokKYnFlFcR6DQy3XjSF6m8KZfOE6m8KrRclf7mtax9+xnxo/GMj5VeUI5cL5VeU0/hHe7/ThEMmDcN3gCdF5AZ3UJ1rReTafFfM5FZXELa9ox1FdwdhC9o41NVBc7MTUxBxfjY353YMg8efQHbuiiuSnbvg8SdSrtJ60RTq+z1M+944bzLvDfX9Hk7ZONTV1NF8SjNVA6oQhKoBVTSf0px2zIfGPzayYMkCdqlTt126iwVLFljjYEKh1+CziDwNPA60AZ1d5ap6S36rlpwFn/0p1QBp9bfLae+/q0d51dYYa6/cmXydbwrte/csr3oX1l6dm0wB5VeU724UuotJjJ1zktfLmGzkNPgMVKjqRVnWyRRYqQZI1+3R849vunKAdSle3UxV7keyRiFduTFByuRR0gPuQDmDRWSfrinvNTM5VaoB0qHvxzyVAwzt8FbuR0yS7z9VuTFByqRh+ApunAFY6k72LKfI+A2QFrumYfVU7ogvq9zhlKdcR2qp/ChhnY+c8lypH598/6nKjQlSrw1Dty6qB1l31eLlJ0AaWh7SaNQ1zKd5Wy1V74KoEydo3lZLXcP81OtctYjm7QnrbK+l7qrUbz57Nf+k+TRMaNh9hxCTGA0TGph/Uup6GROUTILP3wBaVfVdd34g8BVVLcg32ILPJS4xjQY4XVxT9WbyurwxEeUl+JxJw7BcVccklD2rqmOzqKNv1jCUOK9pNAJIu2FMMcj1eAwx6ZYRTERiQB+/lTMmK17TaASQdsOYqMmkYXgQuENEakWkFmf85gfzWy1jUvCaRiOAtBvGRE0mDcOlwF+BBnd6GLgkk42LyN4islBE/ikiq0VkYsLnk0WkQ0SWu9McrwdgipzX8Ri8ptFoamLK2SBzP56mnE1O025ACNONGJOFXl9wU9VO4Hp38urnwIOqerqI9AEqkyzzmKqe7GPbptj5GY+hq3z2bOdx0NChzh/5FMtP2fUbHk7oQ/fwMKd8EYUb88GYMEsZfBaR+4BmnD/sOxI+GwbMBNaq6k0p1h8ALAeGaYqdiMhk4GIvDYMFnyMkgMCwXJ56wBydm5v0FqWabsQUl1wFn/8T+DzwTxF5xh3r+a8i8gpwA7A0VaPgOgjYBPxGRJ4VkRtFZI8ky00UkRUi8oCIjEhxQPUiskRElmzatCmT4zLFICKB4VJNN2KiK2XDoKqvq+olqvppYBrwA+AiYISqHqeqf+hl2+XAOGCB27X1feCyhGWWAVWqOhr4BfD7FHVpVtUJqjph0KBBGR2YKQIRCQyXaroRE12ZBJ9R1bWq+pSqLlfVTMdmWA+sV9V/uPMLcRqK7tvdoqpb3d//BFTYONIlJIDxGGoPSp7GIlW5H6WabsREV0YNgx+q+jrwqogMd4tqgVXdlxGR/bvekRCRI9z6bM5XnUz+eeqdU1dH4w8mUj7H6S1UPgcafzCx9zeSPfRkWnT2oh6NQO1BtSw6O316Cy/HUVdTx4y+E4l1AgqxTpjRd6IFnk3R6vXN56w2LjIGuBHnhbiXgXOA6QCqer2InIfTBXYnsB24SFWfTLdNCz6HV2LvHHD+55wqJ1PXYDWJ0uYMCiDFhdfjaF3QSP2GBWyr6FalHdB8QEPanEzGBCmnKTHCxhqG8PLaO8fXYDUB9GTyehx+BgMyJmg5HahHRCYB84Aqd3kB1DKsmkRee+f4GqwmgJ5MXo/Dz2BAxoRZJjGGXwNXAZ8DDgcmuD+NieO1d46vwWoC6Mnk9Tj8DAZkTJhl0jB0qOoDqvqmqm7umvJes1LjNTWEn10saKT62+WUzROqv11O64LcDjzfVNtERVlFXFlFWUXK3jm+BqtpaqJ1fAXVF0LZXKi+EFrHV+S0J5PXXkZ+BgMC79fD0m6YoKRsGERknIiMAx4RkStFZGJXmVtucqUroNreDqofp4bIYePQFSBt778LFWjvv4v6DQty3jh0S8SbdL67SUMnUV4W/zSzvKycSUMnpVyndRTUTxXa98Y5jr2d+dZR2dW7O6+DGtU1zKf5gAaqtsacgX22xnoNPHu9Hl0B8faOdhTdnXbDGgeTD+lSYjySZj1V1WPzU6X0Ihl8DiKgGkCA1HPQ1kcqiaikn/B6PaJy3KZwchJ8VtUvuhsbpqovJ+zAAs+5FERANYAAqeegrY9UElFJP+H1ekTluE1xyCTGsDBJ2e9yXZGSFkRANYAAqeegrY9UElFJP+H1ekTluE1xSBdjOFRETgMGiMj/7TbNBPoGVsNilO8xBnzwGyD1tA+vQdvaJvrE4gcD7BPrkzaVRFNtE5USv06lpF8njLxeD6+BfWOyke6OYThwMrA3cEq3aRxO5lWTjJ9Acl2d8+ZuVRWIOD9zPFi9nwCp5314DNoCJMa4envhsm4lNN+rVL2LcxzvOvN1K3NyCIHxcz28BPaNyUavbz6LyERVfSqg+vQq9MFnG3w+Y74CqiV6fi34bLKV0zefgf8nIl9JKOsAlmSQerv0RGSMgSD4CqiW6Pm14LMJUibB508AY4AX3WkUMAT4mohck8e6FaeIjDEQBF8B1RI9vxZ8NkHKpGEYBXxRVX+hqr8ApgCHAl8G/i2flStKAQSSo8LXOAYlen5tzAcTpEwahoFA/27zewD7qOou4MO81KqYBRBIDkq+UzDU1dTR/NbE+EDyW72MY1BXBzNmQMzt1hmLOfNpzm++U4EEwU9g3xi/Mgk+fw34HrAYJ7PqF4AfAbcB81T123muY5zQB58jwuuYBL40NsKCnuMx0NAA83MzHoONlWCMI+fjMYjIYOAId/YZVd2YRf2yYg1DMALpBVNeDruSvOkbi8HO3IzHYGMlGOPw0jBkOrRnGbAJeAc4WES+4LdypjgE0gsmWaOQrhw890qysRKM8S6TgXp+gjMc5/NAp1uswKN5rJcpsKEDhia9Y8hpL5hYLPUdQ8qKDU1+x5CiV9LQ92NJ7xhsrARjUsvkjuHfgeGqepKqnuJOUzPZuIjsLSILReSfIrJaRCYmfC4icq2IvCQiK6OSzjsKwU7fvWC8pAOpT5GOI1U5OL2PKuJTQ1CRejyGpmH1VCQ8MarYmdtUIIEJYMwOYyCzhuFloKLXpZL7OfCgqh4KjAZWJ3z+JeAz7lQPJIlEFpegxj3IN1+9YLymA5k/3wk0d+9hlC7w3CUxFUS61BCfm4SUx98YS3k5fC71mA+hFMCYHcZ0yaRX0l04f9Qfplv3VFW9oJf1BgDLgWGaYicicgOwWFVvc+fXAJNV9bVU2w178Lmkg51BpKvwGnyOSiqJEk0FYnIn1ykx7nUnrw7CCVj/RkRGA0uB/1LV97stcwDwarf59W5ZXMMgIvU4dxQMDfkbriUd7AwiXYXX4HNUUkmUaCoQUxi9PkpS1VuAO4G/q+otXVMG2y7HycS6QFXHAu8Dl/mppKo2q+oEVZ0waNAgP5sITEkPDB9EugqP+4hMKokSTQViCqPXhkFETsF5JPSgOz9GRDK5g1gPrFfVf7jzC3Eaiu42AAd2mx/ilhWtIMY9CK0g0lV43EdkUkmUaCoQUxiZBJ/n4bzc9i6Aqi4Heh3aU1VfB14VkeFuUS2wKmGxe4Gz3d5JRwEd6eILxSCIcQ9CK4h0IB73UVdTx4y+E4l1AgqxTpjRt5e0G37ku8dQhFKtmPDLJPj8d1U9SkSedR8JISIrVXVUrxsXGQPcCPTB6d10Ds47Eajq9eKMNPJL4ARgG3COqqaNLIc9+GzCJZCUGB7TdBhTCDlNiSEiv8bpkXQZcBpwAVChqrOyragf1jAYLwLpJWY9hkwRyHVKjPOBEThdVW8DtgAX+q+eMcEJpJeY9RgyEdNrd1VV3QbMdidjikogKTE8pukwJuxS3jGIyH0icm+qKchKmgLxEVBtvHQE5XMEmSeUzxEaLx2Rfhd5HvMhkF5i1mMolCyDiH/p7hh+FlgtTPgkBlS7UjBAyoBq46UjWNBvlTNqB7ArhjN/6Qjm/+T5nrtIGPOhvaOd+vucfeSq11Bdw3xYALNfbmbdHrsY+n6MpmH1ue0l1nU+Zs92Hh8NHeo0ChZ4LhgfX1/TTUbjMYSJBZ8D4iOgWj5H2JXkCU1sF+y8ouf3LDLpKkzoWH+AnvIxHoMpNT4CqrtSfJtSlUcmXYUJHesPkB1rGExyPlIwxDq9lUcmXYUJHcsgkh1rGEqIp0BvUxP06RNf1qdP2oBq/YeHOUM4daduebJd1DZR2Rkf5qrsLM/tmA9+ljd5l+9LEqX+AAX5+qpq0gm4j48zq/aYUq2X72n8+PFqvGtZ2aKVTZXKPHZPlU2V2rKyJcUKLaoVFapO9n9nqqhwytNouOQwjX0fZS4a+z7acMlhaRZu0JYatOpCVOY6P1tqUG1oSHMgLaqVlfH1qqxMXS+vy5u8C+qStLSoVlWpijg/i/GS5/JcAUs0w7+zKYPPInJMLw3K33LYPmXMgs/+eA70BhG9Ky9PPbTnzhRvJXutl0UhQ8cuSeZyea5ymsoOGIoAABOpSURBVBIjbKxh8Kfs8jK0x3MeEITOuUmCAGVlzn9Qeqwg0JkiaOBVupHXUn0vvdYriOMwntglyVwuz1VOeyWJyGfccZtXicjLXZO3KplC8xzoDSJ6F0vx9nGq8nT7z1W5yTu7JJkr1LnKJPj8G5yxmHcCXwR+C7Tks1Im9zyPSxBE9K4+xdvHqcr91CtKUciIsEuSuYKdq96CEMBS92dbYlkhJgs++9cyv0GrLo45gd6LY9oyP02QV9Vf9M7jOi3frI0PPn+ztvd9NDSoxmJOJC4WSx+sVlWtrY2P3tVmsA+TV1EIDAclV+cKD8HnTBqGJ3HuLO4GzgO+DKzJdAe5nqxh8CmIriAe9+G5p5Sf42hoiF+2a+qtMTEmYrw0DJmMx3A4sBrYG/gBMAD4qar+PQ83ML2y4LNPQXQF8bgPXykxvB6Hn55PxkSQl+BzJmm3n3E3WgZcoKrvZVk/UwhB5AjwuA9fKTG8HkeyRiFduTEmo15JE0SkDVgJtInIChEZn/+qmZwKonuDx334Sonh9Tj89HwypsRl0ivpJqBRVatVtRr4Bk5PpV6JyFoRaROR5SLS4/mPiEwWkQ738+UiMsdT7aPE63vvjY3OYxIR52djY/rlm5qgoiK+rKIiffcGr3Xy2IXCc08pH/vw1fMpQiwbSH5F9vz2FoQAnk1StiyTAAawFtgvzeeTgfszDYhoVIPPQQRUW1pU+/SJX75Pn9ynkvDaK2lli1ZdXaUyT7Tq6qr0gWef+/DciykiLBtIfhXb+SXHwedrgH444z0rMB34APddBlVdlmbdtcAEVX0rxeeTgYtV9eTMmrGIBp+DCKhaKomSY5cwv4rt/OY0JYaIPJLmY1XVY9Os+wrwDk6DcoOqNid8Phm4C1gPbMRpJHoM9SUi9UA9wNChQ8e3J7saxczre++WSsJkwC5hfhXb+c11r6QvZlGXz6nqBhH5JPCQiPxTVR/t9vkyoEpVt4rIicDvgc8kqUMz0AzOHUMW9Qknr4PJx2Kp7xhytQ8b4L7o2SXMryif30x6Jf0fEfm1iDzgzh8mIl/LZOOqusH9+SZwD3BEwudbVHWr+/ufgAoR2c/jMRS/IAKqlkqi5NglzK9In9/eghDAA8B/ACvc+XK6pcdIs94ewJ7dfn8SOCFhmf35+HHWEcC6rvlUUySDz6rBBFS97iMqeQsichxBXHI/gthHWPsPFNNXixynxHhGE3onAcszWG8YsMKdngdmu+WzgFnu7+e5n60A/g4c3dt2I9swmPwotq4jKYQ1s0cQpzesx15svDQMmQSfFwOnAQ+p6jgROQr4iaqmHcgnXyLZK8nkT7F1HUkhrJk9wjqek+kpp8Fn4CKc4Tw/LSJPAIOA07OonzHBCSIVSADCmtkjiNMb1mOPskx6JS1zh/kcDghOZtUdea+ZMbkQka4jfjqiBSGI0xvWY4+yTHolTQP6qfN+wb8Dd4jIuLzXzJhciEjXkbBm9vCTacWrsB57lGWSK+n7qvqeiHwOqAV+jTOimzHhV1cHzc3OQ28R52dzs1NeRObPh4aGj/+XHIs58/PnF7Ze0PN9y3TvX/oR5mOPqkyCz8+q6lgR+TFON9X/7SoLporxLPhsTHhEJLZfErwEnzO5Y9ggIjfg5Ej6k4h8IsP1jDERF5HYvkmQyR/4/wD+DByvqu8C+wDfzmutjDFFIYhhPkzwem0YVHWbqt6tqi+686+p6l/yXzVjTNhFJLZvEtgjIZNbkR25pPD8nNp8X46IxPYB++rGyfQV6bBMlhIjxCKSfiKM/JxauxyZK4VzRS5TYoSN9UoKMeuikjd+Tq1djsyVwrnK6UA9YWMNQ4gV28glRcTPqbXLkblSOFe57q5qTGasi0re+Dm1djkyZ+cqnjUMpSTf0TXrouKJl8vhJ/VEU5OTmbS78vLcXw4/X6spU5z/jXdNU6bktk5e2Vc3QabBiLBMFnz2KajoWjGNXFJAXi9HS4tqnz7xy/fpk/70BjGOgZ+vVW1t8nrV1uauXn5E/auLBZ9ND6UQXSsiXi+Hn8sXxDgGfuqVLpdSkf05KioWfDY9lUJ0rYh4vRx+Ll8Qf4DDWi/TkwWfTU8WXQsVr5fDz+VLNV5BLscxsK9VNOW1YRCRtSLSJiLLRaTHf/PFca2IvCQiKwMZ5yGsrzdaYDhvgrjkXvfhNZjsJ5DsZxwDP8fh9WtVW+ut3BRApsEIPxOwFtgvzecnAg/gjAx3FPCP3raZVfA5rK83WmA4b4I4tX7fSvYSTPYTSPa6jt9z5edrlRiALnTguRQQluCziKwFJqjqWyk+vwFYrKq3ufNrgMmq+lqqbWYVYwhrADas9YqAIE5tEG8l+wkke13HvobRFqYYgwJ/EZGlIpLsBvYA4NVu8+vdsjgiUi8iS0RkyaZNm/zXJqzJ48NarwgI4tT62YfXdVINfJ+q3M869jU0XfLdMHxOVccBXwK+ISJf8LMRVW1W1QmqOmHQoEH+axPWSFlY6xUBQZzaIN5K9hNI9rqOfQ1Nl7w2DKq6wf35JnAPcETCIhuAA7vND3HL8iOsAdiw1isCgji1fvbhdR0/gWSv69jX0OyWaTDC6wTsAezZ7fcngRMSljmJ+ODz071tN+s3n8MagPVaLx/H0bKyRauurlKZJ1p1dZW2rAzJsedZQ4NqLOYEOWOxzN789bqOn6+V13WCOA4/+zDFAQ/B53w2DMOAFe70PDDbLZ8FzHJ/F+A64F9AG06gOr8NQxT46D7SsrJFK5sqlXnsniqbKiPfOPjpaRNEKokwCmunPZMbXhoGe/O5GPnoPlJ9TTXtHT3XqRpQxdoLk68TBWFNJRFG1isp2sLUK8nkg4/uI+s6kn+Wqjwq/PS08dMDKAqsV5LpYg1DMfLRfWTogOSfpSqPirCmkggj65VkuljDUIx8dB9pqm2isiJ+ncqKSppqo93lpKnJSe/QXVlZ7lNJBKGx0XnMJeL8bGzM7fatV5LpYg1DMaqrg+Zm5+GviPOzudkpT7VKTR3NpzRTNaAKQagaUEXzKc3U1aReJwqeeKJnls/OTqc8lUmTet4dxGJOeaE0NsKCBR8/ztq1y5nPZePg42tlIsqCzybS/ASSwxiELdWAuMkdCz4b4/ITSA5jELZUA+KmMKxhMJHmJ5AcxiBsqQbETWFYw2AizU8gOYxB2LAGxE00WcNgIm3+fGho+Ph/1rGYMz9/fup1/ARh891jyM9xGOOXBZ+NyVJXj6FE9ofbhIkFn40JUHOzt3Jjws4aBmOyZD2GTNRYw2BMlqzHkIkaaxiMSaK11XnRrazM+dnamnrZoHoMealTmPdhws8aBmMStLY6f9Tb251RCdrbnflUfyQnTXJ6InVXXp7bFBpe6xTWfZjiYL2SjEngNSVGECk0orIPUzheeiVZw2BMgrIy53/MiUR6JuTzs3wQdQrrPkzhWHdVY7LgNSVGECk0orIPUxzy3jCISExEnhWR+5N8NlNENonIcnc6N9/1CSsL+oWH15QYQaTQiMo+TJHIdHBovxNwEfC/wP1JPpsJ/NLL9saPH5+jobHDwwZhD5+WFtWqKlUR52dv18Lr8kHUKaz7MIUBLNEM/87mNcYgIkOAW4Am4CJVPTnh85nABFU9L9NtRjHGYEE/Y0y+hSnGcA1wCZAudHWaiKwUkYUicmCyBUSkXkSWiMiSTZs25aWihRTG/P/GmNKVt4ZBRE4G3lTVpWkWuw+oVtVRwEM4dxc9qGqzqk5Q1QmDBg3KQ20Ly4J+xpgwyecdwyRgqoisBW4HjhWRlu4LqOpmVf3Qnb0RGJ/H+oSWBf2MMWGSt4ZBVb+jqkNUtRo4A/irqp7ZfRkRGdxtdiqwOl/1CTMbhN0brz24LJWEMd6U975IbonIFTjR8XuBC0RkKrATeBunl1JJqquzhiATXWkbtm1z5rvSNkDy8+d1+SDqZEzY2ZvPpqiUaroKY7IVpl5JxuSU1x5cQfT4sl5lJmqsYTBFpVTTVRgTJGsYTFHxk66iT5/4sj59LJWEMelYw2CKip8eXIlhtFyH1axXmYkaCz6bSLPAsDEOCz4b47LAsDHeWcNgIs0Cw8Z4Zw2DiTQLDBvjnTUMJtIsMGyMd4GnxDAmaJZuxBhv7I7BGGNMHGsYjDHGxLGGwRhjTBxrGIwxxsSxhsEYY0wcaxiMMcbEKbpcSSKyCUiS/caz/YC3crCdYlSqx16qxw127KV47InHXaWqgzJZsegahlwRkSWZJpSKmlI99lI9brBjL8Vjz+a47VGSMcaYONYwGGOMiVPKDUNzoStQQKV67KV63GDHXop8H3fJxhiMMcYkV8p3DMYYY5KwhsEYY0ycSDcMInKgiDwiIqtE5HkR+a8ky4iIXCsiL4nIShEZV4i65lKGxz1ZRDpEZLk7zSlEXXNNRPqKyNMissI99suTLPMJEbnDveb/EJHq4Guaexke+0wR2dTtup9biLrmg4jERORZEbk/yWeRvOZdejl2z9c86uMx7AS+parLRGRPYKmIPKSqq7ot8yXgM+50JLDA/VnMMjlugMdU9eQC1C+fPgSOVdWtIlIBPC4iD6jq37st8zXgHVU9WETOAH4CTC9EZXMsk2MHuENVzytA/fLtv4DVwF5JPovqNe+S7tjB4zWP9B2Dqr6mqsvc39/DOXEHJCx2KvBbdfwd2FtEBgdc1ZzK8Lgjyb2OW93ZCndK7GFxKnCL+/tCoFZEJKAq5k2Gxx5JIjIEOAm4McUikbzmkNGxexbphqE799ZxLPCPhI8OAF7tNr+eCP0RTXPcABPdxw4PiMiIQCuWR+5t9XLgTeAhVU15zVV1J9AB7BtsLfMjg2MHOM19bLpQRA4MuIr5cg1wCdCZ4vPIXnN6P3bweM1LomEQkf7AXcCFqrql0PUJSi/HvQwnd8po4BfA74OuX76o6i5VHQMMAY4QkZGFrlNQMjj2+4BqVR0FPMTH/4suWiJyMvCmqi4tdF2CluGxe77mkW8Y3GetdwGtqnp3kkU2AN1b0CFuWVHr7bhVdUvXYwdV/RNQISL7BVzNvFLVd4FHgBMSPtp9zUWkHBgAbA62dvmV6thVdbOqfujO3giMD7pueTAJmCoia4HbgWNFpCVhmahe816P3c81j3TD4D5D/DWwWlWvSrHYvcDZbu+ko4AOVX0tsErmQSbHLSL7dz1jFZEjcL4LRf8PRUQGicje7u/9gOOAfyYsdi8ww/39dOCvGoE3PTM59oT42VSc+FNRU9XvqOoQVa0GzsC5nmcmLBbJa57Jsfu55lHvlTQJOAtoc5+7AnwXGAqgqtcDfwJOBF4CtgHnFKCeuZbJcZ8ONIjITmA7cEYU/qEAg4FbRCSG09jdqar3i8gVwBJVvRen0bxVRF4C3sb5BxUFmRz7BSIyFafn2tvAzILVNs9K5Jonle01t5QYxhhj4kT6UZIxxhjvrGEwxhgTxxoGY4wxcaxhMMYYE8caBmOMMXGsYTCG3dlme2SmzGC9T4nIwhSfLRaRCe7v3+1WXi0iz2W4/QtF5Gyv9UqynfNE5KvZbseUBmsYjMmCqm5U1dMzWPS7vS8Sz31D96vA/3quWE83AefnYDumBFjDYIqCiOwhIn90k/49JyLT3fLxIvI3EVkqIn/uesvT/d/6z93888+5b3cjIkeIyFNu7vonRWR4L/v9o4iMcn9/VtxxK0TkChH5z+7/+xeRfiJyu4isFpF7gH5u+X8D/dy6tLqbjonIr8QZN+Ev7pvKiY4FlrlJ3xCRg0VkkXsOlonIp907nb+JyB9E5GUR+W8RqRNnXIY2Efk0gKpuA9Z2nQdj0rGGwRSLE4CNqjpaVUcCD7r5oH4BnK6q43H+V9zUbZ1KN6Fco/sZOCkiPq+qY4E5wI962e9jwOdFZADOm6OT3PLPA48mLNsAbFPVzwJzcXPSqOplwHZVHaOqde6ynwGuU9URwLvAaUn2PQnonhyt1V1nNHA00JW6ZTQwC/gszhvvh6jqETh5cbrfJSxx621MWlFPiWGiow34HxH5CXC/qj7mZg4dCTzkpn2K8fEfS4DbAFT1URHZy80jtCdO2ojP4IxVUNHLfh8DLgBeAf4IHCcilcBBqrpG4kcC+wJwrbvPlSKyMs12X1HVrnQlS4HqJMsMxs1rI86ASweo6j3u9j9wywGe6crvJSL/Av7irt8GfLHb9t4EDu3leI2xhsEUB1V9QZxhV08EfigiDwP3AM+r6sRUqyWZ/wHwiKp+2f2jvriXXT8DTABexklZvB/wn8T/T96PD7v9vgv3sVOC7UBfj9vq7DbfSfy/8b7uNo1Jyx4lmaIgIp/CeUzTAlwJjAPWAINEZKK7TIXEDzjUFYf4HE7W3A6cdMtdadVn9rZfVf0IZ4CXacBTOHcQF9PzMRJu2f9z9zkSGNXtsx3uoy8vVgMHu/V4D1gvIv/ubv8T7p2LF4cAGfWGMqXNGgZTLGqAp91ssXOBH7p/tE8HfiIiK4DlOM/eu3wgIs8C1+OM+QvwU+DHbnmmd8yP4QyGst39fYj7M9ECoL+IrAauIP6uohlY2S34nIkHcB5PdTkLJ1PmSuBJYH8P2wInZvGQx3VMCbLsqiaSRGQxcLGqLil0XbLh9m66RFVfzHI7Y4GLVPWs3NTMRJndMRgTbpfhBKGztR/w/Rxsx5QAu2MwxhgTx+4YjDHGxLGGwRhjTBxrGIwxxsSxhsEYY0wcaxiMMcbE+f/b1gT9WCox9AAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEGCAYAAACO8lkDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAzn0lEQVR4nO3de3xcdZn48c+TSUobLqVCd60tTcoqRdq09MKlVuSSoixW1B/U4kYoF4kkAltZUNyubUWj66oUdWkxKoImy2WL7gKCSruichFoa9vQQgUhKW3RXpBQaAtN+/z+OCftzGRmMudkzpkzZ5736zWvzJw5l+85J5lv5jzPeb6iqhhjjDHJKordAGOMMdFjnYMxxpg+rHMwxhjTh3UOxhhj+rDOwRhjTB+VxW6AV0cffbTW1tYWuxnGGFNSVq5cuV1Vh+c7f8l1DrW1taxYsaLYzTDGmJIiIl1e5g/0spKIfE5E1onIMyJyp4gMTnv/EBG5W0ReEJEnRaQ2yPYYY4zJT2Cdg4iMBK4BpqrqeCABXJg22+XA31T13cAi4BtBtccYY0z+gg5IVwJDRKQSqAa2pL3/UeAO9/lSoF5EJOA2GWOM6UdgMQdV3Swi3wI2AruBX6vqr9NmGwm87M7fIyLdwFHA9uSZRKQRaAQYPXp0n23t3buXTZs2sWfPnoLvRzkaPHgwo0aNoqqqqthNMcYUSWCdg4gMw/lmMAZ4DfhvEfmUqrZ5XZeqtgKtAFOnTu1TDGrTpk0cfvjh1NbWYl88BkZV2bFjB5s2bWLMmDHFbo4xpkiCvKw0A3hJVbep6l7gZ8D70ubZDBwD4F56Ggrs8LqhPXv2cNRRR1nHUAAiwlFHHWXfwkyg2jvaqb25loovV1B7cy3tHe3FbpJJE2TnsBE4VUSq3ThCPfBs2jz3AXPc5xcA/6c+y8Rax1A4dixNkNo72mm8v5Gu7i4Upau7i8b7G62DiJjAOgdVfRInyLwK6HC31SoiN4rIee5sPwKOEpEXgGuBG4JqjzEmGuYtn8euvbtSpu3au4t5y+cVqUUmk0BvglPVBcCCtMnzk97fA8wKsg1RdPvtt/PBD36Qd73rXcVuijGh29i90dN0UxxWW6kIbr/9drZsSc/qNaY8jB7aN+Mw13RTHGXZObS3Q20tVFQ4P9sLcKnzzTff5MMf/jATJ05k/Pjx3H333axcuZLTTz+dKVOm8KEPfYhXXnmFpUuXsmLFChoaGjjxxBPZvXs3y5cvZ9KkSdTV1XHZZZfx1ltvAXDDDTdwwgknMGHCBK677joA7r//fk455RQmTZrEjBkz+Otf/zrwxhsTopb6FqqrqlOmVVdV01LfUqQWmYxUtaQeU6ZM0XTr16/vMy2btjbV6mpVOPiornamD8TSpUv105/+9IHXr732mk6bNk23bt2qqqp33XWXXnrppaqqevrpp+vTTz+tqqq7d+/WUaNG6YYNG1RV9aKLLtJFixbp9u3b9bjjjtP9+/erqurf/vY3VVV99dVXD0z7wQ9+oNdee+3AGp6Fl2NqjFdta9u0ZlGNykLRmkU12rZ2gH+Apl/ACvXwWVtyhfcGat482JUaC2PXLmd6Q4P/9dbV1fEv//IvfOELX2DmzJkMGzaMZ555hrPPPhuAffv2MWLEiD7LbdiwgTFjxnDccccBMGfOHG655RauuuoqBg8ezOWXX87MmTOZOXMm4NzTMXv2bF555RXefvttuxfBlKSGugYa6gbwB2cCV3aXlTZmiXllm56v4447jlWrVlFXV8e//du/ce+99zJu3DhWr17N6tWr6ejo4Ne/Tr9BPLvKykqeeuopLrjgAh544AHOOeccAK6++mquuuoqOjo6+P73v2/3IxhjAlF2nUOG6hs5p+dry5YtVFdX86lPfYrrr7+eJ598km3btvHEE08ATomPdevWAXD44Yezc+dOAMaOHUtnZycvvPACAD/96U85/fTTeeONN+ju7ubcc89l0aJFrFmzBoDu7m5GjhwJwB133JHeDGOMKYiyu6zU0gKNjamXlqqrnekD0dHRwfXXX09FRQVVVVUsWbKEyspKrrnmGrq7u+np6WHu3LmMGzeOSy65hCuvvJIhQ4bwxBNP8OMf/5hZs2bR09PDSSedxJVXXsmrr77KRz/6Ufbs2YOqctNNNwGwcOFCZs2axbBhwzjrrLN46aWXBtZwY4zJxEuAIgqPgQakVZ3gc02Nqojzc6DB6Dh6evXTgQcMwwhKWuAzmuy8hA8LSPevoWFgwee427FrBzt276Cr2xk4qre8AVCwIGJvCYXeO2VLdRvGOzsvpaHsYg6mf5t3bkbTSlwVurxBGCUUrExDNNl5KQ3WOZg+3t73dsbphSxvEEYJBSvTEE12XkqDdQ6mj0GJQRmnF7K8QRglFKxMQzTZeSkN1jmYPkYePrJP2e5ClzcIo4SClWmIJjsvpcE6B9PHUdVHcdSQo6gZWoMg1AytofUjrQUNFjbUNdD6kdbAtzFn4hwSkgAgIQnmTJxjQc8iC+Pcm4GT9MBj1E2dOlVXrFiRMu3ZZ5/lve99b5FaFIz58+fzgQ98gBkzZnha7pFHHuFb3/oWDzzwwIC2H4djmp4VA85/qPZBZMqRiKxU1an5zm/fHIpIVdm/f3/G92688UbPHYMfPT09gW+jWCwrxhj/yrNzKHDN7htuuIFbbrnlwOuFCxfyrW99i29+85ucdNJJTJgwgQULnDGPOjs7GTt2LBdffDHjx4/n5Zdf5pJLLmH8+PHU1dWxaNEiAC655BKWLl0KwNNPP8373vc+Jk6cyMknn8zOnTvZs2cPl156KXV1dUyaNInf/OY3fdr16quv8rGPfYwJEyZw6qmnsnbt2gPtu+iii5g+fToXXXTRgPY9yiwrxhj/yq9zaG936md0dTkVu7u6nNcD6CBmz57NPffcc+D1Pffcw/Dhw3n++ed56qmnWL16NStXruR3v/sdAM8//zzNzc2sW7eO7du3s3nzZp555hk6Ojq49NJLU9b99ttvM3v2bL7zne+wZs0ali1bxpAhQ7jlllsQETo6OrjzzjuZM2dOnyJ8CxYsYNKkSaxdu5avfe1rXHzxxQfeW79+PcuWLePOO+/0vd9RZ1kxxvgXWOcgImNFZHXS43URmZs2zxki0p00z/wsqyucXDW7fZo0aRJbt25ly5YtrFmzhmHDhh2owjpp0iQmT57Mc889x/PPPw9ATU0Np556KgDHHnssL774IldffTW//OUvOeKII1LWvWHDBkaMGMFJJ50EwBFHHEFlZSWPPvoon/rUpwA4/vjjqamp4U9/+lPKso8++uiBbwZnnXUWO3bs4PXXXwfgvPPOY8iQIb73uRRYVowx/gVWPkNVNwAnAohIAtgM/DzDrL9X1ZlBtaOPgGp2z5o1i6VLl/KXv/yF2bNn09XVxRe/+EU+85nPpMzX2dnJoYceeuD1sGHDWLNmDb/61a+49dZbueeee7jtttsG1JZ8JLchrnqDzvOWz2Nj90ZGDx1NS32LBaONyUNYl5XqgT+raldI28suoJrds2fP5q677mLp0qXMmjWLD33oQ9x222288cYbAGzevJmtW7f2WW779u3s37+f888/n69+9ausWrUq5f2xY8fyyiuv8PTTTwOwc+dOenp6OO2002h3L4X96U9/YuPGjYwdOzZl2eR5HnnkEY4++ug+30zirqGugc65nexfsJ/OuZ3WMRiTp7AK710IZLu4PU1E1gBbgOtUdV36DCLSCDQCjB7owAsB1eweN24cO3fuZOTIkYwYMYIRI0bw7LPPMm3aNAAOO+ww2traSCQSKctt3ryZSy+99EDW0te//vWU9wcNGsTdd9/N1Vdfze7duxkyZAjLli2jubmZpqYm6urqqKys5Pbbb+eQQw5JWXbhwoVcdtllTJgwgerqahv/wRiTt8DvcxCRQTgf/ONU9a9p7x0B7FfVN0TkXOA7qvqeXOsryH0O7e1OjGHjRucbQ0uLlWlNE4f7HIwxB3m9zyGMbw7/CKxK7xgAVPX1pOcPishiETlaVbcH2iKr2W2MMTmFEXP4JFkuKYnIO8Ut4iMiJ7vt2RFCm0wEtHe0U3tzLRVfrqD25lraOwZ2v4kxpnAC/eYgIocCZwOfSZp2JYCq3gpcADSJSA+wG7hQS62eh/HFBnwxJtoC7RxU9U3gqLRptyY9/0/gP4Nsg4mmXKUtrHMwpvjK7w5pEwlW2sKYaLPOwRSFlbYwJtqscwjIli1buOCCCzwvd+655/Laa6/lnGf+/PksW7bMZ8uiwW9pCwtiGxMOG88hZD09PVRWhnXvoX9hHNP2jnZPpS1sfAZj/LPxHPJQ6P8+s5XsHj9+PAC333475513HmeddRb19fXs2rWLT3ziE5xwwgl8/OMf55RTTqG3w6utrWX79u10dnby3ve+lyuuuIJx48bxwQ9+kN27dwP9l/Pu7OzktNNOY/LkyUyePJnHH398QPsXFK+lLWx8BmPCU3adQ+9/n13dXSh6IIVyIB1EppLdp5xySso8q1atYunSpfz2t79l8eLFDBs2jPXr1/OVr3yFlStXZlzv888/z2c/+1nWrVvHkUceyb333pvyfrZy3n/3d3/Hww8/zKpVq7j77ru55pprfO9blFgQ25jwlF3nEMR/n5lKdh9zzDEp85x99tm84x3vAJxS2hdeeCEA48ePZ8KECRnXO2bMGE488UQApkyZQmdnZ8r72cp57927lyuuuIK6ujpmzZrF+vXrfe9blFgQ25jwRP/id4EF9d9nesnudH5KZCcX0kskEgcuK/Vn0aJF/P3f/z1r1qxh//79DB482PO2o6ilviVjzMHGZzCm8Mrum0NQ/32ml+zOZfr06QcuQ61fv56Ojg5f28xWzru7u5sRI0ZQUVHBT3/6U/bt2+dr/VHTUNdA60daqRlagyDUDK3pNxgdVnZTXLKo4rIfZuDK7ptDUP99ppfsTr8ElKy5uZk5c+ZwwgkncPzxxzNu3DiGDh3qeZu5ynmff/75/OQnP+Gcc86J1cA+DXUNeWcmhVWiIy6lQOKyH6YwyjKV1WsKZaHt27ePvXv3MnjwYP785z8zY8YMNmzYwKBBg0JrQ39KKT04m9qba+nq7ju+VM3QGjrndpbcdoIWl/0wmUWxZHfkePnvMwi7du3izDPPZO/evagqixcvjlTHEBdhZTfFJYsqLvthCqMsO4diO/zww0n/9mMKb/TQ0Rn/Ey50dlNY2wlaXPbDFEZsAtKldnksyuJyLFvqWxiUSP1GNigxqODZTX5LgURNXPbDFEYsOofBgwezY8eO2HyoFZOqsmPHjtikv6b/TgTxO+IniyqK4rIfpjBiEZDeu3cvmzZtYs+ePUVqVbwMHjyYUaNGUVVVVeymDIgFWI05qCwD0lVVVYwZM6bYzTARYwFWY/yLxWUlYzKxchvG+Gedg4ktC7Aa419gnYOIjBWR1UmP10Vkbto8IiLfFZEXRGStiEwOqj2m/IQaYG1vh9paqKhwfrZb2QlT2kIJSItIAtgMnKKqXUnTzwWuBs4FTgG+o6qnZF6LI1NA2piiam+HxkbYlVTtt7oaWluhwTJ9TDREdbCfeuDPyR2D66PAT9TxB+BIERkRUpuMKYx581I7BnBez7NBiEzpCqtzuBC4M8P0kcDLSa83udNSiEijiKwQkRXbtm0LqInG+LQxS/ZTtunGlIDAOwcRGQScB/y333WoaquqTlXVqcOHDy9c44wphNFZsp+yTTemBITxzeEfgVWq+tcM720GkodMG+VOM6Zomm+aQeUCQRYKlQuE5ptm5F6gpYX2KVXUzoWKBVA7F9qnVEGLZUWZ0hVG5/BJMl9SArgPuNjNWjoV6FbVV0JokzEZNd80gyWvL2dfBSCwrwKWvL48ZwfRPgEazxO6jgQV6DrSed2eefRXY0pCoJ2DiBwKnA38LGnalSJypfvyQeBF4AXgB0BzkO0xpj+t3ctB0iaKOz2LecvnsUvfTpm2S98e0LjkxhRboOUzVPVN4Ki0abcmPVfgs0G2wRgv9qV3DP1MByvTYeLJ7pA2Jkkiy20/2aaDlekw8WSdgzFJGofWQ3pHoO70LKxMh4mjnJ2DiEwTkVvc0hbbRGSjiDwoIp8VkaFhNdLEVAglJ9o72qm9uZaKL1dQe3Mt7R25t7H42mU0HVFPYj+gkNgPTUfUs/jaZVmXaahrYM7EOSQkAUBCEsyZOMfGQTAlLWv5DBF5CNgC/C+wAtgKDAaOA84EPgLcpKr3hdNUh5XPiIkQSk60d7TTeH8ju/Ye3EZ1VXXB6yuFtR1jBsJr+YxcncPRqrq9n431O0+hWecQE7W10NV3IB5qaqCzszCbCGmwHxtUyJSCgg32k/6hLyJHJM+vqq+G3TGYGAmh5ERYWUSWrWTiqN+AtIh8RkT+AqwFVroP+9fdDEwIJSfCyiKybCUTR/lkK10HjFfVWlUd4z6ODbphpnC8BmVD0dLixBiSVVcXtORES30LVSRSplWR6DeLqP3aGdR+TqhYKNR+Tmi/Nnf5DD/ZSs2/aKbyxkrky0LljZU0/8Lu/zTRkk/n8GdgV79zmUjqDZZ2dXehKF3dXTTe31j8DqKhwQk+19SAiPOz0OMfPPoY0rMvZZL07INHH8u6SPu1M2gcsjy1FMaQ5Tk7CK+DCjX/opklK5awT5227dN9LFmxxDoIEyn9DvYjIpOAHwNPAm/1TlfVa4JtWmYWkPamnIOltddX0nXYvj7Ta95I0PnNnszLfM6pkdRnmdegc1FhBsaqvLHyQMeQLCEJeuZnbpcxA1WwgHSS7wP/B3QA+/02zBRHOQdLNx7a9wM413SAjVnu3sk23Y9MHUOu6cYUQz6dQ5WqXht4S0wgRg8dnfGbQzkES0e/mcj4zWH0m4kMc7vvdZPxm8Po7sK1KyGJrN8cjImKfGIOD7kjsY0QkXf0PgJvmSmIci7t0HJsI9V7U6dV73WmZ11G6qlOLbBK9dvO9EJpnJJ5+9mmG1MM+XQOnwS+CDyOpbKWHK/B0sjzUHKjoWkxrbvqqXkNRJ24QeuuehqaFmdf5qZltO5OW2Z3PQ03ZS+f4dXiDy+maWpTSrmNpqlNLP5w9nYZE7Z+A9JRYwHpMua15EYIJTqMKRVeA9L53AT3WRE5Mun1MBGxnDsTvnnzUj/owXk9L8ugOl7nN8YckM9lpStU9bXeF6r6N+CKwFpkTDZeS26EUKLDmLjKp3NIiMiBcbBEJAEMCq5JxmThteRGCCU6jImrfDqHXwJ3i0i9iNQDd7rT+iUiR4rIUhF5TkSeFZFpae+fISLdIrLafcz3vgumZHkdz8FryY2WFmZcDLLg4GPGxRS0REevSJYoMWYA8rnP4QtAI9Dkvn4Y+GGe6/8O8EtVvUBEBgHVGeb5varOzHN9Ji7Sg8VdXc5ryB4s7p0+b55zaWj0aOeDPsv8M/b9mOVpVcCWH+tMX0Zw4zn0ligBSjcrzJS9wLKV3JHiVgPHapaNiMgZwHVeOgfLVoqJEMZzkC9L1vd0QeF+78u5RIkpHQXLVhKR+0XkIyJSleG9Y0XkRhG5LMe6xwDbgB+LyB9F5IcicmiG+aaJyBoReUhExmVpS6OIrBCRFdu2betvn0wpiFGwuJxLlJj4yhVzuAI4DXhORJ52x47+PxF5Cafe0kpVvS3H8pXAZGCJqk4C3gRuSJtnFVCjqhOB7wH/k2lFqtqqqlNVderw4cPz2jETcTEKFtt4DiaOsnYOqvoXVf28qv4DMAv4CnAtME5Vz1bV/+1n3ZuATar6pPt6KU5nkbyN11X1Dff5g0CViBztc19MKQlhPIf6MZlLXmSb7lc5lygx8ZVPthKq2qmqT6jqalXNa2wHVf0L8LKIjHUn1QPrk+cRkXf2psmKyMlue3bk3XoTGZ6zdRoaaP7KNCrnO1lElfOh+SvT+r9z2UOG07KLl/XpCOrH1LPs4tylMLzuS0NdA3MGTyOxH1BI7Ic5g6dZMNqUtEDLZ4jIiTiZTYOAF4FLgdkAqnqriFyFkwXVA+wGrlXVx3Ot0wLS0ZOerQPOf875DHiTLmeNoRDKYfjZl/YlzTRuXsKupOhc9V5oHdmUs46TMWHyGpC22kpmwPxk6/ga8CaEDCc/++JnUCFjwlbw2krG9MdPto6vAW9CyHDysy9+BhUyJuryKbw3XUQeFpE/iciLIvKSiLwYRuNMafCTrZNtYJucA96EkOHkZ1+yDR6Ua1AhY6Iun28OPwJuAt4PnARMdX+agfJaPsLvZpY0U3t9JRULhdrrK2lfUtiiui31LVRVpN4OU1VRlTNbx9eANy0ttE+ponYuVCyA2rnQPqWqoBlOfjKP/Awq5OecWIkOE6Z8OoduVX1IVbeq6o7eR+Ati7ve4GpXF6geLB9R4A6iN1jaddg+VKDrsH00bl5S8A4iqTZjxtfppo+eTmVFavWWyopKpo+ennWZ9gnQeJ7QdSTOvhzpvG6f4LfVffkZHKmhaTGtI5uoeSPhDBD0RiJnMNrPOekNlHd1d6HogRId1kGYoGQNSItI7z0JnwASwM+At3rfV9VVgbcug9gEpEMIrkI4wVJfQdyQlokiP+ckLvtuisdrQDpX4b1vp71OXqkCZ3lpmEkTUvmIMIKlvoK4IS0TRX7OSVz23ZSOXHdIn6mqZwKX9z5Pmvbp8JoYUyGVjwgjWOoriBvSMlHk55zEZd9N6cgn5rA0w7T/LnRDyk4I5SPAX7DU8zb8BHFDWiaK/JyTuOy7KR25qrIeLyLnA0NF5P8lPS4BBofWwlLiJfuoocG5s7emBkScnwEMfO81WOprG36CuHUNzJk450DqakISzJk4p99lWofNSd2XYbmXiSI/58TP8TJmIHIFpD8KfAw4D7gv6a2dwF39lbkISmQD0iGUdogTP2UqyvkY+zpexiQpePkMEZmmqk8MuGUFEtnOIaTso7jwlX1TxsfYspXMQBUyW6nXP4nIJ9OmdQMr8ijbXT5iNHhNGHxl35TxMbZsJRO2fALShwAnAs+7jwnAKOByEbk5sJaVmhgNXhMGX9k3ZXyMLVvJhC2fzmECcKaqfk9VvwfMAI4HPg58MMjGlZSQso/CEnSphpb6Fqr3p35xrd5fmTv7pqUFBg1KnTZoUM5jHHTpkLBYtpIJWz6dwzDgsKTXhwLvUNV9JN0xXfZCyj4KQxilGhqWPEbrz3uoeQ0nY+c1aP15Dw1LHsu9YHqMLEfMLKzSIWHwkxFmzEDkE5C+HPg34BFAgA8AXwPuBBaq6vUBtzFFZAPSMRJK8LOyEvZluCM4kYCewoznYOMsGHNQwQPSqvojEXkQONmd9K+qusV9HmrHYMIRSvAzU8eQazp4DkjbOAvG+JfvYD8VwDbgb8C7ReQDwTXJFFsowc9EllIR2aaD54C0jbNgjH/5DPbzDeAxYB7ON4XrgevyWbmIHCkiS0XkORF5VkSmpb0vIvJdEXlBRNYmVYI1RRRK8LMxS6mIbNPBc9A/jNIhxsSWquZ8ABuAQ/qbL8uydwCfdp8PAo5Me/9c4CGcWMapwJP9rXPKlCkaVW2Lm7TmuoTKArTmuoS2LW4qdpN8a1vbpjWLalQWitYsqtG2tW39LNCmWlOjKuL8bOtnflXVpibVREIVnJ9NeRwvj8s0fbteE/NRFqCJ+WjTt+v730ZU+TnGxrhw7k3L//O73xmcD+/DvKzUXW4o8BJu0DvLPN8HPpn0egMwItd6o9o5tC1u0up5KAsPPqrnUdIdRN7a2lSrq51fp95HdXXhP7w8bqdtbZtWt1SnnpOW6v47uigK6xib2PLaOeSTrXQvMBFYTupgP9f0s9yJQCuw3l1+JfDPqvpm0jwPAP+uqo+6r5cDX1DVrOlIUc1WKuvMmLDKWnjNVopTyYkyLh1iCiOI8hn3kVp4z8u6JwNXq+qTIvId4AbgS15XJCKNQCPA6IjeDVvWmTFhlbXwmq0Up5ITZVw6xBRHvwFpVb0DuAf4g6re0fvIY92bgE2q+qT7eilOZ5FsM3BM0utR7rT0NrSq6lRVnTp8+PA8Nh2+ss6MCaushddspTiVnCjj0iGmOPLJVvoIsBr4pfv6RBHp95uEqv4FeFlExrqT6nEuMSW7D7jYzVo6FehW1Vc8tD8yyjozJqzSIV6zlepbqCK1c64iEUzJCS9jefgRs/IsJvryuc9hIc4NcK8BqOpq4Ng813810C4ia3GK931NRK4UkSvd9x8EXgReAH4AlF5dA1cYg+pEVlilQ7xu59HHkJ7Uy3rSsw8e7adEh1e940x0dTmh4q4u53UhO4gYlWcxpSGfgPQfVPVUEfmjqk5yp61V1QmhtDBNVAPSJnpCSxKwYLEpAUEEpNeJyD8BCRF5D3ANUJRR4IzxIrQkAQsWmxjK57LS1cA4nDTWO4HXgbkBtsmYgggtScCCxSaG8slW2qWq81T1JDdjaJ6q7gmjccYMRGhJAhYsNjGUtXMQkftF5L5sjzAbaYrAY/ZN8xfGUTlfkIVC5Xyh+Qvj+t9EwAMKhZYkYMHiSAo6gSzusgakReT0XAuq6m8DaVE/LCAdgt7sm127Dk6rrs76gdf8hXEsGbLeqZDVS6Fp9wks/sa6zJtwBxTatffgNqqrqm0AG1MQHn+Fy4LXgHS/2UpRY51DCDxm31TOF/ZluIyf2Ac9N2b+/YpVaQsTOZZA1pfXziHf8RxMOfGYfbMvy29RtukQs9IWJnIsgWzgrHMwfXnMvknszzx7tukQs9IWJnIsgWzgrHMoA54Dvy0tMGhQ6rRBg7Jm3zS+dQKkXz1Sd3q2TdS3UL0/9Tab6v2V/Ze28BpltKhkJFm1EW+K8mucrZY3cD8HK7L2eXipC17IR1THc4gqX2MatLWpVlWljh1QVZVz7ICmz5+giS+5g+p8CW36/Am5G9bUpG11aM1cnMGR5qJtdeQevMfrmAY2BkIkhTn8RxzGRirU8aJQ4zlYtlI8+Ar8hhHNq6yEfRnuVE4koCdLaQuv7bKoZCTZafGmUMfLspVMioovV6B9rvmAIOxfkCUoUFHh/IPSZyGB/TkCCV6IZH8v2++k13aFsR/GMzst3hTqeBU8W0lE3iMiS0VkvYi82PvIv0mmmHwFfsOI5iWylLDINj3X9gs13YTCTos3xTpe+QSkfwwsAXqAM4GfAG1BNsoUTkt9C9VVqZG56qrq3IHfMKJ5jVlKWGSb7qddcYtKxoSdFm+Kdrz6C0oAK92fHenTivGwgLR3bYubtOa6hBP4vS6hbYtzBH0PLOQxmucj+tf2ufrUgPTn6vtvV1OTaiLhROUSidwBbFXV+vrUSF59HtswgYtLsDgshTheeAxI59M5PI7zDeNnwFXAx4ENXjZSyId1Dh6FkRriYxu+s6i8bKepKXXe3kd/HYoxMeS1c8hnsJ+TgGeBI4GvAEOB/1DVPxT+e0z/LCDtURipIT62EUoWlZ+MKGNiquCD/ajq0+6KK4BrVHXnANpnwhZGHQEf2/BVPsPrdjJ1DLmmG2MOyCdbaaqIdABrgQ4RWSMiU4JvmimIMFIdfGwjlCwqPxlRxhggv2yl24BmVa1V1VrgszgZTP0SkU4R6RCR1SLS51qQiJwhIt3u+6tFZL6n1pc6P/fENzc7l0tEnJ/Nzbnnb2mBqqrUaVVV/ac6eGmbj3SKULKo/GRExYxVDwlWrI9vf0EJ4I8Zpq3KJ6ABdAJH53j/DOABL0GS2ASk/QSK/QRY29pUBw1KnX/QoNzb8dM2P9lKa9u0ZlGNykLRmkU1uYPRfrfjNbspRqx6SLBK7fgSQED6ZmAIzvjRCswG9uDe66Cqq3Is2wlMVdXtWd4/A7hOVWfm05FBjALSfgLFYZSc8LuMiRw7jcEqteNb8PIZIvKbHG+rqp6VY9mXgL/hdCrfV9XWtPfPAO4FNgFbcDqKPkOHiUgj0AgwevToKV2Zzkip8XNPfBglJ/wuYyLHTmOwSu34BpGtdOYA2vN+Vd0sIn8HPCwiz6nq75LeXwXUqOobInIu8D/AezK0oRVoBeebwwDaEx2jR2f+tyNXoDiRyP7NoZDb8bOMiRw7jcGK+/HNJ1vp70XkRyLykPv6BBG5PJ+Vq+pm9+dW4OfAyWnvv66qb7jPHwSqRORoj/tQmvzcEx9GyQm/y5jIsdMYrNgf3/6CEsBDwCeANe7rSpJKaeRY7lDg8KTnjwPnpM3zTg5e2joZ2Nj7OtsjNgFpVX/3xPsJsPrZTlzqG8RlPzS8U+9VGNuIal5BKf16EUD5jKc1LWsJWJ3HcscCa9zHOmCeO/1K4Er3+VXue2uAPwDv62+9seocTLBKLZ0kh6hWAgnjEEd130uN184hn4D0I8D5wMOqOllETgW+oao5BwMKSmyylUzwSi2dJIeoVgKJ6rhQpq+CB6SBa3GGBv0HEXkMGA5c4LN9xoQnjNIhIYlqJZAwDnFU9z3u8slWWuUOGToWEJyKrHsDb5kxAxWjdBI/iWphCOMQR3Xf4y6fbKVZwBB17j/4GHC3iEwOumHGDFiM0kmiWgnEb3UWL6K673GXT22lL6nqThF5P1AP/AhnZDhjoq2hAVpbnQvgIs7P1lZneolZvBiamg7+t5xIOK8XLy5uu6DvvZm57tX0I8r7Hmf5BKT/qKqTROTrOCms/9U7LZwmprKAtDHREaOYf+x5DUjn881hs4h8H6em0oMickieyxljYi5GMX+TJp8P+U8AvwI+pKqvAe8Arg+yUcaY0hDGcCGmOPrtHFR1l6r+TFWfd1+/oqq/Dr5ppqTEurB9NPg5xEGflhjF/AH7NU7h5Y65KDzsDukIitGdyFHld4iNME5LKZWQyCXuv8YU+g7pqLGAdARZVDJwNixH8OJ+vAo+nkPUWOcQQaVW2L4E2bAcwYv78QoiW8mY3CwqGTg/h9hOizd2vFJZ52AGLm5RyQiyYTmCZ8crlXUO5SDoFIwY3YkcFq+npKEB5sxJvUt4zpzch7ihAaZNS502bVrhT4ufX68ZM5xfld7HjBmFbZMf9mucxkv0OgoPy1byKO4pGCUorMyjMMZB8NOu+vrM7aqvL1y7TF9YtpJJEfcUjBIUVuZRGOMg+GlXrtpLJfZxVFIsW8mkinsKRgkKK/MojA/hqLbL9GXZSiaVpWBETliZR9nGOyjkOAj26xVfgXYOItIpIh0islpE+vy7L47visgLIrI2sHEionpPfBjtKvMUjLBOvZft+BkDoaXFuUyUrLIy9zJ+xkHwerz8/HrV13ubborES4DC6wPoBI7O8f65wEM4I8ydCjzZ3zo9B6SjGpANs11xqW/gUZjlI7xsp61NddCg1PkHDSp8cNnrMn6Pl59fr/SgtAWjg0eUAtIi0glMVdXtWd7/PvCIqt7pvt4AnKGqr2Rbp+eYQ1QDslFtV4yEdYi9bies4LLXZexXMt6iFnNQ4NcislJEMn2ZHQm8nPR6kzsthYg0isgKEVmxbds2by2IasH5qLYrRsI6xF6346ddmT7kc033s4z9SppkQXcO71fVycA/Ap8VkQ/4WYmqtqrqVFWdOnz4cG8LRzViFtV2xUhYh9jrdsIKLntdxn4lTbJAOwdV3ez+3Ar8HDg5bZbNwDFJr0e50wonqgHZqLYrRsI6xF6346ddfoLLXpexX0mTwkuAwssDOBQ4POn548A5afN8mNSA9FP9rdfXHdJRDcj6aZePZdrWtmnNohqVhaI1i2q0bW1E9j8ETU2qiYQT9Ewk8rs72M8yXk+Ln1Mfxr742YYpDXgMSAfZORwLrHEf64B57vQrgSvd5wLcAvwZ6MAJXhe+c4gLH+kkbWvbtLqlWlnIgUd1S3VZdBBRLTkRVVFN7DOF4bVzsDukS4mPdJLam2vp6u67TM3QGjrnZl4mLqJaciKqLFsp3qKWrWQKyUc6ycbuzO9lmx4nYWUFxYVlK5lk1jmUEh/pJKOHZn4v2/Q4iWrJiaiybCWTzDqHUuIjnaSlvoXqqtRlqquqaamPfwpKS4tTBiJZRUXhs4LC0tzsXPYScX42Nxd2/ZatZJJZ51BKfIxG0lDXQOtHWqkZWoMg1AytofUjrTTUxX8Ek8ce61sZdP9+Z3o206f3/ZaQSDjTi6m5GZYsOXh5a98+53UhOwgb7MYks4C0iS0/weWoBmXLOVBuCsMC0sa4/ASXoxqULedAuSkO6xxMbPkJLkc1KFvOgXJTHNY5mNjyE1yOalA2yoFyE0/WOZjYWrwYmpoO/nedSDivFy/OvozfoGzQmUR+9sWYgbCAtDED1JtJlM4+vE2UWEDamJC1tnqbbkwpsM7BmAGyTCITR9Y5GDNAlklk4sg6B2PStLc7N8NVVDg/29tzzx9WJpHXdkV1G6Y0WOdgTJL2dudDvavLGdGgq8t5netDcvp0J0MpWWVlYUtu+GlXFLdhSodlKxmTxE/5jDBKbsRlG6Z4vGYrWedgTJKKCue/5nQifYv4DWSZMNoVxW2Y4rFUVmMGwE/5jDBKbsRlG6Z0WOdgTBI/5TPCKLkRl22YEuJlwGk/DyAB/BF4IMN7lwDbgNXu49P9rW/KlCkFG3C72NraVGtqVEWcnzaQezT4OS9hnMu4bMMUB7BCPXx2Bx5zEJFrganAEao6M+29S4CpqnpVvuuLS8yhNzNk166D06qrbXAVY0wwIhVzEJFRwIeBHwa5nVI0b15qxwDO63nzitMeY4xJFnTM4Wbg80CuXIfzRWStiCwVkWMyzSAijSKyQkRWbNu2LYh2hi6qg8oYYwwE2DmIyExgq6quzDHb/UCtqk4AHgbuyDSTqraq6lRVnTp8+PAAWhs+ywwxxkRZkN8cpgPniUgncBdwloi0Jc+gqjtU9S335Q+BKQG2J1IsM8Qfr+UdwioHYWUnTOx4iV77fQBnkDlbaUTS848Df+hvXZatVL7a2lSrq1WdW7WcR3V19uPmdf6w2mVMMRC1bCUAETkDuE5VZ4rIjW4j7xORrwPnAT3Aq0CTqj6Xa11xyVYy3nkt7xBWOQgrO2FKgZXPMLHltbxDWOUgrOyEKQWRSmU1ppC8BvHDCvpbcoGJI+scTMnwGsQPK+hvyQUmjqxzMCWjocG5g7ymxrlkU1OT+47yhgaYM+fgiGyJhPO60Hege22XMaXAYg4mtqxEiTEHWczBGJeVKDHGP+scTGxZiRJj/LPOwcSWZREZ4591Dia2LIvIGP+sczCxZVlExvhXWewGGBOkhgbrDIzxw745GGOM6cM6B2OMMX1Y52CMMaYP6xyMMcb0YZ2DMcaYPkqutpKIbAMyDK2Sl6OB7QVsTqkp5/0v532H8t5/23dHjaoOz3fBkuscBkJEVngpPBU35bz/5bzvUN77b/vub9/tspIxxpg+rHMwxhjTR7l1Dq3FbkCRlfP+l/O+Q3nvv+27D2UVczDGGJOfcvvmYIwxJg/WORhjjOkjdp2DiBwjIr8RkfUisk5E/jnDPCIi3xWRF0RkrYhMLkZbg5Dn/p8hIt0istp9zC9GWwtNRAaLyFMissbd9y9nmOcQEbnbPfdPikhtEZpacHnu+yUisi3pvH+6GG0NkogkROSPIvJAhvdiee579bPvns99HEt29wD/oqqrRORwYKWIPKyq65Pm+UfgPe7jFGCJ+zMO8tl/gN+r6switC9IbwFnqeobIlIFPCoiD6nqH5LmuRz4m6q+W0QuBL4BzC5GYwssn30HuFtVrypC+8Lyz8CzwBEZ3ovrue+Va9/B47mP3TcHVX1FVVe5z3fiHKyRabN9FPiJOv4AHCkiI0JuaiDy3P9Ycs/nG+7LKveRnnHxUeAO9/lSoF5EJKQmBibPfY81ERkFfBj4YZZZYnnuIa999yx2nUMy92vjJODJtLdGAi8nvd5EDD9Ac+w/wDT3EsRDIjIu3JYFx/1qvRrYCjysqlnPvar2AN3AUaE2MiB57DvA+e6l1KUicky4LQzczcDngf1Z3o/tuaf/fQeP5z62nYOIHAbcC8xV1deL3Z6w9bP/q3DqrEwEvgf8T8jNC4yq7lPVE4FRwMkiMr7ITQpNHvt+P1CrqhOAhzn4X3TJE5GZwFZVXVnstoQtz333fO5j2Tm411zvBdpV9WcZZtkMJPeco9xpsdDf/qvq672XIFT1QaBKRI4OuZmBUtXXgN8A56S9deDci0glMBTYEWrjApZt31V1h6q+5b78ITAl5KYFaTpwnoh0AncBZ4lIW9o8cT33/e67n3Mfu87BvYb4I+BZVb0py2z3ARe7WUunAt2q+kpojQxQPvsvIu/svdYqIifj/B6U/B+JiAwXkSPd50OAs4Hn0ma7D5jjPr8A+D+NwZ2g+ex7WlztPJx4VCyo6hdVdZSq1gIX4pzXT6XNFstzn8+++zn3ccxWmg5cBHS4118B/hUYDaCqtwIPAucCLwC7gEvDb2Zg8tn/C4AmEekBdgMXxuGPBBgB3CEiCZwO7x5VfUBEbgRWqOp9OB3nT0XkBeBVnD+mOMhn368RkfNwMtpeBS4pWmtDUibnPqOBnnsrn2GMMaaP2F1WMsYYM3DWORhjjOnDOgdjjDF9WOdgjDGmD+scjDHG9GGdgzEcqFTbp5plHsu9S0SWZnnvERGZ6j7/16TptSLyTJ7rnysiF3ttV4b1XCUilw10PaZ8WOdgzACo6hZVvSCPWf+1/1lSuXfxXgb8l+eG9XUbcHUB1mPKhHUOpiSIyKEi8gu3WOAzIjLbnT5FRH4rIitF5Fe9d4K6/7V/x61d/4x7JzgicrKIPOHWvX9cRMb2s91fiMgE9/kfxR37QkRuFJErkr8FiMgQEblLRJ4VkZ8DQ9zp/w4McdvS7q46ISI/EGfshV+7dzWnOwtY5RaJQ0TeLSLL3GOwSkT+wf3G81sR+V8ReVFE/l1EGsQZ26FDRP4BQFV3AZ29x8GY/ljnYErFOcAWVZ2oquOBX7o1pL4HXKCqU3D+O25JWqbaLUTX7L4HTkmJ01R1EjAf+Fo/2/09cJqIDMW5u3S6O/004Hdp8zYBu1T1vcAC3Po1qnoDsFtVT1TVBnfe9wC3qOo44DXg/Azbng4kF1Nrd5eZCLwP6C35MhG4Engvzt3xx6nqyTg1dJK/Laxw221Mv+JYPsPEUwfwbRH5BvCAqv7erTo6HnjYLRWV4OAHJsCdAKr6OxE5wq09dDhOmYn34Ix3UNXPdn8PXAO8BPwCOFtEqoExqrpBUkcT+wDwXXeba0VkbY71vqSqq93nK4HaDPOMwK2BI87ATSNV9efu+ve40wGe7q0NJiJ/Bn7tLt8BnJm0vq3A8f3srzGAdQ6mRKjqn8QZzvVc4Ksishz4ObBOVadlWyzD668Av1HVj7sf7I/0s+mnganAiziljo8GriD1P3o/3kp6vg/3ElSa3cBgj+van/R6P6l/44PddRrTL7usZEqCiLwL55JNG/BNYDKwARguItPceaokdeCi3rjE+3Eq73bjlGnuLc9+SX/bVdW3cQaImQU8gfNN4jr6XlLCnfZP7jbHAxOS3tvrXgbz4lng3W47dgKbRORj7voPcb/BeHEckFeWlDHWOZhSUQc85VaaXQB81f3gvgD4hoisAVbjXIvvtUdE/gjcijN+MMB/AF93p+f7zfn3OIOp7Hafj3J/plsCHCYizwI3kvrtohVYmxSQzsdDOJeqel2EU11zLfA48E4P6wInhvGwx2VMmbKqrCaWROQR4DpVXVHstgyEm/X0eVV9foDrmQRcq6oXFaZlJu7sm4Mx0XYDTmB6oI4GvlSA9ZgyYd8cjDHG9GHfHIwxxvRhnYMxxpg+rHMwxhjTh3UOxhhj+rDOwRhjTB//H6H3s8qzYFtBAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1087,7 +1093,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeYAAAHjCAYAAAD2Xrx8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9d5Rcx3ng+6vbOafJGZhBzpEASRAMkiiJpERSsiVLlCxbwVqnZ3u9a/vZZ9dhvbafvWvv8+6xpWc5ypatYJnKpExJJCUmRILIYQaTU89M53xvvT9uT09Az6AxGcD9ndNnprvr3vrurepbVV99QUgpMTAwMDAwMFgbKKstgIGBgYGBgcEUxsBsYGBgYGCwhjAGZgMDAwMDgzWEMTAbGBgYGBisIYyB2cDAwMDAYA1hDMwGBgYGBgZrCPNqCwBQVVUl29raVlsMgwVy/fp1jPa7fTHa7/bFaLvbmxMnToSllNWzP18TA3NbWxvHjx9fbTEMFsj+/fuN9lskx6+P0x9Jc7g9RI3HvqJ1G+23Nrg4FOPiYJydTT7WV7srOsZou6UnlSvw4qVRrGaFoxurMZuWT7EshOgu9/maGJgNDO5mJpI5Xr4SBiCvSt6/r2mVJTJYaaSUPH9uGFWTjMQzfKrCgdlg6TnVE+HiUByAOp+dbQ2+FZfB2GM2MFhlHFYTbps+R6722FZZGoPVQAhBlVtve6MPrC6T99+kTLXJSmOsmA0MVhm7xcQzh1qJpvPUeo2H8t3K+/c1EU5kqTEG5lVlY62H4GErFkXB57SsigzGwDyLtl//ZkXlrv/hY8ssicHdhMNqwmE1rbYYBquI1azQ4HesthgGsGor5UkMVbaBgYGBgcEawlgxG9xWZPIq/3qyn1gmz2M76mkOOm8oE0nl+NeT/UjgqT2NBF3WG8r0R9J8480BXDYz79vbtKqrVVWTfP3NAfojaR7eXMOWeu+qyWKw/MQyeb56sp+8qvHe3Y3z7imf6J7gf3/vCh67hd9+Yhtv9kc4PxBjT4ufe9urVlDqu4eRWIZnTw9gsyg8tacRj/1GdXbnaILnzg0Tcll5ck8juYLG73z9HCPxLJ84so4jG27wgLoljBWzwW1F30Sa4ViGdE7lwmCsbJlrowmi6TyxdJ6rI4myZS4MxEjlVEbjWXonUssp8k2ZSOXoCifJFTTe6ouuqiwGy0/XaJLxZI54psDl4fi8Zb9/cYRUTmU4luFE9xhv9kbIFTRO90ZWSNq7j0vDcRLZAmOJHN1j5Z8NZwdiZPIq/RH9eXRuIErPeIpMXuWFCyOLlsFYMa8Ale5bg7F3fTOaAg6qPDbimfycK8v1VW5O9egPrvZqV9kym+s9nB+M4bGbaQqs7r5ewGmlJehkIJJmW6OxWr7Taaty4XNYyKsaG2rmdovKqxqH24Oc6Y/gtVvY1xpCURTODcTY2ehfQYnvLjbWejg/EMNqVmgN6Ro5TZNkC1pJs7a13kvveIqQy0qt107AaaXB7yCcyPLgpsWtlsEYmA1uM+wWEx851DpvmYDLyieOrJ+3TLagAfrDr6DJJZNvIZgUwfsM3+W7Bp/Dwk/fv27eMuPJHP9yrJeCqvH7T+4obdk8sqWWR7bUroSYdy21Xjs/c7S99F7TJF883stgNMOh9SEOt4foqHHTUdNRKmM1K/zpB3YvmQyGKtvgrqRrNImqSZJZleFoZrXFMTCYQd+ErhYtaJKe8dXdarnbSeYKDBafEVdHy2+NLTXzrpiFEIeBZ4AjQD2QBs4C3wQ+L6U0NsQMbkt2NfsZimVw28y0hsqruw0MVosNNR4uDyfIqxrbGoztjdXEY7ewp8XP9XCSQ+uCK1LnnAOzEOLbwADwLPD7wAhgBzYCDwHPCiH+p5TyayshqIHBUlLtsfHMTVTiBgarhcNqMkKzriEe3FQDm1auvvlWzB+RUoZnfZYAThZf/0MIYdjrGxgYGBgYLCFz7jHPHpSFEF4hRHDyVa6MgcFaoT+Spm+V3aAMDOZiMJqm19g7XhOkcypXhuOkc+pqi1LiplbZQoifAX4HyACT5qsSmN/s1cBglbg2muBrpwcAeHxnPRtqPasskYHBFD1jKb5ysg+Ad2yrXZXsRQZTfPlkH+F4dk1tb1XiLvWrwHZjdWxwu5DIFEr/x7OFeUoaGKw8iWl9MpldO6u0u5XJ50ViDT0rKhmYrwGGzsXgtmF7o49ktoAEdjbqq5FwIkv3WJINtR68ZULsGRisFJvrPMQyefKqxu5mP+mcyvnBGI1+B3U++2qLd8dzeThOrqCxtd6Logge31nPxaE4W+rXjmatkoH5N4BXhBCvA9nJD6WUv7hsUhkYLAKTIri3Y8ouUdMkXz7RVwzjGV8z6iqDuxNFERxaHyq9/+qpPq6HU1hMgk8cWY/dYmQZWy6ujSb45plBAHKqxt6WAM1BZ9mY+6tJJQPzZ4DvAW8B2vKKY2CwPEg5+Xd1o3wZGMxmqm9O/W+wPEz//a/lZ0ElA7NFSvkryy7JAjByJxtUgqII3revka7RJJvr9GAN2YLKsa4JXDYTe1oCZY+LZ/Kc6J6g3udgU93C1Vy94ymujiTY1uilxmOoKu8mIqkcp3ojtASdtFe7uTAYYziawaQITCbBgbYgj26r49xAjMaAw8jJvUjO9kcZS+Y40BbAab1xeGuvdtMUcJDOq2xfYaM7KSUnuifIFTQOrAtiMc0deLOSgfnbQohPAV9npip7fPGiGhisDDUe+4xB8fXOcU50TwB6Eom2qhujf33/0ijXRhKcFhFqPDYCZdJH3gxVkzx7up+8KukeS/Kx++aPkWxwZ/H8uWH6I2nO9EZ5395GvnN2iHAiy3gyx8ZaDxaTwoG2IAdXKKLUncxQNMN3zw8DenrYR7fV3VDm0nCcvok0AKd7I9wzbUthubk0HOflK7oNtUkR89ZdycD8E8W/vzHtM8NdyuC2ZnJlIgRz7uk5ip+bFYHFvLCw8krx/Hm1YKyG7kIm29xqVrBbTVhMQu9PxdWSw9hPXjJsZgWTIlA1Oed9dVqmhrxyK+rl5FbqvqlkUkpjim9wx7G5zsNbfVECLis1cySqf2hTNS1BJ1VuK27bwn7EQgg+cKCZvok068qsyg3ubB7dVseG2gTxTIEfXQ1zX3sVTpsZm1lBgtEnlpCAy8oHDzQTSefpqC6fTrMl5OTH9jeRK2isn6NMOd7sjXB9LMnBdUHqfQtLE3srdd90GSCE+DkhhH/a+4AQ4mcrOO6dQogfFF+DQognK5LewGAFOH59gmg6z/Vwks5wsmwZs0lhU52HkLv8wF0pHruFLfVew9r2LsRqVthY4+HVa2N0jiY53j3BpjoPbVUuY1BeBmq8djbWelAUMWeZpoDzlgblZLbA9y6O0Dma5PsXRxclX6V1V6Kf+6SUMjL5Rko5AXzyZgdJKb8jpXxQSvkg0AP8ewV1GRisCFXFwdasCAJOw6/ZYPlQFEGwaJ9Q5bl1OwWD1cVqVvA69GdElXtl2q8S/ZxJCCFk0bZcCGECKpZOCLEeGJZSrkwiSwODCtjR5KPWa8NmMeFzlB+Ye8dTvHh5lHqfnYc31yDE3LNwgzuD0XiWf78wjNdu4dFttZjnsZy9FX58fzOjiSy1c2ybGNycl6+Mcn0sxb3tIdpvYcW7WCwmhQ/f08J4Mkedd2W8Kirpdd8B/kUI8YgQ4hHgC8XPKuVp4KsLEc7AYDmp8drnHJQB3ugaZzSe5UxflNFEds5yBncOJ3smGIpmuDwcp2cJk0xYzQqNfseSDfR3G/FMnuPXJwjHs7xybWzF67dbTDT4HfOqyJeSSnrJr6EHGPkPxdcLwH++hTqeAG7I2SyE+JQQ4rgQ4vjo6OL09gYGy0FblR4NKOC0zDuAG9w5tIacCAEum4lqY3W7ZnBazdQWV6vrQnf+3nwlVtka8JfF1y0hhKgDclLKG6Y4UsrPAp8F2L9//9oNwWJwV5DLqfz03x+nL5LimXta+cSR9XjsFoQAt92MWTFWOncDm+u8tASdWEwKFpPC9y4Oc2EwzoG2IJvrPXz1ZD8FTfLk7oaSUeD3L45wfjDG/tZAyTe1byLFt94axGO38NSeRsPwb5GYFN27IZUr4CnGuu8KJ3nu3BAhl5Un9zTOG7BjMUgp+fbZIbrCSR7YUM2OphsDkyQyBX7nG+cYjWf5xP3ruH9D9aLqnPNKhBBfF0I8IYS4YakghFgvhPhdIcRP3+T87wWeXZSEBgYrwKn+CF3hBPmCxnfODgFwpi+KlNA7nmYsaaiy7xacVjMWk0JB1XizN0quoHG6d4LO0STjyRyxdJ5Lw3FADyBzujdSLFOykeX8QIxkVmUomikFtDBYHCZFlAZlgLf6o6RzKn0TaYaimWWrN5EtcGlIT3xxui9Stsy5gSg9YynSOZV/vzCy6Drnm2J8EjgCXBRCHBNCfEsI8T0hRBd6/OwTUsq/nu/kUsrPSCn/96KlNDC4RfKqRl6dP7R7rqCharqyZmejn8aAE0UIHtqsz3a3NXhBSur9doJOw5r2bqOgSbbUe1CEYHujj3UhFx67GafVREeNbnxkUgTbGrwoQv+bLehpHDfXebGaFarcVhr9DqSUZPJGisfFMPsebq33YDEJ6nz2kpp7OXDbzKyvciGlZHuDt2yZrQ1e6rx2TAo8sHFxq2WYR5UtpRxC30v+z0KINqAeSAOXpZRGGkiDNctIPMOXjuuJ6N+/r6nsj7ZzNME3zgzisJj44MFmPHYLX/yZwzPKZAsaQhHkVYlmbLbcVbxyLczrneM0+h38wsMdJaOfTxy5MeDhO7bVcXRTNf9yrJfj3RM8srmWHU0+fu6hjlKZr705wLWRBDubfDyypXbFruNOQdMkXzrRy0Akw+H2EIfWh+io8fDzDy9/qkYpIVNQEUKQLZSf7FtMCrtb/ETT+SWx3K5IKS+lvC6lfFVKedoYlA3WOr3jKXIFjVxBo3usfHftHE2iapJEtsDgHGqwqyMJpIRwPEsknVtOkQ3WGNdGdO/O/kiaVAUr3fFkjrFEDin11ILT0TRJZ/GzKyOG1+hCSOYKDET03+lK38NK6h6NZ4mk8mXbfyEYFi0Ga57RePaW1ICb6rw0+O3U++xsniP5+a5mPyAJuiy0Fa08R2Jpfnh1ykPgQFuAgFOP2lVdNPQZiWWW5IdnsPrkVY2RWAZtljpkLJFlR6Mfv9PC7hY/bpuZdE4lPM1lbjyZI5ktlN7XeuxsrvMQdFnZVOchmspzbTTBSDRNOJllX2sAv9PC4RVMmnAn4bFb2NboxWwSHGybygYXTmRJ5+Z+NkgpGYlnSlsMoLteRVKVT7RLdSsz655Og99Ba8iJzaKwrzWw6LpXNoq3gcEt8srVMK93jeO2mfnI4daKrFvdNjMfONAyb5lXO8O81jmO1axw/4Zq/A4Lz/zVGyRzBY50VPOH799Ja8g1IxtU91iS3/q3s+QKGj9xsIUn9zQu+voMVgcpJV883stILMvGWg+P7awH4ExfhBcujGA1KzxzTys+p4VUrsA/vNpNKqdyX0cVDouJf78wPKOMogjetaOeoWiGLx7v5fxAjIFoGlWT7G8N0Fbl4iOHWg0/5gVSUDUGJtIUVEl/JM2mOi8nusd56XIYh9XEM4day8azf+HCCG/1Rwm6rHz4nhbGkjm+eKwXVUoe39lQshWoqG5tqu7ZpPMqI/Es2bzGYDRDg9+xqLqNXmKwphmK6SqkRLZAPFO4SenKmVRV5goa18NJusdSJHP6+a+Fy6+Ir4eT5Ip7TIZK8vZG1SSjcX0FPBidspqetO7NFTTGiyubWLpAqrgqG4ymS30yV9BusNYfiWdQNclYMku+oJHMFoik8kRSedKG8deCyRQ0JlJ5gNLW0+TfdE4lms6XPW6yrcaTObIFjdF4loImkRKGY5VZcperezaRVK60cp/sQ4up+6YrZiHEfcBvA63F8gKQUkoj7aPBsnN/RxUQps5nX1TAh2S2wGA0TXPQic1s4scPNNMzniLosnFkQzVWs8IjW2q5MhznUw+U79r3tVdxqjfCWCLHB/c3L1gWg9XHbFK4d30Vx7rHi31MH3SbAg7SeRWv3UJrUA8wU+ezc6AtyGgiw73tVVhNCqlcAa99ahtkks11XgYiGQJOC5eG49gtCpvrvHTUuGe4+hjcnN7xFFazQq3XjttmZl+rn7P9Me7r0LcDDq8PkVc1Qi4bDb7yBldHN1bzRtc4bVUuXDYzm+o89EfS5Aoau5v9ZY+Zjdtm5oGNVVwPp7hnffm82Y1+B/taA4wlsxxuDy267kpU2Z8Dfhk4ARhTPoMVpcZr5+m9TYs6h5SSfznWSzSdpyng4Mf2NzMUzdISdKEIQSSVo8Zr53ffu33e85jNCr/0to2LksVgbSCl5K0B3Uf57EAMu8XEV0/1A/DuHfVsqptpm3D/hqoZ79+7u/w2htWs8M7tdcsj9F3E2f4o3z0/jBC6Z0WNx86FwTjZgsa5/jhtITcht42n9sz/bGgOOmkuTrBAt55+dNutt8++1iD7WssPyqCnd53tJrWYuisZmKNSym9XdDaDRdP269+sqNz1P3xsmSW5c9AkJUOdSXV4PJMvfqdbZtesmnQGq4EmIZWd6guJaYZck33DYPWY/J1KqW9jBV1aaSvgbmifOQdmIcTe4r/fF0L8MfCvQGlDRUp5cpllMzBYMBeHYkgJm+s8mBTB47sauDIcL4XT29Xk599O9VPntc+ZFzdbUDk/EKPGa6fRv7Dk6AZrk+l9YmeTn2qPjXMDUfKqZGeZkIuTXB6Ok81raFLD67DO6Dt9EynCiRxb6/XgIqDvf14YitHodyxrEIw7jb2tfnKqhtWk57NWFMG7d9TTPZZiT4uuBs6rGucGYoRc1hkr05txZVhfeW9r8JbNGFcoaHzz7CBum3lOn/OF1l0p862Y/8es9/un/S+Bh5dcGgODJeDCYKwUVlPVpB61aVZi+v/53Uscuz4OwO6WQFn14/cujHBxKI5JEXzsvja8xh7hHcX0PnF5OF7yVb04pA/Ws7kyHOebZwbpGU9hK+59fvBgM/U+B5FUjq+c6EeTkpFYhncUVZbfOTfI9bC+V/rx+9cZMbMrxGY2cXSWanhjrYeNtVNbDC9fGeXN3ihCwEcOtZZil8/HtWJgIYCcqrG35Ub3py+e6OPZ0/q2hlkRHN10oz5tIXXfCvNF/noI9LjYUsrO6d8VcywbGKxJNDnllyrniNhVUKe+yBfKm05MurdKOfd5DO4MpveZuaK8TfUHSTE9/cw+wszPADRt8q/RgZaa6RF3K729csazofxBmjZ1YnWO8y6k7luhkj3mLwN7Z332JWDf0otjYHDrhBNZzvZHaa920xx0srHazdfyA2hSsrFW9xXsHU9xbTTB1gYvNR47v/nuzfi+b6HGa+eJoiHPleE4A9EMe1r8eO0WttR7ePnKKDsafUbaxzuIiWSON/sitIb0FfP5gRij8QxHNlRhMSnsaCyvyt5Y6yav1pLJq0ipR4T6yok+djX5OLqphh2NPq6MxOkOJ/ncy518+J4WHt1ex7n+KI0Bh7FavgXyqsax6+PYzCb2tvjLqpwPtAXoHkvSHHRU7LHRXu2mKeggk1PZ1qC382A0zaWhOJvqPNT7HPz4gRYsZgWH1cTDm/XVcudogp7xFLub/fidVva3+Yt1O0t1nxuIMp7Msb81iMO6uLaeb495M7AN8Akhnp72lRcwNksM1gzfemuQsUSOs/1RPn20na+dGShl+nn2zQHet7eJr705UPJZ/th963A7rPz6u7eUzhFN5/nmW4NIqT+4n9zTyN+92k1XOMn1sST3todYV33zYAQGa5/nzg0xGM1wpi/KU3saee6cvu2xuc7Du3bUz3mcKCazmOQ/fvE0fRNpXr02RqPfyZm+KJeH41wZSRByWbGZFZ453FZKBWlQOSe6J3i9U99q8tjNM1TYk7zWOU48U+D8QJw9zQFqKtjDvzycoG9c91t/szfCPetDPHt6gHRO5dJQnJ852o7VrMwIUJTOqXz9zcHiNkWWHz/QzOudE8W6Y+xp9iOB588NA5DKqQuy/J7OfCvmTcDjgB94YtrncfTMUwYGa4LJlYjNbEIRYsbq1mM3owiwmRVyBW3OmazFJLCY9DKT55uMJGRWBM4yUYUMbk8m+4DVrOCwmDApAlWT2G9xleMq9gmrWcFlM2FWBHaLQjHfBR5Dy7JgHNO0C3Zz+XaZbEeTIkrGdjfDbpkqN3m8w2IinVPnfDYoit7Gmbxa6iOz65aSUj9yLIFmZL495meBZ4UQh6WUry66JgODWSSyBV6+PIrLZub+jqpSBp/pXB6O80+v99BR7eKZw21lz7O3xc9YIsvuFj+KInhgYw0XBuNoUvLw5hqEEOxp8fNG1zh7msvHunVazXzgQDOj8WwpVN4vPNTO9y566ah1U+u1o2kan32pi3Ayy8fvW0e930HveIpTvRE21LjZUl8+JZzB2uKd2+u4NpIkmc3zSucYRzZU4bCa2FDjIZbJ88MrYbx2C/d1hHj+3DCvdI7RFnQSdFsR6BPBBzZW858e3cSLl0bZ1uCl3u/gAwebGYyk+dtXrpNXNR4sk/7v2PVxhmN6oJKgy0glOhcbaz2c6ongsploDJT3iGgJOHj2VD9tISf+YlrWV6+NMZ7McX9HFT7njROjWo+NeDZPKqvSUrSm3tPi50dXw2UNwUCf8H/wQDOD0Uzp2XCko4o6r52A01Kq+wMHmomk8mwolhmMpjl2fYJ1IRc7mnwUVI2Xr4bJFTSObqyed2ujkmXAh4QQPzHrsyhwvDh435VU6m9sMDfHusa5OKQnnG/wO8rGjv27V65zdSTBhcEYB9eHyqq0XrocJpPXeOXqGLub/ZwdiFIoWmSc7Y+yuznAD6+MoUnJS1dG2VhXPrFFldtG1TTrSrvVzLt3Tqk2f3RtjO9f0pOgf+GNHn7lHZv47vlhouk8XaNJOmrcWIxYyGsem9nExlo3/+f719CkHprz4/frMdFf7xznUrFP1nhs/O0r18nkVV6+PMLBdSEiqTyb6jz4HBbuWR/i8V0NpfPWeOz86MpYybr7Kyf7+en7p2Ktj8Qy/PBKGNC9BeYKUmIAJ3smmEjlmEjBpaE4W8vkQf786z30R9L0R9Ic2ThBjdfOa51jAAihB4qZzfMXhjnXHwPgSyd6+eSRdl6+og+WL10ZnbFVMZ2Ay0pg2kRKUcQNQWhqvTPzQn/v4ggjsSydownaa1x0hZOc7tG32Dx2M/e2zwxaM51KniI2YDdwpfjaCTQBHxdC/FkFxxsYlCXk1ju6WRH4y8xuQR+wQVcdVbnKG3hUFY0v/E4LZkUQclkRQv9xBl02FAFBl37+qkW4NTT4HVhM+qq+qTjbnl23we2BSREESn1i6oE72SctJkHIZSHktmJSBD6HFYfVhNtmRgjmdI9pCTlRhEAIaA3N9G91282lVdJi+uHdwGQ7mBQxp2ZhMraA1axQ57XjsZtLKu3QHMe0BvX2AWgJ6K5yk+0/1/NloYSK5/PYLVhNCkGXtVR36CZ1VbJi3gncJ6VUAYQQfwG8DNwPvLVwsQ3uNk50j3NhMM6+1gBb6r3sbPJT67VjN5vKqp0A/sPR9RxaH6I54CDoLv9je/f2OoZiGarcNoQQVHtshFxWNCmp8eifbah1E0lPVJRNZi7aq938wft2Ek3lSzPrjmoXPWNJ2qtdZS1HDdYe10YTvHptjJagk4c21nBuMMY/vd7DQ5ur2dsSoMHnYDiW4dvnhnlydwN+p5W2kJOcKrFbTKianGEFPNmv97YE2Nca4L89tZ18QWPzrK0Np1XPkBZL56mfI7azgU69z4HPoU9kJidQs3lsZz3hRJbWoJNarx1FEXz0cCuJbIF6X3n196Y6L49sriGZL3CoGNP6qT1NjMQz1HgW3iaaJvnuhWHGkzke3lxDrdfOO7bWsr3RS8hlw2xSqPc5+OjhVvKadtO6KlkxB4DpTzMXECwO1NnyhxgYzKSgarx8JcxoPFtS54Gu/plrUAZQFD2/6XwWl2aTQlPAWVqNXBiMEU7kGE/mOTcQo6BqvNY5TkGVvHptbFHX0RxwzlB3vXJtjLwqOXZ9opR5ymBt88pVvR+e6omQVVUuDMYYjmV4o0u3Aq7z2TnTF2E0nuWt/hib671Ueew0+B0EXdYZg7Kqyal+Xczl3V7tvmFQnsRtM9PgdxiTuJtwpi9CNF1gOJblynD5TG5vdI1jMSkMRDMMFDOEeeyWOQdlgKsjCeLZApoGb/VFAX3F3RRwVmxAVo7+SJrzAzGGoplS4CJFETQFnDOMygIua0UTgEok+X+A00KIvxFC/C1wCvhjIYQL+PcFXIPBXcjk4Am6um85afQ7i1bWgqaAY1nrnswu1BiYUnMbrG1aim1W67XT4HPgLVpPT88U1TqtzHxWtiZF0DzZt4LlQ7sa3DrNAScmRWCzKHNqFya3Cjx2801Vw5PU+exYzYrebsGlC7Mbclvx2PVtjtYl6Ac3VWVLKT8nhPgWcLD40f8tpRwo/v+fFi2BwV3D03saSeQKeBbhepTJq/zbqX7imQLv3llfNoZ1vqDxVn8UKeGxogFIwGmhd1wSKK7OT/VM8H++fxWP3cJ/fWJrybLyVnlkSw0H1wdxW83GKmiNkVc1nj09wFgiyzu21ZXCbx7dWM2eFj8uqxlTUf0ZTmT57vlhvnqqj2sjSWq8Nn75bRu4OJzgMy9d40BbkANt5bMLPTWtX8czef7tVD95VfKe3Q3GXnKF/OhqmDf7Iuxu8nNvRxVOmwmrWcFmVrBZTKiqys98/iTXRpM8vaeRX3hkAzub/KyvdmMzKxUbXdotJpxWE9m8htO6dC6QTquZn7y3jWxBK7lZLoZK1+4KMApMAB1CiAcqOUgI8VEhxAtCiB8IIQwTxLscRRF47ZZFDWB9E2kGoxkS2QLn+qNly7x0dZRIKk80neelK2EKqsaZviggSoFHXrgwQjxTYCCSLqkwF4IQ+jWVc/UyWF2GYxl6x1Okcipn+iIzvvPaLZiKbWYxKQxFM4wlcrzVFyWcyNI3kebScIK3+qJk8xqneibmrGd6v+4cTRcOdFEAACAASURBVBJO5Iim81wuWncb3JyT3RNk8xoni/f50lCcdE4lkspzPZykK5ziwmCMXEHl+fNDpePcNvMteUJ0jSaJpPKk82rJ+n6psJiUJRmUoYIVsxDij4APAOeAyU00Cbx0k+MagaNSykcWK+RiMVyb1gaaphHPFPAtcHUKuiVmyG0lninMcFfI5FVsZgUhBIfWh/jehREkksPtIcwmhc11Hs4PxNheDMN3ZEMVp3on8NjM7G2tLGH6XEyv22DtUOOxU+OxMRrPsnUeH/NCQaPabcNjN7Oh1kNXOEmV28q2eh+5gsbl4QRb671kCyomIZAw52DQFnLhsZspaHJRhoZ3GtmCitU0929ke6OPN/sibJs0qqxxc7Y/htWs0BJy4rIorKtyc30syf0bpvzDE5kCdrOCubg/XChoZAoabnv5oa0l5MRtN5PNa2u6fSoZ3p8ENkkpb9XQ61HAJIR4ATgP/NKkZbfB3clvf/08l4biHG4P8Utv27igczisJj56uA0pZelH/uLlUU52T9BW5eSpPU20V7v53McOzDgup2ooCmSLBlrVHhsH24I4rWZsc0QWqoTZdRusHTQpyasaEklOLW+YF03l+I2vvsV4MseH7mnh4/evQ0rJ610TfOFYD40BB5880saXTvTz8pUw2YJGtcfGU3saS6580/E5LXziyPoZ/fNu59VrY7zWOUZjwMH79zaV1S49tLmGBzdVl+5Zvc/Bp4+un3EPP/+Je1BVFZNJ/71+480BPv96NwGnlT94egcAv/6VM0TTBT5yqHVGDIJJNE2iahKJpKCtXWPNSnQAncBCYsvVAtbiijkFvHf6l0KITwkhjgshjo+Oji7g9Aa3E5lcoaQ6mq1WXAjTf7BXhvXzXg+nylpGF1SNztEkILgyopftHE2iFZOwD0YzC5bjZnUbrB7hRJaJVB4QXB0pb9l7dTTJWCKHlHD8+gRCCBRF4Wqxn/RPpOmPZBhP5oik8wxG03rM9bHkvHUbg/IU0+9lKj/32mz2PSt3DycHZYBj3RNICePJHJeH41waijORyqNJyRvXy29P9U2kSedUCqrkeji1kMtZESoZmFPoVtmfEUL8v5OvCo6LAi8W//8esGX6l1LKz0op90sp91dX3xi6zuDOwm4187YtNfgcFt69fe5EAQvhnnUhvA4LB9qCZV0ezCaFe9YF8Tos3LNO913c2ayrzAIuyw2BIKYTTmTJzPMwuVndBqtHvc/Bhlo3AaelFG5xPJkjnZtqzx2NPrY1eAm6rDw+bYW1vy2ASRFsa/CyvtrNxloP7VUuttZ78djNbKsvHyHK4EYOrAvic1jY3exfsj1YgCd21uO26VHcdjcH2NXkY3O93pZPTIvINp2OGjceu7nUtmuVSu7S14qvW+UVppJd7Aa6FnAOgzuITz7QzicrMhu8NXY0+djRNP+D8t6OKu7tmAqB90bnOK91jmE1KxzdUF02c9Qr18K83jmOx27mmUOtZWPbVlK3wepgUgSP75x6QJ/pi/DChRFsFoUP39OKz2HBalb4L09su+HYgUgGVZMlbcpjO+sZjKb58vE+klmViVRuXv97gyk213nZXLf0g6Ce7cuP02oir2q4bGZ+5z03tuV0usIJvn9xBFVKdjb5eHBTzZLLtRRU4i71d0IIB9AipbxU6YmllKeFEGkhxA+AMPCnCxfTwGBpmVRp5woaneFk2YF5qPhQjmcKxDMFI5/ubc7kIJvNa0wkc/Pm2B4olh1P5sjkVVw2MyOxbCkG+1AsQ1uV4be8mgwWg4qkciqRdL6U7Ws+Lg8nSm14aSh++w7MQogngD8BrMA6IcRu4HellO+52bFSyl9dvIgGBjMJJ7Iks4VSEIiRaIZ/Pt7D27bUsnVa8nMpKWugA/D+/c2MJ/P4HBaObCi/lXJfRxVShqn32StOxL6czL7u5UJKSfdYCq/DcttmQEpmCwzFMrhtZlI5FbtZoTngIJUr4HNYSpmF5uLBjdW83jXOuipn6YG/ud7D8+eHyOY1dq5xLcl4Mkcsnac15Fz1/e6CqtE9nqLGY8NjLz8ZiqRynO6NsLvZX3FMgUPrQ+QKGiG3jYYKQ5y+Y1stFwZjZAoaT+1pXHDdlVDJdc9FJars30YPLvIDKK2E19+qkAYGS0E4keWfXu9B1SRHNlSxvy3Ih/7qNYZjGf7h1W5e/tWHGIhnePa0HgPniV31dNTcmE2qOeDk957cPm9dtV4779u3Niyty133cvHKtbFiuEPBRw613XYqWykl/3ysl9FYpvRgjGUKtASdPLazvmyGstk0B500zxq8v3VmkGdPDyClpMHvmJE5ai0RTeX5x9e6KWiSe9YFZ2zhrAbPnRvm8nAcl83ET923rqyr2X959hzDsQx1Pjv/64N7KjpvldvG03tv7ffptJr5jXfPMHdaUN2VUMl1z0UlJfNSytmRHAzzU4NVIZktoBZVUbFMHoB4tgDorlCJQoFYplAqH00XbjzJbUi5614uYmn9/HlVksrffvdP1STJbIG8JknlCmQLGtmiAd/ktS2Evok0Uupt0B9Zuxa9qXyhpK5d7r5SCZMypHMaBVWWLRNJ5/S/qZWXd7nqruS656KSFfM5IcSH0H2SNwC/iG7YZWCw7GQLKhcG49R4bDT4HbSGXLRXuwgncqUQib/26Cb+4TU9O1CV247fYeUHF0fQkGxv0FdH48kc3WPJolWmBVWTXBiM4bKZS6EaV5PBaJrhWJYt9Z6yftWtIRf3b6ginslzaH1owfVUct33b6jCYlIIua0zEgL0jKWIpHNsrfci0ZOFBJzWG1aWK0XveIqJVI4t9d4ZqxGzSeGxnfVcHUlwb3sIVZMMRNMICV2jCXIFbcYqsm8ixVgix9YG75yrmr6JFAfXBembSFHQJD//4IZlv76FUu9zcHRTNeOJXCmDUjqncnEoRmPAUUqicHUkTq4g2VLvWVZ19/0dVXzzzCC7mv0zEjpM5ycPt/HNM4M8VrSMV1WVz7zcic9u5cOHWpdNNoCfe7CDH1wa5cFN+paWlJLzgzFsZtOigpC8bUstJ3smaAu55rzuuahkYP4F4DfRM0l9AXgO+L1bltLAYAF8/+IIFwbjmBTBx+5rI5ktcG1U9yF9qy/KvR1VPL2vmaf3NZeOef7cMK8WE6Z31Lh5fEcDXzreSyqncn4wxofvaeWNrvFSUvUfP9BcNub2SpHIFvjy8T4KmqR/Il16OM1mrljNt0Il1+2xW3jb1toZn43EM/zrqT6kRPcV1SSneyMIAc8cal3xmNBjiSxfOanLE05keXjzTHnbq920Fw36Lg3FOTcQ49j1cWLpPG67Gb/TwtYGHxPJHF850Y8mJeFElke21N5QVyQ1VebtW+tuuDdrkUn3sEm+fXaQ7rEUVrPCJ46so38izdffHAT0ye+eWeWXkmPXx0nnVU72TLC31V924tk9lqI56KRnXNdE/PFzl/n6GX07ympW+LH9zTccs1Tcsz7EPdMmuyd7Irx0WY+t8eSexgVP3Ks9Nh7dVregYyuxyk6hD8y/uaAaDAwWwWTAJilBapTUuUBJXTeb/LSIPvli0A+1qILUisdocupYbY7zrBSalEyKoMrllWWh1y2l/po8bno7aMssczmmiz5HUK9p30+1uUS/jnzxIP0z/fu5+pMmuWmZtU7pHmgSKWf+jtRlvqbZdc9XZvLv9N/wfHEEloPp/Vldpehgcw7MQoivA3O2WCVW2QYGi+XguiD9Eyk21nnwOS34nBbevaOeeCbPrmY9xnU4keXcQIz1VS6ag04e217H5eE4UoP37GpAUQT3rg/xWtd4SQ28pd7Dc2cHqXLbVk0VO4nXbuHJPQ0MRjPLbu17cF0Qm1nBZTPf0nXXeu08vrOeiVSe3c1+JLJktb2YBPMLpdpj4/GdDYTjWT3SU9c4+1oDpcQUveMpOsNJtjV42VTr5kyfnYc3VtM7kaYl5GRXs75CDLltbGvwcj2c5EDbjavGvokU10aT3N9RharJUp+73Xjn9jrO9sdoDjqwW0xsqPXw9q0aOVVjV9PyXtPsuqWUnOqNkCto7G8NYDYpPLmnkasjCTbU6lqOTx5Zz6vXxnDbTXzoYPnVcjqncqJ7gqDLytYlDBayo9HH+YEYLpuppHVZaeZbMf/JiklhYDAHr3aOkcypM9wZpievAPj2W4OEEzne6ovw6aPtXBhKYFYUUODcYJydjT5+dG2MXEHjR1fDbKj18IU3erk0nODScIK9raMzAuOvBq0h17K7QYGefGGhFt0bZlkzH1y3fJbhldBR4yaTV/nu+WEALCbBnpYAqiZ59rSeerF7LMnelgCD0Qxd4SR2i0Iiq9I3kaIp4GQ0nuVsfwzQ1fzvnBaVTtMkz54eIFfQCDgtfOy+tWmFXQkeu4XD7TNtE7Y3rozL1+y6Lw8nePGSripWhODguiDVHtsMl8S/fPEa0bSeIe4fXuspe+9fvDzKhUG97arcVmq8SzNBfLM3wngyx3gSrowkKrLiX2rmHJillC/O9Z2BwUphL4a5NCsC8xyGObZi4A+rWUERArtlqpzdoiAE2MwKuYJWChIyGRpQCD3RusHtycy21ttWoPeFvKpiN5tKn5sVgVmZ7A/FPmNSMCkCVZOlfjRJuX5jsHhm/z7L4Z3m9xuYw7d48liTIpY0HO70trYvIsHNYjCeSAarRjJb4OUrYdw2M/e2h1AUwRfe6OHKcJwPHmxhY62HXc0+usK6NbXbZkZKySvXxohn8ty/oRq3zcwTOxvoDCdo8jtRFMGGWg9P7lGQUrK+qIr6sf3N9E2kWF+lv//IoRbqfXZCbltJrbkU5AoaP7w6ipRwZEP1isbPXuq6+yZSnOrRDbykhH2tgTkDtqwWHTUentqjEMvoeXuvjSbQNMnOJj8eu5kfXQ3zz8d6eGhTNU/sqkfVwOswU+2xcWkozuXhOEc2VGG3mG5YGQkhbug3twt//cMuBqJpfvJQG83zxIJfCYaiGY53j9MWcrG90UdTwElTwEEqp5bu+bXRBOcHYqXY5D99/zpO90RwO8y8a0d5Y8gjG6qp89kJOK1LGhhkV7Mfl82EzWxatW0uY2A2WDXe6BovqaLqfHZMAv7tVD8An/thF3/0vp28cm2smOg+yu5mP7FMgTe69MwxFpPCI1tqcVhNbGuYqZabbUnpc1jwOabKKIrCOxZoMTkf5waivNmru/37nRb2ta6cunep6/7u+WHCiSwnuifY3xokksrxkcNtSyDp0tJW5eK5c0NcHIpzpi9Ca8iF32nh3vYQL1wYAXS19PSY2AVV4ztnh9CkZCSe5eNzBAuZ3W9uB050T/DcuSEA/u616/zWY1tXVZ4XLg4zEstydSTB+moXXeEkfRN6OM2TPRPc217Fd84OkSto9E6k+NkHO/jS8V6yqkY2keP5c0M8XiYphUkRyxKDGygblGglMdLhGKwaIbc+yzUrAr/TQsBlxVn092vw6/tFIZe+7+SwmnBazfgcFiwm3cBnLYaLDLqsCKGrQYOulXUhWuq6Q24bJiHwO6woq3A9t0JVsS957GZsZgWv3UKD31HSGsx2CzMpgoDLMuPYO4U6n23O614NJn/DHrsFq0kh4LSiFP2mJ78LFX/Lk3+biitVRQiag6t/DSuNkHPYr6+kVfb+/fvl8ePHb/m4tl//5lKJcNtx/Q8fW20RSuzfv5+FtB/oai67RSmpokZiGXrGU+xt8aMoujq6P5LG77SW9oWjqTypfGFG8ItbZSKZ47sXhnHbzLx9a+0thcubznNnh/jW2UH2tQb4aHE1GU5kkZI542tXUveJ7gk+/1o3bVVOfuGhDhSlMvluVnc55mq/C4MxXrgwzNYGL20hF/9yrJdwIssnj6xHk5K/ermLOp+dX3nbRsxrIOXlYDSN3WwikS1Q5bbhsJoYjKQZiGbY13rjdkUmrzIaz3B+IM5EKseDm2qoqzDm8lqhXNsVChq/841z9Iyn+LV3bi7Fj5/OWCLLL3/xNJm8xu+9dxublmnlCbq2oj+SLrUJ6AF/CqpWMtjKFTSGYxlqvfbSpOL8QBSHxVQ2wQzAcCzD9y+OEHLbeGRzDYpy++XAFkKckFLun/35mrPKvpsH27uR2Q/CGq99hnWlEIKmwMx9Hp/Tgo/FxW8+2TNBf1GdtqHGfYPFcaV8+UQvsUyBb54Z5Ok9Tbjt5psG26ik7i8f72UgkmYgkubtW2vZWmH+36UM9PHKtTHyquTN3ihmRXC6NwLAV072oRYftv2RNCd6JmYEaFgtJidqgWmalHq/g/o5Vo12iwmTonC+uJ3yetcY793duPyCLjMneye4PJwA4Msn+vgvZQbmf3q9h2sjepm/+eF1/vD9O5dNHkURN+zVztZ2Wc3KDWXKTSim80bXOIPRDIPRDFvqPTc8J25n5pzmSilfnO+1kkIaGCw1zUEnQugP58X44W4srjRagk6c1spWjZXUvaXolxlwWmhepQdOa/FB2eC3s7nWg8tmQgjdzWZHo+776rGbaa9Z/ZCmCyXgtJas8lfCXW0lWF/tKl3Ttjn8ew+uD2Ix6V4M+9ctX9Sv5WQyQ5jHbi6pxO8UKkn7uAH4A2ArUHqKSCmNDFMGty0baz00+B1YTKJsiMBK+Y9v30D/RIZan71idbPHbsZqUvDYTdjmcBf56OE2HtlSQ8BpxWldHRvNR7bUcKAtiNtuRtUkD2+qZTiWYW9LgOagk0Prg3jsFty3sbuZw2rio4fbyBbUW07Nt1bxOaw8tKmGwWhmTp/1e9aF+OdPHSKvajQHb88Jya5mP+urXdjMphX1flgJKrmavwH+AigADwF/D3x+OYUyMFgJ3DbzogZl0K27m0POW3ownOuPkS1ojMZzpdjA5Wj0O1dtUAZ9G8HntGBSBAORNKOJLIoieKtft/yu9ztu60F5EqtZuWMGZdDtNkbiWUyK4Ezf7MSAU9T5HLftoDyJx2654wZlqGxgdkgpX0A3FOuWUv42sHYsjwwM0APxr5W61VmxpGezsdaD1azgd1oWbTW7EtctpSTkshJwWpBS3hB5ba2ymn1ipcmrWiklZY3XRrDYVlvqb4+2qgQpJbnC3ZFxuJLpblYIoQBXhBA/D/QDt5e3vcEdzUuXRznRPcG6KhdP7llZ453ZdY/Gs3zpRC8A79/bVDZMYEvIyc8+2L7oVHsrcd1SSr56qp+LgzFO9UYwCcH2Rt+qxRCulGdP99M5mmRfa4AHNq5uuNXl5sJgjOfPDeN3WvjAgWYyeZXXusaZSObY0uBddZ/cpUDTJF8+2Uf/RJp720NrwthwOalkxfx/AU70PMz7gI8AP7mcQhkY3AqXh+MAdIWTKz6jnl13z3iSbF4jm9e4Pja3mnop8t+uxHVn8hrdYylG41lGYlkk8Mb18WWpa6nIqxqdxdSgk/foTubKSAJNSsaTOUbjWS4NxRlP5pDA651ru60qJZkrlDwZLhetye9kbjowSymPSSkTQAz4RSnl01LK15ZfNAMDnbFEdl615MF1QTx2M/vbAsu+35TOqURSudL7/W0BFAF7WvxYzQobaz04LAp2izKvyjeaypPKFUrvxxJZjneN3ZIsK3HdDquJrQ0eQi4r7dUuFAEPbaomnskzkcyVUvLlVa3oQ700KQQzeZWJZO7mBcugJ+oI4LGbVz3Rxkqwp9mP32mhvcZNvc/OriYfTUE7QsDjxdzemqZxeThOIjPV50ZiGXonpiaPqqbnpF7uNJCgh+ONpvMVl/fYLexs8uF1WMpmAbvTqMQqez+6AZin+D4K/LSU8sQyy2ZgwKvXxnitcwyP3cwzh1rLJhPY2eRn5zKnrgN9MP3HN7rJ5jXevrWW7Y0+hqIZNAkDkQxSSi4PJ3jpShjQk9WXU7ldGIzx3LkhLCaFDx1sQZOSD/1/r5HIFnhgQzV/8L7KfEpX4roLBY1vnBnkejhF73gKm1nw5y9cZV21C7vFRJ3Xzk8cbOFrbw4wGs+yrcG76FCniWyBf3ytm1RO5eimava23PqD+MiGao6scsawlaI56OSnpmVf6hlPcbonSiav8sLFEfa3BflfL1zhtc5xqtxW/vQDe7g6Eue/f+sCBU3y6aPtPLiphmdP99M9lqKtyslTe5qWTd6RWIYvHu+loEme2NVQ8bbII1tql02mtUYl0+y/Bn5WStkmpWwDfg59oJ4XIUSbEGJYCPEDIcTzi5TT4C5lIKKrr+KZAvFps/3VIJzMks3rKuPBaAaA/oj+dySeIa9KLg3FS8Zfl+ZQow5E0kipRzsaS2bpGk2QyOrXdnV0banpErkCI7EsyWyBTF5Flfq1RlN5ktkCqZzKSDzDaDwLTLXXYphI5kjl9JX4YPH+GlTO+cFoSZNxaUjvg51hXbUfTuSIpHJcHk6QVyVSTpWZbLuBZb7nI/Fsqe6hqNG+5ahkYFallC9PvpFS/hDddaoSviulfFBK+Y4FSWdw25AraHSOJmaoZyuhdzxFOJGd8/v7OqpoDjpLOVuXkpvVrWmSrnCypHJrC7loCznx2E0lddrBtiCJbJ7dzT6sZoXHdtRR67VR47HynmLg/XROpXM0UdoH3t8apK3KyfZGH+uq3OxfF+LBTdU0+B18+ujqhweQUs9jPBLLMJ7McX9HFXVePRl9g8/OzkYfNV4be1sC7G7x017t5uimahoDDo5uqll0/U0BB7tb/LQEndyzfkoVre8dJ0gWJzETyRzdY8klU5/fKbxrWx0NPjuaJvn4vc0AfHB/CwGXhXdsqaHGa+dtW2rZWOOmMeAoGQ4+vLmWxoCDhzdPtWHfRIqR+OIGz0yuwIuXRhiO6efZWOthS72H9dUudjUvv6brdqQSq+wXhRCfAb6AHjv7A8APhBB7AaSUJ+c59iEhxMvAv0op/3TR0hqsWb751gDXwym8Dgs/dW9bRXFrT/ZM8OKlURQh+Il7mstGwarz2Xn/vqVXq1VS94uXRzndG8FmUfjYvW2kciq9E2lUTXJtNMG+1iD/fKyHqyMJesfT3N9ezeneCMOxbLGOCA9tquafj/UQSeVpDjp5/74mfE7LDarC339q+UIi3iqvXhvj9a5xrgzHaQw4ePHyaDHlpp7Y4odXx7BZFLbUeXmoOBDvbQksSOVcDiFE6bzT+fbZIa6NJPDYzTy1t5EvvN5DXpXcsy7IvR1VS1L3ncAPLoV5qz+GJiV/8t2r3Lexjkg6z6ZaLxqCvKoRSecIeWwEJYwlctR67Wxt8LJ1WqSwcwNRnj83jBB62tSFuvb98fOXOdsfxW0z8+cf2oPTauad28uncjTQqWRg3lX8+19nfb4HfaB+eI7jBoGNQBZ4VgjxgpTyzOSXQohPAZ8CaGlpuRWZDbi1mOK3kvCi0vPOPmc0pa8qk9kCqpQo3HxgnlyJalKSyBRYSa+OSuqeLJPNa2TyGolMoWQYM/ndeNFAKZEtkNM0huNTK/DJ/edJg5vYLRi7rCaT15bMqaRzKqmcisNsIp1XURT9ngH0LoHaekFyZVXimTx5dWZbGOhcHYmX2mi8aKg41aYF8qpGLF1gUtEw1/2b/FxKve8udGAeS+RKdadyhVUNmnO7cNM7JKV8aCEnllJm0QdlhBDfALYDZ6Z9/1ngs6Bnl1pIHQZrh0e31/Fmb5SOGlfFmZoOrQuhaRKXzVzKnzwUzTAcy7C53oPNbCJX0Lg4FKPaY1tUNqnZHGwN0jWaJOiyluo+0xfh8lCcR7fX4bFbeHBTNQ6riXqfnWAxwMZ9HVXEM3kOFY26Pn10Pd96a4iD64I4rWbes7OecCKLpkme3NOASRHct6GK1zvHObLh9ljV3b+hCrNJYVuDF02Cz2Hm3ECc3SE7qiao99hx2s18+kj5HMbLxQMbqvj22SH2tPhpC+nq87FEboa6eyH0R9KMJbJsqfcuOMvYapLJFfj22WGagw72twX5mQc7+NbZQQajGX73PXou5rdtreFkd4S2Kj2a3OY6D5FUjqyqsbe1vDp5b0uAbF7DZlbYtMAkLwA/ebiVv3+tm0PrQ1S5VzZ7Vzqncmk4TqPfseRbYctJJVbZtcB/BxqklO8SQmwFDkspP3eT4zxSyknrl/uAP1+0tAZrlnqf45YHTofVNMPSMpEt8KWitWZ/JM27d9TzvYvDXBiMY1IEP3Vf25KFTnxrIEo0nSeazjMQzWBWBH/07YsUNMnF4Ti/9dhW/E4rj06zMBZC3OB+s6s5wK7mKRWu3WrmZx/sKL3XNMmxrnEyeZVj1ycWnMVqJfHYLbx9q94uqVyBf3qjm/FEjnODUdZXuXlgYzU/91DHTc6y9LzRNU46p3Kie2LJVOcTyRxfPt6HJiWj8extafn7ly918uq1MRQh+G9PbUdqEofVzLoqN6f7YhzdVEeNx847t0/1ZUURN1X/2y0mHtq8eJuBrrEkLUEn4aLb42LD4N4K3z47SPdYCqtZ4RNH1q1o3Yuhkunh3wLPAQ3F95eBX6rguCNCiBNCiFeAfinl6wsT0eBuQZOSSRfKvKobShWKH0gJ2hLG0CioU0oaVZUUNK1U91IH61CLOsPCUl7ACqFp+uRCSpBF8XOrFOpychthUp4lOaeUSCbb5/ZU3E32V4kkX9DIaVrp/uQKq39NhWVot9uh7sVQibK/Skr5RSHEbwBIKQtCiJv+MqWU3wK+tVgBDRbP7ZLj2mu38N7dDQxGM+xq1nOxPry5hpDLRp3Pjs+5dIkGtjV4+e75Iao9NlpCevq4p/Y0cLo3wsfvq1xFe3U4znPnhznQFuDguht9lhVF8PSeJjrDCbYsYzL65cJtN/OObXV87+IIj26rxWkzISX84+vdfGBfM+ZiYJPe8RRd4SQ7Gn0z8iEvJe/aUc+5gSitIdeSBVSpctt4fGcD4USW3bephfBHD7cSzxToqHGxuV7vY60hO1dHUrxnl25kFU3lOdMfoSXoXPH0lu/cNe6EZwAAIABJREFUXsfZ/ijNAWfZOAR3at2LoZKBOSmECKEbeiGEOATMnbLEwGARtFW5aKuaenA4rWYOty99XNwvHOvh4lCci0Nx9rYE2NboYyCaodpj53RfhNaqyh5ef/bCFUbjWV69FuavPurDXsawpc5np863sntrS0U8k+e5s0MUNElnOMX9HSG+dKIPAKdFt47OFTT+7VQ/BU3SO5Hiw/e0LossPoeFe9uXfp++o8ZNR83ajv09H2/2RQm6rIwn84zEM1wYiPGjq3oozj/79yv8xTP7eO7cEP2RNKd6InzqgfUrOkh57cvTbmu97sVQycD8K8DXgHYhxI+AauD9yyqVgcEy4yoOoEKAy2bCrAjMiiCvSmy3sBpzFB9wVrOCucJ8zLcTJkVgMSsUcioOi4JrWppHl02/dkVQKnO77OHdSUz2V0UILIqewlIIgZQSp1Vvj8m832aTQFmCOO0Gy0slVtknhRBHgU2AAC5JKQ3/BIPbmo8caqHOayfktpaMtz5woIWReIaNRQOta6P/P3vvHSbXcd7pvtU5zfSEnpyRASJjCBIkSIqkKEZRlmhRkm3ZltaStd5re71rX1vPBml9d23d9fp6ba/D2mt7vbZFJSuQIiWRSgxiQiAyQMxgcu6ezrnPOXX/OD2NCT0zPYOJwHmfZx50N073qROq6lTV9/1+cZ55e4CtNR4+drR4St9nH93Nq91+DrdUFqZ1bxaGQknODIb5+J2txDMq9+2owWWz8O5YDBMUAoMsZhMfvb2FoVBqU488Nyv3bK+htiyfOZD/u2+7j66JOJ+5bysAD99WT/dEnMYK503pX3yzsegVEkJ8GN2T+SLwU8CXp8RFDAw2KyaTiYf31tPZfj3KuqbMzm2N3kLKzN++1sv5oQjffGeY7nnkNas8Nj5wsImW/Dr1zcRLl8bpGo9zYTjGY/saqHDZOD8cRkpQJVwYvr6iVeGysbfJu6nW8W4WzCbBnsbywnLJqf4Q3f4EQgi+fFK3IHVYzext8lK1Suv/BitLKY9O/0FKGRNCHAceBP4G+IvVLZaBwfrTkG/onDYzVe7NkwO5Ukw14l6nBXN++rPSZUMIfQmg0mU08huReq+9MCpuXMHcf4O1o5Q15qkI7MeBv5ZSPi+E+M+rWCYDg3Xhlat+hsMp7tnuo7nSxQcONhJLK+xuKKfSXTwivGs8xom+EDvrPRxpKy50cXogxJXRGEfaKhe0glxPvndxjEgyxwO7a/F59IeQx/c1MBJO8+KlMX7jK2doq3LRXOni4dvq8Xnsm0qw4VaixmXHbIJwMsuOen1poTeQ4M2eSdqr3asSTGmwspQyYh7Oa2V/BHhBCGEv8XsGBpuGyXiGU/0hxiJpXr+m+yK/3RvCYTXTG0jgn8fs4pWuAOPRNK9cDRTNf1ZUjVeu+vPb+Ff1GJZLVtG4NBJlOJziZF+w8LnFbKLcaeGlS+P0BRK8cF6P7O0LJIxOeQPz4pUxusZ1x7L/9WovAK91BxiLpHmzZ7LgZGawcSmlg30aXWDkYSllGKgCfmtVS2VgsMaUOaxU5vOkW6v09eKW/L9epxWvs/iIuaVSnypsrHBgNc+NdrWYTTTmNYanfm+jYTELXDYzQkBz5cwyemwWGrxOrGYT9V47Qmzc4zDQOdBcgdOqT4bub9L1AKbu05oyeyGTwGDjUkpUdhL4+rT3o+gGFQYGN8RYJM3z50fx2M184GDTugYO2SwmfvbONpJZtdAJH+2oYmd9GS6beV4N5Yf21HG0o6qQolKMpw43E0vn5u3c1xuTEPzi3e1kFW2G5Ok7AyHe7g3y2L56dteXU+u1k1E0yldIFtVgdWipcvPVXz7GRDzNzryojc9jxySg2m2jBOM3g3XGmJI2WDcuDEeIpnKMhNMMBJPrXRysZtOcztPrtC5obCCEoMJlw7xAa2c26dvM13FvBOwW8xwd8lP9IZJZlYsjUWq9duwWs9EpbxIqPbZCpwz6Q5Ym4cpYjER2fSRVDUrH6JgN1o0ddWVYzQKv07psS7mlMKW/PYWiamiL6CPnVA25mUR2V5A9jeXkVI1ttR5DlGKToaoq8VS28H53QzlCQLvPhdtmTGVvdAxjTIN1o7Xaxa+8ZxumNZhbe+7sCN0TcQ61VvCenbX0BRI8d3YEp83MR4+24rHPrQrnhsL88MoENWV2nu5s2ZSWgDfCucEIJ/uCnBkM0z0R544tVZtS3vBWYyKa4hf/7gTRtMIn7+7gk8c76Gyv4nBr5ZrUNYMb59ZqaQw2HGvRUCiqRvdEHICreaGQ7ok4iiaJpRVGwqmi37s6HkdKmIhmCCWzRbe5mTnVH0RK6J9MkFFUro4VF1kx2Fi81RMkksohpeTlaZkARqe8eTA6ZoObHovZxO3tVZQ5LNyeV/ra36yrVNWV2wtR2LM53FpBmcPCzvoyfLeIwEgsnSuk0zyytx6vy8odHdX4PPYZKmkGG4twMks6p68d37+zhg6fhzK7lQ93Nq1zyQyWgzGVbXBLcHy7j+Pbr0/DBpNZMopKKClJ59SiEeFbajxsqbl1tJ8Hg0m+8c4wAnjqSDNPHWnhqSMt610sg0U4PRDi5Xf9uO1mfvaONjxOG//4S3esd7EMbgBjxGxwSzIcSiGlLq7hjxUXD7nVGI2kUTWJoklGI+n1Lo5BiQyH9KWYREa9JZdcbkaMEbPBLUlnWxWRVA633UJHid7LNzv7mryMRdOYBNzWWL74Fww2BHduqSajaFR7bGuS3WCw+hgds8Etiddl5UOHm9e7GBsKp83Mkwca17sYBkukpszOTx8x7uWbCbERcjR9Pp9sb29f72IYLJO+vj6M67d5Ma7f5sW4dpubU6dOSSnlnCXlDTFibm9v5+TJk+tdjEVRNcm3zgwzFEpx/85a9jV717tIG4LOzs5Ncf0MilPK9UvnVL52aohIKseje+tvqaC4jcxy6140neOrJ4fIqRofPNREXbljFUpnsBhCiNPFPjeCv5ZANJWjfzKJqkkujkQW/4KBwU3CWCSNP5Yhq2hcMfKZNz39gSTRVI5UVqVrPL7exTGYhdExLwGv08rWWg92q4n9zRXrXRwDgzWjscJJU4UTl83M3kZjpmiz01HjxuexUeawFDybDTYOG2Iqe7NgMgkjOMbglsRmMfH07UZO882Cx27h48fa17sYBvNgdMwGtyTtv/N8ydv2feHxVSyJgYGBwUyMqWwDAwMDA4MNhNExGxgYGBgYbCCMjtnAwMDAwGADYXTM8xBJ5bg8Gi04thgY3KpEknpdyChGXdgsTETTXB2PoWnrLyBlsHSM4K8iqJrkKycGiWcUWqpchtydwS2Lomp86cQAyaxKu8/FBw8ZdWGjE0pk+dKJQVRNcqStknt31Kx3kQyWiDFiLoImZWGknMoq61waA4P1Q5WSjKIBkMwaI+bNQFbVUPMj5ZQx47cpMUbMRbCaTTx5sJGeQIJ9TYaYgsGti92iG1v0TibYb9SFTUFduYOH9tQRTGTpbK9c7+IYLINbtmPOKho2y/wTBm3VbtqqDTtAA4N2n5t2nxspJTlVw2o2Jto2GjlVw2ISCCEA2Gs8RG1qFu2YhRCdwD1AI5ACLgAvSSlDq1y2VeNH705wZiDM9joPT+w3lLwMDBYjlVX50okBoimFx/bVs72ubL2LZJDn8miUFy+OU+Gy8pHbW3BYzetdJIMbZN5HXyHEJ/LOF58FnMC7wARwHPi+EOLvhRCta1PMleVqXoS/azxeWIsxMDCYn/FomnAyhyYlXROG6cFGomsijiYlwUQWfyyz3sUxWAEWGjG7gLullKli/ymEOAhsBwYW2oEQ4jeAp6SUx5ddyhXmaEcVp/pD7G4ox2wS610cA4MNT1Olkw6fm1Ayy4EWw8BlI3GopYJALEO1x0aD17BvvBmYt2OWUv7ZQl+UUp5Z7MeFEHbg4DLKtaocaq3kUKsRFGFgUCpWs4mfOtS03sUwKEJLlYtPHu9Y72IYrCClrDF3AL8KtE/fXkr5ZAm//y+Avwd+d5nl29C8fi3AeDTN3dt81JYZT6oGNwfBRJZXrvqp9tg4vs1XCCgy2BxIKXmtO8BkPMu9O2qoctvWu0gGS6SUqOxvAn8DPAdopf6wEMIKvEdK+edCiJuuY/bHMrzVE8y/CxjCCwY3DW9cm6Q3kKA3kGBLjYemCud6F8lgCQyHU5zs02NzrWYTj+9vWOcSGSyVUjrmtJTyT5bx2x8HvjjffwohPg18GqC1dfPFkJU5LLjtZhIZlbpyY7RscPNQV27n6ngMh9WM12ld7+IYLJEKlw2H1Uw6p1Lvta93cQyWQSkd8x8LIT4HvAgUQv6klKcX+d5O4KAQ4jPAbUKIX5VS/um07/8V8FcAnZ2dmy402mE18/PH2ommc8Y0tsFNRWd7FW3Vbtx2My7bLSt1sGnx2C38wl1tJDIqNWVGx7wZKaXW7UMf/T7A9alsmX8/L1LK3556LYR4bXqnvFHpn0xwojfI3dt8NJQwfeewmo2cwVuA9t95vqTt+r7w+CqXZO2oKbOTyCicHQzTUuWas06pqBpXxmJUuKw0V7rWqZQG8+GyWRZ9qPrxuxOkcioP76nDZDJEYzYSpXTMHwa2SCmzy93JRkqVmg9N0/jd5y4Rzyi83OXnTz92eL2LZGCwrnz73Agj4TROm5lP3bNlRmrhq90BzgyEMQnBz93ZSrXHGJltJl7t8vMXP74GQDSV4yO3b77lxJuZUh6TLgC3ROKikhcbUdRNN7NuYLDi5PL1QNUkUs6sE1N1RJPSEOnZhGSmmVvklJJjeg3WiFJGzBXAFSHECWauMZeSLrVpMJlM/NbDO3njWoD7d9aud3EMDNadJ/Y3cGkkSrvPjWWWPvY9232UOSxUu23UGsGPm4737qknllZJ5hQ+fKRlvYtjMItSOubPrXop1ogef5xmrxObrfi68N4m76Li76qmW0K67Td/UIymSZI5Fc+sY1VUjYyi3RLn4FamwmXjrm2+wvucqpFTNUz5vOb9zV5s+Q57vnvFoHSklCSyKm6beUbueCqrYjGLJZmHKKpGVtVmrDOPR9NUu2xY8uY9j+2vR0oWNPO5VUnnVExCLHhuklkFm9k056F1JSilFg0Ao1LKNIAQwgnUrXhJVpl//eV3ONEbpKHCyZc/dQdm89KDthRV45kTgwRiGe7aWs0dW6pXoaQbA02TfPnkIGORNLe3V3F8u95AZxSVZ94aIJTMcd/OGg4bCmq3BImMwjNvDzAaSelT3BJsVhP15Q5+5mgr3z43ynA4xaHWCt5jzDgti2+dGaE3kGB3QzmP7K0HoHsixvPnxnBYTXzsjlbKHYunr6WyKv/0Vj/xjMJ7d9ext8nLX/74Gj96d4LGCid/8NR+IukcXz45iKpKPnCwidZqI4Bviv7JBN86M4LFLPjo7a1FBVouDEf4/uVxyhxWfuZoK855BnvLpZSu/qvMFBZR859tKq6M6sYVo+EUk4nlxbHF0gqBvEh8byCxYmXbiCRzKmORNAC9geumBZFkjlAyp3/uv7nPgcF1AvEMsbRCJKUwGc/gj2eIJHPE0goj4RTDYV1S/2avF6uFlJK+Sf3cTf0L0BdIoklJMqsynq+PizF1raS8/lsXRyMAjIRTTCazjITTZHIaiiYZCCZX+Gg2NwPBJKomyeQ0RsJFrSLoDSSQUg+cm0ysvHFIKSNmy/SIbCllVgix6TTenu5s4eunhzjQ4qW2fHlKRpVuGwdbKxgKpbjzJh4tg54L2dleSV8gwbGt16cza8rs7GvyMhZNc7Sjah1LaLCWNFe62Flfhtc51WQIEJJGr5OOGg93bKni2kScox03d71YLYQQHN/m4/JodIaO/6HWCvzxDB67hXZfaf7wjRVOdjeUMZnI0tmm19EPHmrm66eH2Nvopa7cgddp5Zo/TlbR2Gd4N89gf1MFI+EUdouZbbWeott0tlcSTeeodttp9K68Mp6YHW05ZwMhXgL+VEr5bP79B4Bfk1I+uFKF6OzslCdPnlypnzNYYzo7O9ls16/U3OSlsFnzmDfj9TPQMa7d5kYIcUpK2Tn781JGzJ8B/kkI8T/y74fQBUc2Fd0TcU70Bdle66Gz/fpI78JwhPPDEfY1eVE0yeXRKAdbKtjdUL6OpTUw2Fhksyr/+qtnmYil+a2Hd3KHMTLesCiKxn//QRfj0TSfON7Onoa5I+KMovLSpXGyisZDe+ooK2Ht2mDtWLRjllJeA+4UQnjy7zelS/qrXX7CyRxjkTR7m7wFxa6Xr/rJKhr+aAaJnpf5SspvdMwGBtN4/sIoZwd1Y4S/fqXH6Jg3MKcHQ5zo0w12vnZyiP/4/rkdc9d4nK5xvSk/NxTh7mnR9wbrz7zBX0KInxNCFP5fShmf3ikLIbYKITa8otcULXnZwHqvA/u0EPjmSn19oM3noin/uqXKiFA0MJjOgZaKwsPsgeZbQm9o09Je7S6kre2ZZ4BRV+7AZjFhEoJGwz1sw7HQiLkaeEcIcQo4BfgBB7ANuA8IAL+z6iVcIR7cXUtneyVlDuuMHMH3728kms5R7rAigVg6ZzjqGBjMYkuNh6/88jEC8Qw7643ZpI1MbbmD//7Rg4RTucKAZDY1ZXY+eXcHqpRG7vkGZN4Rs5Tyj4HDwDNADfBg/v0w8HEp5VNSyq41KWWenKpxeiBE98T8s+mprMqJviCDwSSJjMKJviAj4RRCCCpcthl6vwAmk/65ySQw51/fTMbw0XSOt3uDjEdLS7UwuDW55o9zqj9ETp0rz3huKMzfv95HVtGMTnmFuDQS5dxQGG0F5Eyzisap/uCMVLUzg2Feueonnlbm/Z7TZjY65TXm8miUs4OLX/cFr4qUUgVeyv+tO29cm+RUv77O9ZHbW4pOwbx0eZxrE3HMJkG128ZELIPVLPile7bckk5QL5wbZTSS5kSfiU/fu2VJ6kEGtwY5VfLsmRFAnzGaLhASTyv8wffeJatonBsK84dPH1yvYt40dI3H+N7FMUDX579RkZ5Xrvo5PxxBCPi5O9sIxDL82Y+6kRLGI2n+zft2rkSxDW6Q7ok4370wdd01jrTNn266qVrp6QPZ+Qa10z++iQa+y2bqHBjnwmA+BNPvk9kzStNeGzfRijCjHVuF3zNNmxU0LtlGZeELs6nmMY5tqabMYaXcYaFhnqTuh/bU0VjhoN7rpNJl5fJolKYK1y05WgZ4bF8D747FaK1yGaNlg6JYzIIPHGwinMzO0Yp32Sx89tFdvDMY5r27N50S74ZkW20Zj+6TKKqcNzhrKdyzvYZKt41qt41qj51qj53/6/5tDIZSvH9/4wqU2GAl2Fbr4bF9DWQVjdsaF77um6pjtphNHGxZOCLUYTXPmCKocNkod1rQNI3eySRNXgc2i5lwSg/ymr3mPIWiakTTCpUu66Zecy5zWGfkbRsYFKPD5wZmKktN1ZlGrx27tZpyu5lIMofZLBBgmJjcALtWcK3eZjHNmQ7fUeehymXD49Cv0dS1bPA6ZhhbLEYsncNsEkv6jsH87KwvK2m7Rc+2EMIOPAW0T99eSvm7yyzbmvEnP+jiJ90BfB4bzZUuzgyGqfc6eO+uWrr9CZoqnDx9+1zLMyklXzk5xHg0zZ7Gch6+rX4dSm9gsL78wfeucqo/yEg4TU2ZDafVws76MjKqRkO5gw8daabJSLXZcPQF4vzS358klVP54OFmfvN9O/nTH3XzevckNWV2/r+nD5bkKHXNH+fbZ0exmAVPd7ZQU2Zfg9IbQGkj5m8BEfSUqZVX615FpqK3A/EsibRuvDAWSReiF0ciKVRNzhk1Z1WtEMU8HCouYm6w8VgNmc1bmWv+OKomiaSyeF0WYpk0jRknqaxCjcfOWCRtdMwbkAsjEVI5VX89rJtXTLWF/liGcDJbkof2aDiNJiVZRTIeTRsd8xpSSsfcLKV8ZNVLsgr8zNFW/vn0EHsay+nwuXnu7AiH2yq5vb2KdwZC7KovLzqVbbeYuW9nDV3jsQUj5wwMbmY+erSV58+N0FLpxGQStPvc+DwOQFLmsC66TmawPjx6Wz0vXhxnNJLml+/ZAsDHbtfbwv3NFSV1ygAHWrwE4hlsFhM76kqbgjVYGUrpmF8XQuyTUp5f9dKsMHdurebOrdelA6engSx2ox1urTS8hg1uaR7YVcsDuwxv5c2G2WzmTz52eMZnd23zcdcSZTfLHFZ+6lDTShbNoETm7ZiFEOcBmd/mE0KIHvSpbAFIKeX+tSnidSZiaV68OE6508qje+sLUcZv907yf97op6XSxb99aAeW/PrJDy6P88+nh9hVX85De+p4uzfItloPXqeVU/0hdjeUz7Au/D9v9PFmzyQP7qrlqSNz155LQVE1vnNhjEgqx/v21BWeTtM5lRfOj5JRNO7b4eMn3ZNoUvLovoaSzM8NDNaLv/zxNU72BxnNL/34PHa8Tit7G720+dw8fFs9b/ZM0j0R544tVSsa2LTaaJrkxUtj+GMZHthdt6yp+bd6JrkyFuNIWyVbazw8f34UVdN4ZG/DuqgIBuNZHvqjl0lkFD51Twf/9uFddI3HeP3aJB0+N/fuqCGczPJfv3uFdE7jN967g5bqzS9DrGqS710cYzKR5b27a+fN3Fmrfc8+50thoRHzEzdW1JXnnYEw/lgGfyzDQDDJ1hrdK/NbZ0YKn18ZjxVSPr55ZpjJeJafdAfQNIkE3u4NYjMLsqrk9WsBjrRVYjYJFEXjhfOjSAnPnRtddsc8EEwW1nNOD4R5ZK8eONY9Ead/Ujck/+7FcSJJfc370kj0pvd2Nti8BONZfvTuBP5YmpFwGrvFxFgkjc9jJ5VTSSsaO2o9vN2rmya8cW1yU3XMo9E0l0djAJzsC9J0cGkjRFWTvH5tEoDXrwVQNclgUK/nF4cjSx6lrgR//IN3CSWzAPzjWwP824d38WbPJMFElmAiy+G2Sn50xc81vx5r8/z5UT7znq1rXs6VZiSc4t0x/Vqe6g/xxP6165iL7Xv2OV+KytpCkpz9Usp+4D9PvZ7+2Y0eyHLo8LkxCYHHbqFu2jrJgXwKVbXHRtu0J7/9zXoH3VjhLHTWzZVOtuensdur3YU1ZovFxPZa/fMbyS2sK3dQ5rBgEiKfgkKhDA6rGYtJcKilApvFhNUsaDUMMww2MBUuC63VLjx2Kx67BbvVTIXTRpnTSn25g3KnlcYKZ8EAZktNcWP5jUq120aFy4oQsMW39LKbTdfr+Rafh6ZKJ3Zrvm6v0yj0yQNNWEwCIQT7mvW2bOq6NHgduKxm9rd4r7dHrTeHKYnPY6fcqV/L6W3veu179jlfCkLKhTU7hRCnpZSHp703A+ellHuWWPZ56ezslKWafadzKhaTwDJLLCMYz+JxWOakAQTiaSocNiwWE8msgtNqRggx4/UUmqYRTGbzAS7LR1E1FE3OETXJqRqalNgtZrKKhkR/vdlZbbP2zRJt3feFx9e7CMtiseunKBrhdBaH2UQ8q+Kx69OzFrPAajZhNgk0TZJW1E2Z76pqkpyqLVuESEpJKnf92Neybs937YLxLEOhOPtbri/VJbMKDou5oAyWzCqomrypvJhv9Fqu9L5nn/PZCCFOSSk7Z3++kO3jZ4UQMWC/ECKa/4sBE+gpVOuCw2qe0ykDVHlsczrlSCrHu2NxRiJpQoksp/vDDIf19CeXzVJEftB0w50y6EIoxW4Mq9mE3WJG0zS+8c4QXzs1RFaZaxowm1g6x9++1su3z47ccNkMDJbKaDTNldE4ioR6rxOPw4LFLGYYypg2sQiF2SQK9TWjqLzZM8mlkWjJ3xdi5rHbLCZyiuRvX+vl2bPDM7btnojxeneAZHZ+c4mVwB/PEM9qpPNpU6C3edM7CJfNMqNTnoimea0rwMQmNrzpnohzeiA047hXgoHJJD/pDhBJ5ebdZvp9NMX0c65pGl87Ocj/eaOP9CLXf96aJKX8feD3hRC/L6X8bOmHsHH43sUxhkMpTvWHKHNYCCdznBkM8el7t5aUYL9afPv8KF8/rVdYi0nwkdtbF9z+737Sx0+6A4DuJ20oeRmsFVlF45vvDKNoksFQko8d1e/VV7sChRzZSpe15BScjc7r1yY5MxAGoNxpoXke28TF+N+v9/JqV77Oljs42lFNMJHl2+f0OJZwKsdj+xpWrNzTmYimeeH8KKCbkLyvRIGkb54ZJpFRuTwa5VP3blmVsq0myz3uxUjnVL55ZhhVkwyHUzzdubz4o+9fnuCrp4YK73/+WPu82y4UlT01ff3Vaa8LSClPL6t0a4g93/maTQJH/rXFbGKeWYU1wz3t6bqUKRenVS+7EOCybf6pb4PNgxB6nVE0dYbWutWsVyKTmLustJmxm6/XNdsNHJczX6/1OqvXd7NJYBICVcpV1a3X2ziBJuWSBiB6mdTCtd1sLPe4F0MI/dqpmiz0Kcthetu9WLu/0NzTH079BtAJnEVPldoPnASOLbuEa8TDt9XTNR6nocKB22aheyJOc6Vz3RuSB3fX6ZHgqsZ79yz+VPeJuzpo8DqpLbezp9G76PYGBiuF1WziI7e3MBxKsb3uenDUPdtrqCmzU+myUeW2rWMJV5Y7t1RT4bJR5rDc0CzALxxrp67cQW25vRB46nVaebqzhUA8U7Jm8nKoctv4cGczoWR2SRHyTx1ppi+QoH2NA6dWiuUe92LYLWY+cnsLo+H0jDqwVI5vr0ECqazKe3cvrA+w0FT2/QBCiK8Dh6cERoQQe4HPL7t0JRJMZDGbxJw8QH8sg8Nqosxh5dJIBJ/HPm8FsltM1JTZ8dgtOKxm9jWvXqeWyCgkMkrJlXm62EmvP47JJGirdhc9bovFxBMHrrvETETTuO0W3HYL49E0ZQ4LTquZ8WiGCpd1xtOYpknGY2mq3LabItDMYG2YiKaxmk0MBBM0V7rwldkKI8hQIosQcNtN8pAqdhK1AAAgAElEQVSYzCrE03rdNZkENWX2QlrY7PoUSeZQpaTKbUNKWbTOgV5n79hSjSM/25VVNCYTGTx2C0LYV93pbTSc4vJYdEnXqNxhZX/zxo3QTudUwskcdeX2QnzQ9LYQ9OyXxkVy0QdDSbKKVki3LcZkPIPFbCq0wz6PHZ9nYUnSvkCcoVCK49vnz1m+Z4H/m04p0Ro7p6t+SSkvCCF2l/Try6RrPMbz50cxCV08vd6rd3ZnB8P88MqEnmpkgh9c8WO3mvh/P7SfhiIX4weXJzg/HMHrtPLzx9pWbaQczyj8wxv9pHMqx7f7uH0Ja8Cvdfn5Hz/qRiD46SPNDIaSc457Oif7grzaFcBuNbGjzsP5oSgum5mOGjcXh6OUOSx8/FhboRP+7sUx3h2LUe2x8XN3tM0bHWhgMMWJviCvdQX4ybUAmqaRUSQP7qplT2M5uxvK+cY7wwgEHzrcRMsmT/dLZBT+4c1+UlmVu7ZWY7ea+dGVCfqDCerKHNR7HXz8Tr3tGA6n+NrJISSS9x9opMef4MI87cu5oTA/uKy3VT9ztJXvXBhjKJRkKJSkw+fhji1V3LV1dXKc3+j284m/P4mmSb5zfox/+tSdq7KftURRNb741gCRVI69TV4e2lNXuE8dVjMfP9ZWUp7wuaEwX/jOFTQp+aXjHUVnLK+Ox3gh3/985PaWGam589E9HuOX/uEkOUXjsb0N/LsnbixpqZSe6pwQ4n8JId6T//tr4NwN7XUR/LEMUurh54H4dd+MiZj+OqtodOWT4zM5rRBpPZvxmB5dGEnlSJcQ/bxcoqlcIQpwfIkRjT2BBFKCJiVXxqJFj3s6U+cgk9MYDOrHncyqDObFS2JphWTmekTiVIRlMJElp63eOTC4eZiI6vdYKJ5FUSWRVI6cKpnIi/hM3a/+ee7RzUQ0nSOV1evLRCxTqC+RZK4wQsuqer2ZjGfQpERKvY2amNa+ZGa1L1PncGqk7I9lyCoawYQe1euPrd65O9kfQtP0NNiBvNjJZiejaIWI6KnzPtXWpnPqgtHS0+kNJFA1/RpOmRnNZr7+ZyG6JuLk8vfAtXl+dymUMmL+BPAvgV/Pv38F+Isb3vMCHGytIJzKYTOb2DVtLeZoRxXpnEq508qTFQ38/Rv9NHqdHJ4nQf7+nbW83Rukrdq1JNWVpdLgdXC0o4pAPLPkp+APHGhkOJTEJEx88ng7J/pCc457Ose2VJNTNarddnbWe3j92iS1ZQ621Lh549okTZVOKqet+T24u46T/UG21ZQZU9kGJXFsazWKpvGRoy30TSaoL3fSWuXiSFslNWV2AvGpqezNo/A1Hw1eJ3d0VOGPZ7hrazUWs4mMotFW7UIAHTWeQvDWrvpyxqMZFFXjYEsFLVUuTuTbl9ne1Ee3VJHKqZQ5LGzxeXjfbXVcGYuyp6Ecs1lw9yoqgn3m3g5eujSBP57hdx7dtWr7WUvcdgvv2VlD/2SS2/Myyndt9RUkYhuLzC4W4+E9dXSNx0krKh88XFzl7VBrBZF8/7OzRPOO9+2p5eV3/QxHUvzaA9tKO6gFWFRgZC1YisCIwcbDEBjRuVkFRgw2Lsa129zMJzCyULrUV6SUT08zs5jBephYjIRTfPfCGOVOK+8/0FAYAfYGEvzg8jh15Q4cVhNfPjFIh8/Nbz+8q2BosVGJJHM8e24EATx5sLGoocVLF8f4wxevUu6y8hc/e5jqfBDCV08O8lev9NBY4eQvf+4ITiOVymCViKSyfOYfTuGPZehsr2RvU8W89+tm4ZWrfq6MRbm9vYpDeSe56W3Mkwcaeat3ksujUTrbq9hRV8azZ0ZQNY0n9jcWZqZe7fJzcSRKRtGwmEDTwOuy8v5p26wmg8Ek37s4hs9j54n9DaSzCr/8j6fxxzL86gPbeP8S9b83IlJKXro0Tv9kkru3+djTWM5bPZP8r1d7qCt38O8f342jBIGbREbh2bMjZBWNJ/Y3FNrSpe57Noqq8e1zowTiGR6+rZ6WKheXRqL8pDtAu8/NQ3vqlnS8C/VaU1PXTwDvL/K35pwfjhBJ5RgMJhkKXV9XfmcgRCyt0D0R5xvvDBNLK5wbitA3eeNz/avNlbEogfzaXdd4vOg2/3x6mFgmx3AoyYuXxgqff/30EMmsQvdEjDd7AmtVZINbkJcujTMQTBJO5XizN5i/X2PrXaxlk1M1TvWHSGRUTvaFCp+fG7rexvQF4pzsm9omSPdEnPFomkA8y+UxXRlM1SQn+0L4Y2lO9AYZCKa4MBJhMp7l8mjp6mE3wjuDYWJphd5AgtFImh+966dvMkEiq/C108OL/8AmIJ5RuDgSJZ5RODWgX68XLowRTSt0TcQ5lxe7WYwef4KxSJpgIlswL1nOvmczGknTG0gQSyucGdQFak71B4lnFC4MR4hnlqb0tpCJxWj+5XsBWxEjiwURQuwVQrwuhHhVCPF3Yrb+5TLYXuvBYhJUuKw0TFtT2FlfhkkIasvtHN/mQwjdrKK5cu3cRZZLh8+Nw2rGaTPPMOCYzv07azCbBGUOK8enrU3ds8OHEAKfx87BZsM72mD1OL7Nh9dpxWY2sb3Gk79fN2e+K+j52dtq9XSZXQ3X1xG3111vY5qrXIW81V315bRWuXDZzNitpoLhhdkk2FFXhtNqYWuNm0qnjaYKFzaLac0MPXbW6e2fz2OjpszOHVuqqHBZMQnB/TuXZje4UXHbLIUMgN35+Ju7tlRjEnp6W6lrwa1VLtx2c/76lHb/Ftv3bGrK7FR7bJhNopCjvjOfS91a5VoVE4v/BNwDtAOn0IO/XpVSnlnke1YpZS7/+u+AP5dSnii27VLWmFVNYhLM0blWNVlwisoq2rpKbi6VqQjKhVKZUlkVm1k3QZ/9+XpPYRtrzDo3+xqzqqpk1euKejdD6p2ianPSKGe3MdO3ma+uTm0z9V0p1+b8TF272WWeulbr3TasNLOvVza/fGAyld7ey3xk/VKvT7F7ZfbvapJCP1TKd5a8xjxtZ5/L/4AT+BTwW8B/Bxa84lOdcp4MMLjQ9oqq8XZfEJMQHGyp4FR/CKvZRGdb5YwTaC5yMkfDKb5ySl9Xvm97LacHQjRWOKkps3NmMERrlYtttYs/UQ0Gk3RNxNjT4J2RQ/zDKxOcHQzx5MEmXS81lOJwayVe1/X1tW++M8xAMMlHb29hJJImksrR2VrBt86OEkpm+bk7WvG6iq83TR1fJJXlCy9cwWkz8xsPbufMcASXzcwWn5t/emuAmjI7T+xv5ERfkGq3nX3N3qIVL5jIFo7b67RxfjhMh89TkhVaXyBBTyDO3iYv0ZTCQDDBwZbKm0rdyaA40+vg7e1VTCYyXBiOcHkkyrvjMX72zjaOtFbyZu8kAsHRjqqi9XGjoWqSE31BwsksV8fj1HsdPN3ZQv9kgmt+XRQimMiws64cr9PK0Y4qQimFM4MhrCYTOU3Dkv/XLARZRePyaJR6r6Ogc28xm3j27DC9gQRPH2kp6Cr0+uN888wwDRVOasvs7GnwUltm52R/iJyqcbSjqqjYiKbJRbeZYiKa5ksnBmmpdBUijf/sRz30Tib49Qe30e7zTGsT3IWZgo3EcDjFu2NRdtaX01ThJKtovN0bxG7V+wAhxIx2eGuNh75AnD/+QTcd1W5+7b3bATg/FGEykeH29ircdsuc41YUhV/70llSOZU/+PD+oqZFxfb9T2/281bvJL94VweH2ypJZJQZ7TDAN98ZYTCk9wFTQlPL1c5YtGMWQvx74G7AA7wD/Cbwaik/LoR4Evg9oAuYXGjbc8MR3urRzdZ7/QnG8jlq5U7LovJq//OVHi6PRnm9e5LhYIq0onF2KIzXaSWczHF+KMqn7nUu6H4jpSwEBfQGkvyL4x2Abp/216/0oElJjz/B1loPUuqd31NHmgG4MBzhmbcHABiNpKgt0y/KmYFQwUQd4F/dv3AY/R+9dJVXuvyAnqfsK9MDE549M8KVvAn3RCyDoupP7TVl9qIiJC9dGmMknOb8UJQyh5lISuHCcJTP3LeweUdO1Xju7AiKJun1J4hnVDQpmYhm+OjRhY02DDY/0+ugy2bmzGCYoWCSL50cxGOz0D+Z5PNP3jZjmykv9I3M5dEob1yb5I2eAPG0QpnDSkulk1P9IUYiKX7SNUmZw8LLVwPcu70Gu9VE13ickXCKk/0hdtZ56AkkaapwEk5mmUxkiaVzlDmstFW5uXNrNVfHY/zTm3obEE0p/Ie8wMSf//ga/ZP62u8je+vpDSQ5tqW6YEpjNZs42jFXkOjd8VhhG4tJcMeW6nmP729e6+HMoL7Gur3Ogz+W5ssn9bL83gsKf/Xznbx4cYzRiN4mfPreLRtuJP3c2RFSWZWu8Ti/fN9WTg+EONGn32flDis1HnuhHR4KpfjDpw/yX164zKWRKG/3TnKgxcvO+nK+f3kcgHRO45G99XOO+49eusqr+Tb233/jAn/58TmD1Tn79tgt/MXL15D5fX/9V+7m1S5/YY26ttzOeDTNl07o5zyRUfjsYzemwVVKd/4hoBr4PvB14FvT1p8XREr5rJRyLzCEHkRWQAjxaSHESSHESb/fP8PYocJ9fSTqsi4eaed16ttYzYKK/KjUajYVIkbtVhOWRaY6hBAF4Xn3tJvWZjFhz8vqlTuthY7Nbb++jddhxZIfOVS5bJjy00k+j52pGfcK1+LRq9Xu6xGCNflOWQgKo1WTEFTnX+sWY8WPaeoBxG41FbxznVbzoqMbk7huW+ZxWArH7VrFHHCDjcP0OuiyWXDZLJiFKIzWPNOkD4E5ubsblSnzAIfFXDCSqHLbcFjN2C0mrGaBaZrRjctmwWW3IMR1m1m7xaT7T1tMOKy6WYJJiEK9dtvNBfOHcuf181Lm0O1l7Rbdt9ptM89oO+YzpZl+LRY7z+VOvU2wmARehxWfx15og6bKN1WH7VbThpzlmGpzp8o58140z2iHp6wqvc7rbWGNx45j2rFNnePZxz09Nmk+ic3Z+3ZZzQU52ql9T7WxFpPAYTHjdVoL+/aW0NYvRkl5zEKIcvRR83Hgw8CElPL4It+xSykz+df/BX1d+rvFtp1aYx6YTCIEtFS56AsksFpMNC2iewr61MMrVydor3bT7nPTE0hQ47HjcVjo8SeoL3eUdLLiGYXhUIq2atcM7dvBySSXRqPcvc1HTtXwxzNs8blnTFNcGY0yHE5x3/Yagsks0bTC1ho354cjhBJZ7tnuK2kd5GunBvHYrTyyt54efxynzUxdmZ0fXw1QX25nV305PYE4Xqet0HnPJqdqheN22Ez0BZI0VDhKSm2JpnOMhtO0VbvI5DTGomk6fO4FR9rGGrPOzbDGPL0OpnMq/ZNJoukc54cifOBgI9Ue+4xtNguDwSSqptETSFKfN4OJpXOMhNPkVJWxSJrtNWVggrZqd37mLIHHYSGeVnDbzaSyKg6LGUVT6Z1MUVt23aACdCnHgckE79lRW0jTTGYVXr0aoNXnwoQotC3D4RQ5RVvQMKKUbTo7O3nzzbd5uctPU4WTXQ367OIb3QG6/XE+cqQFm81cOJ5S28K1JplVGAymaKm6PrPZG0hgt5gK2tdT7fA9O3y4bBayWZUvnxpkW42HY/mgWH8sQySVZYvPg8kkih73F98aIJrO8pn75p/BnL3vS8MR3uwN8tSRJrxOG5om57TD0/uAUtN051tjLiX4ay968Nd96C5Tg+id7H9c5HsfAP5N/m0X8GkpZVFNyGLBX2ORNBazWFQ4fC1IZhX8sQzNlS5SOZVgPEtzpXPe4IFwMks8o9Bc6SKYyJLOqTRWOAnE9Wnoeq8Df0yX96srd+gygILCFPgUI+EUDqt5xdZ3c6rGSDiVz/deuakso2PWuRk65mJM3f9NFevvzFaMiVgaJCUZyAyFktjMJron4uyo9+DzOIikckRTOewWExK9nnjslsLs21KZXrdLYSpupdpjW/IsxHzXLpLMEU3nNtXD02z+9rUeyp1WfvqI7n+cyCgE4no7bDaJwtRyudM6x+xoIa6Ox0jn1A1h2LHs4C/gC+iR2H8CnJgV1DUvUspvAd9aUinzXBmL8p3zY5iE4Kc7m0saNa8Wubx4eiw/Ah6NpElmVfY1eXlvkaTxUCLLP77Zj6JJ9jaVc3k0hqpJ9jV5uTgSRZOS/c1ezg9HkBIOtHg5OxhBCPjgoaZCCsr5oQjfvzyO2SRmBBPcCM+eGWEgmKTaY1vQpNvAYApVkzzz9iDRVI7tdR6e2N+4+JfWkP7JBN94Zxgp4f0HGhcMbJoygHmty48Eqt02fu9De/nKyWECsQzRdC6/nGOitszBz97ZtuSH4sFgkn8+PYSU8Pj+BnaUkMbz/cvjXBqJ4rFb+IW72m84oySSyvGPb/WTVTTu3FLNsa3zr09vVH79mdN858IYQggmYxk+ec8Wnnlbb4d3N5TxyN4G3uiZ5K2eIDaLiY8faytpRvBUf4j/9r130aTkF+9u59G9DWtwNEtn0TtASvmElPK/SilfL7VTvlGCiSygC+WHk9m12OW85FStkBw+EcuQzAveB+cpVyytoORTKkYjadTC6xRafnZiNJxiaqJiOC+UIiWEktdP79Tvq5osWaB9MUL53wwnc4W0DwODhcipGvG0fv+HEutbF4sRSuYKdWmxtmKqfsUyCqomiWUUgvEcWUUjlVNJZlXSOZVUTkPRJLH00utdJHW9PKWer6ntElmlYJhxIyQyCtm8ocJ6t5/LZcp8Q0rJpdEoWeV6Ozx1HcP5f7OKRqJEAY/hcLLQDg+FNq7Bx4aM3jjcWkkqq2I1m1bU8Ho5uGwWHtpTR/9kks62SsajGYZC14XUZ9NS5eTY1moiqRx3ba3m/JCu+nJsazVnBsNkchp3bqnSHWCk5Gh7NSf6gnNMAY62V5FVNFw284K+oUvh4dvqOT8cYUed56bIQTVYfRxWMw/vraPHn+Bw68YTsbmtsZxwMouULDo1eWxrNZqU1Jfb6fbHOdRSyc6GcuJZhbFIGiEEEgkSqtx2WpcxDbyrvozJRBZV0zg4j7nObB7YXcvJPj29cSXMdhornBzf7mMynuWubZtvtAzwhQ/t41998R2cVjO/+4F9uO0z22GAu7f5CsIqDd7SZlUfua2BoVCKdFbl6fwU+UbEMLEwuGGMNWadm3WN2WDjYly7zc2NrDHf0kgpeeH8GH2TCe7sqOKbZ0bom0zwocNNaBqMRdM8tKeu6FpSIJ7mPz13iXha4ZPHO+jxJ8gqGvfvrOHV7gCqJjnY7OV/vtKDSQg+fd8WTveHsVlMfOhwUyE0fzq9gQTfuTBKtdvGBw81L3s96tUuP2cHw+xvruDeHXNl+6Yf993bfBzcBPmqBgbTyaka3zg9zFA4iaJJqlw2PnioaYZxQU7V+MY7wwwFU6iaBkJPGxwOpRiLpnHbzOxr9nJHRzWNlU7+y7cvoWiS//uRXUXr/GAoye89f5mcqvGb79tZiJKeTjSd4+unhlA0yZMHG+cEfU5nOJzi22dHcNstPHW4ecPlH68Ur1z1c24ozIGWCu7ZXsNrXX4+/+wlbBbBn3z0EFtrPTx/fpT+yST3bPexv7mCl9+d4G9+0ktdmYPPvf82PI7Fu7NYOsfXTw+TVTQ+cLCR2nLHnH1fGonwhy9exW418R8e30O91zFn3z3+ON+9OIbPbeenDjUVbYfPDoZ5rTtAe7Wbx/bVz1GrXIh5W3UhxHNCiGfn+yt5D5ucRFbl6nhMT8nq8hdev3hRF/XPKhrnh4oLqJ/qCzMR1delnz83QjChR2u/0hUgnMwRSys8d26UaFohnMrx/LlR4hmFYCJLX6D4+sfFkQiZnMZIOF0wCl8OZwfD5FTJ2bzg+kLHfX6o+DYGBhuZ8Wia4XCKsUianok4sbzhwXQmYhmGQynGoymu+RP0BZKMhFOcH44QS+e4NBolklI4OxTmjWuThPL19uWrE0X3+da1SYKJLLG0UhCymE2vP1H4nfmMa6a4PBIlmVXxxzIbek30RpndHj17doRUTiGSyvGdC2PEM/q5yioaZ/Pt7Q/f9ZPJaQwEk1waLc3Eoi+QLLTDV/Pnfva+f3zVTzyjMBnP8lZvsOi+L4xEyeQ0hsOpedvhc0NhsorG1fEYiXxsUqksNNz6b8AfLvB3S+C2mdmWN8+4Z1tNwUjjvbvraK50YjWLGbmM0znSXoHPowsZPLavgUqXFZfNzPHtPsqduqLME/sbKHNYKHdYeGxvA267mQqXlTZf8fWtPQ3l2CwmGryOktMxirG/uQKzSRTk5BY67vmOz8BgI1Nb5qCxwkFtmYOOGg8eu2VO1HZtmb2wTbvPTVu1i3qvk9say/HYreyqL6fMbmZfUwXHOqqpyNfbe7YVN4e4Y6u+jdtu5u7tvqLbtPvcePPbbF9EHnNXQxkOqxmfx0Zz5eZNfVqMfc3efHukz8w9vq8Bh9VMudPKo3vr8dgtbM23R/vy7dH9O2uw5bUu9jSU1ka1+VxU5NvhHXmDktn7vnd7DS6bnqZ6R0dV0X3f1rh4O7y3yYvFJNhW65khWlUKxhqzwQ1jrDHrGGvMBmuNce02N8teYxZCbAd+H9gDFB4NpJRbVrSEa8hQKMn5oQg76stKini+PBqlfzLB4bbKGetBv/W1s1wdi/Hbj+zkrmlP0G/3BomkchzbWl00ylJRNV6/NokqJUfbq/JR2YK7t1ZvSAEHA4PNxg8uj/NmzySP7WtgX5OX169NksgqIKHaYy+qT12M7ok4XeMx9rdUUOWy8blnL5BVNT73+G3kpMbp/hBt1W52F1lLNtCZiKUXPU/9kwkujUTZ01hOW7WbdE7l9WsB7BYzx7ZUYzIJLo1EGQjObYenc6o/SCCe5djW6qJ5zaomeePaJFlV5a6tPhxWM984PcTz50d5fF8DHzzcvKLHvlxKCf76O+BzwB8B9wOfoDSN7Q3Ldy+MEUsrdE/E+Vf3b1vUbvF7F8fyxhU5fuYO3czhB5fG+O55XTL8889d4sXfuA/QJQ2nxOcBHioiQnJpNMqpft1weySUZCKm5xpWOK2bwhTAwGAjk84q/M1rvaiaZDCY5Ffu38ap/hA9/jgOq5nGCif15Q5a5/E/n0LVJC+cH0XVJCORNMmMUqjbf/qjLrbXlTEWSXNlLEZbtWtBk5xbme9fmmA8uvB5ev78KJmcRt9kkn/5Ht3E4mzemKPKbaOt2sWLl8YKeg8fK2KqMxJO8cpV/fpomuTRfXPFQ94dixUMKpxWC8e2VvPHP+wip2hc8yc2TMdcSgfrlFL+AH3au19K+Xlgc87Z5ZmS2it3WhfN57WYRUHUfLoRRUuVC3N+dDtdNtTjsBQMLeYzrvA6rQVzi/p8/p0QLElWzsDAoDg2i4nyfIRutcdeqG92qxmH1YTFJEqK4DUJCr9T4bTSXu0qRNbqlqp5AwubZUFbxludgtHHAuepIm9IMbXt1LkVQm+nrWbT9XZ4nnbSbbcUjETm0wP3uqxzjIUqHLYZ+9wIlKKV/Tq6ecXXgB8Cw8AXpJQ7V6oQa73GnFX0aLoGb2ma0YmMrhXcUuWa4czydt8kZwfCfOKuNiyW6xU9lI/6W0indiKaRpNQ73UwFkljEqVp/W5EjDVmHWONeeMQjGe5OBrhSFslLpulUN+mdLArS5TaTGVVxqJpmiqc2CwmXuv2k8mpPLi7vjAi95XZV0QYZDlshmunqBpDoRQ1ZfZ5tcDTOZXRSHpGmzwSTmE1mwomEfGMQqBIOzydcDJLNKXQUuWcNz3JH8uQU7WCQcVENMXLVwPct8NHbfnayj/fSB7zrwMu4NeA/wd4APiFlS3e2mKzmOhYwLEF9Hy3sUia1moX7ml2d+FklkA8Q3u1m+01ZVS5bAjTzM690m0rVPzxqK6tPXt/0zvhYp7KG4FIKsdENE27z22MCFaYpTxsbNYOf7UJxDNEUjk6qt1zZr6qPDbu2V7DZDzDSDjNFt/cbeIZhdFwipYq17wP6E6beUbdPT4tlsRsEkWdn0bCKRRVLjpVvhySWd0Bb6EybzSmjEGUBWSAkxmVaxMxvA5r4bgaZ3kkqJokp2poUmKmeKdb4bItaj4y25WvttzJhztvXAVs6n7c4nMvKWe5GIt2zFLKEwBCCBPwa1LK2A3tcROgapIvnxgkllZoq3bxofy6Qzqn8sW3B8jkNDp8bobDKbKKxoEWLw/smruWPB5N88zbA0gJ9+6o4UjbxpM0nI+sovGltwdIZlW21Xp4/4GNZV5gcGsTSeZ45q0BFE3S2V7JPdvnpi9FUjm+mN/mSFvlDCEdKfU6Hk3laK5cmYYZ9CCmr58eBnQJ3D2NKxsU9pUTg4SSOeq9jqLrrBuR714Yo3sijstm5hN3dxQV4/jccxeYiGaoKx/lTz52aM7/ZxWNZ94eIJVVN6SZSjiZLdyPt7dXcXyeVLlSWXQYJIToFEKcB84B54UQZ4UQR25orxscTcqCWUV8mjh6VtUK4vCRVK7wOpYuLqCeyCgFQftSRdY3CqomSef044tvsrIb3PykFbUwApuvbmVy82+jSUjmP1vJujm9rqx0vZFSFoQqNlN7MlXWdE4rmPrMJprSt4nOYxyiaBqZqfZonvZ2PUnnrs8IrMR1L2Uq+2+BX5FSvgoghDiOHqm9/4b3vkGxmk08sb+BHn+C/dMEOModVh7ZW89wKMWRtsqC6ktne/HUiw6fm3u2+0hk1ZLTMzYKTpuZx/fX0xdIcqhEMf5bnc2yFn4zUFfu4MHdtUzGs/MaytTmtwnEMxztmGnmYDYJ3n+gke6J+LwiO8thd3257jCnyhWvN0IInjzQyLtjsRUfia8mD+2p452BMO0+17ySor/6wDZ+/K6f9+wsLtzisll4bF89/ZMbsz2q9zp4YFctwUR2Rdr6UjpmdapTBpBSviaE2HiPLNPQNFk02lrV5LxBA7PZUuOhrboWQC4AACAASURBVNpd2H7qu7vqy9lRW4bJJKhw2bitcf5KLYSYt9PWNP3pz2Qqbe12vmNaTbbVlrGtdnE/WQOD1WCxe34xNylNk+xvrpj3d9p97sIa8UL7mvo/RdGwLKJNbzIJ7twy8yFgKe3OYrRUuRYMKt2IVHvsc7zrNU1D0yicz872qjltpaZJhKCwXru9rozts/TJS2kXZ59/KSVSMuN7s7eZve9SWMlU11I65peFEP8TeAZ9Hf8jwI+FEIcBpJSnV6w0K8C5oTA/vDJBo9fJU0eaCyf7jWuTvNkzyZYaN08eaFz0hD93doTuiTh3dFQxHkvTP5nk2JZq+oO6lu57dtYu29jhmj/Of/72JTQJv/3ITvYs0LmDblzx7bMjlDksfOT21ptWyN7AAPRYjq+e1NdSH91bP6cxLoVvnxvh8miUZEal0m3j4dvq2Vk/93eyisZXTg4STGSLbvPC+VHOD0U4MxQGCT9/VxuP7p2bHzsfp/qDvNoVoKXSxQcPNRl2q8DgZJLPP3eRrKrxm+/bwYGWubE3I+EU33hnGLvFxIc7W4qmMl0dj/HdC2NUum083dmM3TK3XTzZF+S17gBt1S5+6mAT0ZTCV04OklU1PnS4iQavk+9fGuf8cIT9zV4e3F1X0r5Xm1KGaweAHegiI58HdgOH0PWy/9uqlWyZXB6NIqXuyjLdJPzyaBSAHn+CjLKwGXlGUenOi92fHQrTF0giJZwZDDEcSiElXMn/3nJ4uzdYMGV/sye46PZXx2MomiSUzDESSS17vwYGmwF/LEMgnkXVJFfGlh5rmlM1usbjJDMq3f54/neK11d/PIM/lim6jaJqvDsWYzKRYSiYRJOS17snl1SWy6MxpISBYJJ4dkNPNK4ZJ/tDxDMKWUXjjWvF279rft00IpZWGAwWN++4MhZD1SSBWIaJaKboNlP9QV8gSSKr6tchv+9rE4nCNtP/LWXfq00pUdn3r0VBVopDrZVEUhM0VbionBY2f6Stkjd7JtlW61k0zcBuMXOwpYKr4zFub6/CH8/QF0hw19ZqBkMphkJJDt2Aafy9O3y8fk23fbx/njWV6ext8jIYTFLutNJcubZ5dgYGa02910FbtYtgIsuBRaari2E1mzjYWsGVkWjBLGa+2a26MjsdPjf+WGbOvixmE4fbKrkwKIg05lBUyftum5t9sRCHWit4rStAW7WbsnXKdd5o3L2tmpev+skoKg/sri26za76cron4tgt5nlTWw80e5mIpqn22GiYJ+X0UGslP+kO0O5z47aZ2VLjpm7YQVZR2dWgz44caa/k/FCksDRSyr5Xm1IERuqA3wMapZSPCiH2AMeklH+zUoUwTCw2N4bAyOqy2nnMm0GkwqA4xrXb3NyIwMj/Ro/C/nf591eBLwMr1jGvJBPRNG/0TNJc6eRI2/Kj4549O8yJ3hBP7G/gjlnBHAYGBmvPUCjJqf4QW2s8c6xII6kcr3b59ZQVKdlaU7ai0dYGy+edgRDfeGeY/U1efrqzBUXVve2zisZ9O2qNmJkilNIx+6SUXxFCfBZASqkIIZbm+ryGvHzVz1AoRY8/wdYaz6IqMMWIpxW++JYuDPJ3P0kbHbOBwQbgR1cmCMSz9AYSc5ak3uyZpGs8zrmhMG3Vbvomk2yr9RiN/v/P3ptHx5Vd97nfuTUPqAJQmGeS4NycmnOzB3WrpZbUUndbQ2u2rcjRcpz4Pdvxy7MTZ+XFybIdJ35ZTvzsLNmK7ciWLEVS25Jaas2yem6SzW6STTYnEPNYVah5unXveX/cQhEgC0CBBEiAON9aWKjhDrvucPY95+z926uAv3qpn/F4jgvjSR7c0shkMl8uUBFwO7iv99bEOO5GqnHMaSFECCsiGyHEESC+olbdAo01Loans/hd9pu+Kd12jZDPSThVuEEWTrE8rPfhacXSafC7CKcK1JaKGsxmRmYx4HHgsmsEPY6KClOK209b0MN4PEetx0HAbceUVh65KeUN8pgKi2oc828A3wQ2CSFeBBqBD6+oVbfAQ1sa2dpSQ63HWTF8vhrsdo0/+NBuLk+mFsxTVigUt4/Hdrawp7OWep/zhrzge7vq6Kj14LJrpAtGxWUUd4Z/+a4tnBmNs6HBh9tpp8Vp5xeO9qCb5pzKfIprVBOV/boQ4iFgKyCAC1LKyrppK4CUkosTls5qNYn1QghaS6UU80WDSxMpWoNuQku8AAxT4rBp80rI3SpXw2kMU9Lb5F+R7SsUt0q2YHBlKkVHneempoSWm4JhEk0X8DhsFTMrZgrDBGc1E+PxHNF0ga0tNTc46nhGZ2g6w8ZG311fSzmnWymgbbUe6qusrLVcFKXVls5uSucryziDaZr8+O1JvE77uhzqXvRqFEJ8BHhOSvmWEOJ3gHuFEP/xdgmLnByY5vlLVvHrpw920r6EoeXnzo7TN5XG5dD47P0bqu5BzxSxyBQMztUleHqZBO5nuDyZ5FtvjgHw7p3NqleuWJV86/QoI9NZvE4bv/TAxjveA3329BiD0Qwep43P3r9h0YpnsUyBr54YwjAlE8kcD2+9lppjmpKvnBgknTdoq3Xz0YNroyDEzfLc2XGuhq228Jfu33hbh/lvZt9fe32Er58cLr9fb865mrPzb6WUyZJG9juxorH/bGXNusZsMZC8vrSYs5l1i4bEXFhTZA6mtMqLXb//5WLOb1qB7SsUy8HMtakbJoulVd4OCqV7Ui9apf+qWX5mxGumAMIMVinC0nfr4B4szG4Lb/O5vJl9p1ewGMhaoCqt7NL/x4E/l1I+K4T4jyto0xwObahHEwKfy8bGxqUN+z62o4XTIzE66+YXT6+Ew6bx5N52robTN6RlLAfbWwLkdKtxuRkBBYXidvD4rlbOjlhzg/ZVUI/7PTtbODsap7veV9XoV1ONm/fuaiGSKnDvdYJANk3w5N42+qbSa6ogxM3y2E6rLey6A3Wcb2bfHz9ojVJ6nTYenUeE5G6mGsc8UtLKfhfwn4QQLqrraS8LDpvG0U03l64U9Doq1mmthlsRiy8UTfJFgxr33HmUomFiSnDatTVVm1mxPqn3OefUML7T1PmcS76fNzfV0BMyKzqEjjovHXVeTFOS040FnYZpSgpG5e2sBW6lLVyOfR/sqce1hOFzt9POZ45tWHS5eKaAx2m/6yLwq3HMTwPvAf6LlDImhGgF/q+VNWvtMpnI8W+eOUMqb/CZYz28e2cLANPpAl85MYReNHlqX/uaqxCjUKw1crrBl18bJJ7VeXR7c8XRr5xu8HevDRJbZJmvHB9iOlOYdxnF/Lx0JcyrfVHaaz18eH/HshXy+OabI3zp1UFqPQ7+4EO7V0WA4nJRTVR2BvjGrPdjwNhKGrWWOT+WIFEq5H1yYLrsmEdiWbKlIuf9kfRd65hVfrJitRBO5YllrASSvnmmpSLpAtOlZa5MpSouE00XiKYLCy6jmJ8rpYJAI7EsGd3Av0ya4ScHYkgJ0xmdy5OpeUvsrkXurv7/KuDghnq2tQZorHHxgT1t5c97m/x01ntpDri5R0VhKxQrTmvQw9aWGkJ+J/d2VY7laAm4y8vMN73UEnCzraWGep/zhrlqxeIc3hii1utgX1ftsjllgCf2tNHgd3JPe3DR2txrjbs7ee8O4HXa+fdP7Lzhc7fDxof3d9wBixSK9YlNE7xv18K1k6tZRtME711kGcX8bGmuYctN1NRejP3ddezv3r/s210NqB6zQqFQKBSrCOWYFQqFQqFYRSjHrFAoFArFKmLF5piFEIeB/wqYwHEp5a+v1L4UiruZlYh07/+Dx5d9mwqFYnlYyR7zAPCIlPJ+oEkIsWsF91WRbMHg5MA0E4nc7d61QqFYYQYjGd4YipXlcxWrk0yhyMmBaSZVO1w1K9ZjllKOz3qrc03a87bx3bNjDEQyOO1WEYu1qtqjUCjmEknl+capYaSEaDrPI9ua77RJinn47plxBqNWO/xLD1RfTGg9s+JzzEKI3UCjlPLcdZ9/TghxQghxYmpqakX2PVNmzFyh0o0KheLOMPuOVh3m1c1M4QopJaugFsqaYEXzmIUQ9cCfYMl6zkFK+Xng8wAHDhxYkdP1nntaeGskTscdEG5XKBQrR4PfxRN72oimC+zqUII9q5n37mrlrZE4naodrpqVDP6yA38D/OZ1w9q3Db/LzuGNN1cAQ6FQrG42NvrZuHpqbCjmQbXDS0esVJ1VIcTHgf8GvFX66LellC9XWrahoUH29PSsiB2Km8eUkqIhF63c0t/fz+08f4Zp1XV1rIJShHcDt/v8KZYPde5WD4YpMaTEuYR26eTJk1JKecMKK+aYl8KBAwfkiRMn7rQZilnohslfv9RPMldkW0vNgpKEBw4c4Hadv0gqz5deHaRoSh7a2qi0i5eB23n+FMuLOnerg3hW529eGaBQNDm6KcSRKkcIhBAnpZQHrv9cdTkUFdENk1TeqpIVzRTusDXXSOSKFEvBfNPp1WOXQqFYv6TzRQpFKwpxOdolVcRCURGv0867djTTH85woGf19Ep7Ql4Ob6wnmSuqeSuFQrEqaKv1cKy3gWg6z9FNDbe8PeWYFfNyamCaN0fihHxOmgPuO20OAEII7lvkws/pBj86P4lE8uj25jURCfrS5TAjsSz3b26gNei50+YoFOuWVL7Ij85P4LJrvHN7c8VYlnAqzz9emCLkd/LQlkaEEBzasHz1oJVjVtyAlJKpZJ5vnR4D4G9fG+DIprXTO31rNMHFiSQAzQE3B+cpoC6lRAhxO02rSCSV59WrUQBeuBTmIwc674gdS5H+VJKeiruVNwZj9E2lAeio83JPu5WON7u9ePlKhMFohsFohs3NNbTXLu/DtHLMijl8+/QolydT7O+so8HvJJwqsLHBd6fNWhItQTc2zbqBWubp6Q9FM3zzzVG8ThtPH+jEt4wF3JeK320n4HGQyOq0LfMNrlAolkZL0I0QYNcETQEXpin55puj9EfSPLC5kf3ddbTVerg8mcLrtFHrcSy7DcoxK8rkiwaXJlIAXJxK8Z8+tIfReJbexrXlmNtrPXzmWA8ANe7KN82F8SSFokmhaDISy65IIfdqcdltfOpIF6lckZDfdcfsUCgU0Nvk5zPHNmDXBD6XnWRO52rY6kGfG0uwv7uO/d11bGzw4XHaVmSqTEVlK8q47DZ2dwRxO2zs66rF77azpbkGTVt7l0mN2zGvUwbY2R6gxm2nNeimq957Gy2rjMtuU05ZoVglBD2O8iia32Vne2sNHqeNfZ215WXqfM4Vi19RPWbFHN65vZl3bl+4IEB/OM1EIseezto1EVhVidagh196YOOdNqPMYCTDWDzLro4gXqe6LRWKO4VhSt4cjuGya+xsCyKE4D33zK/jsBKoFkCxJOIZnX94YxRTSiLpAu9bQHhEUR3JnM4zp0YwpWQimeeJPW132iSFYt1yanCa5y+FAWskq7fJf9ttWHtjlIqb5spUiq+dHObsSPzmNyJgJpBZWwURzdVydiTO104Oc2UqdadNuQEhBKVYNWxr6JgqFGsN3TD53lvjfOvNUdIlAaXrmZ2pod2h23HRHrMQ4gDwANAGZIGzwA+klNMrbJtimfnx+UlS+SIj01m2twbKkctLIehx8KH9HUwl82xvvXMBU0vBMCU/PD+BlBDLFNjUePufgBfC77Lzof0dTCRybG8N3GlzFIq7lgvjSc6NJgAI+Zzc13ujJsK+zlpcdg23Q2PjHWor5u0xCyE+I4R4HfhtwANcACaB+4EfCiH+WgjRdXvMVCwHzUErdagp4LoppzxDe62HvZ21a6bguU0TNNVYv70luDqEUq6nrdbDvq66NTtnr1CsBRprXNg1gRDQNE8qpaYJ7mkP0tt05zoeC/WYvcAxKWW20pdCiL3AZmBwJQxTLA+GKZlI5Kj3OXl8VyuRVJ46nxPdMJlK5mmscc1bpSmnG0TTBVoCbrQ7NaZzk0ynC0ig3ucE4CMHOphOF2iYFfk8mczhdtgILBC9vRzkiwaRVIHmgPuWHogUCsWt0Rxw84vHejBMSa3XahuqaQurIZUvks4XF1RJjGd0dNOc0w5VYl7HLKX8/xZaUUr5xmKGCiF+HvgFwAZ8Uko5stg6iuXlubPjXJxIUu9z8ukj3eWnxK+eGGJkOkt7rYenD96oNFU0TL706iDxrM6OtgCP7Wy53abfNIORDM+cGkEieWpvOz0NPhw2bc4T8tmROD84N4HDJvj4oa4VTVX66olhwsk8Gxt9PLm3fcX2o1AoFuf6NMpnXh9hJJalvc7D0zepupfM6XzxlQHyusn9mxsqqg2Ox3N89cQQppQ8vquVzQtoJ1Qzx7wB+FWgZ/byUsonFlmvHXhISvnOxfax3pBScm4sgWnCPe2BFZWFHJ7OMBLLki4U0U0Tl2YNlYZTeQCmSv+vp2CYxLO6tUyy8jKrlXA6j1kqZxpO5empoFw285t0QzKd0Ss65pxucHYkTnPATWcp1/nyZIpETmd3exB7FU/XhimJpgpz9qlQKO4c58cSFIomu9qDaJoot4G3cn8mckXyurngdsKpPBOJXHkU85YcM/D3wBeAbwHmEmx9DLAJIX4EnAN+TUppLGH9u5YLE0m+/9YEAKaU7JmVtL7cGKYkldPxOm1zoqjfvaOFt0bj7GyrHGzkddp5ZFsT/ZH0vFrTq5WdbQEiqQKmlOzqCFZc5kBPHZmCgc9lm1dy9MdvT3JhPIkmBL94rId0vsi33hwFIJM3uH/z4lVkbJrg3TubuTiRZE/Hyp1nhUKxOJcnUzx3dhyAoinZ313HYzubeWs0MW9bWA1tQTeHN9QTSRe4b566Ag6bRjJXxDDlohkt1TjmnJTyv92Erc2AU0r5TiHEfwKeBL4x86UQ4nPA5wC6utZXDJng2klZamd5Ol3gZ5emCPlcHOsNVextj8SyHL8apTvkJeR3srUlgMsxt3fX2+RfND9vT2ftij40rBQuu4137VhYJAVAIpELfJ/I6rw9niDocSz5PM1me2tARVsrFKuU3qaaRQO9Tg1OMxDJcHBD/bwFK0xpdbTkPI2KTRNsKHUCXIsEeVbjmP9YCPHvgO8D5T66lPL1RdaLA/9Yev1j4MDsL6WUnwc+D3DgwIGF2se7jq0tNZhSYphyyU9pL/dF6JtK0zeVpqfBS0fdjXKSP70wyWQiz9Vwmo8f6mJ4OkNXvfeWAhvuNo73R8u64J11noo3phAlaT6nnULRpK3WwxN720jmitxzC0/XCoXiztDb5Od9u1opFM2q2950vshPL0xZrwtFPnm4+4ZlRmJZjvdbFeLsmsbju28UXlrKvqtxzLuATwOPcG0oW5beL8RLwD8tvd4LXK1iX+uGSj2oyUSOf3hjFIdN8MH9HeVo4aFohm+fHiPgsbMhZD1xuR02gvNUNWmucTOZyBP0OBiMpHmtP0o4lb/tsnLLwYXxJD88P0FLwM1T+9qXLao5nMzz92+M4HFoPLG3stJWR52X0VgOn8uGv6Sbu9pyoBUKhUWhaPLMqWEi6QLv2dlSMQc5mdN5+UoY3ZA0B1zzpkzNxmXXCHocxLM6zaW0yytTKb731jghn5Of29dB0OPA7bCR0w2aA/MHkm5tqS4FqxrH/BFgo5SyUNUWS0gp3xBCZIUQPwXCwH9dyvrrkYsTKVIlNZqBcKY8P3puLMHIdIZw0saRjSE+eaQLn9OOz2VnMpGjxu3A47w2NPLO7U3c0x6k1uvgS68OohuS82NJ3rG1ac3lyZ4ZiVMomgxGM0RS+apupGoYjGYJ+ZxoAq5Mpio63GO9DdR6HLQGPeXjNpHIEc/qd7QalUKhuJGJRI7RWA6warJXcsz94QzTGSuo9eJEqqr2xG7T+NC97QxGs+xsqylvP6+bjMZyTCRydNZ7+fD+dqZSeXa0Vo5rAYhndQxTltM4593nolZZSl+1WOIiS0JK+ZtLXWc9s6XZz7mxOA6bRnfDtSHqgUian16cwu2w8fTBjrJYxstXIrzSF8HrtPHzR3vKzlkIURbS2N0R5OUrETY3+9ecUwYran08nqU16FnWlKZ3bG3kzEicGredA92Vg9tevBzmtatR/C47nz7azUQix+/8/VkKRZOPHezi5+5VqU8KxWqhOeCmNegmki7MO1Tc3eClzuugYJhsaa5u9KtomHzj1AixjM5EIsejO5rZ2RZgKJqhwe+kOeAmmdP52skRcrpBtmCwv0KbMpHI8ZXjVrrU+3e3LjivXY1jrgXeFkIcZ+4c84LpUgqLy5MpMoUiO9uCc4Zhv3t2DN0wed/OZr7z1gR2ofG+3a187sFNN2xjOq0TdDuw2QSTyTxbSynFEwnr6TBTMEjm9Dm95hkO9NRzYI1FVc9mW0uAbS1zb7K+qRTJXJGdbYGKKUumafLc2QlMKXnfrhY0TSOcyjMQSbO5uYaA28GBnnr++p8cmrPeSCzLeDzHzrYAboetfHxT+SLJXJH+cJpC0ZrNmdHcTuZ0Lk4k6ar30VijyjYqFCvFeDzHSCzD9tZAxQpsTrvGxw4tHEgccDu4r7eBQnFxkY8ZckWT4WiWRE6n1mtNH3bWeblvU4iQz4XTrjGZzJHTjZKdlpsMp3J8760J9nTUck97kKlkHsO0wqkmE/lbdsz/rirrFTcwFM2U02vSeYOjpTD6750d569e7AfglSsRrkxZRbiFBu+tMA/c2+jnpSthPE4bPaFrPeljJZ3XpirnSu4GRmNZ/uEN65im8sXyMZjNd86M88VXBgAwpOQDu9v42slhsgWD82NJPnXkxuCNVL7I108OY5iSsXiW9+9u4/7NDWgiQkvQTWONi2ObGnhjOEY0rfPRQ5YQwbfeHGMikcPtmOZzD25Uyl4KxQqQ0w2+dnII3ZAMRDJ88N6Om9rOlakUz54eAyythnu76hZdx64JsrpBIqeX9RGevzTF6eE4QsCnj3TTXuvhQE8d0XSh3M7/0fcu0hdO89zZcf70k/eytaWGsXiOQtFkb9fC2S7VOOZBYExKmQMQQniwUqEUS2B2Yo4563XBMImmCwgByazOc2fHcdoFD25uLPcGGwMu3rG1CbAc/LdPj1Lvc3Lfpgae2re+hlNnh++b8+QlzD6+ZilccWbRmW8mEjn+/Pk+aj0OfvnBTUgpGY1liWV1mkrBG0017jnH127X+D/fueU6e+Sc/wqFYmWZLx2pGvK6wSt9EYqGZG9n9ZkVQsDsR+7ZNkis6cMHNjfOWaccKS0lpilx2LSq0jihOsf8v4H7Zr03Sp8drGoP65jOei+P724llS+yu/1aQMBjO5opFE2Khkl70E0yW0QIyOSLjJSCF5pq3NxTWufophA+l52gx87FiVQ5zac75Js3p+5upb3Wwwf2tJLIFdnVXjnI4v27WpHScspP7m1F0wQf2t9OfzjD1lLQ1pdfG+TMsFX+ckdbkH2dtbgdNvymnJNnvhjv393GhfEkPSGv6i0rFCuE22Hjg/d2MDydvSUhkEulqUVTwsWJNA9vW3wdw5S47Bp+l6MsDPLAlgbqfA7qfa55h8R/411beO7sOLs7ggS9Cwd7XU81jtk+OyJbSlkQQixtL+uYmejdVL7IM68Nki+aPLG3rayZfDWcZntbAIFgQ5Of6YEYNk0Q8l87xA6bxv5ua8hlOqNzYTyJy6ERTub45hujNAdcPLGnrSqJyLuBxcQANE27QZO6qcZdDpoD6K738fKVCHZN0FXnwWXXmE7nmUoV2DOPWlglLk8mOd4fJZHVeXTH+phOuFvp+a1nq162/w8eX0FLFJVoq/XQdosdkZ6Qlxq3A8OUZbGPxXDYBPFskbF4lq0tVsCYy26bE+BVKJr8/RsjREupWj0NPpoDbn7hvp6bsrMaxzwlhHhCSvlNACHEk1jpT4ol0B9OEy5pJr89liw7iQ0NPh7Z3oRdE+xoDbKzLYhdE+XKJ9dzsKeezjovfred7781Tk43GIhkCKcKq7ak4UpjmpJwOk+d11m1iMrP3dvO1hY/NR4HnXVewqk87XVeQn4rmGOGqWSeGrd93oj2U4MxCkWTMyNxHtzSOGddhUKxutjTWcfvf3AX+aJZ7jQVDZNopkDIV7kcbr5o0hJ0EfTY5y11O5HIMRBOoxtWW1BJn38pVOOYfxn4WyHEn5TeD2MJjiiWQFfIS9DjmHNBgBX89cc/uoQQ8C/fvbXcM16IGQe8oy3AyHSWpoBrTg97vfHcW+NcGE/SWOPik4e7qi4KsqPtWs+4zutkY6Of0ViWnaXPX7oS5tW+KDVuO5860l3ROd/THuTVvihbmv3KKSsUa4Du0Fyn+Q9vjDIYzdAd8lYMKvO77GxprqF/lrbE9fhcdq5MpYlndXbOM8W2FBZ1zFLKK8ARIYS/9D51y3tdhwTcDv7J/Rtu+PzCRNIKYpJwYTyBx2HDaRdzhmsNU3JuNEHAY59zUW1rCbC1uWZFq1OtBcbi1rx8OJWnaEoctsWPR6Fo8p0zY4T8Th7Y3IhNE3x4fwdSyvLxHC9tN5mz0qUqOeYjG0Mc3lC/7s+BQrFWGYtnS/+t+32m+p/LbqO3yY8Qgif3ts9pG64nUyjSEnQT8NiXFKMyH/M6ZiHEp4AvSSnNkrGp677fBLRKKV+4ZSvWMU/ubWMwmkETVm7c994aL30uyso1L1+JcLw/ihDwsYNdc4aslUOAh7c28vpgjM1N/qqHsr/4cj/fP2dV+PI67eWRitnH81hvA1KGaS2lS82HOgcKxdrl0R3NnB1JcE+7FVT2+mCMn120tLGf2tdenote6D532zViWZ1sobgsGRoL9ZhDwCkhxEngJDAFuIFe4CGseebfumUL1jC/953zXJ5M8S8e7kU3zHLJr3NjCeIZnWObG8p617PRDZMXLoUxTMkDWxr4t+/fAcBLl8NcmUph0wT54rUKmUYpNl/Ka68BoukCL1+J0BxwrWkRkVvl3Ficb705r3UtewAAIABJREFUygObG9jTWUsqV+TPn7+ClPC5Bzfhd994mWcKBtF0AZsmKJSO9euD04zGshzZGKLB78KuCdwO26KVYBQKxe0nntF58UqYkM/J4Y1W7vArfRGi6QLHNjUQ9N7Y9hqm5PlLUxSKJg9uacTtsDEez3F2JE6j38m2lgA53Si3wzOCQothAjZhVZCa8cvj8RwnBqL0hHzlDJtqmdcxSyn/uDSv/AhwDNgNZIHzwKellINL2tNdxqtXIzx72hK6+L3vnONYr5XDNpnMMZ22tFitWrwtN6x7bjTBG0MxAIJeR7nesSklXqcNmyYwZz10Hd0Ywue0EfA45qRHPX9pir6ptKU8FfLOiTpeT/zJj6+QzOlcmUrxkQMdPHd2nFf6rEovzUF3xWowvc1+Ous9eBw2GmvcTKcL/GOpgkxON/nw/g5+dmmK/nCGixNWOtRySoIqFIpb44XLYS5OJAErNVVijS7O8L5dN4o1vT2e4NSg1fb63Xbu29TAF164SqFo0hdO8dDWJqR5rR02zOp6v7oh8TpLw9iljvWP3p5gMpHn8mSKjY2+impl87HgklJKA/hB6W/dY5qS754dZ3g6w47WGlx2G/miQWe9F6ddo1A0aalx8/KVCJmCwbbWymk9TrvG6eEYUsJDW68lpTfWuGkNetCEoG5WVPZUKs8bQzECbgfdIW85MjDkc9E3lbbyb13Vn/Q7xU8vTPL2eJKDPXUVtWQr8aPzE/zNKwN01nv5ncd3VAywaqxxkczpBNx2/E4bnXXecv3krvoby2KCVTFGNyQ2TeJxaHicNrxOG5mCUQ6kC/lc9Iczpe9W//FVKNYTRdPk9YHpUtaEht2mldvhUKlIxNmROC9cDtMT8vHYzmbqvE40ITClJOSzHrSltBQFZyKpbTbBeDyHw6bhclQ3TVXjttMSdFs+oKTCGPK5mEzkqXE7cC4xlVW1NlWgGyaJrI6A8hPaSCzHX/zCAS6MJ3n3jibSukkyVySvG2xo8KEbJgIrKEAvyjnDKlndoK3Wg5RyzlDJ1pYa6rwO7DZtTvWRsyPxcgDS8HS2XAnpWG+IOp+D5oB71TuOomGWn1RPDkxX7Zi/f26CeFYnNZbg8lSyYuWWP/34Xr59dpyHtjRgs9m4r7cBr9OGIZk3yt00obv0QJUuGLQ7bHzkQAej09lyVOUDmxvY2Oij1uusqEOuUCjuHEIImgIuAm4H6bxBZ72LTx/tJpUrlvOdTw1Ol6R4E9y/uYG2Wg/vvaeZbNEol2Dc11lLS8BFa2mdoinpDln167OF6oayA27HDft+d6nYRYPftWSNidXdmq8CDFPy5dcGiaQK7OoI0lHnYTSWY3trgI2N/nKAVsBmI+B2kC0YtAY9JLI6zQE3f/liP7ph8p57WsrFGNI5nRcvhzElPHidjFslzestzTVcmkjid9lpC14byj7eP82Ll8MLpvOsFuw2jW0tNVyYqOxc56OpxsWLl8LU+Ry0zaMH/mJflPF4np9eiPDxQ15G4zl+dilcXr+zQq/ZJgR9YWu0wee0Rj6eOTVKIquTyBW5r7cBIQQddZV73Iq1wVJEQxRri76pFK/2RfG5bHy2lPEScDvmxPXsaAvw/KUw3SEvPqeNc2Nxfu/Z8xgm/PJDG3loaxN7u2qxjQh2l1Kh7JrVNjg0bUkP5NfvW9NExbanGpRjXoScbhApCYOMxXN8+kg3pinRrktEH4llmU4X2NZSwyPbmohlCthtWrlHPBbL4bRpFAyTkViWplKU71ipgtFCbGjw8Svv6EXTBEXD5OxInDqfk9GYFeafzBVJZPVV7ZgB3rurlcd2ttxw7BaiJ+Tj5/a1oWka+jwPrzMyppPJHLohGY/nuDyZREoYL9VKvZ6iNOmZeSrWDVKlY2htzzquhaJZzo9er+ItCsVqYSqZZyyeZUtzDW6HjVhGp63WjRCCiWSejgr3+f7uevZ11pXbnIvjKUamsxSl5NxonIe2NvHO7c08vLWpvIxhwoHuOkCQLRg3bPN2sKhjFkK4gA8BPbOXl1L+7sqZtXrwuezcv7mBq+E0RzZYkX/XO5ZousDXTgxjSsmliSQD0QxSwr1dtexoC5ApFGnwO8tVkQ5017Kro5aiKfnAnhsDFCoxs8/nL4d5YzCGJgSP7WxGN0yaA+41U11qKU4ZrJQlU0pag555U5Ye2tLI6wPTbC6JfAxPpzk3mgBgMJIpB9fNsQNBJF2w5pHsNkJ+F4c31DMSy5YrVv347UnOjyWwa4JfPNZDTYUIe4VCsfLkiwZfPTFkBWlNpXlqXzsfO9jJX75k0FbrZl/n/KNws9ucVE5nMplHApPJfMVl9nbVEknncdq0OWJQt5Nqesz/AMSxUqbyiyx7V3Kwp75i4z6DYcpypaN80SxXHjFMyWAkzXRGp6Pu2hC03abxwGbL4QTciyt2pfJFXrwcJuB2oJd64KaU1PucfOSAVX4wksrz2tUo7XUedncsXFJsLdESdJd/43z0NvnpbbpW9LxoyLK0nm5Yx+vyZJKLEyl2dwTpqPPictjKUwsz58vnsuN32XGVAsximQKXJ5PUuB2YpiU88EpflERO5/7eBnxrIOBOoVgLXA2nOT+WYEdroKKcpZRwbjTOaDzHjA9trfXw8NYmQn4nmmbds8f7o0RSBe7rDVVMVTWlLNdUnq+T4HfZb9Dav91U07J0SCnfs+KWrGEaa1y8f3cr4VSBfV219EfSxDM6sazOD89PAlZ1lEe3N5MvGtg0UU7nqXE7FnT6YMl2zvQA37erhYDHQb3POaeX/JMLUwxFM7w9nqS73lcxh2+90BXy0lnnRSLZ0OjFMCXfOTNeqrWc47P3b+Dwxnqcdg2fy0ZXyEssU+DHb1vnKlMw+ND+DoSwxOqddo2iadIfyfBKn5WOYdcE79yuqp8qFMvBd86MUSia9EfS/Mo7em/4PpHVGYllyekmlyYtrasXL4e5MG4F43bUeZASXijFlkgpeW+FdKlPHu4imi6Q0U1+/dEtN3y/WqjGMb8khNglpTyz4tasYTY317C51E7P9MTeGJq2ZCINic9pK+usDkYyCGE9BdbNcqCRVJ5vnx7Dadc4ujHETy5M4nPa6ay3ett2TdBY42Zry41lz+q8Doai4HXacDnWt2azx2HHBCQCt82OJqz5qavhFPeWorSj6QJvjcbxuexsavTjdtjwOG1kCwZ1PuucNAfcdNZ7cTuupUvZNUHRlNT51q82uUKx3NT7nIzHc9SX0kTDqTzPltrCJ/e24XPZMKWV5eK2Wz3dQtHk9cFpAm4HbruGpl1Ll5qvCJDNZuPX3rX1tv2um2UhSc4zWBomduAzQog+rKFsAUgp5e7bY+LSiWUK+Fz2quUZZzBMSSKrU+t1zJFfKxpWKlSdz4lumKTzxXlPPEA8UyBVKOJx2DnW20BeN+hp8JEtGBhS0hXy8snD3ZhS0hxwk85b9ZjPjyWJpq1As5+8PUksqxPL6OzuDPKRAx34nPZ5HcLDW5vY3FRDvd+5aoPA5ju+ixHP6HictqqLROSLBl11HkwJecPEMCV+l432Wg/u0jbODMcZimZw2DQGoxm2NNfwycNdTKevTTs8tKWRRr+L1qAbj9Ny3J860k1GN8pCL1JKYhmdgMeh6jErFDfJB+9tZzyeKwdZnh9LMJ7IoQF9U2m6Q14O9dQTTRfKKlrWiJYg4LaTKqVLPb2/k6lUbk6Bmul0gRq3fU2VxV2ox/z+22bFMjJTEajO6+ATh7uXVPHnmVMjDJUa6cd3W8Mghin58vEhwsk8u9qDDE9nmM7oHNpQXw4Sms1ILMO/eeYsOd3g5/a101XvJacb1Puc/M8Xr1I0rICvmTSroWiGZ06NILCKbzvtGg6b4NCGen5yYRK3w3IoiwUeaZqgK7S6U3u+fnKYkViW7a01vOee6oLeXrsa5cXLYYIeB5880jVv2bXZuOw2roTT1muHwG7TSOSK9Ecy5eH/8XiO75+bwGnXeGpfG2BNK8w+zjPpaLP3XedzMjsz+vvnJjg3mqA16OajBzuVbrZCcRO47LY5BXrsmuD0UAyHXeOD91qdkm2tAYaimbJj/tKrAxzvn8auCT50bzv1PifPvDFMOm+gG5I9nbX89MIkpwZjNNS4+MShrjXz8LyQJOcAgBDii1LKOWUehRBfZJWWfhyOWqku0xmdVL5Ivb26IUfTlIxMW+sOT2eIZQoMT2dpCbgJl6L3+sIp0nmjvEwl+qbS5RD7vqk0v/XebZjSegKcSZ2aSccxpSSa1suyb6aEf/bQprJqlRACv8uGz2nn/FiCGrd9zebVGqZktFTFZah0jkxTcnEyWRqur/y7hqLWcY5ndeJZnaYaG8PTGZK5IlubayoGcOSLJvs6rQC4QlFimJLGGhf1Pmc5IGQ8maXWY8cmBCPTWba3BplM5phM5NnSXIPTrlXc9/UMT1+rTKMbEqd9bdz4CsVqIpnTGYhYpRdr3A6KhqQn5MWmWemMmibY2xFEAJtLgZ7D01lsmrCkOPsiNAc95fZ5aDrDns5ahkr3ZziZJ6sba0IhEaqbY945+40QwgbsXxlzbp37ekO8eDlMe613jnrWYmia4B1bGzk/lmBXR5CvHB8iUzBor/NwdFOI/nCaIxtDjMSyDE9nuG/Tjb1lgMMbQrzcHSGcyvOR/R0IIbAJSyRkIJIhXzSocdvLqVMPbrHUpYQQ7GgNlB3Nif4oz5cCGTY2+uibSiMEfOJQ15pJjZqNTRM8tKWRC+PJ8jzv8f4oL12JIAR89GAnrbPEU2Y4uilE0TRpCXpoqnEzkcjxtZPDSAmxjM7RTaEb1tnRGmAklkVKyc62QMV9b26q4SdvT2G3a2xq8pHOF/nq8SF0QzIUzfDeXa037LsSD25u4OTANJtLzlyhUCydr58cZjqjU+9z8gv39aBpgqlUwSokY9dI5nR+99lz5HWTN4Zi/Ien7uGfP7yJP/r+JUJ+J7/84AZsNju7O4JE0gUObbACah/obeCVvgg9Db4145Rh4Tnm3wb+NeARQiRmPgYKwOdvg203RUedl48e7Lqpdfd01rKnsxbdMPlJKUK3UDQ5sjHEkVL1kkqh/LNx2jX+1Xu23fC5XRPUeh0UijZmFYjCMCVBjwNNCOyzen/5WVKdmVIPXEooGNVJxK1G9nXVsa/r2kDwzG+RknmruLTVeuacz8KsdLT5joXHaeOJPW1zPotnda6GU2wu5SXW+5w8Woqq1oRG0ZQUSyMXM9u9ft+VsIL+7kyuo0JxtzDT3s20AzndIJHVsdsEumGiFyVFw7o/c6VqcJ843MMnDvfM2c71mRI9Db5F2+zVyEJD2b8P/L4Q4vellL99G2264zhsGk/ta+dqOM3OtqWV65qPCxNJXrtqpUgd2lDHQ1sbMUv5zzMa0kGPgz2lIdhDG+qxaQKf086WFj+vD8QIeNbuUHYlDm8IYdc0atz2OfNLC9FZ7+VdO5pJ5orc211dvnahaPLnP+ujaEquhjN8/ucPVNz3B/a0MRbLsbfr7skDVyjWAk/ta+fiRJKtpYfcy5Mp4lkdrSSdu70tyL94uJfTw3Eer1KUaS1TTd/+fwsh7r3uszgwIKUsroBNq4KOOm/ZCf747Qn6ptIc3VjPt0+Pc2UqxUcPdpafzoqGyXfOjhNJ5Xl0e3PF+dKAx1FOkar1OssO//KklYcnhOWYZ3DYtHIvHag4ZLvWcdq1m/pd19c2PT0c47WrUbY01/DglsYblrdrVi94IpErH+PLk0m++Eo/NW4Hv/P4dmrcDjY1+ssFQhQKxe1jIJLhwngSt8NGU8CNpsFEIodNE3hdVmzHfb0N3Dcr4HYomuGH5ycI+V28756WNRV1vRjVOOY/Be4FTmMNZe8CzgJBIcQ/k1J+fwXtu+Ok8kXeGIxRMEy+f26CkwNRDFPy7OkxHtzSSFY3iGd0rpSS3k8NxSo65vZaD5843IVuyDk1lXubavjYITuaEDSvwbnj1cBrV6OEk3kSWZ0jG0M47Vo5AM/jtPIf93XWMpnMlxXCvnNmnMlEnqlknpevRCrWzVYoFMtDPKvjd9nnjYp+tS9C0ZS82hfhYE89uiFp8Luw2SCeqdz/OzUUI5axUkrH4pU18dcq1TxijAL7pJQHpJT7gb1AH/Au4A8XW1kI8etCiBduzcw7h8umMRLLcmowhg1BvmgynsgR8Nj54ssDfOH5qwxNZ6j3WXU+NzfN3+NqqnHPccoztAY9yinfAql8kVNDMaaSeRw2wVg8yxde6OMvnu9jJJbFbtO4p6OW7pCv3Ntur/MwkcgxnSnQvcrTzBSKtczPLk7xP1+4yt8dHyxnoFzPTJzGzH+nTWMimWM8nifoqdx/3NzkRxOCep9zXh39tUo1PeYtUsq3Zt5IKc8JIbZJKfsWy9ksFcDYe4s23hGGIhlODU9zb1cd7bUeWoMeXE6Nh7Y0ohuSOp+D0ViWTMFgZDrLzx/tpmhKHDaNsXiWRLbI5iY/Y4kcmXyR3ib/us9xjWd1hqczbGzw43HakFJyeTKF12Wv+MAC1jTBpckUDX5X+eYbjWVJ5a3ja6WU2TnYY83J64ZkNJZlqpTiNjKdpb3WwxN72igUzXLkdFONiyf2tKEJ0Nb5eVEoVpIrUymmknlyujFvytL9mxtoCbrobbIcc8EwCXocODRBPFu5x7y9NUBvkx+7Ju66trUax/yWEOLPgL8rvf8ocK7kdPVF1v0s8NfAmqpEVSia/LtvnSWdN3jhUpin9rXTH85wZGM9w9NZhqez7O0M8OfP95PI6hhSIoTAYRNMJfN89bhVaaq3yceVqTRSWhfeYprYdzNSSv73iSGSuSKtwTgfO9RVFvAQAj52sKtiacUfvz3JW6MJHDbBLx7bQCZf5KsnhpDSmnc/sjHEA5sbOTEQLecfO20a44kcSHDYrt2ws9OZ7u2qI5Iu4HfZ2bAGozYVirVC0bBGGU3pwjnPPPDXTw4TTRc4PRzn54/2MBnPEU4WEALyhflDmZaq7rhWqMYx/yLwK8Cvld6/CPwmllN+eL6VhBAO4B1Syj8VQtzgmIUQnwM+B9DVdXPpTTfLaCzL2ZE4m5trKjbKRdMsh+1ndYMGv4tUrkiN28GDW6yh6ul0AY/DRtEwEcxOczLKlaZS+WI5tSen35m6nqsFKa+lRMwci5n/Us5/fKLpAn1TqZLogDmnetfMOvmiUe4ZW4iyXvl8T9J1PidPL1K1SqFQ3DoBj4Nd7UFsmsCUEtOUvHI1gm5Ijmysx2W3MR7PMTSdQTdK00qCsmZ9ttRuXBhPMhBJc293HQ3+u2vo+noWdcxSyizwR6W/60ktsOqngS8tsN3PU8qHPnDgQOWJhxXiu2fHSWR1Lk4k+ZV39N6gHuV12vnVRzZzvD/KQ1sb+e6ZcUwpiaQLfPyQ9RBhSokmKAUzXDO/o85K54lndfZ313FhPEk6X+TAOu4tgyXg8uTeNq5MpdnRajnNwxvrsWsCn8s+b66hKB1jTVjKaJ31Xh7d3kwip3Ogx8qJ/rOfXiGaLvDGUIxDG+rZ2RYgVzSQEna1L0+6m0KhuDke29nCm8NxuksFYc6PJXi1VF3PZS9lnwirVOvMc/Svv2uLpXHvdvDpI11kCkW+e3YMKa2H9Y8dur2dudvNoo5ZCHEM+H+A7tnLSyk3LrLqVmCvEOKXgZ1CiF+VUv73W7B12ahx20lkdXwu+7w1OXVD4nXaMUyJx6mRzluKXTO4HTZaaz0UiuYNqlCz03lm8pIVc1PQwNLHnZ3+IKXkB+cmGIllecfWJjY0+GiscdEd8uG0a7hLVbNmqnTNUOd1EC0NSzs1DU0T63raQKFYTdR6nTw0K43RrgnOjSUwDMnRTdZ92l7rxWmz0RSwesJBj5P/8NSua+tIE4/DRqZgLFo34G6gmqHsLwC/DpwEqh6PlVL+3zOvhRAvrBanDPDk3jaGolnaaitHQueLBq9djVAwTE4OxPj4oS4mEnl6ZkXv+lz2cm3PnirFMRQLE0kXODMSp2hIjl+NsqHBxzu2NNEd8hHyOculF6/nX79vB6/1R7mnLYBdyWIqFKuOZE7H67TSpXK6SXe9VSe9JOLFh/d3MDydLVd2ux6nXePjh7uYvK4dvlupxjHHpZTfvZWdSCnvv5X1lxuX3VbOZ62EQxNMJvNcDae5r7fhhqpDM9R6nQuWf1QsDa/TxtVwmqlknvbSDappYlHRD7/bziPbmm6HiQqFYok8f2mKE/3TNAfcfOxgJx11HhpqXBQNs5yq6HYs3CYDBNyOchGau51qHPNPhBD/GfgGVj1mAKSUr6+YVXcY3ZQ0B1yE/E78LjvxjM5YIsvGBr8qVLCCZAsGGxt8dIe8y36ckzmdkViWnpBv1darVqwden7r2aqW6/+Dx1fYktVPf8Sq0jaRyJHRDep8Tn7p/g2YkgXv876pFK5S2dv1RjWO+XDp/4FZn0ngkeU3Z3Xgsts4uqmBS5Mp9nbU8uXjg5bTaPTx5N72O23eXUu9z8m+rjpGYlmObFg+CVIpJV85bqVqtdd6ePqgisZWKG4XRzeGeLkvwobQtQpPi8lnnh6O8aPzViGhD+/vuKtUvaqhmqjseVOiVjvRdIFTg9N01XuXXAFopqJUtmDw41KlqWzB4MJ4kuHpDPu769Qw9iwmEzlOD8fZ1OS/6bxgIQQPVzEkfXJgmmTOkt+spvdrzkrHSi+QE6lQKFYAKZlK5GiroFMwHzMV9a5/vV6oJiq7Gfg9oE1K+V4hxA7gqJTyCytu3S3yg3PjjMZynB1J8E/rPPMGDy2Ex2nj/XtaGYxk2NTo4xunRpASpjM6H97fsQJWr02+e3acaLrA+bEE/+wdm1ZMUH4gkuZnF6cAK/+5Gkdu0wRP7m3n8mSKnW2BFbFLoVBU5k9/eoWRWJbj/dPs66yj3r94h2Z/dx2GKXHZNbY0r7/CMtV4qr8C/hL4N6X3F4GvYEVrr2p8pWETl0PDrt28o5ipOpTTDZx2jbxu4nepecrZ+Fx2oukCHqdtRSUuvU6r4IcpZfn8VkNnvXfdDYcpFKuBgMfBSCyL26FVHTvisGkcm5VKud6opmVrkFJ+VQjx2wBSyqIQYlWPLWQLBi67xmM7W+iqT9BZvzzBRG6HjU8c6mIqmVcyjtfxgT2tDEQytAbd8+aGVyKnG9g1Ue5hG6akUDTxOCs/+DTWuPj4oU5S+aI6BwrFGuBfvWcr3z07xv6uOvzupY9arkeqOUppIUSIkryVEOIIVj3mVcmJ/ijPXwrTUOOiJ+TlRP80LUE3Tx/onLfk2FJQKVKVcdltbFniPP7lyRTPnh7D49T42KEuPA4bf/faIOFUgQe3NLC/u7JISFPAjUqOUijWBl98eYAfvz3Ji5ci/OGHdiutgSqo5gj9BvBNYJMQ4kXgfwG/uqJW3QJ9U2kAwsk850YTAIzHc2RU0M+qoz+cxpSSdN5gIp4jntUJpwoAXCmdR4VCsbY5M2L140ZiWSKZwh22Zm1QTVT260KIh7AkNgVwQUq5WFWpO8ahDfX87NIU7bUeuuq9vNwXoTvkWxcybmuNvV21TCRz+F12ukM+HDbB7o4gI7EshzcoSU2F4m7gqb1tfOPUCDvbgqrufJXM65iFEB+c56stQgiklN9YIZtuiZ4G35yCCEtNk1LcPhr8Lj55uHvOZ+/c3nyHrFEoFCvBoztaeHRHy502Y02xUI/5Awt8J7GUwBQKhUKhUCwj8zpmKeVnbqchK82F8SSv9UfpbfRzdNPyqUopVpahaIZ/vDhFa9DNI9ua5q2vrFAo1gY53eC5s+MUiiaP3dNC0KOmGa9n3YTHvXQlTDiZ55W+SFkFSrH6ee1qlKlkntPDcaZS+cVXUCgUq5pLEymuhtOMxLKcGV61CT53lHXjmGdKM7bXenCpcP01Q0+DJQpS73NS61FpagrFWqet1o3LoWHTBF1K9Kci6ybb++FtTRzoqcPntKvh0DXE/u56trUEcNm1FZP5VCwdVV1JcbOE/C4+e/8GpERVepuHm4nKBli1UdkLoVKm1iZLkd5UKBSrH5ddOeSFUFHZCoVCoVCsItZNVLZCoVAoFGuBqsYIhRCPAzuBsmyLlPJ3V8oohUKhUCjWK4tG0wgh/gfwUSx9bAF8BOhecCWFQqFQKBQ3RTU95vuklLuFEKellP9eCPFHwHdX2jCFQqFY61QbvQ4qgl1xjWryT7Kl/xkhRBugA60rZ5JCoVAoFOuXanrM3xZC1AL/GXgdKyL7L1bUKoVCoVAo1inVOOY/lFLmga8LIb6NFQCWW1mzFAqFQqFYn1QzlP3yzAspZV5KGZ/9mUKhUCgUiuVjIeWvFqAd8Agh9mFFZAMEACVwqlAoFArFCrDQUPZjwC8CHcD/O+vzBPCvV9AmhUKhUCjWLQspf/018NdCiA9JKb++1A0LIQ4D/xUwgeNSyl+/eTMVCoVCoVgfVBP89aIQ4gtAm5TyvUKIHcBRKeUXFllvAHhESpkTQvytEGKXlPLMLVusUCjWPUvJD1Yo1hrVBH/9JfA9oK30/iLwa4utJKUcl1LORG/rgHFTFioUCoVCsY6oxjE3SCm/ijUkjZSyyBKcrBBiN9AopTx33eefE0KcEEKcmJqaWorNN5AtGLx0JcyVqdS8y8QyBV66HGYklp13GYViqUynC7x4OczoLV5XV8NpXroSJp0vLpNlivXMxYkkL1+JkNMrN9VSSk4PxzjRH8Uw5W22TrEY1TjmtBAihCUsghDiCBCvZuNCiHrgT4DPXv+dlPLzUsoDUsoDjY2NSzD5Rn5yYZJX+6J8681RptOFist858w4r16N8szrw+iGeUv7Uyhm+PaZMV67GuWZUyMUb/K6SuR0vvnGKK/2Rfnh+YlltlCx3phM5Hj29Biv9EV4/lK44jKXJ1P86Pwkz18K8/rg9G22ULEY1cwx/wbwTWCTEOJgox9CAAAgAElEQVRFoBH48GIrCSHswN8AvymlHL8lKxfBrlmZXJoQaJqovIzN+tymaVReQqFYOg5t5roSCHFzV5ZNCDQBpgSHrZpnZYVifmyaQBMCU8pyu3c99lnXmbrmVh+LOmYp5etCiIeArVi5zBeklHoV2/4IcBD4w1KD9dtSyhURJnl4WxOtQQ8NNU6CHkfFZd6/u5UL40m66r1zLsrrKRZN7PaFL1TTlPM+ACjufmaf/w/saePiRJLukA/bTV4TPpedpw92Mh7Psb01UHE/CkW1hPwuPnygg0gyz462ytfThgYfT+xppWCYbGtR19xqY1HHLIRwA78C3I81nP28EOJ/zArsqoiU8svAl5fFykVw2DR2dQQXXOb0cJxX+iJsbPTzgd2tFXs3v/+d87w5HOOBzY3884d7b/jeMCXfeH2Y0ViOd2xtZE9n7bL9BsXqJ1Mo8tXjQ6TyRd6/u42eBh9vDsV4rT9Kb1OW9+9uW3wjFSgaJv94YYqxeA5NCHZ1BDk7EudH5ydpDrj48P6OBR8mFYrZ5HSDH789yXS6gMdpY3NzDSf6o7xwOUx3yMtTe9tJZIv85MIUBcOk1uukNejhR+cnOD0cZ09nkEe2Nd/pn7GuqeZu/1/ATuC/Y80X7wS+uJJGVctILEsip2OaJif6o4xdF4BTKBh8+/QIQ9E0Z0fixDI6F8YS5Is3zgUWiyZvDseQEo73RyvuL5HVGZ7OYkrJ+bHEivwmxe1jPJ4jlrkWk5DOFxmKZpDSCoaRUjI8nSFVCsgajeWYzujohuTiRBKA08MxhqMZzgzHKJSuq3Aqz1QyX7UdsazO1XCaWKbAuVErfOPt8SSmlIzFc0QzleMmFIpKTCXznOyP8sqVMG+PW9fp+bEEUkJ/OEO6YDAYzTCZyBNNFbgymQbg3Ghizn+w5quj88TtKFaOauaY75FS7pj1/idCiHPzLn2beLUvwktXIjjtGrph8vKVCG6HjT96ejcNfjcA/8dX3uDMSAyf0867dzZzadIaynZW6H3Y7RoPbG7keH+UR7Y1Vdxn0ONgS3MNw9MZ9nap3vJa5vRwjB+dn8SuCT5+uAu/y87fvDJApmCwt6uWh7c28fylMCcHpvE4bfzC0R466z2013pI5HTuabdGaN4cjnN2JE5TjQu7BgORNM+cGgHgyb3tbGjwLWqL12FjNJ4lksqzqckPwN7OIJFUntZaDyGfa+UOhGLVUG1u9mJ1my9PJnn2zBiGKUkVDD6wp419XXW8cDnMhgYfPqcNj1PjSjhF0TB5dIfVO97fXcfpkTi7S6OPb48n+O6ZcTQhePpgB61Bz639QEXVVOOYXxdCHJFSvgJlRa8TK2tWZQqlXm3Q4yg/xRWKJkPRDGAN4VwcT/LN8TF2tAYYiWXJ6yaGWSSaLpDM6qTzRS5NJHnhcpijm0I0BdxcmkixudnPw1sbcds1jvU2VNy/pgl2tQcJ+Z101im58LVMJGVdP0VTEsvo2ITg5MA04/EcPqeNh7c2EUlbvd5swSBTKBLyu3j6YOec7cQyBfK6QTpfJFc0iaQKjMetWZ5wMl/RMcezBf7kR5dpDrr5pQc2ki+a1Hkd2DUrCAygt6mG3qaaBX9DPKNzbizBhgYfLUF3Vb9bN0zeHIrhd9vnzC0q1i7xTIG/f2OUznovj2xr4vxYEt2wRn3G41bb2B3ykszV0lnvQQhBvmiSzRcpGJJcwUqpuq+3gftmtX3R0j1iSsl0WleO+TZSjWPeD7wkhBgsve8CLgghzgBSSrl7xay7jpf7Irw+YIX2v2dXCxKo9zl5Ym8bX3p1kA0hL8+9NcGF8SQ/ODfBztYAiVyB9lovpwZjjCdyTKUK/NEPLhDPFvnZpTDHNoVIFwzODMd4qS9CtmBwYmCaP/vU/hv2n8oX+fs3RjBMyXg8x1P72m/XT1csM4c21JMvmv8/e+8dJslxn2m+keV9d1V73+P9YAxmBoYwBEAQBEiBIEEDkqI7ijrxtHvSnU7S7ul2pV1xeStpdx/dSqtdHbkypLg0IkECJEWQAEEQJGaG471tb6ury/uqzNg/qrq6e6ZN9UxX23yfp58uE5kZmRFZkRHxi+/DaTGyocbBdX+MM/1hcqrGa1fH+LWHN/LQ5lrMhiANHis+58y91tFohkRWRZJFUzWEgGRWRSJRZpko+sL3r/DG9cLa/XqXhYe31ZHOaaSyKgtZUfrSuSHGYhlO9YX47EMbypqHPt4d5Hh3YarGYTbS6tUfMFc7/+1n3ZzoCSIENHmspHKTsbmJTKHR/acLIwyEUpzoEXzmoQ38smucq6MxpISfXvPzyAyjhPvbq4ln8piNClsb5n5I1FlcymmY31nxXNxCIpPntSt+TAaFx7bXlcL5A7EMr10ZxW428vzBFt61uxGAS8MRUtk8iaxKMJmhayyO02JkW4MLp8WE3WzAH9PI5FQMiiCdVRmLZfA5zVOWUU32VowGwdn+MNf9cQ60V5d6PYoo/KnF9Dqrh/MDEa6OxtjXVsXGWie9wQRfPtqLx2biQHs1JoOC1aRgMgjsZgNQ6E2ncyqZokiDpklev+Ynmsrz6NY6PHYTQhTmoiVgMBjIqxr9oSRISr2Wb58a5Gj3OE/tauCRrXXTlrCYjAYUIWiuslHvtlJlM5d9ToYpywSFEKWgHynhse11WE2G27ZRpgQ96tG3a4NIMkv3WAKLScGggElOxtCoxTp4rj/Ma1f9NFfZ+LWHN2AzG0v1w26ZuRmwmgy8Y2dD5U9A5zbKWS7VuxQZmcqZ/jA3/AUVr5ZqGzub3AghuO6PI2VhyPqmP05zVWFY5h+O9nFzLMHNsQQ2k8BpMWI3G+kJJJBSMh7P4nOYSaTzVDtMbGt0YzYqNHvtPLuvhd7xBBtqnLx9Wx3Husc5stHHi6eH0DRJNJWj88FOAOxmI+8/0MpINM02/QlyUZBS3vH633JRNcmrV0aRsjD0vLHWyV+9fpOusThCwDdP9vOx+zr4V+/ewen+CJ+8vwOAn98I0DueoC+YZHO9i2g6x9n+QnCWwxLkiR311LstJDOFeiWRXPcnSkIjV0ei7G+r5msn+pASvny0l0e21vEH79pBnctKg8fKO3cVfvjef7CF0WiG7Y2T9Wq+a/PuvU1cHy3ETRgUwZn+KFeLwT51bgv3dnhv2+ZwpxeX1YjDYqS5Sh+aXAsoisBpNWIxKkTTKtcDkwtmtGIg46n+MJlcIehrOJzig4fayGuSWDrHZ97WuVxZ15mFcnrMS04kleM7ZwYxKIJdTS7euD6G3WSg3WvjtMWIxaSgCMFf/OQG1Q4zbT471/2FXvL2JhepnMRjM+GwGLjmj1HjVNjZVAUI6twWdjZ5sJmNNHqseB1mvI5CL+V4T5DRaJb+8RQjkTQ9gQQPbPJNy1uDx1r2fJ7O3PQHk3z37BBOS2EExG6uTHU0KIJ6t5WRSLpUdk0eG7HMGCZFsLkYcPXY9gYe2z7ZQ+gJJPjW6UF8DjOfur+dGocFs1Ehm9doLO5nZ5MHVSvUC6tRwWFWGAilkLIwVGw2KjR6bAyFU7QVh43NZgO/+djmaXls9NimzeFdGory48ujNHisPLevecZhaqfFyL626tL7ercFgyKQEhrcM9dRRRGlwDWdtcHWBhdXR2LYzAZaq23sb/Xw0vmCppO52Cs2CIim8zgsRmqdFiKpHOm8BkIwFs/R4Ll9dEVn+ViRDXPfeBKfw4wQguPdIewWI5mcxlO7Gzi0wYfHZuRoV5CcKvFHM7z/QAuPbK2jzmWhym7mynCU5mob3zrZj5RQ67LwuUc3MhRJ0+FzYDUaCCQyeO2Tw4aaJrk4FEFKODsQptZlwWk1YpujsUhk8kRSORo91or3+tYiV0diZPMawXyWgVCKLfWVG4V4/4EWQsksNcUI54MdXkLJLFaTAe+s88dpPDYjBkUwGE2zo9HDJx/oIJPTqC4+zP3uk9u4Nhajw+dAURTiWZV2X6EBThSDav74vbvoGU+wpbb887s0HEXVJIOhFMFkljqXlWg6RzqrUjdLo9tSbecTD3QgJbMK7axkdMeoO+Mjh9s53OHF67DgdZpBUTAroGqUYghaqm1kVA2H2Ug8q+KPZoimCnPRN/xxvbOxwliRDfNDW2s42RvEYjLwzN7GYuNsoM1rL/WqdjV5GAil8DrM1LutmKeodW0rqidlVYk/lsGgKNjNRnY0TvYU6lzTK6KiCO5preLiUJQD7dXE0nmujcam9UimksqqpeU193Z4eXDzzJHcOrOzo8lNdyCBw2KseJS7yaBMK/Nyjt1YZeNoVxCL00BLVSGN3WxkyvMcRqMyrV49uKmGN68HkFLyULFO3Fr3ymFPi4exWIZGjxWfw0IokeUrx3rJqZK3b6ubVdzGbV19DbLO3bNpykPt/vZqFEVBQ9JSVajzj22vJ352iK31LmqdZhwWIzX9ZjJ5jS0NzuXKts4srJiGWUrJhcEoQsDOJjd//fF7S9/tbb29ceyocfDrD2+cc58Oi6k0z5ZVJfONlD6ytY5Htk5GJz6xY3b1m3gmT7LYIwrEyxeT0JmkqcrGZx7asCzHrnNZONBRjdNixGaeeRiv3WcvRd5nyzSoaPc5ZozoXyhb6l3TRhBCyWwpmGwh4iU6a59MXuXCYASvw0JnjYO8RunBrb2m0Oi+70Ar7zswudTPaVH42H0dy5FdnTJYMQ3z+aIEIRQiR6dqvN4pj26r5Xh3kA6fA+cskYd3Sq3LwoObaxiJpLlvo2/+DXRWFMe7gxwrLhuyHTDMuGzobZtrMSjjNHqs1Mwy3L1UdNY4ONhRGMk5vOH2oC6d9cvPrgU4PxhBCPjokXYOtFfz+I46hsNpPnakfbmzp3MHrJiGefoyjpnTRJI5fnp9DLfVyEOba+dd7tHosfEr91RurfFMUa86q4QpVWe28IAap4X37L0z/eupXByKcHUkxj2tVWyovbNhQyEEb9t8d/aoOmuTqfVXUBh93Nbgps5lxaVPbaxKVkzDXFgSVWigZ1MkOt4T5GZxGVW7z1GW3KGOzkwc7vThMBtxWo20VHB+W9UkP77kR5OSYCJ7xw2zjs5sPLSlFq/DjM9hwee0MBBKcqKnIMRkVBSe3tO4zDnUWSgrpmEWQrCzae4AmXq3hQuDYDYqVNv1J0GdO8egiCVxBzMoghqXGX80M2s0tY7O3WAyKNOCVD02E1aTgXROpcGj66yvRlZMw1wOe1qqaKqyYTUZFn3OWEenUjx/oJVgIkutS/+R1Kk8LquJj9/fTjyTv231ic7qQExY3C0nNTU1sqOjY7mzoXOH9PT0oJff6kUvv9WLXnarm5MnT0op5W1RVSui29nR0cGJE8tiWLUsaJrkdH8IVStYrc2nu53Jq5zsCeG2mRas2hRMZLkwGKGzxlExw4KDBw+um/J78fQgY7E0HzrUVnZgzWA4xU1/nB1N7mWP7p6J9VR+S0Umr3KyN4TbOv2evTYaYzSSxqAIDIrgQHt1WeYjs6GX3epGCHFqps9XRMO83rg8EuWNawGgYJixfxYRkwl+cXOcM31hoDB/tJAG9gcXhvFHM5ztD/PZhzdOE2LRWRjHusb56vGCyVoqp/HPbpHVnAlNk7x4epBsXqM7kODjRR1unbXN0a5gyQlv4p4dj2f4/vlhxmIZQoksm+tdGBTBQX11h84t6L/Sy4DFaJjyev4imEgjRHnpZzqW2aigmwndHQ6LsbQ0xTGLKMmtCAHmYo9ooWWns3qZes9OPAwbDQoGIUq95UI6XaNa53b0HvMysKnOybP7mlE1yaa6+ZfPHOn04XWYcVlNC47sfWZPIzf8cVqqbXc1ZKYDu5o9/M6T2wjEMjw2g3/tTAgh+MC9rfQHk2yo1Zf3rRcOdXiptptxWo3UF+9Zj83EB+9tJRDPYjEKJLCpTnep07kdvWG+CxKZPNF0jgb3wk0sqmymkiXbfCiKwGs3Yy2zlzYVq8mwLt2EgoksQMk5rByS2Tzh5NymJAfap087qJpkJJqmxmmetffjsZnwrMMyWIuEElk0KfHNESvQO54gk9fYOoM1bJ3bqi+b05kXvWG+Q+7GxKI/mORbpwaRSN6zt2le0Ykz/WF+csWP2ajwwqG2krORzsz0jSf51ukBAJ69p5mOMoRo0rlCeSYyKvvaqqZpps/F988Pc8Mfx+c087Ej7brL2BpmMJzimycGkEie2dM042jXyd4Qf/rDq0gkv/bQRt5e5sjKYlCuO1fPF56ucE507hZ9bPMOuRsTi2DxqVtKCMSz86afMC3I5jXCRas2ndkJJDJISfH6llc2qaxKIjNRnvOXyQQTZRNMZMlry7/0UKdyjMczpft2fJZ61TeeLKXpCSSWOIc6awW9x3yHTJhYDEfS3L9AE4sdTW7GYhlUKdnTMv8Q5+ENXrJ5DbfNSIevsvaIa4FdTR7G41mklOwu4/oCVDvMPLSlhsFwmiMLMIl4Ykc9p/pCbK5zYdLn8Nc02xsL921ek7Oqxj25q57uQJxMXuO5/ZXT6ddZ2+gN811wpyYWJoPC43NYSt6K22rS9W4XgNmozGnZORsH2r0cWKAZT6vXXrH14TorC5NB4bHtc9cru9nIb79j6xLlSGetojfMS0Qik+fFM4X1rM/saSrJM4aTWb5zZghFwHvuacZju120YjCc4gfnh3HbTOxvreYnV/14HWaq7Ea+cqyP5io7f/DMjkVdo6xpGn/yw2tcGYny7L7mirp0LYRMXuU7p4eIpnO8a3cjTVW2O9rPuYEw//m1G7isRv7gmR24rSa+f2GYwVCKR7fVsaXexVeO9vLff95NU7WN//rRgzP6Np/qC3G8O8jWehePLuF8os7SE0vnePHMEOOxDIoiUDWJ2SBI5zXsZgP3dnhLa5KHwim+f34Yt9XEe+5p4nh3kEvDUQ60V7O90c2LpwfJqxrv3ts0ZyDZrbx5PcCFoQj726o51Kmvf16r6GNvS0R3IIE/miGczHF5OFr6/OpIjGAiSyCe5UbROetWLgxGiKXzDIZS/PS6n3gmT18wyXfODJHIqFwbjXFlJDrjtnfKWDzLqb4QyazKjy6NLuq+74b+YIrBcIpYOs+Fwcgd7+eVi6NEUjkGQimOdwcJJrNcH42TzKolMZfvnB0ilVO56Y9zsi84435O9YZIZVXO9IfJ5rU7zo/OyufmWIJALMONsTg94wnODYQZiqQ53h0kmspxsigoAlPu2XCKvmCSk8V6crI3xE1/vCAyksxxZSRW9vGllJzoDZLKqpzonbk+6qwN9IZ5iWj12nFZjZiNyrRozs5aBzazAbvZMOv88ZZ6FyaDoNpu4lCHt+hYZOHRrXUoQtDosZW1Hnoh1DrNbKpzIgQcWUFP5k1VVqrtJkwGwZb6O18D+uCmGkwGQZXNxD2tVVTZTDRX2VCEYHtjwXb04S01CCGoc1m5Z5blTjsaC3alm+uduqraGqfda8dhMdDosVHnsrCh1kGV3cS2xkJ8wY6mSbvaiXu2ym6ipdrG9sZCXd3R6KbdZ8dpMWIxKWxcgA2omFI3dzTObI2rszZYESYWBw8elOtB73XiWt+6pGa2z6eiaRKlqBY09XU+r2GsYINQzv6XQ6936jW4U2Y6t1v3m82qmOdZP74YeVlOdL3l8pm4V6Us6AtMlP1MdeDWz6a+L+een42p+5ladvpyqdWHEOKklPLgrZ/rc8xLyEw3YV7VONYdRAjY11rNid4gJoPCoQ7vtJt6tteVbJSvj8boHU+yr61qQfNgS8FcDaGqSY51jSOBw53eGRXP0jmVo13jOC1GDrRXl8rm1v3O1yjPl5dyuTQUZTiS4mC7F4/uNb5imagnE7fyRNlPfWg+1h0kr2kc2eAjFM9yui9Mm88+bYSn3AZ5aj2dmL9ezQ+BOuVRVsMshKgGmoAU0COl1CfTFomzAxGOdxfmiybmoaGgFrV9GYerUlmV758fQZOSsXiGDx9qW7a8LJQLgxGOFa+pzWyY0STkaNc4p4tzyT6nhc4yREgqRSSZ45VLI0gJ0XSO9+5rWba86Nwdl0eiHO0aBwo62N2BOEPhNBeHojRX2XAs0Ed+JdVTnaVj1loihPAAnwM+DJiBMcAK1AshjgJ/KaX8yZLkcg3jsk4WQY3Dgj+aQQhwLvAGXmyMBoHVpJDMqsuel4XinHJNXbPkfeK6K0KUbUhRKcxGBZNBIZvXcJhX17XWmc7Ue8VpMeK0mIA0FpNyR+vcV1I91Vk65voV+Cbwd8DbpJThqV8IIQ4AHxNCbJBSfrGSGVzrbKl3YTtgQFEEzVU2tje6MRkLAV3Licmg8OHDbYxG0mVJWq4kNtY6+cC9rUgpaameOaDuQLsXr8OCw2xYdu1im9nARw63EYhn6KxZ3CA+naWl3efgg/e2omqSVq+dzfVOtjY4qXVZ7yg4cCXVU52lY9aGWUr5xBzfnQROViRH6xCTQSnNWbXNEpndH0zisBiptpvoD6Zw24x4bCb6gkmqbOZp85KqJukLJql1WRbc201m84xGM7RU23BbTbitq3O+06gIpJx7Lu7iUJgG16SpQDSdIxjP0ua1zzqPF0xkSWTyiy4qUmU3U2XXNdBXI6msykg0jctiJJHNYzUqoIjSPbupzkUqq9IdSNBcZSu7gfbH0uRVqQ9fr0PKnWPeA3RMTS+l/FaF8rSuuOGP8dLZYYSY3XDhRE+Qn10PYFAEW+qdXB6OYTIINtQ6uToSw2xU+MT9HaX5q1cujnBlJIbDYuAT93eW/UOgaZKvHu8nmsrRWePg2X0rQ1RkoXQHErx4ehCAd++d2WzgT354hRdPD6IIwb97324OtHn5ytE+0jmVPS2eGRWeAvEM/3CsD1WTPLSlhgPtK2cZmc7yIKXka7/sYzSWoSeQoN5tJZLKYTIITAaFereVFw638b1zwwQTWVqqbTx/sHXe/Q6Eknzz5ABSwjt3NSxrvInO0jNvwyyE+BKwB7gITAR9SUBvmBeBSNGUQsrJ17OlUTVZMk3IqRJ/LA0UzC2SWbXUME8YXSSzKjlVK7thzmuSeDo/7Zirkal5n+08BsMpADQp6Q8m2dXkIZ0rmFiEkzNvE0/nUYtGFav5+ugsHlJCLJ0np2rEM3mq8irpnIqqCTStcM9GUzmixfpSbr2JpHJMrGSdrT7qrF3K6TEfkVLuWOiOhRCHgf9IoTH/pZTytxa6j/XAnpYqYuk8ihDsbJr5qfjIBh+aBLfVyLZGF8e6gvicZjbVujjaPU6921qS+AR4bHsdp3pDtHkdC4oCNRsV3rW7gZtj8VlF+lcDu5rcRFM5tDlMQn7nHdv4/Pcv43WY+MCBFgwGA49vr2cwnJpV6rDdZ+f+jT5i6TxHNizMuERnbaIognftaeT6aIx7O6rRNBAIEAWHKa/DTGeNg6f3NHJtNFa2N/q2BjehRI6cqrG/ffXeizp3xrwCI0KILwJ/JqW8tKAdC9EAhKWUaSHEV4AvSCnPz5R2vQiMrFV0gYrVjV5+qxddYGR1czcCI38HvCWEGAEygACklHLPXBtJKUemvM0B6gLyu2KQUvLyuWG6Awke3FRDbzDBQLBgdFDu02+5XBiM8GevXMViVPiDd++guWr5XIumnvfbNtewr7gWOK9qfPv0IKPRNI/vqGdbQ2Xnvi4PR3n18igNHhvP3tM0o1jIrXSPxfn89y8jgd975zY2zSDdORBK8tLZYZwWA+870IJ9hmVKd3LsO0HVJC+eHmQonOLt2+vY2bS49Urnznnl4ggXh6Kkcyomg0JekwghUYRCg8fK8wdasJoWZxnTq5dHuThUMLp4YFMNUAj6fOncEC6LcdZ6qrP2KOeX5ovAx4B3Au8Gnin+L4ti4FjtrT1uIcSvCSFOCCFOjI2NLSDLS0siq3LDH0fVJL/sCdITSJLX5F0ZKMzGm9cDJLMqoWSO412h+TeoIFPPe+q5BhNZBkIpcqrk4uDiGmfMxMWhKDm1MA8cTGbL2uYXXeNE03li6Tw/vzk+Y5orwzHSOZVAvHA+i3XsOyGUzNIXLNSrpbimOuWRVzUuDkWJpXNcHIoyFs/QHYjTH0wxHEkRiGVmrTsLRdMk5wcjqJrk3MDk/XZ1JEYmpxGIZxlcpGPprHzKaZjHpJTflVJ2Syl7J/7K2bkQwgv8Z+DTt34npfxvUsqDUsqDtbW1C8z20uEwG9hS78JsVDjU6WVDrQOzUWH3LHOXd8NDW2twWY34nGaObFjeiN+p572nZXKOy+sw0+6zYzFV5hrcyu5mD2ajQrvPjs9Rnizog5tqqLab8NhMPLi5ZsY025vc2M0Gal0WWmdZ63wnx74Tqu2FechK1SudO8NoUNjT4qHKbmZ3s5t6t5VNtU46fHaaq2zUu620VC+O3oCiCPa2VGE2KtwzJb5jop7WuS2zrsnXWXuUM8f8l0AV8BKFoWxg/uVSQggj8F3gX0spj8+VVp9jXt3oc5SrG738Vi9rfY653HOC1XVeE9zNHLONQoP8jimflbNc6nngXuDfFwXbf19K+VZ52V0dfPV4H11jcV441EbnAuzb8qrGmzcCaFJyqMPL8Z4gQoiiFeHSWAf2BBJcHIqyo8m9ogUMgoksx7rGafBYS/Pct/JPF0b4+ol+HtxUw6ce7CRXvL5IeGBTjW7HqHPXnOwNMhhKcXkkhkkRfOahDSSL/sptXvuC4k1UTfLmjQB5VeOBTTWLNkets3aYt2GWUn7yTnYspfwq8NU72XY1cG00VhKxSGW7+bfv3V32tpeGoyVh+sFQikC8MH9ZbTdPG8aqJD+4MEI6p9IznuBzj25akmPeCW9cG6M7kODKSIw2r31Gl6v/9ONrxNI5ro3GeN+BZrrGEpwpXl+3zagLgejcFf5omjeuBbgyHOXmWByf00K1w4zFaGA0mubaaIzOmvKXJl4ejnKqtxBD4rAY9aV3Orcxb1dCCPG3QoiqKe+ri6Ij6yQRiCMAACAASURBVBqvw1R60m3wLEzDtspmLklwNhfnqISA6iW0+5s4ltexsmUgq4r5tJoMs0ak1hQba6fFiNNsoNpeuL5CoMtc6tw1dosRs1HBZTNiKo6+tFbb8DoKddNZ/L5cquwmlOIPQLVeP3VmoJxHvD1TTSyklCEhxL4K5mlVUOO08oXndtMXTHJvx8xDrLPR5rPzkcPtSCmpc1vZ1eRBCDFNJKTSvHd/MyOR9IIfKpaah7fUsrHWSZXdhG0Wd52/+Mg+Xrvs576NPgwGAx01Dl443AYSXfhf565xWox87L52Iskc8XQOVcKuZg+qJtnR6KHGZV7QFFRLtZ2PHGlD1ST1ev3UmYFyapNS9GMGSpHW+mI6oLHKxuENPhRF4cpwlB9fGiGf1/BH09zwx5FSMhxJcXOs8HownKI7kACgOxDnhj8OQDqnleQgewKJklzkBFJKbvjjjEbTC85jJq9ydSRGNJ0jnVO5MhIlnsljMRpo9zmwGFf2/JYmIZVTyeZntwC3GA2F6NUpQ4mZnEY6N7nNcDjFDy4MEy4ue8rn8/z5q9f41sn+UppgIsu10Rh5tbBdNq/xysURbozGFvu0dFY4oXiWL73ZzetX/fzgwjBa0S3KZTOVrBgNiqDNZy+N5FwbjfHjSyN0jcXpKd7nOVXj6kiMSFFWczye4dpojGq7udQoT6QJV3BJns7qopwG9s8oCIx8o/j+eeCPK5el1Uf/eJJ/8/Il8prkdF8Ys9GAJiVb6l1c98eQErY2uLg6UviBr7ab+MGFgv7KpaEosUxBn3pbg4srxTTv299Scpo61h3krZvjKELwwuG2BfWsv3dumN7xJA6LAZfVyEgkg9tm4lMPdCDE3O5LK4GfXPFzfjBym1HHVF46O8RAKIXLauRTD3TSFYjz0tlhAJ7e08imWgf/z3cuEE3nee2ynz95fi+/9fVzvH7VjxACRRG8Y2cDXz3eRzavsaPJzZM7G/jzV6/zy54gZqPCnz2/V+99ryP++ddPc2M0RjiZZ1uji9cu+/mNRzeV4kqe3NnAjikSuoPhJH/00kVi6TxWk4EjG3y8Y2c9XWMJbvjjWE0GPnCwha8e7yOnSva2enj7toJRyg8vjnB9tJDmUw92rPiHZZ3KM2+PWUr5d8BzwGjx7zkp5d9XOmOriUg6R75obhBMZtGKS9DCyewUIfrJp+GxeGnVGYHE5OdT0yRz+dLrVLbQm9akLPWsyyVR3Dad04inJ16rzLNKbsWQyBauQ07VZu01p4rXJJVV0aQkmZ28RolMnrw2mSaWLvRcJgRDpJQMhdPk8pJcsaecLB4zWkybUzUSmcny0Fn7xFKF8lalRNMksXSuVC+Aaa8BEhmVnCpRNVmqp8msWrp3C0YzeXKqLH03ua/JNHl1ldyYOhVl1h6zEMIppYwDFFW7btPKnppmPbOr2cOHD7XRF0zyoXtbGY6kCadyHOrwcmk4SjKb5972as4PRcnmNfa1VPE1Zz95TePDB1s5NxRFEYJ7Wqs42RvCbFTYOkVG8r6NPgyKwG0zLdgH+KldDZwbCNNZ48RuNnBxKMLmOtesfsMrjUe31eG2hWhwW6meJVDtnbsauDAYYWOtE6NBYWeTh2S28PCxp6UKgyL43x7dzFtdAZ7c2QDAF57bxb/89kV8Tgu/UYxKf2pXI0ORFPuLy7I++/AGvnlygM21rgUth9NZ/fzBMzv427d6qHVacFgMPLmzgW0NbhIZlbyq3bZ6Yku9i48caaPLn2Bboxu31cg9rVVsqnVypj9Mq9dOq9fBkzsbGI2lOdg+GZfyxPb6YhrbgkxndNYuswqMCCFeBc4A3wFOSikTxc83AI8CHwD+Wkr5zbvNxGILjORVrWK6xsuFqkkUwYocfq60QEWlynMlX9OlZL0LjEhZ6OnOVcfKSbMc6AIjk6ym85pgwQIjUsrHhBDvAj4LPFAM+soBV4HvAR+/xahiRXCmP8zrV/00uK28/0DLiruR7oSbY3G+d24Yp8XIhw61rish+/MDEV69Mkqdy8rzB1sWTYClJ5DgpbND2MwGPnSoDafeU1mXZPIqX/9lP8FEjnfsrGd74+2mLJm8ytdPDBCMZ3liR/20uWUdnUow56+clPL7UsqPSCk7pJRuKaVPSnm/lPKPV2KjDHB1JIqUMBxJrxkz+wkziUgqx3Bk4ZHZq5mro4XgudFomtAiRq3e8MfJa5JYOs9QWDcHWK8E4lkC8UJcyLVZou/H41kCsQyalFz36xH6OpVnzXUTDrRXE0uP0VxlW/HiGeWyp8XDYChVmGNeZ0L2+9uqCCezNHps1CyikcTuFg/9oSQOi5G2Bc7b66wdGtxWNtQ6GItl2Nc6sx5BvdvKxjon/mh6yZT5dNY3a65h3lTnYlPd7f67q5lGj41PPdi53NlYFjbUOtlQgcCrereVTz6wPq+pziQGRfAr9zTPm+Y9e5uWKEc6OmuwYV5uNE3jL1+/yVg8y//yQCetvtt7Y9m8xk+u+tE0yaPb6ioqYt83nuRkX5BNta41aynYO57gVF+IzXWuss0EYukcr18dw2kx8vCW2rKi1DVN8sb1MaLpPA9vqcVjM93RsXVWFr+4EWAsnuHBTTUYDQo/vTaG22rkoc3T60U2r/H6VT/qAu7boXCKY93jtPscpWh/HZ35KKthFkIYgPqp6aWUfZXK1GrmFzfH+dn1AAD/cLyP331q221pLg1HuTQUBcDntHCos3ImC69dGSWUzNE7nmRLg3NNihe8etlPJFU4x60NrrICxH7ZEywpr7V6bWWNsvSMJ0rmI3aTgcd31N/RsXVWDsORFMe6gwAoQmAxKtws1ot2n2Oa89qVkSgXi/dttcNclvnE61fHGI2m6Qkk2VLv0oMMdcqiHBOL36QgLPIjCtHY3wNernC+Vi3tXkdJ0L6zdmY7xRqnGUUIhKDi+tgTsn9ehxmTsjYbjTp34Rr6HGaMZa7PrnMVrovJIPCWOXftdZhLZTtxzDs5ts7KwW2d1GCvc1lK94vZqNxmKlPjtGBQCvdtXZn37UQ6j82ERbcf1SmTch7f/jmwVUo5XunMrAVafXb+9Pm9hBJZts2w9AIKIvafuL8DTcpZRTMWiyd3NrCvrZpqh2nViIoslKd2NXKwPYPXYS57TfKuZg8NHisWo4LLWp6rV5XdzMfv7yCVVUsPVHdybJ2Vg8Ni5FfvayeezpckV5uqbNjMhtt6t01VNj5+38Lu28e217Gr2UOV3aSPpuiUTTk1pR+IVDojK4FIMse5gTDxW+QXA/EM5wcic8phDoVTXBiMkFc1+oNJrvljt0lIdgcSXB2JIaXkdH+Ik72FIbTro7GS6cXVkVjJ6GICTZNcGorSH0xO+zynalwYjDAyxxIqRRHFBmj5h7B7xxP848l+/Asw48jmC+c4l4GHoXiOU633Xrvi59XLo6X34WSWcwPhkrRmNqvyrZMDvHbZX0pzaSjCt08NEk/nZz2202KcNsox07F1ViaqJrk4FLntPvrK0V7+8OWLnOoJcmU4ylgsQ6golTtRZ88PhIt1IcVYPMNswky3IkShflQyjkRn7TGXJOdvF192Aa8LIb4HlESepZT/ocJ5W1KklHzjZD+xdJ5zAxE+eqQdmBAX6CeT07gxFuO9+1pu2zaUyPKNEwNoUnKqN8T3LwwX1lKH03z24Y1AQdBiQgD/9asGXrtSaBCujsbI5gs3+cY6Bzf9hUb52X3Npfmto13jHOsOIgR8+FBbabjt9atjXBiMYFAEH7+/A49t6fycF4qmafzhSxdJZFTevDHOf/zgPWVt99oVP5eHoxgVwSce6Cird/vDCyN86efdQEE/++k9jXz9RD+JjMrFoSgfPtTG5//pMj+6VGi47WYDe1ur+Pz3L5NTJZeGI/zLp3fc0bF1Vi5Hu8Y5XryPXjjcRp3LyisXhvnTV66hapK3bo7z8JY6rCaFereVDx1s4Q9fukgkmSOZUznY7iWSytJZ4+Tx7fVrNphSZ/mZayh7Ihqmr/hnLv4BrEml9WzRxGDCzABASlCLwvK5/MynndO0knFFMpsvGUSk85M97Kn7TE0RsE9lNQzFIeapn09NP5EvKad/PvFaKwrtr2Q0jZKAfzZfvhHHxDkWzATK2yY1ZWRjwrBj4tgT+0tnJ3eWzKrkNI2JS5vJT68HCzm2zspl6n00YRYRLY2OSVS1cB+pmkRKyOYlOVUiKaRXi99N3ZeOTiWYS5LzDwGEEM9LKb8x9TshxPOVzthSI4TguX0t3ByLs7VhMkLXajLw7L5m+oLJWZfD1LmsPL2nkUA8w/62atq8DkaiaZ4/ONm73lzv4rHtKpm8xt5mN41VVvKa5Pl9LZwfjqII2N3s4Ux/GJNBYXPd5Nrd+zb6sJoMuK0mWqYIjDy6tY4qu4k61+wGDysFo1Hh/3zHFo52BXlsW13Z2z22vQ6fw0y9x4rHXl6P9ZndjaSKDfKz9zSjKILn9jfTNZZgW7Fsf//pbVh/pFDrsvAr+wrrWH/94Q1cG42V1rXeybF1Vi73b/RhMxnw2Ew0VdkAeP+BVk71hrg8HOWT93dS57GgaYV4grYaR6nObqp1YjUrGBUFo0HoQiM6FWVWE4tSAiFOSSn3z/fZ3bDYJhblkMjksZsNFQ/YiaSypLIqDR7bgrdN51QMisBkUEjnVIyKwGhQSGVVTAZxmw54MpvHYjSUeuBLxVKbIORVjbwmp83b3VqemWKvfGJuXRbtIKe694STWcxGpaQ9rmqSTF6dpkWeyqqYjcqSX9OlZC2aWMxU3reiaRqBeLYU9JXNa0gkqayK1aigAVajYcFBkxP7WYq4Dt3EYpLVdF4TLNjEQgjxFPAuoFkI8edTvnIDq9qc9keXRrkwGKGzxsGz++ZW/bkbLg1H+M1/OE0mr/G5Rzfy4UPtZW/bNRbn5XPDWIwKBzuqefP6OHazgX1tVbx5I4DLauKFQ22lpR4neoL87HqAGpeFD93bumYjQGPpHP/jeD/JrMq7djewud7FT674S9Z67z/Qwmg0zTdPDgDw3P5mGj02XjwzSE8gye5mD4/vqOe1K37++o0ubGaFf/PsLupcVv7H8T4C8Sxv21zDwQ4vp/pC/PTqGD6nmQ/d26YHeK0ivnVqkL5gkr2tHt6+rX7GNP/3ixe4OZbgcKeXj93XwddP9HNtNEZ/MImUBXnfTXVOPnCwtezGORDP8PUT/aiq5L37m6eNcOnolMtcvzRDwEkgXfw/8fdd4MnKZ61ydI0VBAR6xhOlOaNKcPRmsDjHWQgsWQi940lUrfDUf7Y/giYl8UyeswNhpIRoKkcgXorFo2usEDQWiGWIpVf1c9OcjEYzxDN5NClL0es3i+XZH0ySzWsMhAr/s3mN/mCKvKrREyhE4k5sc6o3hCYliYzK5aEokVSOQLwQidtVTDNxTcfjWcKpxTPQ0KksOVWjrxh5PVGGt5LO5rlZ/O7ScLRUZwaCSVJZlVAySyCeYTiSJjnHaoxbGQylyOQKIzp948n5N9DRmYG55pjPAmeFEF+RUq4Nm6YiD2yq4WRviO2N7ooOUb73nmZeu+Inns7zq0fK7y1DwbhiOJLGYTFwoL26KBNoYm+rh59eC+BzmEvzZACHOr28cb1g3nGrMMJaot1nZ2Odk1g6xz1thXm++zb6ONETYku9C7NRYVuDm66xBBLY3ujCaFC4f6OPKyMxDhQN6t9zTxMDoRRum5EjG2pwWAzsafEwFE5xuKjEdqjDSyqbp8Fjo9ZZWSEYncXDZFA4ssHHtdEYBztmlsG0mo08ubOBE71BntzZwNYGFzfHErxtcw3X/HHMBoXdzR42L1Cta0u9q+hcprFTl2hdkayG4fFZ55iFEOeZI/paSrlnsTKxHHPMOovHWpyjXE/o5bd60eeYJyn3vFZSw7zgOWbgmeL/zxX//33x/0dZo8ulpvIPx/o42Rvk6T1NvHHNz7mBCC8cbuN0b4iro3E+/WAnT+1unHMfeVXjx5f9JDIF04PjPUEyeZW3barlra5xNCl5YJOPn98YRxGCJ3bUlwKaIqkcr14exW428Pj2+tsCvdYCveMJ/ur1m7htJn7r8c1YzbdXx+FIip9dC9DgsfLQltoZ93PDH+Nkb4jN9S72t1UzEknxf/3jOaSELzy3h+ZqG5/+m19yuj/EO3bU84X37SWczPLqZT8Oi5HHt9etyeu7HkjnVH50aRRNSp7YUT8tcE9VVX77G+foHU9Q57ZiMyoICj9eiiKocVjYWOckLyWCwhdOq5HHt9fPGTSmo1Np5hrK7gUQQjwhpdw35avfFUKcAn6v0plbLmLpHN85UxAD+dKb3XQHCnOY/+X1myX1r7/+Wde8DXNXIMHl4YLo/UvnhggnCzMC4eTk61AiRyhZmL9srraVHGhO9YXoLc5RddY4py3hWiv848mB0nzumzcCPL6j4bY0v7gxzmA4xWA4xfZG94za4j+9FiCayjEUTrOrycPf/LynZETwpZ938c/evoU3bwSQUvLds8N84X17OdkbKs1Dbqx1sLl+7V3f9cCl4WjJjOTCYHSaIcyPLo9xoidIIpOnayyBw2zEbBTEMnlqnRbimTwPba5lIJyiyWMjks6xtd7FeXekLIMKHZ1KUU43QQghHpjy5v4yt1u1OMyG0vzt9gYn3uIa4W0NLtxFda2tZfyQ1zotWEwKQsD2Bjdmo4IiBDsa3RgVgUERbG90YVAERkXQ6LGWtm2psiFEQUy/0kYXy8X2JjdCgMWkzNowtlQXysFtM+G2zfwc2VwsqwaPFZNBcKC9GoMiUITgYLsXj91UmiescRbKsrnaVjr2Wr2+64FGj7V0L029fwB2NrmwmYwYDQouqxGn1YjdbMRVNK6ocVpw20zUuSw4LUaq7SYMiqDpDpY26ugsJuWM13wa+JIQwgMIIAR8qqK5WmYUReHfvXcXg5E0nT47sUyem/4E+9uriaSydI8luKcMb9Vqh5lPPdBJVtWKgVtV5DUNl9XE7hYPmixoL+9s9iBg2vDZ5noXn/JYMSlKaUnUWuOpXY3safHgMBupss8skHJ4g4+tDS7sZuOsy5We3FnPoU4vbqsRIQRP7Gxgc70TTcKG2oJQy2v/xyO8cc3PO3cWxE22NbhpqrJhNii6jvEqptFj41MPdiLhtiCtVq+Dr332CKORNDUuC5KCYpfbYiSQyNLgspBRJXazQiYnMRlF6Z7U0VlO5q2BUsqTwN5iw4yUcl0YWkQzeUKJLHUuCx6bmf3thYYjnlFRZUGE4PxgmOv+OM/sbsQzS8MyEEoSz6jsbvYUG9hCIzB1Lmy2HwL3OtBmbq6af53nrY3261f9jEbT/MreJqxmI7FMnq6xOG0+O3UuK1JKEtmC8peUEiEEHruJd98zuWZd1SRdYwmcFkNZXsw6K5eZ5oPHYhl6xxPYzAbSeY0quxlFwPnBCLm8xsZaZynNlgZXSdktr2qc7gvhtpnYWOu8bb86OkvBXAIjH5VSfnmKmcXE58DaM7GYSl7V+ObJATI5jev+OB8+1AYU1KW+dXKAvCY5NxDhlYuFoJO+8QS//64dt+2nP5jkpbPDQEFB6r6N+rzV3XK6L8R/ef0mUJif//VHNvLy2WFGo2ksPQqffWgjV0divHJx0llqJinVY93jHOsquHs9f9CgC0GsIVRN8s2TAwQTGbrGEuxq9hBKFFTeTvaGAPjgwVa+c3aIdE7l6miMjxwuLGf8xc3xUpoPHWqlUR/W1lkG5uoxO4r/12V3Yl5Xtynfl6NRItd+IPvqYkpxlOngp7OKmLjfZOn97EtJ9PLXWWnMFZX9X4sv/18pZfkGumsAo0Hh+QMt9AaT06KhHRYj793fzEgkzc4mDzua3NwYKwxlz0Sr184zexqJZ/LsadFF7xeDfW3VfPbhjYzFCkPZAE/vaeTaaIx2r70UUCcpOATtbHLPuJ9DnV5sZgNOi5FWr95bXksYFMH7D7TQO57EajKQzavsavagCIHLaiyYWFTbeN+BZnrHk2yZEnh430YfTqsRt9Wk95Z1lo1yohwuCCFGgZ8V/95cjfPMUkrCyRwuq7GsNatehxmTQcFlMZJXNeKZPFV2My3V9tKw5+ENPg7Ps6xCX4azMHKqRqJ4rSfoH09S7TDjtBaq69tvcafy2Ezc2zG5TEYIwc6muVWXjAaFfWUE8OksD5m8SjqnLdhjfOI+91hNbKp1UmU3TTOq2T+lzOtcVupc0yO5TQZlWhodneWgnOCvTUKINuBtwNPAXwghwlLK8pzuVwivXvZzfjBCvdvKhw+1zukqJaXkGycHGImk2d7oZiyeIRDLcE9bFY9uLd+yUGdhZPMaXznWSziZ48gGH/dt9PG3v+jh++eHqbKZ+NMP7MW1DgLi1juJTJ6vHOslkVF5dFvdgiwWX786xpn+whr11mo7O5s9PLnz9vXxOjormXm7jkKIFuABCg3zPuAi8LUK52vR6Q8VxCRGo2ky+blNzrOqxkikMHrfE0gQiBXMIgZCqcpmcp0TS+dKwisT5XWlKNASTuVKn+msbYKJLIlMQchnYIFl3h9KokkYCqfJa5L+oF5ndFYf5Qxl9wG/BD4vpfz1cncshGgCXgZ2AE4p5bJaHr1tcy0neoJsqnPOu27VYjTw0JYaro/GOdhRTSCepSeQ0NWAKozPaeFgRzVD4RQPbKoB4AP3tvLlo7101jjY0aibAqwHmqts7GnxMJ7ITlPyKocHN9VwvDvIM3uaSmIzOjqrjXIa5n3Ag8ALQojfA64DP5VSfnGe7YLAY8C37y6Li8OmOieb6spfl3ig3cuBdm9xW/RGeYl42+bpetj72qr1ueB1hqIIHts+s4fyfGyodZZEZXR0VivlzDGfFULcBG5SGM7+KPAwMGfDXIzkTs81l1sJescTvHFtjOZqG0j41ulBtje6+dyjmxa0n7dujnPdH+PeDi/bGycje39yxc9AKMmDm2q4MZZgJJrmkS21pcjevKrxw4ujhFNZntheT53bOtsh1hSXhqKc6A2ypd4160PM8e4gV0ai7G+rZlezh/F4hlcujeKwGHnnzgaMCvynH1+nK5DghUNt3F/sNU8lp2r804URYuk8T+yop9ZlKevYOqufVy6O8N2zQ+xu9vDpBzr5k1euMBzJ8OkHO2j02PjR5VGqbGae3FkwfdE0ySuXRhgKp9GkxG0z8dSuBj1OQWfFU84c8wngLeC9wGXgISnlwsyFl5BjXUEC8Sxn+yN8/UQ/Y7EMb1wbYzhc/vxwJq9ytGuc8XiWX9wcL30eSmQ50x8mEM/yo8ujXBiMEIhlON4dLKXpD6W4NhrDH81wqi+8qOe2kvnFzQDj8Sxv3RwnO8Mcfl7V+PmNyTQAZ/rDjETS3PTH6R1P0DWW4Fh3kLFYhm8XTURupXc8yQ1/nNFomtN9obKOrbM2ePHMIGOxDK9d8fPGjTHO9EcYjab59ukhTvWF8EczXBuNlWJBhqNpLg/HuDIS5URviMFQiotD0WU+Cx2d+SnHjOIpKeVuKeVnpZRfnnCduluEEL8mhDghhDgxNja2GLsEoLO2oItS4zSzpxjN2eix4VuA0b3ZoJTMEzbUOEqfu6xGaoqGBzsa3VQXZfwmjglQWxTEFwI6atbP+tgNxWvQUm3DZLh9lMRoUGj3Fa5HR/GatvvsKEJgNxuoc1tpqraVDCV2z2IyX++24LAYUIQo7We+Y+usDXYUR65aqm3safLgsZkQAu5praLd50CIwj06UYd8DjNumwmPzUSd04LJIPQ16zqrAiErLHsjhHgdeHyu4K+DBw/KxTRqT2TyWE0GDIrAH03jtZsxzmKAMBuaJknm1Nt0rFVNks6pOCxGVE2SyavTdK+hMNyaV+WaNZ+4lQmz9ngmj91kQFFmbhwnNKynXtN0TsWgCEzFteXZvEY4mZ1zCmCm6zvfsXVmZ6L8VgNT7+d0Nk88m6fGWagrqayKySCm6RTkVY2sqmFQBFKy5gxLppZdx+99r6xter7wdCWztKiUe05Q/nlVYp93ihDipJTy4K2fV8xGRQhhAn4A7AV+KIT4F1LKY5U63lSmitrf6RyvoogZzSUMiijt36CI2xplKIgUrLH7vyzmc+UR4vZreusPpdmozFtmM11f3RFofTC1bljNRqxT7r+ZHoSNBqUsQSEdnZVExX7NpJQ54PFK7V9HR0dHR2ctMpe71HNzbSil/NbiZ0dHR0dHR2d9M1eP+d1zfCcBvWHW0dHR0dFZZOZyl/rkUmZER0dHR0dnNbLYAWVlzTELIZ4GdgKlyAsp5R+VnRMdHR0dHR2dsihHYOSvgA8CvwkI4HlgxQqM6Ojo6OjorGbKWUdwv5TyV4GQlPIPgfuALZXNlo6Ojo6OzvqknIZ5QssyWXSMygGNlcuSjo6Ojo7O+qWcOeaXhRBVwJ8ApyhEZP//Fc2Vjo6Ojo7OOqWchvnfSykzwD8KIV6mEACWrmy2dHR0dHR01iflDGW/NfFCSpmRUkamfqajo6Ojo6OzeMyl/NUANAM2IcQ+ChHZAG5At2jR0dHR0dGpAHMNZT8JfAJoAf7DlM+jwL+oYJ4WjVAiy5mBMG1eOxtrncudHZ11gKpJTvQEkcC9HV4Ma8ztStUkv+wJIoCDa/D8dHRWAnMpf/0t8LdCiPdJKf9xCfO0aLxyaYShcJpz/RE+81DnjE5QOjqLycWhCL+4OQ6Axaiwr616mXO0uJwbCPNW8fxsZgN7WqqWOUc6OmuPcuaYfy6E+KIQ4gcAQogdQohPVzhfi4Kt2BCbjYr+ZK+zJNinWA+uxQfBqedkXyd+4zo6S005vxz/vfj3L4vvrwFfA75YqUwtFu/c2UBXfZwGtxWLUf8R0ak8m+pcvG+/AYmk3edY7uwsOlsbXFhNCgJBm08PNdFZ2yxEA3sxKafHXCOl/DqgAUgp84Ba0VwtEmajwrYGN1V2M3lVOHIWWgAAHOhJREFUoz+YJJ1bFVnXWaGEk1mGwqk507T57GuyUZ6g3eegzWdnMJwiksotd3Z0dNYc5fSYE0IIHwVhEYQQR4BIRXNVAX5wYYQb/jhVdhMfv68DRR/a1lkgwUSWrxztJa9JHtlau+bmjxfC0a5x3ro5jtmo8NEj7XhspuXOko7OmqGchvm3ge8CG4UQPwdqgfdXNFcVIJjIAhBN5clpGhZFH9rWWRiRVI68JoHJ+rReCRXPP5vXiGfyesO8ilhsi8JKHn+9Mm/DLKU8JYR4GNhKYS3zVSnlqhu/emJHPaf6QmysderzzTp3RIfPzuFOL9F0nsMbfMudnWXl/k01AHgdZpqrbMucGx2dtcW8DbMQwgr8BvAgheHsnwkh/kpKuapkOZuqbDTpPyA6d4EQotQgrXc8NhNP7da9bHQm0XvCi0c5Q9l/B8SA/6/4/gXg7yn4Mq9ozg9EeOP6GB0+B+Fkln+6OMKuJg+/+9S2GdP/7187zZm+MA9tqeWPfmXXbd9rmuTl88MMhJI8sqWOHU3uSp+Czgrny2/18MNLo+xpqeJ3ntxa1jZD4RQvnxvCYTHy3L4WzEaFl88NMRhO8fZtdWxrcPPKxRG+fKyX1mo7/+rdOzEby4nTXPixbXMseTrZG+RoV5At9S72t1Xxmb87wXgiy77WKlq9dhQhaK628ew9zfzkqp8b/jj3bfSxfx3PvevoLAblNMy7pJQ7prz/iRDiUqUytJicGQiTzWtcG41xfjBCNq9xqi9EOJmlym6eljabVTnRE0JKyZvXAzPuL5LKcdMfBwpCC3rDrPPTa2Nk8xoneoLE03mc1vlvqUtDURIZlURGpT+UxOsw0zWWAOBcf4RtDW5eveInk9O44Y9zYyzGjkbPouT31mNvqXfNmvZ0X+H+uTAYYTyeYTSaJpPXODMQJpPXcFoK59o3nuDSUBSAs/1hvWHW0blLymmYTwkhjkgpjwIIIQ4DJyqbrcVhV5Obn10P0O6z43OY+MGFUXY2u29rlAHMZgN7W6o4OxDmcKd3xv15bCbafXYGQil2Ni3OD6XO6ua+jTX86NIou5rdZTXKUFgLfM0fw2E20lJtw2I00Oq1MxROsbO58LD38OZaBoJJmqttbFjEpVe3Hnsudjd7ij1mJwfaq/jq8T7GE1l2NblpqS70mOvdVlq8NrbUu7jhj7OrWb8vdJaHtTSULqSUcycQ4jKFwK++4kdtwFUgD0gp5Z67zcTBgwfliROroq3XmYGDBw+il9/qRS+/1cvUsqtEw7SQqOy11DBWkqnXVAhxUkp58NY05Tziv3MxM7VQ0jmVX9wMYDMZ2dPi5q2bQdw2E4em9GojyRzHusepd1vZ2zqp3TsWy3CyN0S7z46qSV46O8S9HdU8vqPhjvNzYTDCYDjFvR1evI7be9465ZPKFsrWYTFyuNOLEEu3tnyxjj0cSXG2P8KmOieb6pyks3m++PMepJR86sHy9dlfPD3I1ZEYHzjYQucKMVw5NxDme+eGiaZzjMez3NvhpaPGwX0bfUgpOdoVxOswc6BdH7rW0VlMylku1bsUGZmN491BzvYX9Exu+GME4oX1k/VuS0ld6afXx7jpj3NxKEpztY0apwWAVy+PMhxJc2UkyuWhCOFUnnMDEQ5v8OGyLnzdZSSV48eXR5ESoqkczx9sXaSzXJ8c6x7n3EChbOtcFjYsYYO0WMf+4YURQskc10Zj/K+PbOS754Z549oYAF6HhRcOt827j97xBF89XhiQiqSyfP65ux6EWhT+6qc3GQ6nuDQcw2M1cqY/zIcPtSGlRJOSy8MxABo9Vn3Fg47OIrI4oZ4VZEK4YGI+C8CgiFLgCYDbOmlWYTVNRpm6i9vazQZ8zsK2TovhjtcxW6bsXxdUuHvcU8q23PnZlXZsj72wH4fFiEEI6l2W0ncNHmtZ+3BZTKV65XVY5km9dFTbzRgUgVERCEEpgtttM5Wun8kgcKxBsw4dneVkxd9Re1ur8DrMWE0Gal0WtjW4cVgM+JyTP2APba6lw+eg2m6e1mC/Y0c92xpc1LosGBTBL7uDbG903/HSE6vJwAuH2xiPZ2nz6gL+d8v+tmpqnRZsZkNplGO1Hfvp3U0MhJI0eKwoiuDhrXVUO8xIKdnbWt4Qr9dp5t++dxc9gQT3da4c4ZLff2o7J3uDuC0mrvljHNngBSFKdb+5yobbaio9nOjo6CwOK7bH/NKZQX5yZRSAVq+dWpcFVVU53jPOtZEYmqbx06t+bozGyOc13uoK0B2Ik81rvHbFT/94knAyzd/8vIczfSEyWY2+YJJ4Jk8kmeXVy6ME4mnSOZUb/hiprEognubVy6NEkllGo4XX8XR+Wr7cVhOdNQ4MiiCczHJzLI6mzR1ApzM7rV77kjTKiUyeG/4YmfykicmJniBXRqKl95cGI3zlaC+pbCFNMpnjX3/3Aq9cGC6lGYtl6AkkmAia7A0k/md7Zx5lVXHt4e/XzQzNPKMMIiAzihiN8+wzDhg1vheHReJKYhzyjM9Eo8tEkxiNxiQmTtE8F1ExvphInEFUUBAVUBkFBGSmoZma7qbnvvv9UXXhdnt7uD3de5v61urVdeqeU3ufU9OpOrt28ftZX7Bw/e4D5+zYV0z2vpIDxzm+LOUXH3SYN3/tLj7PPuhyvnPb1vTr0h7V4MO9qux4bMstYmstm2zEY1dBCet92tG6tXzbXhZt3Muc1dt58ZPNPDl3Hfe9sZI/zVrJX95bS0XETWkDFPjnW1oeSVh2IBCoTEqOmB+dvYbnP96EJG4vLeeCcQMAuPeNVcxcsZ0MiVOH92JNTgGtMkSHNpl8np1Hq8wMvn5ED77ctZ+2rTNYm1PArvwSXvxkMyP7Z7FjXwnPfLiRsQOy2JpbQrcOrTl5eC9y8kromdWW+Wt3sWd/Ka91aUtBSQV5xeW8s3JH3G9++0vKmfbxJkrLI0w4vCunH9W7uR9ToI6YGf+3cDP7iso4rFt7Lj/2cO5/YyWvLt2GJO7/5liG9OzE9X//lLLyCB+s281jVx7D5L/MZ8Ou/bywcDPTOrVlYI+OPP/xJiJmnDSsJ5MGd+ebj3/A/tIK3lqxnU/vOItXV2TzyLtrAcjJK+Kq4wdx17+Xk1tUxswV23ngsvE8//EmXl68lQyJuy4YyZCenZi2YCMlZRHGDOjC2aP6fOUeduaXfEV2VdbtLOCVxdsAuGBcP4bVsEY5lvKI8fzHm6iIGCcM7cHiTbnMXp3Dki25WCRCiX+XWbQxF4AZK6BVBryxbAdnj+rDt782kOmfbSW/uJwhPTsy+egB9cmmQCDgSckR8448N9owM7btPej5c1eBi4+YHdh6rzxiB+LLKyLsyHPnl5ZH2F9S7s+H3P1utFJcVsGeQhd2o2cXzi8qPTCiyS0qY78fNVW3rV1xWcWB0UFecdq5Dj+kiBgHykK+nwHZkX+wjG3dW8S+wlLKfH7u3e9+y/N5H4m48lZYWn5whOjTKa1wxxUGuSWlZOceLK/ZeSWUR1w5Aw6UtdhyvDO/hNLyCCVlEa9f/LIUT3ZVYuPzS+KfE4+IGRV+1ie/uJy9hU6/igqjusG5mdO1PGIUlJRT6OtLInIDgUB8UnLE/OMzh1NYWkH71hlMOWHwgfjbzhvJAzNX0adzO649aQjPf7yRAd06MP6wLjzy7lqG98niogn9eXHRFo7qm0V5RQV/nr2OSYO7ccG4/jy/YDMnD+vBqH6deevzHE44ojuDenRk1fZ8juqbxYTDu/HBut2cNbI3+4rKWLhhL98YG39pVY9ObTl7VB+27ytmUjUOSQKpQWaGuHB8f9bkFDDWO8C47bwR3D9jFT06tuGyiQPIzMzk6uMHsWxrHtedegQA9106lntfW8mIfllcOMGNAk8Z3pO8onKO95tY3HjGUKZ9tIkTh/bksO6d+P7JQ9iZX4IZ3HDqEbRplcEPTxvKh1/u4dzRbiR8zQmDMIxuHdpw8rCeZGRkcO7ovmzLLeLYwfG/Sw/q0fErsqsyun9nCkrKMYNxCTj6aJOZwakjepFbWMrxR/Rg3GFdmPbRRob0bM+anEK27yskt7DsgBFYl/ZtyGrXmmtPHMKQ3p0Y1KMj54/tx/pd+xl/eHAwEgg0lFodjDQHUQcjUV3qs6Y0ErEDeyxHIhEyMmqeDDCzZl0325JJVwcV8cpJU5WLVE43Nv+qq4PRZ1WXuhVoPoKDkfSjsRyMNAs780v416dbyBBcNvHwhJx3rMzOY9bnO+iV1ZbWGeJfn27lsO7tuXfy2LgW2PPW7GLRxj0c1bcz542pv7ORQPry0brdPDpnLR3bZPLLi8fQvWMbXvpsK9m5xZxxVG/GHtZ4I783l2Wzekc+kwZ358RG3J1q/rpdLFi/h2G9s/jGuIbv9BSvDkYiEe55bSUrtu6jqKycru3b8L1TjuC0EcGmIhBoKlLm1ffLnQUUlTrn+ut37U/o2pXZeVREjO37inl3dQ4RMzbtLmTT7vjprNi2D7OD1wUOPeat3UVpeYS9hWUs3pxLblEZW/cWeccZebUnUEfKKyKs2p6PmSt3jcnn2/Iwgy92NI41dOU66DZryS0sZ1V2HgXFZWzLLaY8YsxbG3+Tl0Ag0DikzIh5eJ8sVmbnkZEhjuydmBem8Yd3ZWd+CX06t2NE3yz+sWgzg3t0ZHA1zv+PGdSNRRv2MrJfFpk1LE8JtFzOHtWb1dvzyGrn3Lt2bteaI3t3YltuERMGdq09gTrSKjODCQO7sio7v9F3XTp6YDcWrN/DiL6dGmVbyMp10Fl0d+/UhmMHd2fpllyy2remU9tWnD3yq1bjgZZJmJ5ODin1jTmQnqTrN+aAI+Rf+tLU35gDjU9dvjGnRMcsaSfQlD65ewLNPf+WDJnJknsM8GkS5TeEoG/l/Gsu0u25Q2rqnIy8qy+p+Pxqojn0HWRmvapGpkTH3NRIWhTvraSlyUym3FSRnyhB3+SQjveRjjqnEun2/JKpb8oYfwUCgUAgEAgdcyAQCAQCKcWh0jE/eYjITKbcVJGfKEHf5JCO95GOOqcS6fb8kqbvIfGNORAIBAKBdOFQGTEHAoFAIJAWhI45EAgEAoEUokV3zJLGSPpPSZOaWE4//1+SJkv6mZfbpJ7VJF0kqUNTyqiDDqMlHVUl7mvJ0qc2JE2U1FtSpqSLJZ2TbJ0SQdINydYhEKgvTd0WN4RUasta3DdmSTPM7DxJNwNnAq8DJwJbzOxnTSTzXTM7Q9LDQBHwLjABONbMvtUUMr3cbTjHLDuA6cArZra3qeTFkf8Q0Acowy3G/66Z7Yw+j+bSo65I+l9AQAnQG9gK5AG9zez7ydQtHpLmAtEKGvUdOxpYbmanJEerQwtJnYCuQK6ZFSRbn3RBUrxBn4AZZnZ2c+tTG6nWlqWMr+xGJLot1SXA6WYWAZ6QNK8JZUZ3EBhtZmf58FuSZjehTIDVZna6pCHAN4HpkkqAl83ssSaWDTAp2kFIGge8KOnWZpBbX440s1MBJC0zs0t9uKnzqb68BIwHpprZHABJb5rZfyRVqwSRdLOZ/VHSeODPuJeNVsDtZjY3udrFR9IZwF24F7c8oLOkLOA3ZvZ2UpVLDwqAj3CdcezL5bikaVQzKdWWtcSOeZSkZ4ChQFvcCBagXRPK/JukvwKbJT0HvIcrgM3igNjM1gMPAQ9J6gNc3BxygUxJbcys1MyWSroEeA43qktFYsv7HTHhlNzJxMz+IKkNcK2k64Dnk61TPbkI+CPwIG4kslZST+Bl3GxWKvJL4BwzK4xGSOoIvAWEjrl2VgKXmFmlLdUkzUqSPrWRUm1ZS5zKHhRzuM3Myvx01Mlm9mYTyu0PnIubDtkHzDezJU0lz8s818xmNqWMWuQfB2wws5yYuEzgcjN7IVl6VYek0cAqM6uIiWsDnGdmryRPs9rx9gpXAyPM7PZk65MIkhYDtwAPxLo4lDTPzE5KnmbVI+kd4E4z+ygm7njgXjM7M3mapQfe7ma3mZVWiW9lZuVJUqtaUq0ta3EdcyAQSC0k/SLm8GEzy/XTwg+a2XXJ0qsmfMdyOzAWZyQbAZbidN6aTN0CLZ/QMQcCgUAgkEK06OVSgUAgdfGrGNIKSX9Ktg6Blk/omOMg6TRJr9U1vhHkTZY0KuZ4jqRatxuT1K8x9JHUS9KMhqaTatQ3vyT1l/TPan47kDeS7oiJHyxpeR3Tv1nSNYnqFSedGyV9t6HpNAfx1ogCf0+KMgkS6w/BzH6UbH2SiaQp3p6mtvOmSrqsHulfF69uxNYvSRMknR/z2911saCW411JnRPVK05ab0vq1tB0qiN0zKnBZGBUrWd9lVuApxoq3Mx2AtmSUtVCtlkxs21mVpdG5Y7aT6mMN+L6Lo1jYf00cFMjpNOk+DWiPwNuk/SqpOjG8L9Jolo1En1R9f4Q7sOtZf6RpJTVuZmYAtTaMdcXM3vCzJ6p5bQJwPm1nBOP84ElZpZXj2ur8ixwfSOkE5e07JgldZT0uqQlkpZLusLHT5T0nqRPJM3UQY9ccyQ9LGmxP/84H3+cpA8lfSZpvqQRCerwtKQF/vqLffwUSS9JmiFpjaQHYq65VtIX/pqnJD0i6eu45SQPev2G+tMv9+d9IenkatS4FIg2IJmSfufvb6mkm3z8Bkn3+bQXSTrGP5t1cktwovwbuLKu998YJCsfvcxxPvyZpJ/78C8lfa/K23l7SS9IWilpOtDex98PtPe6TPNJZ/p8XSHpLUnt44g/A/g0apkq6Uj/9r1E0qeShsqN9N+T9LKkLyXdL+lKXx6WRcuIX8qzIfocUphJZnaVmX0HuBO3RjQpG9AnQKw/hIt9h3E10GIcu/hyvkrSNF++/ynvSTBeHZQbAR8LTPPlvr2kn0ta6Ovjk5KqXXoo53HvEx8eL8kkDfTH6yR1UMzo1+uwRNIS4AYf1wa3lO0Kr8MVPvlRvn34UlJ1sxpX4pboRfW5xreVSyQ96+OmSnpc0kc+rdPk2vmVkqbGpPUK8F8JPvK6Y2Zp94frkJ6KOe4CtAbmA7183BXA0z48J3o+rmIt9+HOQCsfPgv4lw+fBrwWR+6BeNzb/lU+3BX4AuiIe6P80uvUDueZ63DcW+YGoLvXdS7wiL9+KnBZjJw5wEM+fD7wdhxdhgCfxBz/EPhnzP109/83AD/04T/gLEuzgF7AjpjrBwDLDpF8vB1X0bsAC4GZPn42MAIYHJP2LTHyxwHlOI9uAAUxaQ72v03wx/+Ilo8qsu8Bboo5/hi33hNfXjp4vXOBfri1+FuBe/w5/w38Meb6O4H/SXadrCWfPwDaxBx3w3nk25Esneqg83bgGWAL0D4mflGydWvEexyMc/5xoj9+Gri1DnXw2Jg0useEnwUu9OGpxLRpMees8PX1Rl/3rgQGAR/63+8GbvXhpcApPvxgTJ2cgm87Y66Z7+tKT2A30DqO7I1Alg+PxrXZPWPvw+v9As63wcU45zJRy/xPovXbn7sG6NEUeZOuDkaW4Zxp/BbX8M6VNAYYA8zyL22ZQHbMNX8HMLP3JXWW1BXXQf1N0jBcAW2dgA7nABfp4LeNdsBAH37H/MJ6SZ/jCl5P4D0z2+PjXwSG15D+S/7/J7gKVJV+wM6Y47OAJ8yPxKJyPNE1usuATmaWD+RLKpHU1cxygRyacIqqGpKVj3OBHwHrcR3E2X6kMMTMVksaHHPuKcCfvMylkpbWkO56M1vswzXl20oAuSVDA8xsuk+/2McDLDSzbH+8DufYAtwzOz0mvRyg6rfbVOPHuJfXHAAz2yvpIuDypGpVM1EfyXfhXrii7jnvSppGTcNmM/vAh5/D1YsZ1FwHYzld0k9xL5TdcR3vqzXIm49zKnMKbnBzHq4TrOQBztfrrmb2vo96FqjJ493rZlYClEjKwfmT2FLlnO6+7QM3c/Wime2Cr7SXr5qZSVqGe3lc5nVagavT0ToebTN316BXvUjLjtnMvpB0DG40+Ws5ZwDTgRVmdkJ1l8U5/hUw28wu8Y3xnATUEHCpma2uFOmcnpfERFVQv+ccTaO664uouzezaFqRKrpFYtJux0Evac1CEvNxIW5K7ktgFu6l6Xu4zrQhVM33eFPZdc23qvkUm4ex5aHZ8y1RzGxBnLgK3MgkJTGzjXHiCoAmc1KUJOLVJ1FzHQRAUjvgMdwIerOku6m9bL8PnIwbrLwM3OZlvp646pWoS5tbLinDnJvmuqRVU3sJTVj30vUbc3+g0Myew01xHAOsBnpJOsGf01rO01OU6PfLk4B9fkTbBTdNCG56JBFmAjdFv6lIOrqW8xcCp0rqJmcAdGnMb/m4UV8ifEHlEdks4Ac+bSR1TzC94UCdrIobi2TlozlvRJtxI7YPcW/rt+Iajaq8D3zbyxxDZV+/ZZISmWUBN1o+0uuRD2yRNNmn31aJ7xbW7PkWaFEMjNY1XDmfR811MLatinbCu/xsQl0MJucCVwFrfAe5B/diXmkvAz+Ll+vrOVS2f6lPewnuvo7w4Xdxdjw9IPH20rf7fXGfChudtOyYcXP+C+Rc/f0C+LVvbC8DfuuNBRYDX4+5pljSZ8ATwLU+7gHgPh+f6Kj2V7gp06V+iuNXNZ1szlvQb4AFuG9uG3CuO8GNHH4iZ4g0NH4KX0lvP7BO0pE+6q/AJq/PEnxnkgCn0/C31kRJZj7OBXLMrMiHD6PKdJrncaCTpJU4o5PYUfWTuOc9Lc511fEmlQ2IrsZZ+y7FTfP1TSAtcNOCqep/OJD6rAZu8OW7G/B4LXVwKm5ToMW40eRTuBfDmbjBR42Y2QbciDz6EjwPt3NXvF3xvgM86mXFGpXNxhl7xRp/1YXXcfYbmNkK4F7gPX+Pv08gHYCJwEfWVO5Fm+LDdar9UcVgIYl6dPL/W+G+w1zSwPQuwXVmjaHb+0C3ZD+jdMjHRriP6cCwRkjnaODZZN9PHXWdAvSvw3lTiW80FDe+EfS6IyY8GG9gVIfrbgauaQT5N+I29khGntT5flvCH86+Y1YjpfUwcGZT6ZquI+Z05W7/9rccZ3j074YkZs5oaENDlZJbV/p7a8a9nA9xbsc1Eg2lJ+ljjDSF5jcurAthLfohgjljyqfUCA5GcC807zRCOnEJvrIDgUBCeAO7Gbhp/WNwlrjXmFmhpIm4acFOwC5ch3wibsS7FWcscwLwE+BCnIHcfOAHZmZ+rehrZlbJ81psfDwZZpYtaQ5u+dnpOCvwa81Z+nfw8sfgpm7745bLXeb1WObv4U7cp4Z5uKnbrbg1zJUMfCSdA3zbzKb44yNxn1Z64QyPLsctkbwHt+xtLG753DLccrf2wGQzW+evnw7cZ3GM5AKHJmHEHAgE6sMI4DEzG4lb63m9N4T7M27KeSJuNHiv72QXAVea2QTf0T1iZpPMbAyuo7qgLkKrkxFzSiszOw431Rzd1ep6YK+ZjcLNMEwEMLd9ZpHXKWpcNAx41MxG4zrVWCPNKCdS2dZgmr9mPK5Djy4tGg9cB4zE2RIM97r9lcqj5EU4S+VAAEjT5VKBQCDpNPf61ygjapERb/3/SbhvgpjZ8rAWPZDqhI45EAjUh+Ze/3rg8lpk1Lb+vzbCWvRA0glT2YFAoD409/rXKLWtc4/HB8C3/PmjcN98o4S16IGUI3TMgUCgPjTr+tcotciojsdwnfnnwK9x0+ZRHwJhLXog5QhW2YFAICG8VfZr3nAr5ZGUidvUoNg78HkbGOE7+fqmOR34qZmtaaBuRwO3mNu5KhAAwjfmQCDQ8ukAzPZT1gKub0in7ImuRW9Qx0x6rUUPNBNhxBwIBAKBQAoRvjEHAoFAIJBChI45EAgEAoEUInTMgUAgEAikEKFjDgQCgUAghQgdcyAQCAQCKUTomAOBQCAQSCH+H8clb7NITTZoAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeYAAAHjCAYAAAD2Xrx8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d3gkyXnYj3+qJ+dBzmFzzuFu73YvkjySd0fymEmRlEiRFC1ZsmVLlvSzv1awJdGWZVmSbQUrWFZgFMkjeQx3PJIXeGnDbc67yHEGwOTY3fX7owezAHYADDKw25/nwQPMoLrr7a6uqq633iCklJiYmJiYmJisDpSVFsDExMTExMTkFubEbGJiYmJisoowJ2YTExMTE5NVhDkxm5iYmJiYrCLMidnExMTExGQVYU7MJiYmJiYmqwjrSgsAUF1dLdvb21daDJN50tnZidl+axez/dYuZtutbU6ePBmWUtZM/X5VTMzt7e2cOHFipcUwmScHDx4022+BnOgcpS+S5siGKmp9zmWt22y/1cHlwRiXB+Lsbg6wvsZb1jFm2y0+qZzKC1dC2K0KD26uwWpZOsWyEKKr1PerYmI2MbmbGUvmeOlaGIC8Jnn/geYVlshkuZFS8uyFITRdMhzP8NkyJ2aTxefN7giXB+MA1Aec7GgMLLsM5h6zickK47Jb8DqMd+Qan2OFpTFZCYQQVHuNtjefgZVl/P5blFttstyYK2YTkxXGabPwsXvbiKbz1PnNQflu5f0HmgknstSaE/OKsrnOR+UROzZFIeC2rYgM5sQ8hfZff6ascp2ff3yJJTG5m3DZLbjslpUWw2QFsVsVGoOulRbDBFZspTyOqco2MTExMTFZRZgrZpM1RSav8bVTfcQyeR7f1UBLpfu2MpFUjq+d6kMCT+1rotJjv61MXyTNt8/043FYed/+5hVdrWq65Ftn+umLpHlkay3bGvwrJovJ0hPL5Pn6qT7yms679zbNuKd8smuM//nDa/icNn7ryR2c6YtwsT/GvtYg922oXkap7x6GYxmePt2Pw6bw1L4mfM7b1dk3Qwm+f2GIKo+d9+xrIqfq/Pa3LjAcz/LpY+s4tuk2D6g5Ya6YTdYUvWNphmIZ0jmNSwOxkmVuhBJE03li6TzXhxMly1zqj5HKaYTiWXrGUksp8qyMpXJ0hJPkVJ1zvdEVlcVk6ekIJRlN5ohnVK4OxWcs+6PLw6RyGkOxDCe7RjjTEyGn6pzuiSyPsHchV4biJLIqI4kcXSOlx4bz/TEyeY2+iDEeXeiP0j2aIpPXeP7S8IJlMFfMy0C5+9Zg7l3PRnOFi2qfg3gmP+3Kcn21lze7IwBsqPGULLO1wcfFgRg+p5XmipXd16tw22mtdNMfSbOjyVwt3+m0V3sIuGzkNZ1NtdO7ReU1nSMbKjnbF8HvtHGgrQpFUbjQH2N3U3D5BL7L2Fzn42J/DLtVoa3K0MjpuiSr6kXN2vYGPz2jKao8dur8TircdhqDLsKJLA9tWdhqGcyJ2WSN4bRZ+Pi9bTOWqfDY+fSx9TOWyao6YAx+qi4XTb75YFEE7zN9l+8aAi4bnzq6bsYyo8kcXzreg6rp/O57dhW3bB7dVsej2+qWQ8y7ljq/k597cEPxs65Lvnyih4FohnvXV3FkQxUba71srN1YLGO3KvzRh/YumgymKtvkrqQjlETTJcmsxlA0s9LimJhMonfMUIuquqR7dGW3Wu52kjmVgcIYcT1UemtssZlxxSyEOAJ8DDgGNABp4DzwDPAPUkpzQ8xkTbKnJchgLIPXYaWtqrS628RkpdhU6+PqUIK8prOj0dzeWEl8Thv7WoN0hpPcu65yWeqcdmIWQnwX6AeeBn4XGAacwGbgYeBpIcR/l1J+czkENTFZTGp8Dj42i0rcxGSlcNktZmjWVcRDW2phy/LVN9OK+eNSyvCU7xLAqcLPHwohTHt9ExMTExOTRWTaPeapk7IQwi+EqBz/KVXGxGS10BdJ07vCblAmJtMxEE3TY+4drwrSOY1rQ3HSOW2lRSkyq1W2EOLngN8GMsC4+aoEZjZ7NTFZIW6EEnzzdD8AT+xuYFOdb4UlMjG5RfdIin8+1QvA23bUrUj2IpNbfPVUL+F4dlVtb5XjLvUrwE5zdWyyVkhk1OLf8aw6Q0kTk+UnMeGZTGZXzyrtbmV8vEisorGinIn5BmDqXEzWDDubAiSzKhLY3WSsRsKJLF0jSTbV+fCXCLFnYrJcbK33EcvkyWs6e1uCpHMaFwdiNAVd1AecKy3eHc/VoTg5VWd7gx9FETyxu4HLg3G2NawezVo5E/NvAK8IIV4HsuNfSil/acmkMjFZABZFcN/GW3aJui756sneQhjP+KpRV5ncnSiK4N71VcXPX3+zl85wCptF8Olj63HazCxjS8WNUIJnzg4AkNN09rdW0FLpLhlzfyUpZ2L+C+CHwDlAX1pxTEyWBinHf69slC8Tk6ncejZv/W2yNEzs/6t5LChnYrZJKf/NkksyD8zcySbloCiC9x1ooiOUZGu9Eawhq2oc7xjD47Cwr7Wi5HHxTJ6TXWM0BFxsqZ+/mqtnNMX14QQ7mvzU+kxV5d1EJJXjzZ4IrZVuNtR4uTQQYyiawaIILBbBofZKHttRz4X+GE0VLjMn9wI53xdlJJnjUHsFbvvt09uGGi/NFS7SeY2dy2x0J6XkZNcYOVXn0LpKbJbpA2+WMzF/VwjxWeBbTFZljy5cVBOT5aHW55w0Kb5+c5STXWOAkUSivfr26F8/uhLixnCC0yJCrc9BRYn0kbOh6ZKnT/eR1yRdI0l+5v6ZYySb3Fk8e2GIvkiasz1R3re/ie+dHyScyDKazLG5zofNonCovZLDyxRR6k5mMJrhuYtDgJEe9rEd9beVuTIUp3csDcDpngj3TNhSWGquDMV56ZphQ21RxIx1lzMxf6Tw+zcmfGe6S5msacZXJkIw7Z6eq/C9VRHYrPMLK68Uzp/XVHM1dBcy3uZ2q4LTbsFmEcbzVFgtucz95EXDYVWwKAJNl9PeV7ft1pRXakW9lMyl7lklk1Kar/gmdxxb632c641S4bFTO02i+oe31NBa6abaa8frmF8nFkLwoUMt9I6lWVdiVW5yZ/PYjno21SWIZ1R+cj3M/RuqcTusOKwKEsxnYhGp8Nj58KEWIuk8G2tKp9NsrXLzgYPN5FSd9dOUKcWZngidI0kOr6ukITC/NLFzqXvWZYAQ4heEEMEJnyuEED9fxnFvF0L8uPAzIIR4Txmym5gsCyc6x4im83SGk9wMJ0uWsVoUttT7qPKWnrjLxee0sa3Bb1rb3oXYrQqba328emOEm6EkJ7rG2FLvo73aY07KS0Ct38nmOh+KIqYt01zhntOknMyq/PDyMDdDSX50ObQg+cqtuxz93GeklJHxD1LKMeAzsx0kpfyelPIhKeVDQDfwgzLqMjFZFqoLk61VEVS4Tb9mk6VDUQSVBfuEat/c7RRMVha7VcHvMsaIau/ytF85+jmLEELIgm25EMIClC2dEGI9MCSlXJ5EliYmZbCrOUCd34HDZiHgKj0x94ymeOFqiIaAk0e21iLE9G/hJncGoXiWH1wawu+08diOOqwzWM7OhQ8ebCGUyFI3zbaJyey8dC1E50iK+zZUsWEOK96FYrMo/NQ9rYwmc9T7l8eropyn7nvAl4QQjwohHgW+UPiuXN4LfH0+wpmYLCW1fue0kzLAGx2jhOJZzvZGCSWy05YzuXM41T3GYDTD1aE43YuYZMJuVWgKuhZtor/biGfynOgcIxzP8sqNkWWv32mz0Bh0zagiX0zKeUp+DSPAyL8o/DwP/Ls51PEkcFvOZiHEZ4UQJ4QQJ0KhhentTUyWgvZqIxpQhds24wRucufQVuVGCPA4LNSYq9tVg9tupa6wWl1XdefvzZdjla0Df174mRNCiHogJ6W87RVHSvmXwF8CHDx4cPWGYDG5K8jlND71/07QG0nxsXva+PSx9ficNoQAr9OKVTFXOncDW+v9tFa6sVkUbBaFH14e4tJAnEPtlWxt8PH1U32ouuQ9exuLRoE/ujzMxYEYB9sqir6pvWMpvnNuAJ/TxlP7mkzDvwViUQzvhlROxVeIdd8RTvL9C4NUeey8Z1/TjAE7FoKUku+eH6QjnOSBTTXsar49MEkio/Lb375AKJ7l00fXcXRTzYLqnPZKhBDfEkI8KYS4bakghFgvhPgdIcSnZjn/u4GnFyShicky8GZfhI5wgryq873zgwCc7Y0iJfSMphlJmqrsuwW33YrNoqBqOmd6ouRUndM9Y9wMJRlN5oil81wZigNGAJnTPZFCmUjxHBf7YySzGoPRTDGghcnCsCiiOCkDnOuLks5p9I6lGYxmlqzeRFblyqCR+OJ0b6RkmQv9UbpHUqRzGj+4NLzgOmd6xfgMcAy4LIQ4LoT4jhDih0KIDoz42SellH8z08mllH8hpfyfC5bSxGSO5DWdvDZzaPecqqPphrJmd1OQpgo3ihA8vNV4293R6AcpaQg6qXSb1rR3G6ou2dbgQxGCnU0B1lV58DmtuO0WNtYaxkcWRbCj0Y8ijN9Z1UjjuLXej92qUO210xR0IaUkkzdTPC6Eqfdwe4MPm0VQH3AW1dxLgddhZX21ByklOxv9Jctsb/RT73diUeCBzQtbLcMMqmwp5SDGXvK/E0K0Aw1AGrgqpTTTQJqsWobjGb5ywkhE//4DzSU77c1Qgm+fHcBls/Dhwy34nDa+/HNHJpXJqjpCEeQ1iW5uttxVvHIjzOs3R2kKuvjFRzYWjX4+fez2gIdv21HPg1tq+NLxHk50jfHo1jp2NQf4hYc3Fst880w/N4YT7G4O8Oi2umW7jjsFXZd85WQP/ZEMRzZUce/6KjbW+viXjyx9qkYpIaNqCCHIqqVf9m0Whb2tQaLp/KJYbpellJdSdkopX5VSnjYnZZPVTs9oipyqk1N1ukZKP643Q0k0XZLIqgxMowa7PpxASgjHs0TSuaUU2WSVcWPY8O7si6RJlbHSHU3mGEnkkNJILTgRXZfcLHx3bdj0Gp0PyZxKf8Top8t9D8upOxTPEknlS7b/fDAtWkxWPaF4dk5qwC31fhqDThoCTrZOk/x8T0sQkFR6bLQXrDyHY2levn7LQ+BQewUVbiNqV03B0Gc4llmUjmey8uQ1neFYBn2KOmQkkWVXU5Cg28be1iBeh5V0TiM8wWVuNJkjmVWLn+t8TrbW+6j02NlS7yOaynMjlGA4miaczHKgrYKg28aRZUyacCfhc9rY0eTHahEcbr+VDS6cyJLOTT82SCkZjmeKWwxguF5FUuW/aBfrVibXPZHGoIu2KjcOm8KBtooF1728UbxNTObIK9fDvN4xitdh5eNH2sqybvU6rHzoUOuMZV69Gea1m6PYrQpHN9UQdNn42F+9QTKncmxjDZ9//27aqjyTskF1jST5D984T07V+cjhVt6zr2nB12eyMkgp+fKJHoZjWTbX+Xh8dwMAZ3sjPH9pGLtV4WP3tBFw20jlVP7+1S5SOY37N1bjsln4waWhSWUURfCOXQ0MRjN8+UQPF/tj9EfTaLrkYFsF7dUePn5vm+nHPE9UTad/LI2qSfoiabbU+znZNcqLV8O47BY+dm9byXj2z18a5lxflEqPnZ+6p5WRZI4vH+9Bk5IndjcWbQXKqlu/VfdU0nmN4XiWbF5nIJqhMehaUN3mU2KyqhmMGSqkRFYlnlFnKV0+46rKnKrTGU7SNZIimTPOfyNcekXcGU6SK+wxmSrJtY2mS0JxYwU8EL1lNT1u3ZtTdUYLK5tYWiVVWJUNRNPFZzKn6rdZ6w/HM2i6ZCSZJa/qJLMqkVSeSCpP2jT+mjcZVWcslQcobj2N/07nNKLpfMnjxttqNJkjq+qE4llUXSIlDMXKs+QuVfdUIqlcceU+/gwtpO5ZV8xCiPuB3wLaCuUFIKWUZtpHkyXn6MZqIEx9wLmggA/JrMpANE1LpRuH1cIHD7XQPZqi0uPg2KYa7FaFR7fVcW0ozmcfKP1o37+hmjd7Iowkcnz4YMu8ZTFZeawWhfvWV3O8a7TwjBmTbnOFi3Rew++00VZpBJipDzg51F5JKJHhvg3V2C0KqZyK33lrG2ScrfV++iMZKtw2rgzFcdoUttb72VjrneTqYzI7PaMp7FaFOr8Tr8PKgbYg5/ti3L/R2A44sr6KvKZT5XHQGChtcPXg5hre6BilvdqDx2FlS72PvkianKqztyVYlhxeh5UHNlfTGU5xz/rSebObgi4OtFUwksxyZEPVgusuR5X918AvAycB85XPZFmp9Tt57/7mBZ1DSsmXjvcQTedprnDxgYMtDEaztFZ6UIQgkspR63fyO+/eOeN5rFaFf/2WzQuSxWR1IKXkXL/ho3y+P4bTZuHrb/YB8M5dDWypn2ybcHRT9aTP795behvDblV4+876pRH6LuJ8X5TnLg4hhOFZUetzcmkgTlbVudAXp73KS5XXwVP7Zh4bWirdtBResMCwnn5sx9zb50BbJQfaSk/KYKR3neomtZC6y5mYo1LK75Z1NpMF0/7rz5RVrvPzjy+xJHcOuqRoqDOuDo9n8oX/GZbZtSsmnclKoEtIZW89C4kJhlzjz4bJyjHeT6U0trEqPXpxK+BuaJ9pJ2YhxP7Cnz8SQvwB8DWguKEipTy1xLKZmMyby4MxpISt9T4siuCJPY1cG4oXw+ntaQ7yjTf7qPc7p82Lm1U1LvbHqPU7aQrOLzm6yepk4jOxuzlIjc/Bhf4oeU2yu0TIxXGuDsXJ5nV0qeN32Sc9O71jKcKJHNsbjOAiYOx/XhqM0RR0LWkQjDuN/W1BcpqO3WLks1YUwTt3NdA1kmJfaxAwrOov9Meo8tgnrUxn49qQsfLe0egvmTFOVXWeOT+A12Gd1ud8vnWXy0wr5j+c8vnghL8l8MiiS2NisghcGogVw2pqujSiNk1JTP/fn7vC8c5RAPa2VpRUP/7w0jCXB+NYFMHP3N+O39wjvKOY+ExcHYoXfVUvDxqT9VSuDcV55uwA3aMpHIW9zw8fbqEh4CKSyvHPJ/vQpWQ4luFtBZXl9y4M0Bk29kp/9ug6M2Z2mTisFh6cohreXOdjc92tLYaXroU40xNFCPj4vW3F2OUzcaMQWAggp+nsb73d/enLJ3t5+rSxrWFVBA9uuV2fNp+658JMkb8eBiMutpTy5sT/FXIsm5isSnR5yy9VThOxS9Vu/SOvljadGHdvlXL685jcGUx8ZqaL8nbreZAU0tNPfkaY/B2Aro//Nh+gxWZixN1yb6+cNDaUPkjXb51Ym+a886l7LpSzx/xVYP+U774CHFh8cUxM5k44keV8X5QNNV5aKt1srvHyzXw/upRsrjN8BXtGU9wIJdje6KfW5+Tfv3MrgR/ZqPU7ebJgyHNtKE5/NMO+1iB+p41tDT5euhZiV1PATPt4BzGWzHGmN0JblbFivtgfIxTPcGxTNTaLwq6m0qrszXVe8lodmbyGlEZEqH8+2cue5gAPbqllV1OAa8NxusJJ/vqlm/zUPa08trOeC31Rmipc5mp5DuQ1neOdozisFva3BkuqnA+1V9A1kqSl0lW2x8aGGi/NlS4yOY0djUY7D0TTXBmMs6XeR0PAxQcPtWKzKrjsFh7ZaqyWb4YSdI+m2NsSJOi2c7A9WKjbXaz7Qn+U0WSOg22VuOwLa+uZ9pi3AjuAgBDivRP+5QfMzRKTVcN3zg0wkshxvi/K5x7cwDfP9hcz/Tx9pp/37W/mm2f6iz7LP3P/OrwuO7/+zm3Fc0TTeZ45N4CUxsD9nn1N/N2rXXSEk3SOJLlvQxXramYPRmCy+vn+hUEGohnO9kZ5al8T379gbHtsrffxjl0N0x4nCsksxvm3Xz5N71iaV2+M0BR0c7Y3ytWhONeGE1R57DisCh870l5MBWlSPie7xnj9prHV5HNaJ6mwx3nt5ijxjMrF/jj7WiqoLWMP/+pQgt5Rw2/9TE+Ee9ZX8fTpftI5jSuDcX7uwQ3YrcqkAEXpnMa3zgwUtimyfPBQC6/fHCvUHWNfSxAJPHthCIBUTpuX5fdEZloxbwGeAILAkxO+j2NknjIxWRWMr0QcVguKEJNWtz6nFUWAw6qQU/Vp32RtFoHNYpQZP994JCGrInCXiCpksjYZfwbsVgWXzYJFEWi6xDnHVY6n8EzYrQoehwWrInDaFAr5LvCZWpZ545qgXXBaS7fLeDtaFFE0tpsNp+1WufHjXTYL6Zw27digKEYbZ/Ja8RmZWreUFJ8j1yJoRmbaY34aeFoIcURK+eqCazIxmUIiq/LS1RAeh5WjG6uLGXwmcnUozj+93s3GGg8fO9Je8jz7W4OMJLLsbQ2iKIIHNtdyaSCOLiWPbK1FCMG+1iBvdIyyr6V0rFu33cqHDrUQimeLofJ+8eEN/PCyn411Xur8TnRd5y9f7CCczPKz96+jIeiiZzTFmz0RNtV62dZQOiWcyeri7TvruTGcJJnN88rNEY5tqsZlt7Cp1kcsk+fla2H8Thv3b6zi2QtDvHJzhPZKN5VeOwLjRfCBzTX86mNbeOFKiB2NfhqCLj50uIWBSJr/+0oneU3noRLp/453jjIUMwKVVHrMVKLTsbnOx5vdETwOC00VpT0iWitcPP1mH+1VboKFtKyv3hhhNJnj6MZqAu7bX4zqfA7i2TyprEZrwZp6X2uQn1wPlzQEA+OF/8OHWhiIZopjw7GN1dT7nVS4bcW6P3SohUgqz6ZCmYFomuOdY6yr8rCrOYCq6bx0PUxO1Xlwc82MWxvlLAM+KoT4yJTvosCJwuR9V1Kuv7HJ9BzvGOXyoJFwvjHoKhk79u9e6eT6cIJLAzEOr68qqdJ68WqYTF7nlesj7G0Jcr4/ilqwyDjfF2VvSwUvXxtBl5IXr4XYXF86sUW110H1BOtKp93KO3ffUm3+5MYIP7piJEH/whvd/Ju3beG5i0NE03k6Qkk21nqxmbGQVz0Oq4XNdV7+149uoEsjNOfPHjVior9+c5QrhWey1ufg/77SSSav8dLVYQ6vqyKSyrOl3kfAZeOe9VU8saexeN5an5OfXBspWnf/86k+PnX0Vqz14ViGl6+FAcNbYLogJSZwqnuMsVSOsRRcGYyzvUQe5H94vZu+SJq+SJpjm8eo9Tt57eYIAEIYgWKm8uylIS70xQD4yskePnNsAy9dMybLF6+FJm1VTKTCY6diwouUoojbgtDU+Sfnhf7h5WGGY1luhhJsqPXQEU5yujsCGJq8+zZMDlozkXJGEQewF7hW+NkNNAM/K4T4H2Ucb2JSkiqv8aBbFUGwxNstGBM2GKqjak9pA4/qgvFF0G3DqgiqPHaEMDpnpceBIqDSY5y/egFuDY1BFzaLsapvLrxtT63bZG1gUQQVxWfi1oA7/kzaLIIqj40qrx2LIgi47LjsFrwOK0IwrXtMa5UbRQiEgLaqyf6tXqe1uEpayHN4NzDeDhZFTKtZGI8tYLcq1Pud+JzWokq7appj2iqN9gForTBc5cbbf7rxZb5UFc7nc9qwWxQqPfZi3VWz1FXOink3cL+UUgMQQvwZ8BJwFDg3f7FN7jZOdo1yaSDOgbYKtjX42d0cpM7vxGm1lFQ7AfyLB9dz7/oqWipcVHpLd7Z37qxnMJah2utACEGNz0GVx44uJbU+47tNdV4i6bGysslMx4YaL7//vt1EU/nim/XGGg/dI0k21HhKWo6arD5uhBK8emOE1ko3D2+u5cJAjH96vZuHt9awv7WCxoCLoViG714Y4j17Gwm67bRXuclpEqfNgqbLSVbA48/1/tYKDrRV8J+f2kle1dk6ZWvDbTcypMXSeRqmie1sYtAQcBFwGS8y4y9QU3l8dwPhRJa2Sjd1fieKIvjEkTYSWZWGQGn195Z6P49urSWZV7m3ENP6qX3NDMcz1Prm3ya6Lnnu0hCjyRyPbK2lzu/kbdvr2Nnkp8rjwGpRaAi4+MSRNvK6Pmtd5ayYK4CJo5kHqCxM1NnSh5iYTEbVdF66FiYUzxbVeWCof6ablAEUxchvOpPFpdWi0FzhLq5GLg3ECCdyjCbzXOiPoWo6r90cRdUkr94YWdB1tFS4J6m7XrkxQl6THO8cK2aeMlndvHLdeA7f7I6Q1TQuDcQYimV4o8OwAq4PODnbGyEUz3KuL8bWBj/VPieNQReVHvukSVnT5a3nupDLe0ON97ZJeRyvw0pj0GW+xM3C2d4I0bTKUCzLtaHSmdze6BjFZlHoj2boL2QI8zlt007KANeHE8SzKroO53qjgLHibq5wl21AVoq+SJqL/TEGo5li4CJFETRXuCcZlVV47GW9AJQjyX8FTgsh/lYI8X+BN4E/EEJ4gB/M4xpM7kLGJ08w1H1LSVPQXbCyFjRXuJa07vHsQk0Vt9TcJqub1kKb1fmdNAZc+AvW0xMzRbVNKDOTla1FEbSMP1uVpUO7msydlgo3FkXgsCnTahfGtwp8TuusquFx6gNO7FbFaLfKxQuzW+W143Ma2xxti/AczKrKllL+tRDiO8Dhwlf/Pyllf+HvX12wBCZ3De/d10Qip+JbgOtRJq/xjTf7iGdU3rm7oWQM67yqc64vipTweMEApMJto2dUUlFYnb/ZPcb/+tF1fE4bv/nk9qJl5Vx5dFsth9dX4rVbzVXQKiOv6Tx9up+RRJa37agvht98cHMN+1qDeOxWLAX1ZziR5bmLQ3z9zV5uDCep9Tv45bds4vJQgr948QaH2is51F46u9BTE57reCbPN97sI69J3rW30dxLLpOfXA9zpjfC3uYg922sxu2wYLcqOKwKDpsFTdP4uX84xY1Qkvfua+IXH93E7uYg62u8OKxK2UaXTpsFt91CNq/jti+eC6TbbuWn72snq+pFN8uFUO7aXQFCwBiwUQjxQDkHCSE+IYR4XgjxYyGEaYJ4l6MoAr/TtqAJrHcszUA0QyKrcqEvWrLMi9dDRFJ5ouk8L14Lo2o6Z3ujgCgGHnn+0jDxjEp/JF1UYc4HIYxrKuXqZbKyDMUy9IymSOU0zvZGJv3P77RhKbSZzaIwGM0wkshxrjdKOJGldyzNlaEE53qjZPM6b3aPTVvPxOf6ZihJOJEjms5ztWDdbTI7p7rGyOZ1ThXu85XBOOmcRiSVpzOcpCOc4tJAjJyq8ezFweJxXod1Tp4QHaEkkVSedF4rWt8vFjaLsiiTMpSxYhZC/BfgQ8AFYHwTTQIvznJcE/CglPLRhQq5UEzXptWBruvEMyqBea5OwbDErPLaiWfUSe4KmbyGw6oghODe9VX88NIwEsmRDVVYLQpb631c7I+xsxCG79imat7sGcPnsLK/Lbig65pYt8nqodbnpNbnIBTPsn0GH3NV1anxOvA5rWyq89ERTlLttbOjIUBO1bk6lGB7g5+sqmERAgnTTgbtVR58TiuqLhdkaHinkVU17Jbp+8jOpgBneiPsGDeqrPVyvi+G3arQWuXGY1NYV+2lcyTJ0U23/MMTGRWnVcFa2B9WVZ2MquN1lp7aWqvceJ1Wsnl9VbdPOdP7e4AtUsq5Gno9BliEEM8DF4F/PW7ZbXJ38lvfusiVwThHNlTxr9+yeV7ncNktfOJIO1LKYid/4WqIU11jtFe7eWpfMxtqvPz1zxyadFxO01EUyBYMtGp8Dg63V+K2W3FME1moHKbWbbJ60KUkr+lIJDmttGFeNJXjN75+jtFkjo/e08rPHl2HlJLXO8b4wvFumipcfOZYO1852cdL18JkVZ0an4On9jUVXfkmEnDb+PSx9ZOez7udV2+M8NrNEZoqXLx/f3NJ7dLDW2t5aEtN8Z41BFx87sH1k+7hP3z6HjRNw2Ix+uu3z/TzD693UeG28/vv3QXAr//zWaJplY/f2zYpBsE4ui7RdIlEouqr11izHB3ATWA+seXqAHthxZwC3j3xn0KIzwohTgghToRCoXmc3mQtkcmpRdXRVLXifJjYYa8NGeftDKdKWkarms7NUBIQXBs2yt4MJdELSdgHopl5yzFb3SYrRziRZSyVBwTXh0tb9l4PJRlJ5JASTnSOIYRAURSuF56TvrE0fZEMo8kckXSegWjaiLk+kpyxbnNSvsXEe5nKT782m3rPSt3D8UkZ4HjXGFLCaDLH1aE4VwbjjKXy6FLyRmfp7anesTTpnIaqSTrDqflczrJQzsScwrDK/gshxJ+M/5RxXBR4ofD3D4FtE/8ppfxLKeVBKeXBmprbQ9eZ3Fk47Vbesq2WgMvGO3dOnyhgPtyzrgq/y8ah9sqSLg9Wi8I96yrxu2zcs87wXdzdYqjMKjy22wJBTCScyJKZYTCZrW6TlaMh4GJTnZcKt60YbnE0mSOdu9Weu5oC7Gj0U+mx88SEFdbB9gosimBHo5/1NV421/nYUO1he4Mfn9PKjobSEaJMbufQukoCLht7W4KLtgcL8OTuBrwOI4rb3pYK9jQH2NpgtOWTEyKyTWRjrRef01ps29VKOXfpm4WfufIKt5Jd7AU65nEOkzuIzzywgc+UZTY4N3Y1B9jVPPNAed/Gau7beCsE3hs3R3nt5gh2q8KDm2pKZo565UaY12+O4nNa+di9bSVj25ZTt8nKYFEET+y+NUCf7Y3w/KVhHDaFn7qnjYDLht2q8B+f3HHbsf2RDJoui9qUx3c3MBBN89UTvSSzGmOp3Iz+9ya32FrvZ2v94k+CRravIG67hbym43FY+e133d6WE+kIJ/jR5WE0KdndHOChLbWLLtdiUI671N8JIVxAq5TySrknllKeFkKkhRA/BsLAH81fTBOTxWVcpZ1TdW6GkyUn5sHCoBzPqMQzqplPd40zPslm8zpjydyMObb7C2VHkzkyeQ2Pw8pwLFuMwT4Yy9BebfotryQDhaAiqZxGJJ0vZvuaiatDiWIbXhmMr92JWQjxJPDfADuwTgixF/gdKeW7ZjtWSvkrC5bQxGQK4USWZFYtBoEYjmb44olu3rKtju0Tkp9LSUkDHYD3H2xhNJkn4LJxbFPprZT7N1YjZZiGgLPsROxLydTrXiqklHSNpPC7bGs2A1IyqzIYy+B1WEnlNJxWhZYKF6mcSsBlK2YWmo6HNtfwesco66rdxQF/a4OPZy8Oks3r7F7lWpLRZI5YOk9blXvF97tVTadrNEWtz4HPWfplKJLKcbonwt6WYNkxBe5dX0VO1anyOmgsM8Tp23bUcWkgRkbVeWpf07zrLodyrns6ylFl/xZGcJEfQ3ElvH6uQpqYLAbhRJZ/er0bTZcc21TNwfZKPvpXrzEUy/D3r3bx0q88TH88w9OnjRg4T+5pYGPt7dmkWirc/Kf37Jyxrjq/k/cdWB2W1qWue6l45cZIIdyh4OP3tq85la2Uki8e7yEUyxQHxlhGpbXSzeO7G0pmKJtKS6WblimT93fODvD06X6klDQGXZMyR60moqk8//haF6ouuWdd5aQtnJXg+xeGuDoUx+Ow8Mn715V0NfuPT19gKJahPuDkjz+8r6zzVnsdvHf/3Pqn227lN945ydxpXnWXQznXPR3llMxLKadGcjDNT01WhGRWRSuoomKZPADxrAoYrlAJVSWWUYvlo2n19pOsQUpd91IRSxvnz2uSVH7t3T9NlySzKnldksqpZFWdbMGAb/za5kPvWBopjTboi6xei95UXi2qa5f6WSmHcRnSOR1VkyXLRNI543dq+eVdqrrLue7pKGfFfEEI8VEMn+RNwC9hGHaZmCw5WVXj0kCcWp+DxqCLtioPG2o8hBO5YojEX3tsC3//mpEdqNrrJOiy8+PLw+hIdjYaq6PRZI6ukWTBKtOGpksuDcTwOKzFUI0ryUA0zVAsy7YGX0m/6rYqD0c3VRPP5Ll3fdW86ynnuo9uqsZmUajy2iclBOgeSRFJ59je4EdiJAupcNtvW1kuFz2jKcZSObY1+CetRqwWhcd3N3B9OMF9G6rQdEl/NI2Q0BFKkFP1SavI3rEUI4kc2xv9065qesdSHF5XSe9YClWX/MuHNi359c2XhoCLB7fUMJrIFTMopXMalwdjNFW4ikkUrg/HyamSbQ2+JVV3H91YzTNnB9jTEpyU0GEiP32knWfODvB4wTJe0zT+4qWbBJx2furetiWTDeAXHtrIj6+EeGiLsaUlpeTiQAyH1bKgICRv2VbHqe4x2qs80173dJQzMf8i8O8xMkl9Afg+8J/mLKWJyTz40eVhLg3EsSiCn7m/nWRW5UbI8CE91xvlvo3VvPdAC+890FI85tkLQ7xaSJi+sdbLE7sa+cqJHlI5jYsDMX7qnjbe6BgtJlX/4KGWkjG3l4tEVuWrJ3pRdUnfWLo4OE1luljNc6Gc6/Y5bbxle92k74bjGb72Zi9SYviK6pLTPRGEgI/d27bsMaFHEln++ZQhTziR5ZGtk+XdUONlQ8Gg78pgnAv9MY53jhJL5/E6rQTdNrY3BhhL5vjnk33oUhJOZHl0W91tdUVSt8q8dXv9bfdmNTLuHjbOd88P0DWSwm5V+PSxdfSNpfnWmQHAePndN6X8YnK8c5R0XuNU9xj724IlXzy7RlK0VLrpHjU0EX/w/at866yxHWW3KnzgYMttxywW96yv4p4JL7unuiO8eNWIrfGefU3zfnGv8Tl4bEf9vI4txyo7hTEx//t51WBisgDGAzZJCVKnqM4Fiuq6qeQnRPTJF4J+aAUVpF44Rpe3jtWnOc9yoUvJuAiaXFpZ5nvdUho/48dNbAd9iWUuxUTRpwnqNeH/t9pcYlxHvnCQ8Z3x/+meJ10ya5nVTvEe6BIpJ/cjbYmvaWrdM5UZ/z2xD88UR2ApmPg8aysUHWzaiVkI8S1g2hYrxyrbxGShHF5XSd9Yis31PgJuGwG3jXfuaiCeybOnJQgYK6YL/THWV3toqXTz+M56rg7FkTq8a08jiiK4b30Vr3WMFtXA2xp8fP/8ANVex4qpYsfxO228Z18jA9HMklv7Hl5XicOq4HFY53TddX4nT+xuYCyVZ29LEIksWm0vJMH8fKnxOXhidyPheNaI9NQxyoG2imJiip7RFDfDSXY0+tlS5+Vsr5NHNtfQM5amtcrNnhZjhVjldbCj0U9nOMmh9ttXjb1jKW6EkhzdWI2my+Izt9Z4+856zvfFaKl04bRZ2FTn463bdXKazp7m4LLWLaXkzZ4IOVXnYFsFVovCe/Y1cX04waY6Q8vxmWPrefXGCF6nhY8eLr1aTuc0TnaNUemxs30Rg4XsagpwsT+Gx2Epal2Wm5lWzP9t2aQwMZmGV2+OkMxpk9wZJiavAPjuuQHCiRzneiN87sENXBpMYFUUUODCQJzdTQF+cmOEnKrzk+thNtX5+MIbPVwZSnBlKMH+ttCkwPgrQVuVZ8ndoMBIvjBfi+5NU6yZD69bOsvwcthY6yWT13ju4hAANotgX2sFmi55+rSRerFrJMn+1goGohk6wkmcNoVEVqN3LEVzhZtQPMv5vhhgqPnfPiEqna5Lnj7dT07VqXDb+Jn7V6cVdjn4nDaObJhsm7CzaXlcvqbWfXUowQtXDFWxIgSH11VS43NMckn88xduEE0bGeL+/rXukvf+hashLg0YbVfttVPrX5wXxDM9EUaTOUaTcG04UZYV/2Iz7cQspXxhuv+ZmCwXzkKYS6sisE5jmOMoBP6wWxUUIXDabpVz2hSEAIdVIafqxSAh46EBhTASrZusTSa3tdG2AuNZyGsaTqul+L1VEViV8eeh8MxYFCyKQNNl8Tkap9RzY7JwpvbPUvgn+P1WTONbPH6sRRGLGg53Yls7F5DgZiGYI5LJipHMqrx0LYzXYeW+DVUoiuALb3RzbSjOhw+3srnOx56WAB1hw5ra67AipeSVGyPEM3mObqrB67Dy5O5GboYTNAfdKIpgU52P9+xTkFKyvqCK+sDBFnrHUqyvNj5//N5WGgJOqryOolpzMcipOi9fDyElHNtUs6zxsxe77t6xFG92GwZeUsKBtoppA7asFBtrfTy1TyGWMfL23ggl0HXJ7uYgPqeVn1wP88Xj3Ty8pYYn9zSg6eB3WanxObgyGOfqUJxjm6px2iy3rYyEELc9N2uFv3m5g/5omp++t52WGWLBLweD0QwnukZpr/KwsylAc4Wb5goXqZxWvOc3Qgku9seKsck/dXQdp7sjeF1W3rGrtDHksU011AecVLjtixoYZE9LEI/DgsNqWbFtLnNiNlkx3ugYLaqi6gNOLAK+8WYfAH/9cgf/5X27eeXGSCHRfZS9LUFiGZU3OozMMTaLwqPb6nDZLexonKyWm2pJGXDZCLhulVEUhbfN02JyJi70RznTY7j9B902DrQtn7p3set+7uIQ4USWk11jHGyrJJLK8fEj7Ysg6eLSXu3h+xcGuTwY52xvhLYqD0G3jfs2VPH8pWHAUEtPjImtajrfOz+ILiXD8Sw/O02wkKnPzVrgZNcY378wCMDfvdbJf3h8+4rK8/zlIYZjWa4PJ1hf46EjnKR3zAineap7jPs2VPO984PkVJ2esRQ//9BGvnKih6ymk03kePbCIE+USEphUcSSxOAGSgYlWk7MdDgmK0aV13jLtSqCoNtGhceOu+Dv1xg09ouqPMa+k8tuwW23EnDZsFkMA5/VGC6y0mNHCEMNWulZXheixa67yuvAIgRBlx1lBa5nLlQXniWf04rDquB32mgMuopag6luYRZFUOGxTTr2TqE+4Jj2uleC8T7sc9qwWxQq3HaUgt/0+P+qCn15/HdzYaWqCEFL5cpfw3Ij5DT268tplX3w4EF54sSJOR/X/uvPLJYIa47Ozz++0iIUOXjwIPNpPzDUXE6bUlRFDccydI+m2N8aRFEMdXRfJE3QbS/uC0dTeVJ5dVLwi7kylszx3KUhvA4rb91eN6dweRP5/vlBvnN+gANtFXyisJoMJ7JIybTxtcup+2TXGP/wWhft1W5+8eGNKEp58s1Wdymma79LAzGevzTE9kY/7VUevnS8h3Aiy2eOrUeXkr96qYP6gJN/85bNWFdBysuBaBqn1UIiq1LtdeCyWxiIpOmPZjjQdvt2RSavEYpnuNgfZyyV46EttdSXGXN5tVCq7VRV57e/fYHu0RS/9vatxfjxExlJZPnlL58mk9f5T+/ewZYlWnmCoa3oi6SLbQJGwB9V04sGWzlVZyiWoc7vLL5UXOyP4rJZSiaYARiKZfjR5WGqvA4e3VqLoqy9HNhCiJNSyoNTv191Vtl382R7NzJ1IKz1OydZVwohaK6YvM8TcNsIsLD4zae6x+grqNM21Xpvszgul6+e7CGWUXnm7ADv3deM12mdNdhGOXV/9UQP/ZE0/ZE0b91ex/Yy8/8uZqCPV26MkNckZ3qiWBXB6Z4IAP98qhetMNj2RdKc7B6bFKBhpRh/UauYoElpCLpomGbV6LRZsCgKFwvbKa93jPDuvU1LL+gSc6pnjKtDCQC+erKX/1hiYv6n17u5MWyU+duXO/n8+3cvmTyKIm7bq52q7bJbldvKlHqhmMgbHaMMRDMMRDNsa/DdNk6sZaZ9zZVSvjDTz3IKaWKy2LRUuhHCGJwX4oe7ubDSaK1047aXt2osp+5tBb/MCreNlhUacNoKA2Vj0MnWOh8ehwUhDDebXU1BwFAdb6hd+ZCm86XCbS9a5S+Hu9pysL7GU7ymHdP49x5eX4nNYngxHFy3dFG/lpLxDGE+p7WoEr9TKCft4ybg94HtQHEUkVKaGaZM1iyb63w0Bl3YLKJkiMBy+bdv3UTfWIa6gLNsdbPPacVuUfA5LTimcRf5xJF2Ht1WS4Xbjtu+Mjaaj26r5VB7JV6nFU2XPLKljqFYhv2tFbRUurl3fSU+pw3vGnY3c9ktfOJIO1lVm3NqvtVKwGXn4S21DEQz0/qs37Ouii9+9l7ymk5L5dp8IdnTEmR9jQeH1bKs3g/LQTlX87fAnwEq8DDw/4B/WEqhTEyWA6/DuqBJGQzr7pYq95wGhgt9MbKqTiieK8YGLkVT0L1ikzIY2wgBtw2LIuiPpAklsiiK4FyfYfndEHSt6Ul5HLtVuWMmZTDsNobjWSyK4Gzv1MSAt6gPuNbspDyOz2m74yZlKG9idkkpn8cwFOuSUv4WsHosj0xMMALxr5a6tSmxpKeyuc6H3aoQdNsWbDW7HNctpaTKY6fCbUNKeVvktdXKSj4Ty01e04spKWv9DioLbbWtYW20VTlIKcmpd0fG4XJed7NCCAW4JoT4l0AfsLa87U3uaF68GuJk1xjrqj28Z9/yGu9MrTsUz/KVkz0AvH9/c8kwga1Vbn7+oQ0LTrW3HNctpeTrb/ZxeSDGmz0RLEKwsymwYjGEy+Xp033cDCU50FbBA5tXNtzqUnNpIMazF4YIum186FALmbzGax2jjCVzbGv0r7hP7mKg65KvnuqlbyzNfRuqVoWx4VJSzor5XwFujDzMB4CPAz+9lEKZmMyFq0NxADrCyWV/o55ad/dokmxeJ5vX6RyZXk29GPlvl+O6M3mdrpEUoXiW4VgWCbzRObokdS0WeU3nZiE16Pg9upO5NpxAl5LRZI5QPMuVwTijyRwSeP3m6m6rcknm1KInw9WCNfmdzKwTs5TyuJQyAcSAX5JSvldK+drSi2ZiYjCSyM6oljy8rhKf08rB9ool329K5zQiqVzx88H2ChQB+1qD2K0Km+t8uGwKTpsyo8o3msqTyqnFzyOJLCc6RuYky3Jct8tuYXujjyqPnQ01HhQBD2+pIZ7JM5bMFVPy5TW94EO9OCkEM3mNsWRu9oIlMBJ1VOBzWlc80cZysK8lSNBtY0Otl4aAkz3NAZornQgBTxRye+u6ztWhOInMrWduOJahZ+zWy6OmGzmplzoNJBjheKPpfNnlfU4bu5sD+F22klnA7jTKsco+iGEA5it8jgKfklKeXGLZTEx49cYIr90cwee08rF720omE9jdHGT3EqeuA2My/cc3usjmdd66vY6dTQEGoxl0Cf2RDFJKrg4lePFaGDCS1ZdSuV0aiPH9C4PYLAofPdyKLiUf/T+vkciqPLCpht9/X3k+pctx3aqq8+2zA3SGU/SMpnBYBX/6/HXW1Xhw2izU+5185HAr3zzTTyieZUejf8GhThNZlX98rYtUTuPBLTXsb537QHxsUw3HVjhj2HLRUunmkxOyL3WPpjjdHSWT13j+8jAH2yv54+ev8drNUaq9dv7oQ/u4Phzn975zCVWXfO7BDTy0pZanT/fRNZKivdrNU/ual0ze4ViGL5/oQdUlT+5pLHtb5NFtdUsm02qjnNfsvwF+XkrZLqVsB34BY6KeESFEuxBiSAjxYyHEswuU0+QupT9iqK/iGZX4hLf9lSCczJLNGyrjgWgGgL6I8Xs4niGvSa4MxovGX1emUaP2R9JIaUQ7Gklm6QglSGSNa7seWl1qukROZTiWJZlVyeQ1NGlcazSVJ5lVSeU0huMZQvEscKu9FsJYMkcqZ6zEBwr316R8Lg5Ei5qMK4PGM3gzbKj2w4kckVSOq0MJ8ppEyltlxtuuf4nv+XA8W6x7MGq2bynKmZg1KeVL4x+klC9juE6Vw3NSyoeklG+bl3Qma4acqnMzlJikni2HntEU4UR22v/fv7Galkp3MWfrYjJb3bou6Qgniyq39ioP7VVufE5LUZ12uL2SRDbP3pYAdqvC47vqqfM7qPXZeVch8H46p3EzlCjuAx9sq6S92s3OpgDrqr0cXFfFQ1tqaAy6+NyDKx8eQEojj/FwLMNoMsfRjdXU+41k9I0BJ7ubAtT6HexvrWBva5ANNV4e3FJDU4WLB7fULrj+5goXe1uDtFa6uWf9LVW0sXecIFl4iRlL5ugaSS6a+vxO4R076mkMONF1yc/e1wLAhw+2UuGx8bZttdT6nbxlWx2ba700VbiKhoOPbK2jqcLFI1tvtWHvWIrh+MImz0xO5YUrwwzFjPNsrvOxrcHH+hoPe1qCCzr3nUo5VtkvCCH+AvgCRuzsDwE/FkLsB5BSnprh2IeFEC8BX5NS/tGCpTVZtTxzrp/OcAq/y8Yn72svK27tqe4xXrgSQhGCj9zTUjIKVn3AyfsPLL5arZy6X7ga4nRPBIdN4WfuayeV0+gZS6PpkhuhBAfaKvni8W6uDyfoGU1zdEMNp3siDMWyhToiPLylhi8e7yaSytNS6eb9B5oJuG23qQp/96mlC4k4V169McLrHaNcG4rTVOHihauhQspNI7HFy9dHcNgUttX7ebgwEe9vrZiXyrkUQojieSfy3fOD3BhO4HNaeWp/E194vZu8JrlnXSX3baxelLrvBH58Jcy5vhi6lPy3565z/+Z6Iuk8W+r86Ajymk4knaPK56BSwkgiR53fyfZGP9snRAq70B/l2QtDCGGkTZ2va98fPHuV831RvA4rf/rRfbjtVt6+s3QqRxODcibmPYXfvznl+30YE/Uj0xw3AGwGssDTQojnpZRnx/8phPgs8FmA1tbWuchswtxiis8l4UW55516zmjKWFUmsyqalCjMPjGPr0R1KUlkVJbTq6OcusfLZPM6mbxOIqMWDWPG/zdaMFBKZFVyus5Q/NYKfHz/edzgJjYHY5eVZPzakjmNdE4jldNwWS2k8xqKYtwzgJ5FUFvPS66sRjyTJ69NbgsTg+vD8WIbjRYMFW+1qUpe04mlVcYVDdPdv/HvpTSe3flOzCOJXLHuVE5d0aA5a4VZ75CU8uH5nFhKmcWYlBFCfBvYCZyd8P+/BP4SjOxS86nDZPXw2M56zvRE2VjrKTtT073rqtB1icdhLeZPHoxmGIpl2Nrgw2G1kFN1Lg/GqPE5FpRNaiqH2yrpCCWp9NiLdZ/tjXB1MM5jO+vxOW08tKUGl91CQ8BJZSHAxv0bq4ln8txbMOr63IPr+c65QQ6vq8Rtt/Ku3Q2EE1l0XfKefY1YFMH9m6p5/eYoxzatjVXd0U3VWC0KOxr96BICLisX+uPsrXKi6YIGnxO308rnjpXOYbxUPLCpmu+eH2Rfa5D2KkN9PpLITVJ3z4e+SJqRRJZtDf55ZxlbSTI5le+eH6Kl0sXB9kp+7qGNfOf8AAPRDL/zLiMX81u213KqK0J7tRFNbmu9j0gqR1bT2d8WLHne/a0VZPM6DqvClnkmeQH46SNt/L/Xurh3fRXV3uXN3pXOaVwZitMUdC36VthSUo5Vdh3we0CjlPIdQojtwBEp5V/PcpxPSjlu/XI/8KcLltZk1dIQcM154nTZLZMsLRNZla8UrDX7ImneuauBH14e4tJAHIsi+OT97YsWOvFcf5RoOk80nac/msGqCP7Ldy+j6pLLQ3H+w+PbCbrtPDbBwlgIcZv7zZ6WCva03FLhOu1Wfv6hjcXPui453jFKJq9xvHNs3lmslhOf08Zbtxvtksqp/NMbXYwmclwYiLK+2ssDm2v4hYc3znKWxeeNjlHSOY2TXWOLpjofS+b46oledCkJxbNr0vL3z1+8yas3RlCE4D8/tROpS1x2K+uqvZzujfHglnpqfU7evvPWs6woYlb1v9Nm4eGtC7cZ6BhJ0lrpJlxwe1xoGNy58N3zA3SNpLBbFT59bN2y1r0Qynk9/L/A94HGwuerwL8u47hjQoiTQohXgD4p5evzktDkrkGXknEXyrxmGEqphS+kBH0RY2io2i0ljaZJVF0v1r3YwTq0gs5QXcwLWCZ03Xi5kBJkQfzcCoW6HN9GGJdnUc4pJZLx9lmbirvx51Uiyas6OV0v3p+cuvLXpC5Bu62FuhdCOcr+ainll4UQvwEgpVSFELP2TCnld4DvLFRAk4WzVnJc+5023r23kYFohj0tRi7WR7bWUuVxUB9wEnAvXqKBHY1+nrs4SI3PQWuVkT7uqX2NnO6J8LP3l6+ivT4U5/sXhzjUXsHhdbf7LCuK4L37mrkZTrBtCZPRLxVep5W37ajnh5eHeWxHHW6HBSnhH1/v4kMHWrAWApv0jKboCCfZ1RSYlA95MXnHrgYu9Edpq/IsWkCVaq+DJ3Y3Ek5k2btGLYQ/caSNeEZlY62HrQ3GM9ZW5eT6cIp37TGMrKKpPGf7IrRWupc9veXbd9Zzvi9KS4W7ZByCO7XuhVDOxJwUQlRhGHohhLgXmD5liYnJAmiv9tBefWvgcNutHNmw+HFxv3C8m8uDcS4PxtnfWsGOpgD90Qw1PieneyO0VZc3eP2P568Rimd59UaYv/pEAGcJw5b6gJP6wPLurS0W8Uye758fRNUlN8Mpjm6s4isnewFw2wzr6Jyq8403+1B1Sc9Yip+6p21JZAm4bNy3YfH36TfWetlYu7pjf8/Emd4olR47o8k8w/EMl/pj/OS6EYrzf/zgGn/2sQN8/8IgfZE0b3ZH+OwD65d1kvI7l6bdVnvdC6GcifnfAN8ENgghfgLUAO9fUqlMTJYYT2ECFQI8DgtWRWBVBHlN4pjDasxVGODsVgVrmfmY1xIWRWCzKqg5DZdNwTMhzaPHYVy7IiiWWSt7eHcS48+rIgQ2xUhhKYRASonbbrTHeN5vq0WgLEKcdpOlpRyr7FNCiAeBLYAArkgpTf8EkzXNx+9tpd7vpMprLxpvfehQK8PxDJsLBlo3Qgm+8EY3G2q8fORwaZe+33jHNl66HmJ/S0VRrXun0DuW4nRPhI/f20oiq/Hg5hrcditXBuMoUDQMsloUPnyohd6x9Jpeea5Vjm2qodZX8Bwo/Dy4qZprwwk+9+AGAB7bUc/14QSNQdcdmb/4TmPWFhJCfAAjJ/MF4D3Al8aDi5iYrFUUReGxnfUcbL9lZV3jc7CjMVB0mfmblzs41xvlG2/2cX2a8JqVXjvv3ttES2Gf+k7iuYtDXBtKcL4vzjt3NRB02znXF0FK0CSc77u1oxV029nZFFhT+3h3ChZFsL3RX9wuOdk1xvVQEiEEXzphpCB12izsbApQuUT7/yaLSzmvTv+flDIuhDgKPAr8NfBnSyuWicnK01AY6Fx2C5WeteMDuViMD+IBlxVLQf1Z4bYjhLEFUOE2B/nVSH3AUVwVNy6i77/J8lHOHvO4BfbjwP+RUj4jhPjPSyiTicmK8OLVEH2RNMc2VdNc4ebdexuJZ1S2Nfip8JS2CL82FOd45xhb6r0caCsd6OJU9xiXB+IcaKuYMRXkSvL9C4NEU3ke2VZLtdd4CXl8VwP9kQzPXhzkl798mrZKN80Vbh7bUU+117GmAjbcTdS4HVgUiKRybK43thY6wkleuzlCe5VnSYwpTRaXclbMfYVY2R8CviOEcJR5nInJmmEkkeVk1xiD0Qyv3DDyIr/RMYbTZqEjnCQ0TbKLF6+FGYplePFquKT/s6rpvHg1VCgTWtJrmC85Vedif4y+SJoTnaPF760WBb/LynMXh+gMJ/nOOcOytzOcNCflVcyzlwe5NmRkLPurlzoAePl6mMFohtdujhQzmZmsXsqZYD+IEWDkMSllBKgEfnUphTIxWW58ThsVBT/p1kpjv7il8DvgshFwlV4xt1QYqsLGoBOb5XZrV6tFobEQY3j8fKsNq0XgtlsQAporJsvotVtpCLiwWRTqAw6EWL3XYWKwpzmIy2YoQ3c3GfEAxp/TGp+j6Elgsnopxyo7BXxtwucBjAQVJiYLYjCa4ZlzA3gdFt69t2lFDYfsVoWfureNVE4rTsKH11Wypd6H226ZNobyW7fXcXhdZdFFpRTv299MPJOfdnJfaRQh+Jn728mp+qSQp292j/FGxyjv3FXPtno/tQEHWVXHv0hhUU2WhpZKD1/5uSMMJzJsKQS1qfY6UARUeeyUkfjNZIUxVdImK8b5viixdJ7+SIbu0dRKi4PNotw2eQZcthkTGwghCLrtWGYY7SyKUWa6iXs14LBabotDfrJrjFRO40J/jNqAA4fVYk7Ka4QKr704KYPxkqVLuDwYJ5lbmZCqJuVjTswmK8bmOh82iyDgss07pdxcGI+/PY6q6eizxEfOazpyLQXZXUS2N/rJazoba71mUIo1hqZpJNK54udtDX6EgPZqNx67qcpe7ZiJMU1WjNYqNz//0EaUZdCtfetMP9eHE+xrDfLQllo6w0m+daYfl93Chw+34nXc3hXO9kb44eVhanwOPniwZU2mBFwIZ3uinOgc5XRPhOvDCe5ZX7kmwxvebQzH0vzM3x4nllH51P3r+NTRdRxsr2R/a8Wy9DWThXN3jTQmq47lGChUTef6cAKAq4VAIdeHE6i6JJ5R6Y+kSx53dSiBlDAcyzKWypUscydzsmsUKaFrJElW1bg6WDrIisnq4vWbo0TTeaSUvDDBE8CclNcO5sRscsdjtSgcaq/E57RyqBDpa3ezEaWqzu8oWmFPZX9rEJ/TypZ6H9V3SYCReCZfdKd5+856Am4b96yrotrrmBQlzWR1EUnlyOSNveOHt9SwrtqLz2HjAwebVlgyk/lgqrJN7gqObqrm6KZbatjRVI6sqjGWkmTyWkmL8PU1XtbX3D2xn3tGU3z9zT4E8L4DzbzvQAvvO9Cy0mKZzMKp7jFeuBLC47DwU/e04XXZ+YdP37PSYpksAHPFbHJX0jeWRkojuEYoXjp4yN3GQDSDpktUXTIQzay0OCZl0jdmbMUks9pdueVyJ2KumE3uSg62VRJN5/E4rKwrM/fync6upgCDsQyKgB2N/tkPMFkV3Lu+iqyqU+W1L4t3g8nSY07MJnclAbeN9+5vXmkxVhUuu4V37WlcaTFM5kiNz8H7D5jP8p2EWA0+mtXV1bK9vX2lxTCZJ52dnZjtt3Yx22/tYrbd2ubkyZNSSnnblvKqWDG3t7dz4sSJlRZjVjRd8vTpPnrH0jy8pZZdzYGVFmlVcPDgwTXRfialKaf9MnmNr57sJZrO846d9XeVUdxqZr59L5bJ85UTveQ1naf2NVHndy6BdCazIYQ4Vep70/hrDsTSebpGUmi65EJ/dPYDTEzuEAajGULxLDlV57Lpz7zm6QqniKXzpHMa14YSKy2OyRTMiXkOBFw2NtR6cdgUdjcHV1ocE5NlozHooinowm23sLPR1BStddbVeKj22vE5rcWczSarh1Whyl4rKIowjWNM7krsVoUPHjJ9mu8UvA4rHz/SvtJimEyDOTGb3JW0//ozZZft/PzjSyiJiYmJyWRMVbaJiYmJickqwpyYTUxMTExMVhHmxGxiYmJiYrKKMCfmaYim81waiBUztpiY3K1EU0ZfyKpmX1grDMcyXB2Ko+srH0DKZO6Yxl8l0HTJl4/3kMiqtFS6zXB3JnctqqbzxePdpHIa7dVuntpn9oXVzlgyxxeP96DpkgNtFTywuWalRTKZI+aKuQS6lMWVcjqnrrA0JiYrhyYlWVUHIJUzV8xrgZymoxVWymlT47cmMVfMJbBZFN61t5Gb4SS7msxgCiZ3Lw6rkdiiYyTJbrMvrAnq/E7eur2O0WSOg+0VKy2OyTy4ayfmnKpjt06vMGir8tBWZaYDNDFpr/bQXu1BSkle07FZTEXbaiOv6VgVgRACgJ3mS9SaZtaJWQhxEDgGNAJp4DzwnJRybIllWzJ+dGWY090RNtV5eWK3GcnLxGQ20jmNLx7vJpZWeeeuejbV+VZaJJMClwZiPHthiKDbxocOteC0WVZaJJMFMu2rrxDik4XMF78BuIArwDBwFPiBEOLvhBCtyyPm4nK1EIT/2lCiuBdjYmIyPUOxDJFUHl1Krg2bSQ9WE9eGE+hSMprMEYpnV1ock0VgphWzG7hfSpku9U8hxF5gE9A9UwVCiF8G3ielPDpfIRebw+sqOdk1xrYGPxZFrLQ4JiarnqYKF+uqPYylcuxpCa60OCYT2NcSJBzPUuW10xAw0zfeCUw7MUsp/9dMB0opT892ciGEA9g7Z6mWmH2tFexrNY0iTEzKxWZReM++ppUWw6QELZVuPnV03UqLYbKIlLPHvA74RaB9Ynkp5bvKOP/PAn8H/M485VvVvHIjzFAsw/0bq6n1mW+qJncGo8kcL14NUeW1c3RjddGgyGRtIKXk5ethRhI5HthcQ6XHvtIimcyRcqyyvwH8NfAtQC/3xEIIG/CQlPJ/CyHuuIk5FM/y+s3RwqewGXjB5I7h1RsjdISTdISTrK/x0hR0rbRIJnOgL5LmRKdhm2uzKDy+u2GFJTKZK+VMzBkp5Z/M49wfB/5pun8KIT4LfBagtXXt2ZD5nFY8DgvJrEad31wtm9w51PkdXB2K47RZCLhsKy2OyRwJuu04bRYyeY36gGOlxTGZB+VMzH8shPhN4FmgaPInpTw1y3FbgL1CiM8BO4QQvyil/NMJx/8l8JcABw8eXHOm0U6bhU8caSeWyZtqbJM7ioPtlbRVefA4LLjtd22ogzWL12Hlp+9rI5nVqPGZE/NapJxetwtj9fsIt1TZsvB5WqSUvzb+txDi5YmT8mqlayTJ8Y5R7t9YTUMZ6junzWL6DN4FtP/6M2WV6/z840ssyfJR43OQzKqc6YnQUum+bZ9S1XQuD8YJum00V7hXSEqT6XDbrbO+VP34yjDpvMZj2+tQFDNozGqinIn5A8B6KWVuvpWsJlep6dB1nd/51kUSWZUXroX404/sX2mRTExWlG+f7ac/ksFlt/CZY+snuRa+dD3M6e4IihB87N5Wqrzmymwt8dK1EH/24xsAxNJ5PnRo7W0n3smU85p0HggusRyrArUQbETV1pxm3cRk0ckX+oGmS6Sc3CfG+4gupRmkZw2SnZDcIq+WbdNrskyUs2IOApeFEMeZvMdcjrvUmkFRFH71sS28eiPMw1tqV1ocE5MV54ndDVzsj9Fe7cE6JT72sU3V+JxWqjx2ak3jxzXHW7bXE89opPIqHzjQstLimEyhnIn5N5dcimXiZihBc8CF3V56X3hnU2DW4O+abqSE9DjufKMYXZek8hreKdeqajpZVb8r7sHdTNBt576N1cXPeU0nr+koBb/m3c0B7IUJe7pnxaR8pJQkcxoeu2WS73g6p2G1iDklD1E1nZymT9pnHoplqHLbsRaS97xzdz1SMmMyn7uVTF5DEWLGe5PKqdgtym0vrYtBOb2oGxiQUmYAhBAuoG7RJVli/vWX3uR4xygNQRdf+sw9WCxzN9pSNZ0vHO8hHM9y34Yq7llftQSSrg50XfKlEz0MRjMcaq/k6CZjgM6qGl94vZuxVJ4Ht9Sw34ygdleQzKp84Y1uBqJpQ8UtwW5TqPc7+ejhVr59doC+SJp9rUEeMjVO8+Lp0/10hJNsa/Dz9p31AFwfjvPM2UGcNoWP3NOK3zm7+1o6p/GPr3eRyKq8ZVsdO5sC/PmPb/CjK8M0Bl38wft2E83k+dKJHjRN8u69TbRWmQZ843SNJHn6dD9Wi+DDh1pLBmg53xflB5eG8DltfPRwK65pFnvzpZyp/itMDiyiFb5bU1weMBJXDETSjCTnZ8cWz6iEC0HiO8LJRZNtNZLKawxGMwB0hG8lLYim8oyl8sb3oTv7HpjcIpzIEs+oRNMqI4ksoUSWaCpPPKPSH0nTFzFC6t/p/WKpkFLSOWLcu/HfAJ3hFLqUpHIaQ4X+OBvjbSXlrXNdGIgC0B9JM5LK0R/JkM3rqLqkezS1yFeztukeTaHpkmxepz9SMlUEHeEkUhqGcyPJxU8cUs6K2TrRIltKmRNCrLkYbx882MLXTvWypyVArX9+kYwqPHb2tgbpHUtz7x28WgbDF/JgewWd4SRHNtxSZ9b4HOxqCjAYy3B4XeUKSmiynDRXuNlS7yPgGh8yBAhJY8DFuhov96yv5MZwgsPr7ux+sVQIITi6sZpLA7FJcfz3tQYJJbJ4HVbaq8vLD98YdLGtwcdIMsfBNqOPPrWvma+d6mVnY4A6v5OAy8aNUIKcqrPLzN08id1NQfojaRxWCxtrvSXLHGyvIJbJU+Vx0BhY/Mh4Yqq15W0FhHgO+FMp5TcLn98N/JKU8tHFEuLgwYPyxIkTi3U6k2Xm4MGDrLX2K9c3eS6sVT/mtdh+JgZm261thBAnpZQHp35fzor5c8A/CiH+Z+FzL0bAkTXF9eEExztH2VTr5WD7rZXe+b4o5/qi7GoKoOqSSwMx9rYE2dbgX0FpTUxWF7mcxr/+yhmG4xl+9bEt3GOujFctqqrzP56/xlAswyePtrO94fYVcVbVeO7iEDlV563b6/CVsXdtsnzMOjFLKW8A9wohvIXPazJL+kvXQkRSeQajGXY2BYoRu164GiKn6oRiWSSGX+aL6ZA5MZuYTOCZ8wOc6TESI/yfF2+aE/Mq5lTPGMc7jQQ7Xz3Ry3988vaJ+dpQgmtDxlB+tjfK/ROs701WnmmNv4QQHxNCFP8vpUxMnJSFEBuEEKs+otc4LYWwgfUBJ44JJvDNFcb+QFu1m6bC3y2VpoWiiclE9rQEiy+ze5qDKyuMyYy0V3mKbmvbp1lg1Pmd2K0KihA0mtnDVh0zrZirgDeFECeBk0AIcAIbgQeBMPDrSy7hIvHotloOtlfgc9om+Qg+ubuRWCaP32lDAvFM3syoY2IyhfU1Xr78c0cIJ7JsqTe1SauZWr+T//HhvUTS+eKCZCo1Pgefun8dmpSm7/kqZNoVs5Tyj4H9wBeAGuDRwuc+4ONSyvdJKa8ti5QF8prOqe4xrg9Pr01P5zSOd47SM5oimVU53jlKfySNEIKg2z4p3i+AohjfK4rAUvj7TkoMH8vkeaNjlKFYea4WJncnN0IJTnaNkdduD894tjfC373SSU7VzUl5kbjYH+NsbwR9EcKZ5lSdk12jk1zVTvdEePFqiERGnfY4l91iTsrLzKWBGGd6Zm/3GVtFSqkBzxV+VpxXb4xwssvY5/rQoZaSKpjnLg1xYziBRRFUeewMx7PYLIJPH1t/V2aC+s7ZAQaiGY53Knz2gfVzih5kcneQ1yTfPN0PGBqjiQFCEhmVP/j+FXKqztneCH/4wb0rJOWdw7WhON+/MAgY8fkXGqTnxashzvVFEQI+dm8b4XiW//Wj60gJQ9EM/+ZtWxZDbJMFcn04wffOj7e7zoG26d1N19QoPXEhO92iduLXd9DCd96M3wPzXphMh2DiczJVozThb/MhWhQmjWNLcD5lglbQbLLVyswNs6b0GEfWV+Fz2vA7rTRM49T91u11NAad1AdcVLhtXBqI0RR035WrZYB37mrgymCc1kq3uVo2KYnVInj33iYiqdxtseLddiu/8Y6tvNkT4S3b1lwk3lXJxlof79glUTU5rXHWXDi2qYYKj50qj50qr4Mqr4N/+fBGesbSPLm7cREkNlkMNtZ6eeeuBnKqzo7Gmdt9TU3MVovC3pbgjGWcNsskFUHQbcfvsqLrOh0jKZoCTuxWC5G0YeQ1dc95HFXTiWVUKty2Nb3n7HPaJvltm5iUYl21B5gcWWq8zzQGHDhsVfgdFqKpPBaLQICZxGQBbF3EvXq7VblNHb65zkul247XabTReFs2BJyTElvMRjyTx6KIOR1jMj1b6n1llZv1bgshHMD7gPaJ5aWUvzNP2ZaNP3n+Gj+5Hqbaa6e5ws3pngj1ASdv2VrL9VCSpqCLDx66PeWZlJIvn+hlKJZhe6Ofx3bUr4D0JiYryx98/yonu0bpj2So8dlx2axsqfeR1XQa/E7ee6CZJtPVZtXRGU7w6b87QTqv8dT+Zn7lbVv40x9d55XrI9T4HPz3D+4tK6PUjVCCb58ZwGoRfPBgCzU+xzJIbwLlrZifBqIYLlOLH617CRm33g4nciQzRuKFwWimaL3YH02j6fK2VXNO04tWzH1jpYOYm6w+liLM5t3MjVACTZdE0zkCbivxbIbGrIt0TqXG62AwmjEn5lXI+f4o6bxm/N1nJK8YHwtD8SyRVK6sHNoDkQy6lORUyVAsY07My0g5E3OzlPLtSy7JEvDRw63886letjf6WVft4Vtn+tnfVsGh9kre7B5ja72/pCrbYbXw4JYarg3FZ7ScMzG5k/nw4VaeOdtPS4ULRRG0V3uo9joBic9pm3WfzGRleMeOep69MMRANMPPHVsPwEcOGWPh7uZgWZMywJ6WAOFEFrtVYXNdeSpYk8WhnIn5FSHELinluSWXZpG5d0MV9264FTpwohvIbA/a/tYKM9ewyV3NI1treWSrmVt5rWGxWPiTj+yf9N19G6u5b45hN31OG+/Z17SYopmUybQTsxDiHCALZT4phLiJocoWgJRS7l4eEW8xHM/w7IUh/C4b79hZX7QyfqNjhP/3ahctFW7+7Vs3Yy3snzx/aYh/PtXL1no/b91exxsdo2ys9RJw2TjZNca2Bv+k1IX/79VOXrs5wqNba3nfgdv3nstB1XS+e36QaDrP27bXFd9OM3mN75wbIKvqPLi5mp9cH0GXknfsaigr+bmJyUrx5z++wYmuUQYKWz/VXgcBl42djQHaqj08tqOe126OcH04wT3rKxfVsGmp0XXJsxcHCcWzPLKtbl6q+ddvjnB5MM6Btgo21Hh55twAmq7z9p0NKxJFcDSR461/9ALJrMpnjq3j3z62lWtDcV65McK6ag8PbK4hksrxX793mUxe55ffspmWqrUfhljTJd+/MMhIMsdbttVO67mzXHVPvedzYaYV8xMLE3XxebM7QiieJRTP0j2aYkONkSvz6dP9xe8vD8WLLh/fON3HSCLHT66H0XWJBN7oGMVuEeQ0ySs3whxoq8CiCFRV5zvnBpASvnV2YN4Tc/doqrifc6o7wtt3GoZj14cTdI0YCcm/d2GIaMrY877YH7vjczubrF1GEzl+dGWYUDxDfySDw6owGM1Q7XWQzmtkVJ3NtV7e6DCSJrx6Y2RNTcwDsQyXBuIAnOgcpWnv3FaImi555cYIAK/cCKPpkp5Ro59f6IvOeZW6GPzx81cYS+UA+IfXu/m3j23ltZsjjCZzjCZz7G+r4EeXQ9wIGbY2z5wb4HMPbVh2OReb/kiaK4NGW57sGuOJ3cs3MZeqe+o9n0uUtZlCcnZJKbuA/zz+98TvFnoh82FdtQdFCLwOK3UT9kn2FFyoqrx22ia8+e1uNiboxqCrOFk3V7jYVFBjt1d5invMVqvCplrj+4X4Ftb5nficVhQhCi4oFGVw2ixYFcG+liB2q4LNImg1E2aYrGKCbiutVW68DhtehxWHzULQZcfnslHvd+J32WgMuooJYNbXlE4sv1qp8tgJum0IAeur5y67RbnVz9dXe2mqcOGwFfr2Cq1C37WnCasiEEKwq9kYy8bbpSHgxG2zsLslcGs8ag2uiJyLTbXXgd9ltOXEsXel6p56z+eCkHLmmJ1CiFNSyv0TPluAc1LK7XOUfVoOHjwoy032nclrWBWBdUqwjNFEDq/TepsbQDiRIei0Y7UqpHIqLpsFIcSkv8fRdZ3RVK5g4DJ/VE1H1eVtQU3ymo4uJQ6rhZyqIzH+XussdbL2tWJt3fn5x1dahHkxW/upqk4kk8NpUUjkNLwOQz1rtQhsFgWLItB1SUbV1qS/q6ZL8po+7yBEUkrS+VvXvpx9e7q2G03k6B1LsLvl1lZdKqfitFqKkcFSORVNl3dULuaFtuVi1z31nk9FCHFSSnlw6vczpX38DSFEHNgthIgVfuLAMIYL1YrgtFlum5QBKr322yblaDrPlcEE/dEMY8kcp7oi9EUM9ye33Voi/KCy4EkZjEAopR4Mm0XBYbWg6zpff7OXr57sJafenjRgKvFMnr95uYNvn+lfsGwmJnNlIJbh8kACVUJ9wIXXacVqEZMSyihrOAiFRRHF/ppVNV67OcLF/ljZxwsx+drtVoW8Kvmblzv45pm+SWWvD8d55XqYVG765BKLQSiRJZHTyRTcpsAY8yZOEG67ddKkPBzL8PK1MMNrOOHN9eEEp7rHJl33YtA9kuIn18NE0/lpy0x8jsaZeM91XeerJ3r4f692kpml/aftSVLK3wd+Xwjx+1LK35jDNawavn9hkL6xNCe7xvA5rURSeU73jPHZBzaU5WC/VHz73ABfO2V0WKsi+NCh1hnL/+1POvnJ9TBg5JM2I3mZLBc5Vecbb/ah6pKesRQfOWw8qy9dCxd9ZCvctrJdcFY7r9wY4XR3BAC/y0rzNGkTZ+P/vtLBS9cKfdbv5PC6KkaTOb591rBjiaTzvHNXw2KJPYnhWIbvnBsAjCQkbyszQNI3TveRzGpcGojxmQfWL4lsS8l8r3s2MnmNb5zuQ9MlfZE0Hzw4P/ujH1wa5isne4ufP3GkfdqyM1llj6uvvzLh7yJSylPzkm4ZcRQmX4sicBb+tloUptEqLBueCW/X5ahcXDZDdiHAbV/7qm+TtYMQRp9RdW1SrHWbxehEirh9W2kt47Dc6mv2BVyXq9CvjT5r9HeLIlCEQJNySePWG2OcQJdyTgsQQyat2LZrjfle92wIYbSdpsvinDIfJo7ds437M+me/nD8HMBB4AyGq9Ru4ARwZN4SLhOP7ajn2lCChqATj93K9eEEzRWuFR9IHt1WZ1iCazpv2T77W90n71tHQ8BFrd/B9sbArOVNTBYLm0XhQ4da6BtLs6nulnHUsU011PgcVLjtVHrsKyjh4nLv+iqCbjs+p3VBWoCfPtJOnd9Jrd9RNDwNuGx88GAL4US27JjJ86HSY+cDB5sZS+XmZCH/vgPNdIaTtC+z4dRiMd/rng2H1cKHDrUwEMlM6gNz5eimGiSQzmm8ZdvM8QFmUmU/DCCE+BqwfzzAiBBiJ/Bb85auTEaTOSyKuM0PMBTP4rQp+Jw2LvZHqfY6pu1ADqtCjc+B12HFabOwq3npJrVkViWZVcvuzBODnXSEEiiKoK3KU/K6rVaFJ/bcyhIzHMvgcVjxOKwMxTL4nFZcNgtDsSxBt23S25iuS4biGSo99jvC0MxkeRiOZbBZFLpHkzRXuKn22YsryLFkDiFgxx3ykpjKqSQyRt9VFEGNz1F0C5van6KpPJqUVHrsSClL9jkw+uw966twFrRdOVVnJJnF67AihGPJM70NRNJcGozNqY38Thu7m4NLJ9QCyeQ1Iqk8dX5H0T5o4lgIhvdL4yy+6D1jKXKqXnS3LcVIIovVohTH4Wqvg2rvzCFJO8MJesfSHN00vc/ysRn+N5FyrDW2TIz6JaU8L4TYVtbZ58m1oTjPnBtAEUbw9PqAMdmd6Ynww8vDhquRAs9fDuGwKfyX9+6moURjPH9pmHN9UQIuG5840rZkK+VEVuXvX+0ik9c4uqmaQ3PYA375Woj/+aPrCATvP9BMz1jqtuueyInOUV66FsZhU9hc5+Vcbwy33cK6Gg8X+mL4nFY+fqStOAl/78IgVwbjVHntfOyetmmtA01MxjneOcrL18L85EYYXdfJqpJHt9ayvdHPtgY/X3+zD4HgvfubaFnj7n7JrMrfv9ZFOqdx34YqHDYLP7o8TNdokjqfk/qAk4/fa4wdfZE0Xz3Ri0Ty5J5GboaSnJ9mfDnbG+H5S8ZY9dHDrXz3/CC9Yyl6x1Ksq/Zyz/pK7tuwND7Or14P8cm/O4GuS757bpB//My9S1LPcqJqOv/0ejfRdJ6dTQHeur2u+Jw6bRY+fqStLD/hs70RPv/dy+hS8umj60pqLK8OxflOYf750KGWSa6503F9KM6n//4EeVXnnTsb+PdPLMxpqZyZ6qwQ4q+EEA8Vfv4PcHZBtc5CKJ5FSsP8PJy4lTdjOG78nVN1rhWc47N5vWhpPZWhuGFdGE3nyZRh/TxfYul80QpwaI4WjTfDSaQEXUouD8ZKXvdExu9BNq/TM2pcdyqn0VMIXhLPqKSytywSxy0sR5M58vrS3QOTO4fhmPGMjSVyqJokms6T1yTDhSA+489raJpndC0Ry+RJ54z+MhzPFvtLNJUvrtBymtFvRhJZdCmR0hijhieML9kp48v4PRxfKYfiWXKqzmjSsOoNxZfu3p3oGkPXDTfY7kKwk7VOVtWLFtHj9318rM3ktRmtpSfSEU6i6UYbjiczmsp0889MXBtOkC88AzemOe9cKGfF/EngXwD/qvD5ReDPFlzzDOxtDRJJ57FbFLZO2Is5vK6STF7D77LxrmADf/dqF40BF/uncZB/eEstb3SM0lblnlPUlbnSEHByeF0l4UR2zm/B797TSN9YCkUofOpoO8c7x2677okcWV9FXtOp8jjYUu/llRsj1PqcrK/x8OqNEZoqXFRM2PN7dFsdJ7pG2VjjM1XZJmVxZEMVqq7zocMtdI4kqfe7aK10c6Ctghqfg3BiXJW9diJ8TUdDwMU96yoJJbLct6EKq0Uhq+q0VbkRwLoab9F4a2u9n6FYFlXT2dsSpKXSzfHC+DI1N/Xh9ZWk8xo+p5X11V7etqOOy4Mxtjf4sVgE9y9hRLDPPbCO5y4OE0pk+fV3bF2yepYTj8PKQ1tq6BpJcagQRvm+DdXFELGNJbSLpXhsex3XhhJkVI2n9peO8ravNUi0MP9sKTN5x9u21/LClRB90TS/9MjG8i5qBmYNMLIczCXAiMnqwwwwYnCnBhgxWb2Ybbe2mS7AyEzuUl+WUn5wQjKLSaxEEov+SJrvnR/E77Lx5J6G4gqwI5zk+UtD1PmdOG0KXzrew7pqD7/22NZiQovVSjSV55tn+xHAu/Y2lkxo8dyFQf7w2av43Tb+7Kf2U1UwQvjKiR7+8sWbNAZd/PnHDuAyXalMlohoOsfn/v4koXiWg+0V7GwKTvu8rhVevBri8mCMQ+2V7Ctkkps4xrxrTyOvd4xwaSDGwfZKNtf5+ObpfjRd54ndjUXN1EvXQlzoj5FVdawK6DoE3DaenFBmKekZTfH9C4NUex08sbuBTE7l5/7hFKF4ll98ZCNPzjH+92pESslzF4foGklx/8Zqtjf6ef3mCH/10k3q/E7+w+PbcJYR4CaZVfnmmX5yqs4TuxuKY+lc656Kqul8++wA4USWx3bU01Lp5mJ/jJ9cD9Ne7eGt2+vmdL0zzVrjqusngCdL/Cw75/qiRNN5ekZT9I7d2ld+s3uMeEbl+nCCr7/ZRzyjcrY3SufIwnX9S83lwRjhwt7dtaFEyTL/fKqPeDZP31iKZy8OFr//2qleUjmV68NxXrsZXi6RTe5Cnrs4RPdoikg6z2sdo4XnNb7SYs2bvKZzsmuMZFbjROdY8fuzvbfGmM5wghOd42VGuT6cYCiWIZzIcWnQiAym6ZITnWOE4hmOd4zSPZrmfH+UkUSOSwPlRw9bCG/2RIhnVDrCSQaiGX50JUTnSJJkTuWrp/pmP8EaIJFVudAfI5FVOdlttNd3zg8Sy6hcG05wthDsZjZuhpIMRjOMJnPF5CXzqXsqA9EMHeEk8YzK6Z4IACe7RklkVc73RUlk5xbpbaYkFgOFP98C2EskspgRIcROIcQrQoiXhBB/K6bGv5wHm2q9WBVB0G2jYcKewpZ6H4oQ1PodHN1YjRBGsormiuXLLjJf1lV7cNosuOyWSQk4JvLwlhosisDntHF0wt7Usc3VCCGo9jrY22zmjjZZOo5urCbgsmG3KGyq8Rae17Xp7wqGf/bGWsNdZmvDrX3ETXW3xpjmSnfRb3VrvZ/WSjduuwWHTSkmvLAogs11Plw2KxtqPFS47DQF3dityrIl9NhSZ4x/1V47NT4H96yvJOi2oQjBw1vmlm5wteKxW4seANsK9jf3ra9CEYZ7W7l7wa2VbjwOS6F9ynt+S9U9lRqfgyqvHYsiij7qWwq+1K2V7iVJYvHbwDGgHTiJYfz1kpTy9CzH2aSU+cLffwv8bynl8VJl57LHrOkSRXBbnGtNl8VMUTlVX9GQm3Nl3IJyJlemdE7DbjGSoE/9fqVV2OYes8GdvsesaRo57VZEvTvB9U7V9NvcKKeOMRPLTNdXx8uMHyvl8tyf8babKvN4W6302LDYTG2vXGH7QFHKH+9lwbJ+ru1T6lmZel5dUpyHyjlmznvMEyr7zcIJXMBngF8F/gcwY4uPT8oFskDPTOVVTeeNzlEUIdjbEuRk1xg2i8LBtopJN9BS4mYORNJ8+aSxr/zgplpOdY/RGHRR43NwumeM1ko3G2tnf6PqGU1xbTjO9obAJB/iH14e5kzPGO/a22TESx1Ls7+1goD71v7aN97so3s0xYcPtdAfzRBN5znYGuTpMwOMpXJ87J5WAu7S+03j1xdN5/j8dy7jslv45Uc3cbovittuYX21h398vZsan4MndjdyvHOUKo+DXc2Bkh1vNJkrXnfAZedcX4R11d6yUqF1hpPcDCfY2RQgllbpHk2yt6XijoruZFKaiX3wUHslI8ks5/uiXOqPcWUozk/d28aB1gpe6xhBIDi8rrJkf1xtaLrkeOcokVSOq0MJ6gNOPniwha6RJDdCRlCI0WSWLXV+Ai4bh9dVMpZWOd0zhk1RyOs61sJvixDkVJ1LAzHqA85inHurReGbZ/roCCf54IGWYlyFjlCCb5zuoyHootbnYHtDgFqfgxNdY+Q1ncPrKksGG9F1OWuZcYZjGb54vIeWCnfR0vh//egmHSNJ/tWjG2mv9k4YEzxFTcFqoi+S5spgjC31fpqCLnKqzhsdozhsxhwghJg0Dm+o8dIZTvDHz19nXZWHX3rLJgDO9UYZSWY51F6Jx2G97bpVVeWXvniGdF7jDz6wu2TSolJ1/+NrXbzeMcLP3LeO/W0VJLPqpHEY4Btv9tMzZswB44Gm5hs7Y9aJWQjxH4D7AS/wJvArwEvlnFwI8S7g94BrwMhMZc/2RXn9ppFsvSOUZLDgo+Z3WWcNr/YXL97k0kCMV66P0DeaJqPqnOmNEHDZiKTynOuN8ZkHXDNmv5FSFo0COsIpfvboOsBIn/Z/XryJLiU3Q0k21HqR0pj83negGYDzfVG+8EY3AAPRNLU+o1FOd48Vk6gD/MLDM5vR/9FzV3nxWggw/JSrfYZhwjdP93O5kIR7OJ5F1Yy39hqfo2QQkucuDtIfyXCuN4bPaSGaVjnfF+NzD86cvCOv6XzrTD+qLukIJUlkNXQpGY5l+fDhmRNtmKx9JvZBt93C6Z4IvaMpvniiB6/dStdIit96145JZcZzoa9mLg3EePXGCK/eDJPIqPicNloqXJzsGqM/muYn10bwOa28cDXMA5tqcNgUrg0l6I+kOdE1xpY6LzfDKZqCLiKpHCPJHPFMHp/TRlulh3s3VHF1KM4/vmaMAbG0yv9XCDDxv398g64RY+/37Tvr6QinOLK+qpiUxmZROLzu9oBEV4bixTJWRXDP+qppr++vX77J6R5jj3VTnZdQPMOXThiy/N53VP7yEwd59sIgA1FjTPjsA+tX3Ur6W2f6Sec0rg0l+LkHN3Cqe4zjncZz5nfaqPE6iuNw71iaP/zgXn73O5e42B/jjY4R9rQE2FLv5weXhgDI5HXevrP+tuv+o+eu8lJhjP0PXz/Pn3/8tsXqbXV7HVb+7IUbyELdX/v5+3npWqi4R13rdzAUy/DF48Y9T2ZVfuOdC4vBVc50/l6gCvgB8DXg6Qn7zzMipfymlHIn0IthRFZECPFZIcQJIcSJUCg0KbFD0HNrJeq2zW5pF3AZZWwWQbCwKrVZlKLFqMOmYJ1F1SGEKAae90x4aO1WBUchrJ7fZStObB7HrTIBpw1rYeVQ6bajFNRJ1V4H4xr3oHt269Uqzy0LwZrCpCwExdWqIgRVhb+NFGOlr2n8BcRhU4q5c102y6yrG0XcSlvmdVqL1+1eQh9wk9XDxD7otltx261YhCiu1rwTQh8Ct/nurlbGkwc4rZZiIolKjx2nzYLDqmCzCJQJiW7cdituhxUhbqWZdVgVI/+0VcFpM5IlKEIU+7XHYSkmf/C7bt0Xn9NIL+uwGnmrPXbLpLFjuqQ0E9titvvsdxljglURBJw2qr2O4hg0Lt94H3bYlFWp5Rgfc8flnPwsWiaNw+OpKgOuW2NhjdeBc8K1jd/jqdc90TZpuhCbU+t22yzFcLTjdY+PsVZF4LRaCLhsxboDZYz1s1GWH7MQwo+xaj4KfAAYllIeneUYh5QyW/j7dzH2pb9Xquz4HnP3SAohoKXSTWc4ic2q0DRL3FMwVA8vXh2mvcpDe7WHm+EkNV4HXqeVm6Ek9X5nWTcrkVXpG0vTVuWeFPu2ZyTFxYEY92+sJq/phBJZ1ld7JqkpLg/E6IukeXBTDaOpHLGMyoYaD+f6oowlcxzbVF3WPshXT/bgddh4+856boYSuOwW6nwOfnw1TL3fwdZ6PzfDCQIue3Hynkpe04vX7bQrdIZTNASdZbm2xDJ5BiIZ2qrcZPM6g7EM66o9M660zT1mgzthj3liH8zkNbpGUsQyec71Rnn33kaqvI5JZdYKPaMpNF3nZjhFfSEZTDyTpz+SIa9pDEYzbKrxgQJtVZ6C5iyJ12klkVHxOCykcxpOqwVV1+gYSVPru5WgAoxQjt0jSR7aXFt000zlVF66Gqa12o2CKI4tfZE0eVWfMWFEOWUOHjzIa6+9wQvXQjQFXWxtMLSLr14Pcz2U4EMHWrDbLcXrKXcsXG5SOZWe0TQtlbc0mx3hJA6rUox9PT4OH9tcjdtuJZfT+NLJHjbWeDlSMIoNxbNE0znWV3tRFFHyuv/p9W5imRyfe3B6DebUui/2RXmtY5T3HWgi4LKj6/K2cXjiHFCum+50e8zlGH/txDD+ehAjy1QPxiT7H2c57t3Avyl8vAZ8VkpZMiZkKeOvwWgGq0XMGjh8OUjlVELxLM0VbtJ5jdFEjuYK17TGA5FUjkRWpbnCzWgyRyav0Rh0EU4Yauj6gJNQ3AjvV+d3GmEABUUV+Dj9kTROm2XR9nfzmk5/JF3w9148VZY5MRvcCRNzKcaf/6bgymdmK8VwPAOSshLI9I6lsFsUrg8n2FzvpdrrJJrOE0vncVgVJEY/8TqsRe3bXJnYt8th3G6lymufsxZiuraLpvLEMvk19fI0lb95+SZ+l433HzDyHyezKuGEMQ5bFFFULftdttuSHc3E1aE4mby2KhJ2zNv4C/g8hiX2nwDHpxh1TYuU8mng6TlJWeDyYIzvnhtEEYL3H2wua9W8VOQLwdPjhRXwQDRDKqexqynAW0o4jY8lc/zDa12oumRnk59LA3E0XbKrKcCF/hi6lOxuDnCuL4qUsKclwJmeKELAU/uaii4o53qj/ODSEBZFTDImWAjfPN1P92iKKq99xiTdJibjaLrkC2/0EEvn2VTn5YndjbMftIx0jST5+pt9SAlP7mmc0bBpPAHMy9dCSKDKY+f33ruTL5/oIxzPEsvkC9s5CrU+Jz91b9ucX4p7RlP886lepITHdzewuQw3nh9cGuJifwyvw8pP39e+YI+SaDrPP7zeRU7VuXd9FUc2TL8/vVr5V184xXfPDyKEYCSe5VPH1vOFN4xxeFuDj7fvbODVmyO8fnMUu1Xh40faytIInuwa4799/wq6lPzM/e28Y2fDMlzN3Jn1CZBSPiGl/K9SylfKnZQXymgyBxiB8iOp3HJUOS15TS86hw/Hs6QKAe9Hp5ErnlFRCy4VA9EMWvHvNHpBOzEQSTOuqOgrBEqREsZSt27v+Pk1XZYdoH02xgrnjKTyRbcPE5OZyGs6iYzx/I8lV7YvlmIslS/2pdnGivH+Fc+qaLoknlUZTeTJqTrpvEYqp5HJa6TzOqouiWfm3u+i6VvylHu/xsslc2oxYcZCSGZVcoWECis9fs6X8eQbUkouDsTIqbfG4fF2jBR+51SdZJkBPPoiqeI43Du2ehN8rErrjf2tFaRzGjaLsqgJr+eD227lrdvr6BpJcbCtgqFYlt6xW4HUp9JS6eLIhiqi6Tz3bajiXK8R9eXIhipO90TI5nXuXV9pZICRksPtVRzvHL0tKcDh9kpyqo7bbpkxb+hceGxHPef6omyu894RPqgmS4/TZuGxnXXcDCXZ37r6gtjsaPQTSeWQkllVk0c2VKFLSb3fwfVQgn0tFWxp8JPIqQxGMwghkEiQUOlx0DoPNfDWeh8jyRyarrN3muQ6U3lkWy0nOg33xsVIttMYdHF0UzUjiRz3bVx7q2WAz793F7/wT2/isln4nXfvwuOYPA4D3L+xuhhYpSFQnlb17Tsa6B1Lk8lpfLCgIl+NmEksTBaMucdscKfuMZusXsy2W9ssZI/5rkZKyXfODdI5kuTedZV843Q/nSNJ3ru/CV2HwViGt26vK7mXFE5k+O1vXSSRUfnU0XXcDCXJqToPb6nhpethNF2ytznAX7x4E0UIPvvgek51RbBbFd67v6lomj+RjnCS754foMpj56l9zfPej3rpWogzPRF2Nwd5YPPtYfsmXvf9G6vZuwb8VU1MJpLXdL5+qo/eSApVl1S67Ty1r2lS4oK8pvP1N/voHU2j6ToIw22wbyzNYCyDx25hV3OAe9ZV0Vjh4ne/fRFVl/y7t28t2ed7xlL83jOXyGs6v/K2LUUr6YnEMnm+drIXVZe8a2/jbUafE+mLpPn2mX48Divv29+86vyPF4sXr4Y42xthT0uQY5tqePlaiN/65kXsVsGffHgfG2q9PHNugK6RFMc2VbO7OcgLV4b56590UOdz8ptP7sDrnH06i2fyfO1UHzlV5917G6n1O2+r+2J/lD989ioOm8L/9/h26gPO2+q+GUrwvQuDVHscvGdfU8lx+ExPhJevh2mv8vDOXfW3RauciWlHdSHEt4QQ35zup+wa1jjJnMbVobjhknUtVPz72QtGUP+cqnOut3QA9ZOdEYZjxr70M2f7GU0a1tovXgsTSeWJZ1S+dXaAWEYlks7zzNkBElmV0WSOznDp/Y8L/VGyeZ3+SKaYKHw+nOmJkNckZwoB12e67nO9pcuYmKxmhmIZ+iJpBqMZbg4niBcSHkxkOJ6lbyzNUCzNjVCSznCK/kiac31R4pk8FwdiRNMqZ3ojvHpjhLFCv33h6nDJOl+/McJoMkc8oxYDWUylI5Qsnme6xDXjXOqPkcpphOLZVb0nulCmjkffPNNPOq8STef57vlBElnjXuVUnTOF8faHV0Jk8zrdoykuDpSXxKIznCqOw1cL935q3T++GiKRVRlJ5Hi9Y7Rk3ef7Y2TzOn2R9LTj8NneCDlV5+pQnGTBNqlcZlpu/TfgD2f4uSvw2C1sLCTPOLaxpphI4y3b6miucGGziEm+jBM50B6k2msEMnjnrgYq3DbcdgtHN1XjdxkRZZ7Y3YDPacXvtPLOnQ14HBaCbhtt1aX3t7Y3+LFbFRoCzrLdMUqxuzmIRRHFcHIzXfd012dispqp9TlpDDqp9TlZV+PF67DeZrVd63MUy7RXe2irclMfcLGj0Y/XYWNrvR+fw8KupiBH1lURLPTbYxtLJ4e4Z4NRxuOwcP+m6pJl2qs9BAplNs0SHnNrgw+nzUK1105zxdp1fZqNXc2BwngUBODxXQ04bRb8Lhvv2FmP12FlQ2E82lUYjx7eUoO9EOtie0N5Y1RbtZtgYRzeXEhQMrXuBzbV4LYbbqr3rKssWfeOxtnH4Z1NAayKYGOtd1LQqnIw95hNFoy5x2xg7jGbLDdm261t5r3HLITYBPw+sB0ovhpIKdcvqoTLSO9YinO9UTbX+8qyeL40EKNrJMn+topJ+0G/+tUzXB2M82tv38J9E96g3+gYJZrOc2RDVUkrS1XTeeXGCJqUHG6vLFhlC+7fULUqAziYmKw1nr80xGs3R3jnrgZ2NQV45cYIyZwKEqq8jpLxqUtxfTjBtaE4u1uCVLrt/OY3z5PTdH7z8R3kpc6prjHaqjxsK7GXbGIwHM/Mep+6RpJc7I+xvdFPW5WHTF7jlRthHFYLR9ZXoSiCi/0xukdvH4cncrJrlHAix5ENVSX9mjVd8uqNEXKaxn0bqnHaLHz9VC/PnBvg8V0NPLW/eVGvfb6UY/z1t8BvAn8EPAx8kvJibK9avnd+kHhG5fpwgl94eOOs6Ra/f2GwkLgiz0fvMZI5PH9xkO+dM0KG/9a3LvLsLz8IGCENx4PPA7y1RBCSiwMxTnYZCbf7x1IMxw1fw6DLtiaSApiYrGYyOZW/frkDTZf0jKb4+Yc3crJrjJuhBE6bhcagi3q/k9Zp8p+Po+mS75wbQNMl/dEMqaxa7Nt/+qNrbKrzMRjNcHkwTluVe8YkOXczP7g4zFBs5vv0zLkBsnmdzpEU/+IhI4nFmUJijkqPnbYqN89eHCzGe/hIiaQ6/ZE0L1412kfXJe/YdXvwkCuD8WKCCpfNypENVfzxD6+RV3VuhJKrZmIuZ4J1SSmfx1B7d0kpfwtYmzq7AuOh9vwu26z+vFaLKAY1n5iIoqXSjaWwup0YNtTrtBYTWkyXuCLgshWTW9QX/O+EYE5h5UxMTEpjtyr4Cxa6VV5Hsb85bBacNgWrIsqy4FUExfMEXTbaq9xFy1ojpWohgYXdOmNaxrudYqKPGe5TsJCQYrzs+L0VwhinbRbl1jg8zTjpcViLiUSmiwcecNtuSywUdNon1bkaKCdW9isYySu+CvwQ6AM+L6XcslhCLPcec041rOkaAuXFjE5mjVjBLZXuSZlZ3ugc4Ux3hE/e14bVequjjxWs/maKUzscy6BLqA84GYxmUER5sX5XI+Yes4G5x7x6GE3kuDAQ5UBbBW67tdjfxuNgV5QZajOd0xiMZWgKurBbFV6+HiKb13h0W31xRV7tcyxKYJD5sBbaTtV0esfS1Pgc08YCz+Q1BqKZSWNyfySNzaIUk0QksirhEuPwRCKpHLG0Skula1r3pFA8S17TiwkqhmNpXrga5sHN1dT6lzf880L8mP8V4AZ+CfhPwCPATy+ueMuL3aqwboaMLWD4uw1GM7RWufFMSHcXSeUIJ7K0V3nYVOOj0m1HKJMn9wqPvdjxh2JGbO2p9U2chEvlVF4NRNN5hmMZ2qs95opgkZnLy8ZanfCXmnAiSzSdZ12V5zbNV6XXzrFNNYwksvRHMqyvvr1MIqsyEEnTUume9gXdZbdM6rtHJ9iSWBRRMvNTfySNqslZVeXzIZUzMuDNJPNqYzwxiDpDGOBUVuPGcJyA01a8rsYpORI0XZLXdHQpsVB60g267bMmH5mala/W7+IDBxceBWz8eVxf7ZmTz3IpZp2YpZTHAYQQCvBLUsr4gmpcA2i65EvHe4hnVNqq3Ly3sO+QyWv80xvdZPM666o99EXS5FSdPS0BHtl6+17yUCzDF97oRkp4YHMNB9pWX0jD6cipOl98o5tUTmNjrZcn96yu5AUmdzfRVJ4vvN6NqksOtldwbNPt7kvRdJ5/KpQ50FYxKZCOlEYfj6XzNFcszsAMhhHT1071AUYI3O2Ni2sU9uXjPYyl8tQHnCX3WVcj3zs/yPXhBG67hU/ev65kMI7f/NZ5hmNZ6vwD/MlH9t32/5yq84U3uknntFWZTCWSyhWfx0PtlRydxlWuXGZdBgkhDgohzgFngXNCiDNCiAMLqnWVo0tZTFaRmBAcPafpxeDw0XS++Hc8UzqAejKrFgPalxtkfbWg6ZJM3ri+xBqT3eTOJ6NqxRXYdH0rm5++jC4hVfhuMfvmxL6y2P1GSlkMVLGWxpNxWTN5vZjUZyqxtFEmNk3iEFXXyY6PR9OMtytJJn9LI7AY7V6OKvtvgJ+XUr4EIIQ4imGpvXvBta9SbBaFJ3Y3cDOUZPeEABx+p42376ynbyzNgbaKYtSXg+2lXS/WVXs4tqmaZE4r2z1jteCyW3h8dz2d4RT7ygzGf7ezVvbC7wTq/E4e3VbLSCI3bUKZ2kKZcCLL4XWTkzlYFMGTexq5PpyYNsjOfNhW7zcyzGly0fuNEIJ37WnkymB80VfiS8lbt9fxZneE9mr3tCFFf/GRjfz4SoiHtpQO3OK2W3nnrnq6RlbneFQfcPLI1lpGk7lFGevLmZi18UkZQEr5shBi9b2yTEDXZUlra02X0xoNTGV9jZe2Kk+x/PixW+v9bK71oSiCoNvOjsbpO7UQYtpJW9eNtz9FKW/vdrprWko21vrYWDt7PlkTk6Vgtmd+tmxSui7Z3Ryc9jzt1Z7iHvFMdY3/T1V1rLPEplcUwb3rJ78EzGXcmY2WSveMRqWrkSqv47bc9bquo+sU7+fB9srbxkpdlwhBcb92U52PTVPik5czLk69/1JKpGTScVPLTK27HBbT1bWcifkFIcRfAF/A2Mf/EPBjIcR+ACnlqUWTZhE42xvhh5eHaQy4eN+B5uLNfvXGCK/dHGF9jYd37Wmc9YZ/60w/14cT3LOukqF4hq6RFEfWV9E1asTSfWhL7bwTO9wIJfjP376ILuHX3r6F7TNM7mAkrvj2mX58TisfOtR6xwayNzEBw5bjKyeMvdR37Ky/bTAuh2+f7efSQIxUVqPCY+exHfVsqb/9PDlV58snehhN5kqW+c65Ac71RjndGwEJn7ivjXfsvN0/djpOdo3y0rUwLRVuntrXZKZbBXpGUvzWty6Q03R+5W2b2dNyu+1NfyTN19/sw2FV+MDBlpKuTFeH4nzv/CAVHjsfPNiMw3r7uHiic5SXr4dpq3Lznr1NxNIqXz7RQ07Tee/+JhoCLn5wcYhzfVF2Nwd4dFtdWXUvNeUs1/YAmzGCjPwWsA3YhxEv+78tmWTz5NJADCmNrCwTk4RfGogBcDOUJKvOnIw8q2pcLwS7P9MboTOcQko43TNG31gaKeFy4Xzz4Y2O0WJS9tdujs5a/upQHFWXjKXy9EfT867XxGQtEIpnCSdyaLrk8uDcbU3zms61oQSprMb1UKJwntL9NZTIEopnS5ZRNZ0rg3FGkll6R1PoUvLK9ZE5yXJpII6U0D2aIpFb1YrGZeNE1xiJrEpO1Xn1Runx70bISBoRz6j0jJZO3nF5MI6mS8LxLMOxbMky4/NBZzhFMqcZ7VCo+8Zwslhm4u9y6l5qyrHKfng5BFks9rVWEE0P0xR0UzHBbP5AWwWv3RxhY613VjcDh9XC3pYgV4fiHGqvJJTI0hlOct+GKnrG0vSOpdi3gKTxD2yu5pUbRtrHh6fZU5nIzqYAPaMp/C4bzRXL62dnYrLc1AectFW5GU3m2DOLuroUNovC3tYgl/tjxWQx02m36nwO1lV7CMWzt9VltSjsb6vgfI8g2phH1SRv23G798VM7GsN8vK1MG1VHnwr5Ou82rh/YxUvXA2RVTUe2VZbsszWej/XhxM4rJZpXVv3NAcYjmWo8tppmMbldF9rBT+5Hqa92oPHbmF9jYe6Pic5VWNrg6EdOdBewbneaHFrpJy6l5pyAozUAb8HNEop3yGE2A4ckVL+9WIJYSaxWNuYAUaWlqX2Y14LQSpMSmO23dpmIQFG/i+GFfa/L3y+CnwJWLSJeTEZjmV49eYIzRUuDrTN3zrum2f6ON4xxhO7G7hnijGHiYnJ8tM7luJk1xgbary3pSKNpvO8dC1kuKxIyYYa36JaW5vMnze7x/j6m33sbgrw/oMtqJqR2z6n6jy4uda0mSlBORNztZTyy0KI3wCQUqpCiLllfV5GXrgaoncszc1Qkg013lmjwJQikVH5p9eNwCB/+5OMOTGbmKwCfnR5mHAiR0f4/8/ef4dHlp33nfjn3MoZQCHnzjnHyRzOkMPhMAzDMFMUSYmSpdWupbXXkm39vHKQaMta73plWSuZshVImhTFNIxDznDIyT2dpnNEI8dCoXK+9/z+uIVqoLsAFLqBRjqf5+mngcINp2567znnfb/f5G1TUq93jXN1JMGZ/ggdQQ/d4yk21nvVQ38Z8D9e7WY4muHycJyHN9cxGs+WDCr8Thv3b7w7MY7VSCWBOSmECGJmZCOEOApEF7VVd0Gdz0H/RBqvw3rHN6XTqhH02AklcrfJwikWhrU+PK2YP7VeB6FEjqqiqcFUJmUW/S4bDqtGwGUrqzCluPc0B1wMRzNUuWz4nVYMadaRG1LeJo+pMKkkMP8O8F1ggxDiFaAO+PCituoueGRzHVsafVS57GXT5yvBatX44od2c200MWudskKhuHc8saORPW1V1Hjst9UF72+vprXKhcOqkczpZZdRLA3/+zs2c3YwyrpaD067lUa7lc/c10neMKY58yluUklW9kkhxCPAFkAAl6WU5XXTFgEpJVdGTJ3VSgrrhRA0Fa0UswWdqyMJmgJOgvO8AHRDYrNoM0rI3S03Qkl0Q7Kx3rso21co7pZ0Tuf6WILWatcdTQktNDndIJzM4bJZylZWTBrDBKY8JoajGcLJHFsafbcF6mgqT99EivV1nlXvpZzJmyWgzVUuaip01looCtJ8lk59lM5kyziJYRi8cGkUt926Joe657wahRDPAD+SUp4XQvxLYL8Q4t/eK2GREz0TvHTVNL/+yKE2WuYxtPyjc8N0jSVx2DQ+/+C6invQkyYWqZzOheoYH1kggftJro3GefatIQDeuaNB9coVy5JnzwwyMJHGbbfwKw+tX/Ie6PfPDNEbTuGyW/j8g+vmdDyLpHJ8/XgfuiEZiWd4dMvN0hzDkHzteC/JrE5zlZOPHloZhhB3yo/ODXMjZD4Lf+XB9fd0mP9O9v2NkwP8w4n+0u9rLThXcnZ+X0oZL2pkP4aZjf1fF7dZN5kqBpLNzy/nbHLdgi4xZtcUmYYhTXuxW/e/UEz7TouwfYViIZi8NvO6wVxllfeCXPGezBdM679Klp8c8Zo0QJjEtCIs/m0N3IO5qc/Ce3wu72TfyUU0A1kJVKSVXfz/KeAvpZTfF0L820Vs0zQOr6tBEwKPw8L6uvkN+z6xvZEzAxHaqmcWTy+HzaLx/r0t3AglbyvLWAi2NfrJ5M2Hy50IKCgU94KndjVxbsCcG7QuAz/ud+1o5NxglI4aT0WjX/U+J0/uamQ8kWP/LYJAFk3w/r3NdI0lV5QhxJ3yxA7zWdi+BD7Od7Lvjx8yRynddguPzyBCspqpJDAPFLWy3wH8eyGEg8p62guCzaJx34Y7K1cKuG1lfVor4W7E4nMFg2xBx+ecPo9S0A0MCXartqK8mRVrkxqPfZqH8VJT7bHP+37eVO+jM2iUDQit1W5aq90YhiST12cNGoYhyenlt7MSuJtn4ULs+1BnDY55DJ877VY++8C6OZeLpnK47NZVl4FfSWD+CPAu4D9KKSNCiCbgny5us1Yuo7EM/+JbZ0lkdT77QCfv3NEIwEQyx9eO95EvGDy9r2XFOcQoFCuNTF7nq8d6iabzPL6toezoVyav8z+P9RKZY5mvvdnHRCo34zKKmXn1eog3usK0VLn48IHWBTPy+O5bA3zljV6qXDa++KHdyyJBcaGoJCs7BXxzyu9DwNBiNmolc3EoRqxo5H2iZ6IUmAciadJFk/Pu8eSqDcyqPlmxXAglskRSZgFJ1wzTUuPJHBPFZa6PJcouE07mCCdzsy6jmJnrRUOggUiaVF7Hu0Ca4Sd6IkgJE6k810YTM1rsrkRWV/9/GXBoXQ1bm/zU+Ry8d09z6fON9V7aatw0+J3sVFnYCsWi0xRwsaXRR9BrZ397VdllGv3O0jIzTS81+p1sbfRR47HfNletmJsj64NUuW3sa69asKAM8L49zdR67exsCczpzb3SWN3Fe0uA227lD96347bPnTYLHz7QugQtUijWJhZN8O5ds3snV7KMpgmenGMZxcxsbvCx+Q48tefiQEc1BzoOLPh2lwOqx6xQKBQKxTJCBWaFQqFQKJYRKjArFAqFQrGMWLQ5ZiHEEeA/AQbwppTytxdrXwrFamYxMt27v/jUgm9ToVAsDIvZY+4B3i6lfBCoF0LsWsR9lSWd0znRM8FILHOvd61QKBaZ3vEUp/siJflcxfIklStwomeCUfUcrphF6zFLKYen/JrnprTnPeOH54boGU9ht5omFitVtUehUExnPJHlm6f6kRLCySxv39qw1E1SzMAPzw7TGzafw7/yUOVmQmuZRZ9jFkLsBuqklBdu+fwLQojjQojjY2Nji7LvSZsxY5GsGxUKxdIw9Y5WHeblzaRxhZSSZeCFsiJY1DpmIUQN8KeYsp7TkFL+BfAXAAcPHlyU0/WunY2cH4jSugTC7QqFYvGo9Tp4355mwskcu1qVYM9y5sldTZwfiNKmnsMVs5jJX1bg74B/csuw9j3D67ByZP2dGWAoFIrlzfo6L+uXj8eGYgbUc3j+iMXyWRVCfBz4z8D54ke/J6V8rdyytbW1srOzc1HaobhzDCkp6HJO55bu7m7u5fnTDdPX1bYMrAhXA/f6/CkWDnXulg+6IdGlxD6P59KJEyeklPK2FRYtMM+HgwcPyuPHjy91MxRTyOsGf/1qN/FMga2NvlklCQ8ePMi9On/jiSxfeaOXgiF5ZEud0i5eAO7l+VMsLOrcLQ+i6Tx/93oPuYLBfRuCHK1whEAIcUJKefDWz1WXQ1GWvG6QyJouWeFUbolbc5NYpkChmMw3kVw+7VIoFGuXZLZArmBmIS7Ec0mZWCjK4rZbecf2BrpDKQ52Lp9eaWfQzZH1NcQzBTVvpVAolgXNVS4e2FhLOJnlvg21d709FZgVM3KqZ4K3BqIEPXYa/M6lbg4AQgjun+PCz+R1nr84ikTy+LaGFZEJ+uq1EAORNA9uqqUp4Frq5igUa5ZEtsDzF0dwWDUe29ZQNpcllMjy88tjBL12HtlchxCCw+sWzg9aBWbFbUgpGYtnefbMEABfPtbD0Q0rp3d6fjDGlZE4AA1+J4dmMFCXUiKEuJdNK8t4IssbN8IAvHw1xDMH25akHfOR/lSSnorVyuneCF1jSQBaq93sbDHL8aY+L167Pk5vOEVvOMWmBh8tVQv7Mq0Cs2Ia3zszyLXRBAfaqqn12gklcqyv9Sx1s+ZFY8CJRTNvoMYZevp94RTffWsQt93CRw624VlAA/f54nVa8btsxNJ5mhf4BlcoFPOjMeBECLBqgnq/A8OQfPetQbrHkzy0qY4DHdU0V7m4NprAbbdQ5bIteBtUYFaUyBZ0ro4kALgyluDff2gPg9E0G+tWVmBuqXLx2Qc6AfA5y980l4fj5AoGuYLBQCS9KEbuleKwWvjU0XYSmQJBr2PJ2qFQKGBjvZfPPrAOqybwOKzEM3luhMwe9IWhGAc6qjnQUc36Wg8uu2VRpspUVraihMNqYXdrAKfNwr72KrxOK5sbfGjayrtMfE7bjEEZYEeLH5/TSlPASXuN+x62rDwOq0UFZYVimRBw2UqjaF6HlW1NPlx2C/vaqkrLVHvsi5a/onrMimk8tq2Bx7bNbgjQHUoyEsuwp61qRSRWlaMp4OJXHlq/1M0o0TueYiiaZldrALdd3ZYKxVKhG5K3+iM4rBo7mgMIIXjXzpl1HBYD9QRQzItoKs93Tg9iSMl4Mse7ZxEeUVRGPJPnW6cGMKRkJJ7lfXual7pJCsWa5VTvBC9dDQHmSNbGeu89b8PKG6NU3DHXxxJ840Q/5waid74RAZOJzNoyyGiulHMDUb5xop/rY4mlbsptCCEo5qphWUHHVKFYaeR1gx+fH+bZtwZJFgWUbmVqpYa2RLfjnD1mIcRB4CGgGUgD54CfSCknFrltigXmhYujJLIFBibSbGvylzKX50PAZeNDB1oZi2fZ1rR0CVPzQTckP704gpQQSeXYUHfv34Bnw+uw8qEDrYzEMmxr8i91cxSKVcvl4TgXBmMABD127t94uybCvrYqHFYNp01j/RI9K2bsMQshPiuEOAn8HuACLgOjwIPAT4UQfy2EaL83zVQsBA0Bs3So3u+4o6A8SUuVi71tVSvG8NyiCep95ndvDCwPoZRbaa5ysa+9esXO2SsUK4E6nwOrJhAC6mcopdQ0wc6WABvrl67jMVuP2Q08IKVMl/ujEGIvsAnoXYR2KRYI3ZCMxDLUeOw8tauJ8USWao+dvG4wFs9S53PM6NKUyeuEkzka/U60pRrTuUMmkjkkUOOxA/DMwVYmkjlqp2Q+j8YzOG0W/LNkby8E2YLOeCJHg995Vy9ECoXi7mjwO/nlBzrRDUmV23w2VPIsrIREtkAyW5hVJTGaypM3jGnPoXLMGJillP9lthWllKfnaCdCiF8CPgNYgE9KKQfmWkexsPzo3DBXRuLUeOx8+mhH6S3x68f7GJhI01Ll4iOHbleaKugGX3mjl2g6z/ZmP0/saLzXTb9jesdTfOvUABLJ03tb6Kz1YLNo096Qzw1E+cmFEWwWwccPty9qqdLXj/cTimdZX+fh/XtbFm0/CoVibm4to/zWyQEGImlaql185A5V9+KZPH/7eg/ZvMGDm2rLqg0ORzN8/XgfhpQ8tauJTbNoJ1Qyx7wO+C2gc+ryUsr3zbFeC/CIlPKxufax1pBScmEohmHAzhb/ospC9k+kGIikSeYK5A0Dh2YOlYYSWQDGiv/fSk43iKbz5jLx8sssV0LJLEbRzjSUyNJZRrls8jvldclEKl82MGfyOucGojT4nbQVa52vjSaIZfLsbglgreDtWjck4URu2j4VCsXScXEoRq5gsKslgKaJ0jPwbu7PWKZANm/Mup1QIstILFMaxbyrwAx8G/gS8CxgzKOtTwAWIcTzwAXgH0sp9Xmsv2q5PBLnufMjABhSsmdK0fpCoxuSRCaP226ZlkX9zu2NnB+MsqO5fLKR227l7Vvr6R5Pzqg1vVzZ0exnPJHDkJJdrYGyyxzsrCaV0/E4LDNKjr5waZTLw3E0IfjlBzpJZgs8+9YgAKmszoOb5naRsWiCd+5o4MpInD2tVXf8nRQKxd1zbTTBj84NA1AwJAc6qnliRwPnB2MzPgsroTng5Mi6GsaTOe6fwVfAZtGIZwrohpyzoqWSwJyRUv7nO2hrA2CXUj4mhPj3wPuBb07+UQjxBeALAO3tayuHTHDzpMy3szyRzPGLq2MEPQ4e2Bgs29seiKR580aYjqCboNfOlkY/Dtv03t3Geu+c9Xl72qoW9aVhsXBYLbxj++wiKQASiZzl77F0nkvDMQIu27zP01S2NflVtrVCsUzZWO+bM9HrVO8EPeMpDq2rmdGwwpBmR0vO8FCxaIJ1xU6AY44kz0oC8/8jhPhXwHNAqY8upTw5x3pR4OfFn18ADk79o5TyL4C/ADh48OBsz8dVx5ZGH4aU6Iac91vaa13jdI0l6RpL0lnrprX6djnJFy+PMhrLciOU5OOH2+mfSNFe476rxIbVxpvd4ZIueFu1q+yNKURRms9uJVcwaK5y8b69zcQzBXbexdu1QqFYGjbWe3n3riZyBaPiZ28yW+DFy2Pmz7kCnzzScdsyA5E0b3abDnFWTeOp3bcLL81n35UE5l3Ap4G3c3MoWxZ/n41XgV8t/rwXuFHBvtYM5XpQo7EM3zk9iM0i+OCB1lK2cF84xffODOF3WVkXNN+4nDYLgRlcTRp8TkZjWQIuG73jSY51hwklsvdcVm4huDwc56cXR2j0O3l6X8uCZTWH4lm+fXoAl03jfXvLK221VrsZjGTwOCx4i7q5y60GWqFQmOQKBt861c94Mse7djSWrUGOZ/K8dj1EXpc0+B0zlkxNxWHVCLhsRNN5Gopll9fHEvz4/DBBj50P7Gsl4LLhtFnI5HUa/DMnkm5prKwEq5LA/AywXkqZq2iLRaSUp4UQaSHEi0AI+E/zWX8tcmUkQaKoRtMTSpXmRy8MxRiYSBGKWzi6Psgnj7bjsVvxOKyMxjL4nDZc9ptDI49tq2dnS4Aqt42vvNFLXpdcHIrzti31K65O9uxAlFzBoDecYjyRrehGqoTecJqgx44m4PpoomzAfWBjLVUuG00BV+m4jcQyRNP5JXWjUigUtzMSyzAYyQCmJ3u5wNwdSjGRMpNar4wkKnqeWC0aH9rfQm84zY5mX2n72bzBYCTDSCxDW42bDx9oYSyRZXtT+bwWgGg6j27IUhnnjPucs1Wm0lcVprjIvJBS/pP5rrOW2dzg5cJQFJtFo6P25hB1z3iSF6+M4bRZ+Mih1pJYxmvXx3m9axy33cIv3ddZCs5CiJKQxu7WAK9dH2dTg3fFBWUws9aHo2maAq4FLWl625Y6zg5E8TmtHOwon9z2yrUQx26E8TqsfPq+DkZiGf7lt8+RKxh87FA7H9ivSp8UiuVCg99JU8DJeDI341BxR62bareNnG6wuaGy0a+CbvDNUwNEUnlGYhke397AjmY/feEUtV47DX4n8Uyeb5wYIJPXSed0DpR5pozEMnztTbNc6j27m2ad164kMFcBl4QQbzJ9jnnWcimFybXRBKlcgR3NgWnDsD88N0ReN3j3jgZ+cH4Eq9B49+4mvvDwhtu2MZHME3DasFgEo/EsW4olxSMx8+0wldOJZ/LTes2THOys4eAKy6qeytZGP1sbp99kXWMJ4pkCO5r9ZUuWDMPgR+dGMKTk3bsa0TSNUCJLz3iSTQ0+/E4bBztr+OvPHZ623kAkzXA0w45mP06bpXR8E9kC8UyB7lCSXMGczZnU3I5n8lwZidNe46HOp2wbFYrFYjiaYSCSYluTv6wDm92q8bHDsycS+5027t9YS64wt8jHJJmCQX84TSyTp8ptTh+2Vbu5f0OQoMeB3aoxGs+QyevFdpphMpTI8OPzI+xprWJnS4CxeBbdMNOpRmPZuw7M/6qi1ituoy+cKpXXJLM69xXT6H98bpj/8Uo3AK9fH+f6mGnCLTR4ssw88MY6L69eD+GyW+gM3uxJP1DUea2vcK5kNTAYSfOd0+YxTWQLpWMwlR+cHeZvX+8BQJeS9+5u5hsn+knndC4OxfnU0duTNxLZAv9woh/dkAxF07xndzMPbqpFE+M0BpzU+Rw8sKGW0/0Rwsk8Hz1sChE8+9YQI7EMTtsEX3h4vVL2UigWgUxe5xsn+sjrkp7xFB/c33pH27k+luD7Z4YAU6thf3v1nOtYNUE6rxPL5Ev6CC9dHeNMfxQh4NNHO2ipcnGws5pwMld6zv/Jj6/QFUryo3PD/Nkn97Ol0cdQNEOuYLC3vWr2fVbwXXqBISllBkAI4cIshVLMg6mFOcaUn3O6QTiZQwiIp/P86Nwwdqvg4U11pd5gnd/B27bUA2aA/96ZQWo8du7fUMvT+9bWcOrU9H1jhrqEqcfXKKYrTi46+ZeRWIa/fKmLKpeNX394A1JKBiNpIuk89cXkjXqfc9rxtVo1/rfHNt/SHjntf4VCsbjMVI5UCdm8zutd4xR0yd62yisrhICpr9xT2yAxpw8f2lQ3bZ1SprSUGIbEZtEqKuOEygLz3wP3T/ldL352qKI9rGHaatw8tbuJRLbA7pabCQFPbG8gVzAo6AYtASfxdAEhIJUtMFBMXqj3OdlZXOe+DUE8DisBl5UrI4lSmU9H0DNjTd1qpaXKxXv3NBHLFNjVUj7J4j27mpDSDMrv39uEpgk+dKCF7lCKLcWkra8e6+Vsv2l/ub05wL62Kpw2C15DTqszn4v37G7m8nCczqBb9ZYVikXCabPwwf2t9E+k70oI5GpxatGQcGUkyaNb515HNyQOq4bXYSsJgzy0uZZqj40aj2PGIfHfecdmfnRumN2tAQLu2ZO9bqWSwGydmpEtpcwJIea3lzXMZPZuIlvgW8d6yRYM3re3uaSZfCOUZFuzH4FgXb2XiZ4IFk0Q9N48xDaLxoEOc8hlIpXn8nAch00jFM/w3dODNPgdvG9Pc0USkauBucQANE27TZO63ucsJc0BdNR4eO36OFZN0F7twmHVmEhmGUvk2DODWlg5ro3GebM7TCyd5/Hta2M6YbXS+bvfr3jZ7i8+tYgtUZSjucpF8112RDqDbnxOG7ohS2Ifc2GzCKLpAkPRNFsazYQxh9UyLcErVzD49ukBwsVSrc5aDw1+J5+5v/OO2llJYB4TQrxPSvldACHE+zHLnxTzoDuUJFTUTL40FC8FiXW1Ht6+rR6rJtjeFGBHcwCrJkrOJ7dyqLOGtmo3XqeV584Pk8nr9IynCCVyy9bScLExDEkomaXaba9YROUD+1vY0ujF57LRVu0mlMjSUu0m6DWTOSYZi2fxOa0zZrSf6o2QKxicHYjy8Oa6aesqFIrlxZ62av7og7vIFoxSp6mgG4RTOYKe8na42YJBY8BBwGWd0ep2JJahJ5Qkr5vPgnL6/POhksD868CXhRB/Wvy9H1NwRDEP2oNuAi7btAsCzOSv/+f5qwgB//s7t5R6xrMxGYC3N/sZmEhT73dM62GvNX50fpjLw3HqfA4+eaS9YlOQ7c03e8bVbjvr67wMRtLsKH7+6vUQb3SF8TmtfOpoR9ngvLMlwBtdYTY3eFVQVihWAB3B6UHzO6cH6Q2n6Ai6yyaVeR1WNjf46J6iLXErHoeV62NJouk8O2aYYpsPcwZmKeV14KgQwlv8PXHXe12D+J02Pvfguts+vzwSN5OYJFwejuGyWbBbxbThWt2QXBiM4XdZp11UWxv9bGnwLao71UpgKGrOy4cSWQqGxGaZ+3jkCgY/ODtE0GvnoU11WDTBhw+0IqUsHc/h4nbjGbNcqlxgPro+yJF1NWv+HCgUK5WhaLr4v3m/T7r/OawWNtZ7EULw/r0t054Nt5LKFWgMOPG7rPPKUZmJGQOzEOJTwFeklEaxsYlb/r4BaJJSvnzXrVjDvH9vM73hFJowa+N+fH64+LkoKde8dn2cN7vDCAEfO9Q+bchaBQR4dEsdJ3sjbKr3VjyU/bevdfPcBdPhy223lkYqph7PBzbWImWIpmK51Eyoc6BQrFwe397AuYEYO1vMpLKTvRF+ccXUxn56X0tpLnq2+9xp1Yik86RzhQWp0JitxxwETgkhTgAngDHACWwEHsGcZ/7du27BCuYPf3CRa6MJ/pdHN5LXjZLl14WhGNFUngc21Zb0rqeS1w1evhpCNyQPba7l99+zHYBXr4W4PpbAogmyhZsOmXoxN1/Kmz8DhJM5Xrs+ToPfsaJFRO6WC0NRnn1rkIc21bKnrYpEpsBfvnQdKeELD2/A67z9Mk/ldMLJHBZNkCse65O9EwxG0hxdH6TW68CqCZw2y5xOMAqF4t4TTeV55XqIoMfOkfVm7fDrXeOEkzke2FBLwH37s1c3JC9dHSNXMHh4cx1Om4XhaIZzA1HqvHa2NvrJ5PXSc3hSUGguDMAiTAepybg8HM1wvCdMZ9BTqrCplBkDs5Ty/ynOK78deADYDaSBi8CnpZS989rTKuONG+N8/4wpdPGHP7jAAxvNGrbReIaJpKnFanrxNt627oXBGKf7IgAE3LaS37EhJW67BYsmMKa8dN23PojHbsHvsk0rj3rp6hhdY0lTeSronpZ1vJb40xeuE8/kuT6W4JmDrfzo3DCvd5lOLw0BZ1k3mI0NXtpqXLhsFup8TiaSOX5edJDJ5A0+fKCVX1wdozuU4sqIWQ61kJKgCoXi7nj5WogrI3HALE2VmKOLk7x71+1iTZeGY5zqjQDgdVq5f0MtX3r5BrmCQVcowSNb6pHGzeewblTW+83rEre9OIxd7Fg/f2mE0ViWa6MJ1td5yqqVzcSsS0opdeAnxX9rHsOQ/PDcMP0TKbY3+XBYLWQLOm01buxWjVzBoNHn5LXr46RyOlubypf12K0aZ/ojSAmPbLlZlF7nc9IUcKEJQfWUrOyxRJbTfRH8ThsdQXcpMzDocdA1ljTrbx2Vn/Sl4sXLo1wajnOos7qslmw5nr84wt+93kNbjZt/+dT2sglWdT4H8Uwev9OK126hrdpd8k9ur7ndFhNMx5i8LrFoEpdNw2W34LZbSOX0UiJd0OOgO5Qq/m35H1+FYi1RMAxO9kwUqyY0rBat9BwOFk0izg1EeflaiM6ghyd2NFDttqMJgSElQY/5oi2lqSg4mUltsQiGoxlsFg2HrbJpKp/TSmPAacaAogpj0ONgNJbF57Rhn2cpq3raVEBeN4il8wgovaENRDL8t88c5PJwnHduryeZN4hnCmTzOutqPeR1A4GZFJAvyGnDKum8TnOVCynltKGSLY0+qt02rBZtmvvIuYFoKQGpfyJdckJ6YGOQao+NBr9z2QeOgm6U3lRP9ExUHJifuzBCNJ0nMRTj2li8rHPLn318L987N8wjm2uxWCzcv7EWt92CLpkxy90woKP4QpXM6bTYLDxzsJXBiXQpq/KhTbWsr/NQ5baX1SFXKBRLhxCCer8Dv9NGMqvTVuPg0/d1kMgUSvXOp3onilK8MR7cVEtzlYsndzaQLuglC8Z9bVU0+h00FdcpGJKOoOlfn85VNpTtd9pu2/c7i2YXtV7HvDUmlvfTfBmgG5KvHutlPJFjV2uA1moXg5EM25r8rK/zlhK0/BYLfqeNdE6nKeAils7T4Hfy31/pJq8bvGtnY8mMIZnJ88q1EIaEh2+RcSuneb25wcfVkTheh5XmwM2h7De7J3jlWmjWcp7lgtWisbXRx+WR8sF1Jup9Dl65GqLaY6N5Bj3wV7rCDEezvHh5nI8fdjMYzfCLq6HS+m1les0WIegKmaMNHrs58vGtU4PE0nlimQL3b6xFCEFrdfket2JlMB/REMXKomsswRtdYTwOC58vVrz4nbZpeT3bm/28dDVER9CNx27hwlCUP/z+RXQDfv2R9TyypZ697VVYBgS7i6VQVs18Ntg0bV4v5LfuW9NE2WdPJajAPAeZvM54URhkKJrh00c7MAyJdksh+kAkzUQyx9ZGH2/fWk8klcNq0Uo94qFIBrtFI6cbDETS1BezfIeKDkazsa7Ww2+8bSOaJijoBucGolR77AxGzDT/eKZALJ1f1oEZ4MldTTyxo/G2YzcbnUEPH9jXjKZp5Gd4eZ2UMR2NZ8jrkuFohmujcaSE4aJX6q0UpEHn5FtxXidRPIbm9szjmisYpfrotSreolAsF8biWYaiaTY3+HDaLERSeZqrnAghGIlnaS1znx/oqGFfW3XpmXNlOMHARJqClFwYjPLIlnoe29bAo1vqS8voBhzsqAYE6Zx+2zbvBXMGZiGEA/gQ0Dl1eSnlv168Zi0fPA4rD26q5UYoydF1ZubfrYElnMzxjeP9GFJydSROTziFlLC/vYrtzX5SuQK1XnvJFelgRxW7WqsoGJL37rk9QaEck/t86VqI070RNCF4YkcDed2gwe9cMe5S8wnKYJYsGVLSFHDNWLL0yOY6TvZMsKko8tE/keTCYAyA3vFUKbluWjsQjCdz5jyS1ULQ6+DIuhoGIumSY9ULl0a5OBTDqgl++YFOfGUy7BUKxeKTLeh8/XifmaQ1luTpfS187FAb//1VneYqJ/vaZh6Fm/rMSWTyjMazSGA0ni27zN72KsaTWewWbZoY1L2kkh7zd4AoZslUdo5lVyWHOmvKPtwn0Q1ZcjrKFoyS84huSHrHk0yk8rRW3xyCtlo0HtpkBhy/c27FrkS2wCvXQvidNvLFHrghJTUeO88cNO0HxxNZjt0I01LtYndr1R1+0+VHY8BZ+o4zsbHey8b6m6bnBV2WpPXyunm8ro3GuTKSYHdrgNZqNw6bpTS1MHm+PA4rXocVRzHBLJLKcW00js9pwzBM4YHXu8LEMnke3FiLZwUk3CkUK4EboSQXh2Jsb/KXlbOUEi4MRhmMZpiMoU1VLh7dUk/Qa0fTzHv2ze4w44kc928Mli1VNaQseSrP1EnwOqy3ae3fayp5srRKKd+16C1ZwdT5HLxndxOhRI597VV0jyeJpvJE0nl+enEUMN1RHt/WQLagY9FEqZzH57TNGvTBlO2c7AG+e1cjfpeNGo99Wi/5Z5fH6AunuDQcp6PGU7aGb63QHnTTVu1GIllX50Y3JD84O1z0Ws7w+QfXcWR9DXarhsdhoT3oJpLK8cIl81ylcjofOtCKEKZYvd2qUTAMusdTvN5llmNYNcFj25T7qUKxEPzg7BC5gkH3eJLfeNvG2/4eS+cZiKTJ5A2ujppaV69cC3F52EzGba12ISW8XMwtkVLyZJlyqU8eaSeczJHKG/z245tv+/tyoZLA/KoQYpeU8uyit2YFs6nBx6bic3qyJ3a6b8KUidQlHrulpLPaO55CCPMtsHpKAB1PZPnemSHsVo371gf52eVRPHYrbTVmb9uqCep8TrY03m57Vu220RcGt92Cw7a2NZtdNisGIBE4LVY0Yc5P3Qgl2F/M0g4nc5wfjOJxWNlQ58Vps+CyW0jndKo95jlp8Dtpq3HjtN0sl7JqgoIhqfasXW1yhWKhqfHYGY5mqCmWiYYSWb5ffBa+f28zHocFQ5pVLk6r2dPNFQxO9k7gd9pwWjU07Wa51EwmQBaLhX/8ji337HvdKbNJcp7F1DCxAp8VQnRhDmULQEopd9+bJs6fSCqHx2GtWJ5xEt2QxNJ5qty2afJrBd0shar22MnrBslsYcYTDxBN5UjkCrhsVh7YWEs2r9NZ6yGd09GlpD3o5pNHOjCkpMHvJJk1/ZgvDsUJJ81Es59dGiWSzhNJ5dndFuCZg6147NYZA8KjW+rZVO+jxmtftklgMx3fuYim8rjslopNIrIFnfZqF4aErG6gGxKvw0JLlQtncRtn+6P0hVPYLBq94RSbG3x88kg7E8mb0w6PbK6jzuugKeDEZTcD96eOdpDK6yWhFyklkVQev8um/JgVijvkg/tbGI5mSkmWF4diDMcyaEDXWJKOoJvDnTWEk7mSipY5oiXwO60kiuVSHznQxlgiM82gZiKZw+e0rihb3Nl6zO+5Z61YQCYdgardNj5xpGNejj/fOjVAX/Eh/dRucxhENyRffbOPUDzLrpYA/RMpJlJ5Dq+rKSUJTWUgkuJffOscmbzOB/a10F7jJpPXqfHY+atXblDQzYSvyTKrvnCKb50aQGCab9utGjaL4PC6Gn52eRSnzQwocyUeaZqgPbi8S3v+4UQ/A5E025p8vGtnZUlvx26EeeVaiIDLxiePts9ouzYVh9XC9VDS/NkmsFo0YpkC3eOp0vD/cDTDcxdGsFs1nt7XDJjTClOP82Q52tR9V3vsTK2Mfu7CCBcGYzQFnHz0UJvSzVYo7gCH1TLNoMeqCc70RbBZNT643+yUbG3y0xdOlQLzV97o4c3uCaya4EP7W6jx2PnW6X6SWZ28LtnTVsWLl0c51Ruh1ufgE4fbV8zL82ySnD0AQoi/lVJOs3kUQvwty9T6sT9slrpMpPIksgVqrJUNORqGZGDCXLd/IkUklaN/Ik2j30momL3XFUqQzOqlZcrRNZYspdh3jSX53Se3YkjzDXCydGqyHMeQknAyX5J9MyT8o0c2lFSrhBB4HRY8disXh2L4nNYVW1erG5LBootLX/EcGYbkymi8OFxf/nv1hc3jHE3niabz1Pss9E+kiGcKbGnwlU3gyBYM9rVVAZArSHRDUudzUOOxlxJChuNpqlxWLEIwMJFmW1OA0XiG0ViWzQ0+7Fat7L5vpX/ipjNNXpfYrSvjxlcolhPxTJ6ecdN60ee0UdAlnUE3Fs0sZ9Q0wd7WAALYVEz07J9IY9GEKcXZNU5DwFV6PvdNpNjTVkVf8f4MxbOk8/qKUEiEyuaYd0z9RQhhAQ4sTnPunvs3BnnlWoiWKvc09ay50DTB27bUcXEoxq7WAF97s49UTqel2sV9G4J0h5IcXR9kIJKmfyLF/Rtu7y0DHFkX5LWOcUKJLM8caEUIgUWYIiE94ymyBR2f01oqnXp4s6kuJYRge5O/FGiOd4d5qZjIsL7OQ9dYEiHgE4fbV0xp1FQsmuCRzXVcHo6X5nnf7A7z6vVxhICPHmqjaYp4yiT3bQhSMAwaAy7qfU5GYhm+caIfKSGSynPfhuBt62xv8jMQSSOlZEezv+y+N9X7+NmlMaxWjQ31HpLZAl9/s4+8LukLp3hyV9Nt+y7Hw5tqOdEzwaZiMFcoFPPnH070M5HKU+Ox85n7O9E0wVgiZxrJWDXimTz/+vsXyOYNTvdF+DdP7+Q3H93Anzx3laDXzq8/vA6Lxcru1gDjyRyH15kJtQ9trOX1rnE6az0rJijD7HPMvwf8c8AlhIhNfgzkgL+4B227I1qr3Xz0UPsdrbunrYo9bVXkdYOfFTN0cwWDo+uDHC26l5RL5Z+K3arxf7xr622fWzVBldtGrmBhikEUuiEJuGxoQmCd0vvLTpHqTBV74FJCTq9MIm45sq+9mn3tNweCJ7+LlMzo4tJc5Zp2PnNTytFmOhYuu4X37Wme9lk0nedGKMGmYl1ijcfO48Wsak1oFAxJoThyMbndW/ddDjPpb2lqHRWK1cLk827yOZDJ68TSeawWQV43yBckBd28PzNFN7hPHOnkE0c6p23n1kqJzlrPnM/s5chsQ9l/BPyREOKPpJS/dw/btOTYLBpP72vhRijJjubK5SNn4/JInGM3zBKpw+uqeWRLHUax/nlSQzrgsrGnOAR7eF0NFk3gsVvZ3OjlZE8Ev2vlDmWX48i6IFZNw+e0Tptfmo22Gjfv2N5APFNgf0dVRevkCgZ/+YsuCobkRijFX/zSwbL7fu+eZoYiGfa2V7ZdhUKxMDy9r4UrI3G2FF9yr40miKbzaEXp3G3NAf6XRzdypj/KUxWKMq1kKunb/70QYv8tn0WBHillYRHatCxorXaXguALl0boGkty3/oavndmmOtjCT56qK30dlbQDX5wbpjxRJbHtzWUnS/1u2ylEqkqt70U8K+NmnV4QpiBeRKbRSv10oGyQ7YrHbtVu6Pvdau36Zn+CMduhNnc4OPhzXW3LW/VzF7wSCxTOsbXRuP87evd+Jw2/uVT2/A5bWyo85YMQhQKxb2jZzzF5eE4TpuFer8TTYORWAaLJnA7zNyO+zfWcv+UhNu+cIqfXhwh6HXw7p2NKyrrei4qCcx/BuwHzmAOZe8CzgEBIcQ/klI+t4jtW3IS2QKneyPkdIPnLoxwoieMbki+f2aIhzfXkc7rRFN5rheL3k/1RcoG5pYqF5840k5el9M8lTfW+/jYYSuaEDSswLnj5cCxG2FC8SyxdJ6j64PYrVopAc9lN+sf97VVMRrPlhTCfnB2mNFYlrF4lteuj5f1zVYoFAtDNJ3H67DOmBX9Rtc4BUPyRtc4hzpryOuSWq8DiwWiqfL9v1N9ESIps6R0KFpeE3+lUskrxiCwT0p5UEp5ANgLdAHvAP7DXCsLIX5bCPHyXbVyCXFYNAYiaU71RrAgyBYMhmMZ/C4rf/taD1966QZ9EylqPKbP56b6mXtc9T7ntKA8SVPApYLyXZDIFjjVF2EsnsVmEQxF03zp5S7+20tdDETSWC0aO1ur6Ah6Sr3tlmoXI7EME6kcHcu8zEyhWMn84soYf/XyDf7nm72lCpRbmczTmPzfbtEYiWcYjmYJuMr3HzfVe9GEoMZjn1FHf6VSSY95s5Ty/OQvUsoLQoitUsquuWo2iwYYe++uiUtD33iKU/0T7G+vpqXKRVPAhcOu8cjmOvK6pNpjYzCSJpXTGZhI80v3dVAwJDaLxlA0TSxdYFO9l6FYhlS2wMZ675qvcY2m8/RPpFhf68VltyCl5NpoArfDWvaFBcxpgqujCWq9jtLNNxhJk8iax9csKbNyqNOck8/rksFImrFiidvARJqWKhfv29NMrmCUMqfrfQ7et6cZTYC2xs+LQrGYXB9LMBbPksnrM5YsPbiplsaAg431ZmDO6QYBlw2bJoimy/eYtzX52VjvxaqJVfdsrSQwnxdC/FfgfxZ//yhwoRh083Os+3ngr4EV5USVKxj8q2fPkczqvHw1xNP7WugOpTi6vob+iTT9E2n2tvn5y5e6iaXz6FIihMBmEYzFs3z9TdNpamO9h+tjSaQ0L7y5NLFXM1JK/v54H/FMgaZAlI8dbi8JeAgBHzvUXtZa8YVLo5wfjGGzCH75gXWksgW+frwPKc1596Prgzy0qY7jPeFS/bHdojEcy4AEm+XmDTu1nGl/ezXjyRxeh5V1KzBrU6FYKRR0c5TRkA7sM8wD/8OJfsLJHGf6o/zSfZ2MRjOE4jmEgGxu5lSm+ao7rhQqCcy/DPwG8I+Lv78C/BPMoPzoTCsJIWzA26SUfyaEuC0wCyG+AHwBoL39zsqb7pTBSJpzA1E2NfjKPpQLhlFK20/ndWq9DhKZAj6njYc3m0PVE8kcLpuFgm4gmFrmpJecphLZQqm0J5NfGl/P5YKUN0siJo/F5P9Sznx8wskcXWOJouiAMc29a3KdbEEv9YxNREmvfKY36WqPnY/M4VqlUCjuHr/Lxq6WABZNYEiJYUhevzFOXpccXV+Dw2phOJqhbyJFXi9OKwlKmvXp4nPj8nCcnvEk+zuqqfWurqHrW5kzMEsp08CfFP/dSmKWVT8NfGWW7f4FxXrogwcPlp94WCR+eG6YWDrPlZE4v/G2jbepR7ntVn7r7Zt4szvMI1vq+OHZYQwpGU/m+Phh8yXCkBJNUExmuNn81mqznCeaznOgo5rLw3GS2QIH13BvGUwBl/fvbeb6WJLtTWbQPLK+Bqsm8DisM9YaiuIx1oSpjNZW4+bxbQ3EMnkOdpo10f/1xeuEkzlO90U4vK6GHc1+MgUdKWFXy8KUuykUijvjiR2NvNUfpaNoCHNxKMYbRXc9h7VYfSJMq9bJ9+jffsdmU+PeaePTR9tJ5Qr88NwQUpov6x87fG87c/eaOQOzEOIB4P8EOqYuL6VcP8eqW4C9QohfB3YIIX5LSvn/3kVbFwyf00osncfjsM7oyZnXJW67Fd2QuOwayayp2DWJ02ahqcpFrmDcpgo1tZxnsi5ZMb0EDUx93KnlD1JKfnJhhIFImrdtqWddrYc6n4OOoAe7VcNZdM2adOmapNptI1wclrZrGpom1vS0gUKxnKhy23lkShmjVRNcGIqh65L7Npj3aUuVG7vFQr3f7AkHXHb+zdO7bq4jDVw2C6mcPqdvwGqgkqHsLwG/DZwAKh6PlVL+s8mfhRAvL5egDPD+vc30hdM0V5XPhM4WdI7dGCenG5zoifDxw+2MxLJ0Tsne9TisJW/PzgrFMRSzM57McXYgSkGXvHkjzLpaD2/bXE9H0EPQYy9ZL97KP3/3do51h9nZ7MeqZDEVimVHPJPHbTfLpTJ5g44a0ye9KOLFhw+00j+RLjm73YrdqvHxI+2M3vIcXq1UEpijUsof3s1OpJQP3s36C43DainVs5bDpglG41luhJLcv7H2NtehSarc9lntHxXzw223cCOUZCyepaV4g2qamFP0w+u08vat9feiiQqFYp68dHWM490TNPidfOxQG63VLmp9Dgq6USpVdNpmfyYD+J22kgnNaqeSwPwzIcQfA9/E9GMGQEp5ctFatcTkDUmD30HQa8frsBJN5RmKpVlf61VGBYtIOqezvtZDR9C94Mc5nskzEEnTGfQsW79qxcqh83e/X9Fy3V98apFbsvzpHjdd2kZiGVJ5nWqPnV95cB2GZNb7vGssgaNoe7vWqCQwHyn+f3DKZxJ4+8I3Z3ngsFq4b0MtV0cT7G2t4qtv9ppBo87D+/e2LHXzVi01Hjv72qsZiKQ5um7hJEillHztTbNUq6XKxUcOqWxsheJecd/6IK91jbMueNPhaS75zDP9EZ6/aBoJffhA66pS9aqESrKyZyyJWu6EkzlO9U7QXuOetwPQpKNUOqfzQtFpKp3TuTwcp38ixYGOajWMPYXRWIYz/VE21HvvuC5YCMGjFQxJn+iZIJ4x5Tcr6f0aU8qxkrPURCoUikVASsZiGZrL6BTMxKSj3q0/rxUqycpuAP4QaJZSPimE2A7cJ6X80qK37i75yYVhBiMZzg3E+NVq14zJQ7Phslt4z54mesdTbKjz8M1TA0gJE6k8Hz7QugitXpn88Nww4WSOi0Mx/tHbNiyaoHzPeJJfXBkDzPrnSgK5RRO8f28L10YT7Gj2L0q7FApFef7sxesMRNK82T3BvrZqarxzd2gOdFSjGxKHVWNzw9ozlqkkUv0P4L8D/6L4+xXga5jZ2ssaT3HYxGHTsGp3HigmXYcyeR27VSObN/A61DzlVDwOK+FkDpfdsqgSl267afhhSFk6v5XQVuNec8NhCsVywO+yMRBJ47RpFeeO2CwaD0wppVxrVPJkq5VSfl0I8XsAUsqCEGJZjy2kczoOq8YTOxppr4nRVrMwyUROm4VPHG5nLJ5VMo638N49TfSMp2gKOGesDS9HJq9j1USph60bklzBwGUv/+JT53Pw8cNtJLIFdQ4UihXA//GuLfzw3BAH2qvxOuc/arkWqeQoJYUQQYryVkKIo5h+zMuS491hXroaotbnoDPo5nj3BI0BJx852Daj5dh8UCVS5XFYLWye5zz+tdEE3z8zhMuu8bHD7bhsFv7nsV5CiRwPb67lQEd5kZB6vxNVHKVQrAz+9rUeXrg0yitXx/kPH9qttAYqoJIj9DvAd4ENQohXgL8BfmtRW3UXdI0lAQjFs1wYjAEwHM2QUkk/y47uUBJDSpJZnZFohmg6TyiRA+B68TwqFIqVzdkBsx83EEkznsotcWtWBpVkZZ8UQjyCKbEpgMtSyrlcpZaMw+tq+MXVMVqqXLTXuHmta5yOoGdNyLitNPa2VzESz+B1WOkIerBZBLtbAwxE0hxZpyQ1FYrVwNN7m/nmqQF2NAeU73yFzBiYhRAfnOFPm4UQSCm/uUhtuis6az3TDBHmWyaluHfUeh188kjHtM8e29awRK1RKBSLwePbG3l8e+NSN2NFMVuP+b2z/E1iKoEpFAqFQqFYQGYMzFLKz97Lhiw2l4fjHOsOs7HOy30bFk5VSrG49IVT/PzKGE0BJ2/fWj+jv7JCoVgZZPI6Pzo3TK5g8MTORgIuNc14K2smPe7V6yFC8Syvd42XVKAUy59jN8KMxbOc6Y8ylsjOvYJCoVjWXB1JcCOUZCCS5mz/si3wWVLWTGCetGZsqXLhUOn6K4bOWlMUpMZjp8qlytQUipVOc5UTh03DognalehPWdZMtfejW+s52FmNx25Vw6EriAMdNWxt9OOwaosm86mYP8pdSXGnBL0OPv/gOqREOb3NwJ1kZQMs26zs2VAlUyuT+UhvKhSK5Y/DqgLybKisbIVCoVAolhFrJitboVAoFIqVQEVjhEKIp4AdQEm2RUr5rxerUQqFQqFQrFXmzKYRQvw58FFMfWwBPAN0zLqSQqFQKBSKO6KSHvP9UsrdQogzUso/EEL8CfDDxW6YQqFQrHQqzV4HlcGuuEkl9Sfp4v8pIUQzkAeaFq9JCoVCoVCsXSrpMX9PCFEF/DFwEjMj+78tZqMUCoVCoVirVBKY/4OUMgv8gxDie5gJYJnFbZZCoVAoFGuTSoayX5v8QUqZlVJGp36mUCgUCoVi4ZhN+asRaAFcQoh9mBnZAH5ACZwqFAqFQrEIzDaU/QTwy0Ar8H9N+TwG/PNFbJNCoVAoFGuW2ZS//hr4ayHEh6SU/zDfDQshjgD/CTCAN6WUv33nzVQoFAqFYm1QSfLXK0KILwHNUsonhRDbgfuklF+aY70e4O1SyowQ4stCiF1SyrN33WKFQrHmmU99sEKx0qgk+eu/Az8Gmou/XwH+8VwrSSmHpZST2dt5QL+TBioUCoVCsZaoJDDXSim/jjkkjZSywDyCrBBiN1Anpbxwy+dfEEIcF0IcHxsbm0+bbyOd03n1eojrY4kZl4mkcrx6LcRAJD3jMgrFfJlI5njlWojBu7yuboSSvHo9RDJbWKCWKdYyV0bivHZ9nEy+/KNaSsmZ/gjHu8PohrzHrVPMRSWBOSmECGIKiyCEOApEK9m4EKIG+FPg87f+TUr5F1LKg1LKg3V1dfNo8u387PIob3SFefatQSaSubLL/ODsMG/cCPOtk/3kdeOu9qdQTPK9s0McuxHmW6cGKNzhdRXL5Pnu6UHe6Arz04sjC9xCxVpjNJbh+2eGeL1rnJeuhsouc200wfMXR3npaoiTvRP3uIWKuahkjvl3gO8CG4QQrwB1wIfnWkkIYQX+DvgnUsrhu2rlHFg1s5JLEwJNE+WXsZifWzSN8ksoFPPHpk1eVwIh7uzKsgiBJsCQYLNU8q6sUMyMRRNoQmBIWXru3Yp1ynWmrrnlx5yBWUp5UgjxCLAFs5b5spQyX8G2nwEOAf+h+MD6PSnlogiTPLq1nqaAi1qfnYDLVnaZ9+xu4vJwnPYa97SL8lYKBQOrdfYL1TDkjC8AitXP1PP/3j3NXBmJ0xH0YLnDa8LjsPKRQ20MRzNsa/KX3Y9CUSlBr4MPH2xlPJ5le3P562ldrYf37WkipxtsbVTX3HJjzsAshHACvwE8iDmc/ZIQ4s+nJHaVRUr5VeCrC9LKObBZNHa1BmZd5kx/lNe7xllf5+W9u5vK9m7+6AcXeas/wkOb6vjNRzfe9nfdkHzzZD+DkQxv21LHnraqhfoKihVAKlfg62/2kcgWeM/uZjprPbzVF+FYd5iN9Wnes7t57o2UoaAb/PzyGEPRDJoQ7GoNcG4gyvMXR2nwO/jwgdZZXyYViqlk8jovXBplIpnDZbewqcHH8e4wL18L0RF08/TeFmLpAj+7PEZON6hy22kKuHj+4ghn+qPsaQvw9q0NS/011jSV3O1/A+wA/l/M+eIdwN8uZqMqZSCSJpbJYxgGx7vDDN2SgJPL6XzvzAB94STnBqJEUnkuD8XIFm6fCywUDN7qjyAlvNkdLru/WDpP/0QaQ0ouDsUW5Tsp7h3D0QyR1M2chGS2QF84hZRmMoyUkv6JFIliQtZgJMNEKk9el1wZiQNwpj9CfzjF2f4IueJ1FUpkGYtnK25HJJ3nRihJJJXjwqCZvnFpOI4hJUPRDOFU+bwJhaIcY/EsJ7rDvH49xKVh8zq9OBRDSugOpUjmdHrDKUZjWcKJHNdHkwBcGIxN+x/M+erwDHk7isWjkjnmnVLK7VN+/5kQ4sKMS98j3uga59Xr49itGnnd4LXr4zhtFv7kI7up9ToB+F+/dpqzAxE8divv3NHA1VFzKNtepvdhtWo8tKmON7vDvH1rfdl9Blw2Njf46J9Isbe9ajG/nmKROdMf4fmLo1g1wcePtON1WPm713tI5XT2tlfx6JZ6Xroa4kTPBC67hc/c10lbjYuWKhexTJ6dLeYIzVv9Uc4NRKn3ObBq0DOe5FunBgB4/94W1tV65myL22ZhMJpmPJFlQ70XgL1tAcYTWZqqXAQ9jsU7EIplQ6W12XP5Nl8bjfP9s0PohiSR03nvnmb2tVfz8rUQ62o9eOwWXHaN66EEBd3g8e1m7/hARzVnBqLsLo4+XhqO8cOzw2hC8JFDrTQFXHf3BRUVU0lgPimEOCqlfB1Kil7HF7dZ5ckVe7UBl630FpcrGPSFU4A5hHNlOM53h4fY3uRnIJImmzfQjQLhZI54Ok8yW+DqSJyXr4W4b0OQer+TqyMJNjV4eXRLHU6rxgMba8vuX9MEu1oCBL122qqVXPhKZjxhXj8FQxJJ5bEIwYmeCYajGTx2C49uqWc8afZ60zmdVK5A0OvgI4fapm0nksqRzeskswUyBYPxRI7hqDnLE4pnywbmaDrHnz5/jYaAk195aD3ZgkG124ZVM5PAADbW+9hY75v1O0RTeS4MxVhX66Ex4Kzoe+d1g7f6Inid1mlzi4qVSzSV49unB2mrcfP2rfVcHIqT181Rn+Go+WzsCLqJZ6poq3EhhCBbMEhnC+R0SSZnllTdv7GW+6c8+8LFe8SQkolkXgXme0glgfkA8KoQorf4eztwWQhxFpBSyt2L1rpbeK1rnJM9Zmr/u3Y1IoEaj5337W3mK2/0si7o5kfnR7g8HOcnF0bY0eQnlsnRUuXmVG+E4ViGsUSOP/nJZaLpAr+4GuKBDUGSOZ2z/RFe7RonndM53jPBf/3Ugdv2n8gW+PbpAXRDMhzN8PS+lnv11RULzOF1NWQLBl6HlfW1Hq6OxjndFyGvG7xweYwvPLKBhzfVYbeEaQw4CXrL91pHYlmSOR1JDkM3EAJSOR2JRJthouiLP7jEL66atfsNPgePbK0nkzdI53TmU1H67JlBxuJZTvZO8GsPr69oHvrYjTDHbphTNR67lbYa9YK50vmLl25wvDuMENAccJLO38zNTWbNoPujc8P0T6Q53i341YfX82bXOJdH4kgJP78yytvKjBLu76gmkS1gt2psaZz9JVGxsFQSmN+16K24hWS2wAuXRrFZNB7bVl9K5w/Fs7xwaQS33cozB1t5964mAC4MRUnnCiRzOuFUlq6xBF6Hla2NPrwOG267hdG4QTavY9EEmZzOWDxL0GufUkZ1s7ditQje6otwdTTBgY7qUq9HE+Y/vbi8YuVwtj/K5ZE4+9qr2FDnpSec5O9e7yHgsnGgoxqbRcNp07BZBG67BTB705m8TrYo0mAYkhevjBJLF3h0Sz0Btw0hzLloCVgsFgq6Qd9ECiSlXsu3Tg7w+o1xntzZyNu21E8rYbFZLWhC0FLlosHvpMplr/g7WaaUCQohSkk/UsJj2+px2iy3raNNSXpU2berg2gqx42xJA6bhkUDm7yZQ6MXr8EzfRFeuDxKS5WLLzyyHpfdWro+3I7yYcBps/DOHY2L/wUUt1FJuVTPvWjIVE73Rbg2aqp4tVa72NHsRwjB1dEEUppD1tdHE7RUmcMyX3m9l+tjSa6PJXHZBF6HFbfdSncoiZSS8USOoMdOMlOg2mNja5Mfu1WjpcbN0/ta6RlPsr7Wy9u31vPGjXGObgjy7VODGIYkls6z7sF1ALjtVj58oI3hWIat6g1yQZBS3nH9b6XohuT5SyNIaQ49b6jz8ucvXqdrLIEQ8I0TfXz6vk7+1Xu3c6ovymfv7wTglWshesaT9IZTbGrwEcvkeavPTM7yOMK8Y3sDDX4Hqax5XUkkV0eTJaGRy8Mx9rdX87XjvUgJf/d6D2/bUs/vv3s79T4njQEn79ppPvg+fLCVkViWbU03r6u5js179zRzdcTMm7BogtN9MS4Xk33q/Q4Oddbcts6RdTX4nFY8DistVWpocjWgaQKv04rDqhHL6FwN3SyYMYqJjCf7ImTzZtLXUCTNRw+3UzAk8UyeX31o3VI1XTEDlfSY7znRdJ7vnB7Aogl2Nvv4xdUx3DYLHTUuTjmsOGwamhD8l59do9pjpz3o5uqo2Uve1uwjnZcEXDY8DgtXRuPUejV2NFcBgnq/gx3NAVx2K00BJzUeOzUes5dyrDvMSCxH33ia4WiG7lCSBzYGp7WtMeCseD5PMTt94RTffWsQr8McAXHbF+dytGiCBr+T4WimdO6aAy7i2TFsmmBTMeHqsW2NPLbtZg+hO5Tkm6cGCHrsfO7+Dmo9DuxWjVzBoKm4nR3NAXTDvC6cVg2PXaN/Io2U5lCx3arRFHAxGEnTXhw2ttst/NZjm6a1sSngmjaHd2Ewxk8vjtAYcPLBfS1lh6m9Div72qtLvzf4HVg0gZTQ6C9/jWqaKCWuKVYHWxp9XB6O47JbaKt2sb8twLNnTU0ne7FXbBEQyxTwOKzUeR1E03kyBQOEYCyRpzFw++iKYulYloG5dzxF0GNHCMGxGxO4HVayeYMndzVyeH2QgMvK611h8rpkNJblwwdaeduWeup9Dqrcdi4NxWipdvHNE31ICXU+B7/56AYGoxk6gx6cVguhZJYa981hQ8OQnB+MIiW81R+hzufA67TimiVYJLMFouk8TQHnovf6ViOXh+PkCgbhQo7+iTSbGxZvFOLDB1qZSOWoLWY4H+ysYSKVw2mzUDPj/HGGgMuKRRMMxDJsbwrw2Qc6yeYNqosvc//sia1cGYvTGfSgaRqJnE5H0AzAyWJSzb/7wE66x5Nsrqv8+10YiqEbkoGJNOFUjnqfk1gmTyanUz9D0G2tdvPLD3QiJTMK7SxnlGPUnfHJIx0c6ayhxuOgxmsHTcOugW5QyiForXaR1Q08diuJnM5oLEssbc5FXxtNqM7GMmNZBuaHt9RyoieMw2bhPXuaisHZQnuNu9Sr2tkcoH8iTY3HToPfiX2KWtfWonpSTpeMxrNYNA233cr2pps9hXrf9AtR0wR726o4PxjjQEc18UyBKyPxaT2SqaRzeqm85lBnDQ9uKp/JrZiZ7c1+boSSeBzWRc9yt1m0aee8kn03Vbl4vSuMw2uhtcpcxm23MuV9DqtVm3ZdPbixlpevhpBS8nDxmrj12quE3a0BxuJZmgJOgh4HE8kcX36jh7wuefvW+hnFbfzOlReQFXfPxikvtfs7qtE0DQNJa5V5zT+2rYHEW4NsafBR57XjcVip7bOTLRhsbvQuVbMVM7BsArOUknMDMYSAHc1+/vIzh0p/29N2e3DsrPXw649smHWbHoetNM+W0yVzjZS+bUs9b9tyMzvxHdtnVr9JZAukij2iUKJyMQnFTZqrXPzqw+uXZN/1PgcHOqvxOqy47OWH8TqC7lLmfa5Cg4qOoKdsRv982dzgmzaCMJHKlZLJ5iNeolj9ZAs65wai1HgcrKv1UDAovbh11JpB90MH2vjQgZulfl6Hxqfv61yC1ioqYdkE5rNFCUIwM0enarzeKY9urePYjTCdQQ/eGTIP75Q6n4MHN9UyHM1w34bg3CsolhXHboR5o1g25DpgKVs29NCmOizaOE0BJ7UzDHffK9bVejjYaY7kHFl/e1KXYu3y0pUQZweiCAGfOtrBgY5qHt9ez1Akw6ePdix18xR3wLIJzNPLOMovE03l+fnVMfxOKw9vqpuz3KMp4OL9exev1rhc1qtihTDl0pkpPaDW6+B9e+5M/3oq5wejXB6Os7etivV1dzZsKITgoU13Z4+qWJ1MvX4F5ujj1kY/9T4nPjW1sSJZNoHZLIkyA/RMikTHusNcL5ZRdQQ9FckdKhTlOLIuiMduxeu00rqI89u6IfnphVEMKQknc3ccmBWKmXh4cx01HjtBj4Og10H/RIrj3aYQk1XTeGp30xK3UDFflk1gFkKwo3n2BJkGv4NzA2C3alS71Zug4s6xaOKeuINZNEGtz85oLDtjNrVCcTfYLNq0JNWAy4bTZiGT12kMKJ31lciyCcyVsLu1iuYqF06bZcHnjBWKxeKZA22EkznqfOohqVh8fE4bn7m/g0S2cFv1iWJlICYt7paS2tpa2dnZudTNUNwh3d3dqPO3clHnb+Wizt3K5sSJE1JKeVtW1bLodnZ2dnL8+JIYVi0JhiE51TeBbphWa3PpbmcLOie6J/C7bPNWbQonc5wbiLKu1rNohgUHDx5cM+fv26cGGItn+Njh9ooTawYiaa6PJtje7F/y7O5yrKXzd6/IFnRO9Ezgd06/Z6+MxBmJZrBoAosmONBRXZH5yEyoc7eyEUKcLPf5sgjMa42LwzF+cSUEmIYZ+2cQMZnk1evjnO6NAOb80XwC7A/PDTEay/JWX4Rfe2TDNCEWxfx4o2ucrx4zTdbSeYP/9RZZzXIYhuTbpwbIFQxuhJJ8pqjDrVjdvN4VLjnhTd6z44ksPzg7xFg8y0Qyx6YGHxZNcFBVdyhuQT2llwCH1TLl57lPweQyQlS2fLl92a0aykzo7vA4rKXSFM8MoiS3IgTYiz2i+Z47xcpl6j07+TJstWhYhCj1ls3llEa14nZUj3kJ2Fjv5el9LeiGZGP93OUzR9cFqfHY8Tlt887sfc/uJq6NJmitdt3VkJkCdrYE+KdPbCUUz/JYGf/acggh+MihNvrCKdbXqfK+tcLhzhqq3Xa8TisNxXs24LLx0UNthBI5HFaBBDbWK5c6xe2owHwXJLMFYpk8jf75m1hUuWwlS7a50DRBjduOs8Je2lScNsuadBMKJ3MAJeewSkjlCkRSs5uSHOiYPu2gG5LhWIZar33G3k/AZSOwBs/BamQimcOQkuAsuQI940myBYMtZaxh6/1OVTanmBMVmO+QuzGx6Aun+ObJASSS9+1pnlN04nRfhJ9dGsVu1fjE4faSs5GiPL3jKb55qh+Ap/e20FmBEE0mb57PZFZnX3vVNM302fjB2SGujSYIeu18+miHchlbxQxE0nzjeD8SyXt2N5cd7TrRM8F//PFlJJIvPLyBt1c4srIQVOrO1f3Fpxa5JYq7RY1t3iF3Y2IRLr51SwmhRG7O5SdNC3IFg0jRqk0xM6FkFikpHt/Kzk06p5PMTp7Puc/JJJPnJpzMUTCWvvRQsXiMJ7Kl+3Z8huuqdzxVWqY7lLzHLVSsFlSP+Q6ZNLEYima4f54mFtub/YzFs+hSsrt17iHOI+tryBUM/C4rncHFtUdcDexsDjCeyCGlZFcFxxeg2mPn4c21DEQyHJ2HScQ7tjdwsneCTfU+bGoOf1Wzrcm8bwuGnFE17omdDdwIJcgWDD64f/F0+hWrGxWY74I7NbGwWTQen8VS8lb8TpvSu50Hdqs2q2XnTBzoqOHAPM142mrci1Yfrlhe2Cwaj22b/bpy2638zju33KMWKVYrKjDfI5LZAt8+bdazvmd3c0meMZLK8Z3Tg2gC3re3hYDrdtGKgUiaH54dwu+ysb+tmp9dHqXGY6fKbeXLb/TSUuXm99+zfUFrlA3D4I9/fIVLwzGe3teyqC5d8yFb0PnOqUFimTzv3tVEc5XrjrZzpj/Cn75wDZ/Tyu+/Zzt+p40fnBtiYCLNo1vr2dzg48uv9/DfX7lBc7WL/+9TB8v6Np/sneDYjTBbGnw8eg/nExX3nngmz7dPDzIez6JpAt2Q2C2CTMHAbbdwqLOmVJM8GEnzg7ND+J023re3mWM3wlwYinGgo5ptTX6+fWqAgm7w3j3NsyaS3crLV0OcG4yyv72aw+tU/fNqRY293SNuhJKMxrJEUnkuDsVKn18ejhNO5gglclwrOmfdyrmBKPFMgYGJND+/OkoiW6A3nOI7pwdJZnWujMS5NBwru+6dMpbIcbJ3glRO5ycXRhZ023dDXzjNQCRNPFPg3ED0jrfz3PkRouk8/RNpjt0IE07luDqSIJXTS2Iu33lrkHRe5/poghO94bLbOdkzQTqnc7ovQq5g3HF7FMuf62NJQvEs18YSdI8nOdMfYTCa4diNMLF0nhNFQRGYcs9G0vSGU5woXicneia4PpowRUZSeS4Nxyvev5SS4z1h0jmd4z3lr0fF6kAF5ntEW40bn9OK3apNy+ZcV+fBZbfgtltmnD/e3ODDZhFUu20c7qwpOhY5eHRLPZoQNAVcFdVDz4c6r52N9V6EgKPL6M28ucpJtduGzSLY3HDnNaAPbqzFZhFUuWzsbauiymWjpcqFJgTbmkzb0Uc21yKEoN7nZO8M5U7bm0y70k0NXqWqtsrpqHHjcVhoCrio9zlYX+ehym1ja5OZX7C9+aZd7eQ9W+W20VrtYluTea1ub/LTEXTjdVhx2DQ2zMMGVEy5Nrc3lbfGVawOloWJxcGDB+Va0HudPNa3ltTM9PlUDEOiFdWCpv5cKBhYFzEgVLL9pdDrnXoM7pRy3+3W7eZyOvY56scXoi1LidJbrpzJe1VKU19g8tyXuwZu/Wzq75Xc8zMxdTtTz50ql1p5CCFOSCkP3vq5mmO+h5S7CQu6wRs3wggB+9qqOd4TxmbRONxZM+2mnunnxQzKV0fi9Iyn2NdeNa95sHvBbIFQNyRvdI0jgSPrasoqnmXyOq93jeN1WDnQUV06N7dud66gPFdbKuXCYIyhaJqDHTUElNf4smXyOpm8lSfP/dSX5jduhCkYBkfXB5lI5DjVG6E96J42wlNpQJ56nU7OX6/kl0BFZVQUmIUQ1UAzkAa6pZRqMm2BeKs/yrEb5nzR5Dw0mGpR25ZwuCqd0/nB2WEMKRlLZPn44fYla8t8OTcQ5Y3iMXXZLWVNQl7vGudUcS456HWwrgIRksUimsrz3IVhpIRYJs8H9rUuWVsUd8fF4Rivd40Dpg72jVCCwUiG84MxWqpceObpI7+crlPFvWPGq0QIEQB+E/g4YAfGACfQIIR4HfgzKeXP7kkrVzE+581TUOtxMBrLIgR453kDLzRWi8Bp00jl9CVvy3zxTjmmvhnaPnncNSEqNqRYLOxWDZtFI1cw8NhX1rFWTGfqveJ1WPE6bEAGh027ozr35XSdKu4dsz0FvgH8DfCQlDIy9Q9CiAPAp4UQ66WUX1rE9q16Njf4cB2woGmClioX25r82KxmQtdSYrNofPxIOyPRTEWSlsuJDXVePnKoDSklrdXlE+oOdNRQ43HgsVuWXLvYZbfwySPthBJZ1tUubBKf4t7SEfTw0UNt6IakrcbNpgYvWxq91Pmcd5QcuJyuU8W9Y8bALKV8xyx/OwGcWJQWrUFsFq00Z9U+Q2Z2XziFx2Gl2m2jL5zG77IScNnoDaeoctmnzUvqhqQ3nKLO55h3bzeVKzASy9Ja7cLvtOF3rsz5TqsmkHL2ubjzgxEafTdNBWKZPOFEjvYa94zzeOFkjmS2sOCiIlVuO1VupYG+EknndIZjGXwOK8lcAadVA02U7tmN9T7SOZ0boSQtVa6KA/RoPENBl2r4eg1S6RzzbqBz6vJSym8uUpvWFNdG4zz71hBCzGy4cLw7zEtXQ1g0weYGLxeH4tgsgvV1Xi4Px7FbNX75/s7S/NVz54e5NBzH47Dwy/evq/hBYBiSrx7rI5bOs67Ww9P7loeoyHy5EUry7VMDALx3T3mzgT/+8SW+fWoATQj+6EO7ONBew5df7yWT19ndGiir8BRKZPnKG73ohuThzbUc6Fg+ZWSKpUFKydfe7GUknqU7lKTB7ySazmOzCGwWjQa/k08caef7Z4YIJ3O0Vrt45mDbnNvtn0jxjRP9SAnv2tm4pPkminvPnIFZCPFXwG7gPDCZ9CUBFZgXgGjRlELKmz/PtIxuyJJpQl6XjMYzgGlukcrppcA8aXSRyunkdaPiwFwwJIlMYdo+VyJT2z7T9xiIpAEwpKQvnGJnc4BM3jSxiKTKr5PIFNCLRhUr+fgoFg4pIZ4pkNcNEtkCVQWdTF5HNwSGYd6zsXSeWPF6qfS6iabzTFayznQ9KlYvlfSYj0opt893w0KII8B/wgzmb0opf3u+21gL7G6tIp4poAnBjubyb8VH1wcxJPidVrY2+XijK0zQa2djnY/Xb4zT4HeWJD4BHttWz8meCdprPPPKArVbNd69q5HrY4kZRfpXAjub/cTSeYxZTEL+6Tu38oc/uEiNx8ZHDrRisVh4fFsDA5H0jFKHHUE3928IEs8UOLp+fsYlitWJpgnevbuJqyNxDnVWYxggECBMh6kaj511tR6e2t3ElZF4xd7oWxv9TCTz5HWD/R1Vi/slFMuOOQVGhBBfAv5ESnlhXhsWohGISCkzQogvA1+UUp4tt+xaERhZrSiBipWNOn8rFyUwsrK5G4GRvwFeE0IMA1lAAFJKuXu2laSUw1N+zQP6PNq7bJBS8r0zQ9wIJXlwYy094ST9YdPooNK330o5NxDlT567jMOq8fvv3U5L1dK5Fk393g9tqmVfsRa4oBt869QAI7EMj29vYGvj4s59XRyK8fzFERoDLp7e21xWLORWbowl+MMfXEQCv/uurWwsI93ZP5Hi2beG8DosfOhAK+4yZUp3su87QTck3z41wGAkzdu31bOjeWGvK8Wd89z5Yc4PxsjkdWwWjYIhEUKiCY3GgJNnDrTitC1MGdPzF0c4P2gaXTywsRYwkz6fPTOIz2Gd8TpVrD4qedJ8Cfg08C7gvcB7iv9XRDFxrO7WHrcQ4gtCiONCiONjY2PzaPK9JZnTuTaaQDckb3aH6Q6lKBjyrgwUZuLlqyFSOZ2JVJ5jXRNzr7CITP3eU79rOJmjfyJNXpecH1hY44xynB+MkdfNeeBwKlfROq92jRPLFIhnCrxyfbzsMpeG4mTyOqGE+X0Wat93wkQqR2/YvK7uxTFVVEZBNzg/GCOeyXN+MMZYIsuNUIK+cJqhaJpQPDvjtTNfDENydiCKbkjO9N+83y4Px8nmDUKJHAMLtC/F8qeSwDwmpfyulPKGlLJn8l8lGxdC1AB/Cnz+1r9JKf9CSnlQSnmwrq5uns2+d3jsFjY3+LBbNQ6vq2F9nQe7VWPXDHOXd8PDW2rxOa0EvXaOrl/ajN+p33t3a1Xp8xqPnY6gG4dtcY7BrexqCWC3anQE3QQ9lcmCPrixlmq3jYDLxoObassus63Zj9tuoc7noG2GWuc72fedUO025yEX67pS3BlWi8bu1gBVbju7Wvw0+J1srPPSGXTTUuWiwe+ktXph9AY0TbCntQq7VWPvlPyOyeu03u+YsSZfsfqoZI75z4Aq4FnMoWxg7nIpIYQV+C7wf0opj822rJpjXtmoOcqVjTp/K5fVPsdc6XeClfW9JrmbOWYXZkB+55TPKimXegY4BPyHomD770kpX6usuSuDrx7rpWsswScOt7NuHvZtBd3g5WshDCk53FnDse4wQoiiFeG9sQ7sDiU5Pxhje7N/WQsYhJM53ugapzHgLM1z38qPzg3z9eN9PLixls89uI588fgi4YGNtcqOUXHXnOgJMzCR5uJwHJsm+NWH15Mq+iu317jnlW+iG5KXr4Uo6AYPbKxdsDlqxephzsAspfzsnWxYSvlV4Kt3su5K4MpIvCRikc7d4N9+YFfF614YipWE6Qcm0oQS5vxltds+bRhrMfnhuWEyeZ3u8SS/+ejGe7LPO+EXV8a4EUpyaThOe427rMvV//3TK8Qzea6MxPnQgRa6xpKcLh5fv8uqhEAUd8VoLMMvroS4NBTj+liCoNdBtceOw2phJJbhykicdbWVlyZeHIpxssfMIfE4rKr0TnEbc3YlhBB/LYSomvJ7dVF0ZE1T47GV3nQbA/PTsK1y2UsSnC3FOSohoPoe2v1N7qvGs7xlIKuK7XTaLDNmpNYWg7XXYcVrt1DtNo+vECiZS8Vd43ZYsVs1fC4rtuLoS1u1ixqPeW16i3+vlCq3Da34AKhW16eiDJW84u2eamIhpZwQQuxbvCatDGq9Tr74wV30hlMc6iw/xDoT7UE3nzzSgZSSer+Tnc0BhBDTREIWmw/sb2E4mpn3S8W95pHNdWyo81LltuGawV3nv3xyHy9cHOW+DUEsFgudtR4+caQdJEr4X3HXeB1WPn1fB9FUnkQmjy5hZ0sA3ZBsbwpQ67PPawqqtdrNJ4+2oxuSBnV9KspQydWkFf2YgVKmtSqmA5qqXBxZH0TTNC4NxfjphWEKBYPRWIZrowmklAxF01wfM38eiKS5EUoCcCOU4NpoAoBM3ijJQXaHkiW5yEmklFwbTTASy8y7jdmCzuXhOLFMnkxe59JwjES2gMNqoSPowWFd3vNbhoR0XidXmNkC3GG1mNmrU4YSs3mDTP7mOkORND88N0SkWPZUKBT4z89f4Zsn+krLhJM5rozEKejmermCwXPnh7k2El/or6VY5kwkcvzVyzd48fIoPzw3hFF0i/K5bCUrRosmaA+6SyM5V0bi/PTCMF1jCbqL93leN7g8HCdalNUcT2S5MhKn2m0vBeXJZSKLWJKnWFlUEmD/BFNg5O+Lvz8D/LvFa9LKo288xb/53gUKhuRUbwS71YIhJZsbfFwdjSMlbGn0cXnYfMBXu2388Jypv3JhMEY8a+pTb230cam4zIf2t5acpt64Eea16+NoQvCJI+3z6ll//8wQPeMpPA4LPqeV4WgWv8vG5x7oRIjZ3ZeWAz+7NMrZgehtRh1TefatQfon0vicVj73wDq6QgmefWsIgKd2N7GxzsP/7zvniGUKvHBxlD9+Zg+//fUzvHh5FCEEmiZ4545Gvnqsl1zBYHuznyd2NPKfn7/Km91h7FaNP3lmj+p9ryH+t6+f4tpInEiqwNYmHy9cHOU3Ht1Yyit5Ykcj26dI6A5EUvzrZ88TzxRw2iwcXR/knTsa6BpLcm00gdNm4SMHW/nqsV7yumRPW4C3bzWNUn58fpirI+Yyn3uwc9m/LCsWnzl7zFLKvwE+CIwU/31QSvm3i92wlUQ0k6dQNDcIp3IYxRK0SCo3RYj+5tvwWKJUdUYoefPzqcuk8oXSz+mc2Zs2pCz1rCslWVw3kzdIZCZ/1pmjSm7ZkMyZxyGvGzP2mtPFY5LO6RhSksrdPEbJbIGCcXOZeMbsuUwKhkgpGYxkyBck+WJPOVXcZ6y4bF43SGZvng/F6ieeNs+3LiWGIYln8qXrApj2M0Ayq5PXJbohS9dpKqeX7l3TaKZAXpelv93c1s1lCvoKuTEVi8qMPWYhhFdKmQAoqnbdppU9dZm1zM6WAB8/3E5vOMXHDrUxFM0QSec53FnDhaEYqVyBQx3VnB2MkSsY7Gut4mvePgqGwccPtnFmMIYmBHvbqjjRM4HdqrFliozkfRuCWDSB32Wbtw/wkzsbOdMfYV2tF7fdwvnBKJvqfTP6DS83Ht1aj981QaPfSfUMiWrv2tnIuYEoG+q8WC0aO5oDpHLmy8fu1iosmuB/eXQTr3WFeGJHIwBf/OBO/sW3zhP0OviNYlb6kzubGIym2V8sy/q1R9bzjRP9bKrzzascTrHy+f33bOevX+umzuvA47DwxI5Gtjb6SWZ1CrpxW/XE5gYfnzzaTtdokq1NfvxOK3vbqthY5+V0X4S2GjdtNR6e2NHISDzDwY6beSnv2NZQXMY1L9MZxeplRoERIcTzwGngO8AJKWWy+Pl64FHgI8BfSim/cbeNWGiBkYJuLJqu8VKhGxJNsCyHnxdboGKxzudyPqb3krUuMCKl2dOd7RqrZJmlQAmM3GQlfa9J5i0wIqV8TAjxbuDXgAeKSV954DLwfeAztxhVLAtO90V48fIojX4nHz7QuuxupDvh+liC758Zwuuw8rHDbWtKyP5sf5TnL41Q73PyzMHWBRNg6Q4lefatQVx2Cx873I5X9VTWJNmCztff7COczPPOHQ1sa7rdlCVb0Pn68X7CiRzv2N4wbW5ZoVgMZn3KSSl/IKX8pJSyU0rpl1IGpZT3Syn/3XIMygCXh2NICUPRzKoxs580k4im8wxF55+ZvZK5PGImz43EMkwsYNbqtdEEBUMSzxQYjChzgLVKKJEjlDDzQq7MkH0/nsgRimcxpOTqqMrQVyw+q66bcKCjmnhmjJYq17IXz6iU3a0BBibS5hzzGhOy399eRSSVoyngonYBjSR2tQbom0jhcVhpn+e8vWL10Oh3sr7Ow1g8y7628noEDX4nG+q9jMYy90yZT7G2WXWBeWO9j431t/vvrmSaAi4+9+C6pW7GkrC+zsv6RUi8avA7+ewDa/OYKm5i0QTv39sy5zLv29N8j1qkUKzCwLzUGIbBn714nbFEjl95YB1twdt7Y7mCwc8uj2IYkke31i+qiH3veIoTvWE21vlWraVgz3iSk70TbKr3VWwmEM/kefHyGF6HlUc211WUpW4Ykl9cHSOWKfDI5joCLtsd7VuxvHj1WoixRJYHN9ZitWj8/MoYfqeVhzdNvy5yBYMXL4+iz+O+HYykeePGOB1BTynbX6GYi4oCsxDCAjRMXV5K2btYjVrJvHp9nJeuhgD4yrFe/tmTW29b5sJQjAuDMQCCXgeH1y2eycILl0aYSOXpGU+xudG7KsULnr84SjRtfsctjb6KEsTe7A6XlNfaalwVjbJ0jydL5iNum4XHtzfc0b4Vy4ehaJo3boQB0ITAYdW4XrwuOoKeac5rl4ZjnC/et9Uee0XmEy9eHmMklqE7lGJzg08lGSoqohITi9/CFBb5CWY29veB7y1yu1YsHTWekqD9urrydoq1XjuaEAjBoutjT8r+1Xjs2LTVGTTq/eYxDHrsWCusz673mcfFZhHUVDh3XeOxl87t5D7vZN+K5YPfeVODvd7nKN0vdqt2m6lMrdeBRTPv2/oK79vJ5QIuGw5lP6qokEpe3/43YIuUcnyxG7MaaAu6+Y/P7GEimWNrmdILMEXsf/n+TgwpZxTNWCie2NHIvvZqqj22FSMqMl+e3NnEwY4sNR57xTXJO1sCNAacOKwaPmdlrl5Vbjufub+TdE4vvVDdyb4VywePw8ov3ddBIlMoSa42V7lw2S239W6bq1x85r753bePbatnZ0uAKrdNjaYoKqaSK6UPiC52Q5YD0VSeM/0RErfIL4YSWc72R2eVwxyMpDk3EKWgG/SFU1wZjd8mIXkjlOTycBwpJaf6JjjRYw6hXR2Jl0wvLg/HS0YXkxiG5MJgjL5watrned3g3ECU4VlKqDRNFAPQ0g9h94wn+YcTfYzOw4wjVzC/42wGHpbid5xqvffCpVGevzhS+j2SynGmP1KS1szldL55op8XLo6WlrkwGOVbJwdIZAoz7tvrsE4b5Si3b8XyRDck5wejt91HX369hz/43nlOdoe5NBRjLJ5loiiVO3nNnu2PFK+FNGOJLDMJM92KEOb1sZh5JIrVx2ySnL9T/LELeFEI8X2gJPIspfy/Frlt9xQpJX9/oo94psCZ/iifOtoBTIoL9JHNG1wbi/OBfa23rTuRzPH3x/sxpORkzwQ/ODdk1lJHMvzaIxsAU9BiUgD/xcsWXrhkBoTLI3FyBfMm31Dv4fqoGZSf3tdSmt96vWucN26EEQI+fri9NNz24uUxzg1EsWiCz9zfScB17/yc54thGPzBs+dJZnVevjbOf/ro3orWe+HSKBeHYlg1wS8/0FlR7/bH54b5q1duAKZ+9lO7m/j68T6SWZ3zgzE+fridP/zRRX5ywQzcbruFPW1V/OEPLpLXJReGovyLp7bf0b4Vy5fXu8Y5VryPPnGknXqfk+fODfEfn7uCbkheuz7OI5vrcdo0GvxOPnawlT949jzRVJ5UXudgRw3RdI51tV4e39awapMpFUvPbEPZk9kwvcV/9uI/gFWptJ4rmhhMmhkASAl6UVg+Xyj/tfOGUTKuSOUKJYOITOFmD3vqNtNTBOzTOQNLcYh56udTl59sl5TTP5/82SgK7S9nDIOSgH+uULkRx+R3NM0EKlsnPWVkY9KwY3Lfk9vL5G5uLJXTyRsGk4c2W5h+Hcxn34rly9T7aNIsIlYaHZPounkf6YZESsgVJHldIjGX14t/m7othWIxmE2S8w8AhBDPSCn/furfhBDPLHbD7jVCCD64r5XrYwm2NN7M0HXaLDy9r4XecGrGcph6n5OndjcRSmTZ315Ne42H4ViGZw7e7F1vavDx2DadbMFgT4ufpionBUPyzL5Wzg7F0ATsaglwui+CzaKxqf5m7e59G4I4bRb8ThutUwRGHt1ST5XbRr1vZoOH5YLVqvFP3rmZ17vCPLa1vuL1HttWT9BjpyHgJOCurMf6nl1NpIsB+em9LWia4IP7W+gaS7K1eG5/76mtOH+iUedz8P59Zh3rrz+ynisj8VJd653sW7F8uX9DEJfNQsBlo7nKBcCHD7RxsmeCi0MxPnv/OuoDDgzDzCdor/WUrtmNdV6cdg2rpmG1CCU0olhUZjSxKC0gxEkp5f65PrsbFtrEohKS2QJuu2XRE3ai6RzpnE5jwDXvdTN5HYsmsFk0MnkdqyawWjTSOR2bRdymA57KFXBYLaUe+L3iXpsgFHSDgiGnzdvdej6zxV755Ny6LNpBTnXviaRy2K1aSXtcNyTZgj5Nizyd07FbtXt+TO8lq9HEotz5vhXDMAglcqWkr1zBQCJJ53ScVg0DcFot806anNzOvcjrUCYWN1lJ32uSeZtYCCGeBN4NtAgh/vOUP/mBFW1O+5MLI5wbiLKu1sPT+2ZX/bkbLgxF+a2vnCJbMPjNRzfw8cMdFa/bNZbge2eGcFg1DnZW8/LVcdx2C/vaq3j5Wgif08YnDreXSj2Od4d56WqIWp+Djx1qW7UZoPFMnv95rI9UTufduxrZ1ODjZ5dGS9Z6Hz7QykgswzdO9APwwf0tNAVcfPv0AN2hFLtaAjy+vYEXLo3yl7/owmXX+DdP76Te5+R/HusllMjx0KZaDnbWcLJ3gp9fHiPotfOxQ+0qwWsF8c2TA/SGU+xpC/D2rQ1ll/mX3z7H9bEkR9bV8On7Ovn68T6ujMTpC6eQ0pT33Vjv5SMH2yoOzqFElq8f70PXJR/Y3zJthEuhqJTZnjSDwAkgU/x/8t93gScWv2mLR9eYKSDQPZ4szRktBq9fDxfnOM3EkvnQM55CN8y3/rf6ohhSksgWeKs/gpQQS+cJJUq5eHSNmUljoXiWeGZFvzfNykgsSyJbwJCylL1+vXg++8IpcgWD/gnz/1zBoC+cpqAbdIfMTNzJdU72TGBISTKrc3EwRjSdJ5QwM3G7istMHtPxRI5IeuEMNBSLS1436C1mXk+ew1vJ5ApcL/7twlCsdM30h1OkczoTqRyhRJahaIbULNUYtzIwkSabN0d0esdTc6+gUJRhtjnmt4C3hBBfllKuDpumIg9srOVEzwTbmvyLOkT5gb0tvHBplESmwC8drby3DKZxxVA0g8dh4UBHdVEm0MaetgA/vxIi6LGX5skADq+r4RdXTfOOW4URVhMdQTcb6r3EM3n2tlcB5hz88e4JNjf4sFs1tjb66RpLIoFtTT6sFo37NwS5NBznQNGg/n17m+mfSON3WTm6vhaPw8Lu1gCDkTRHikpshztrSOcKNAZc1HkXVwhGsXDYLBpH1we5MhLnYGd5GUyn3coTOxo53hPmiR2NbGn0cX0syUObarkymsBu0djVEmDTPNW6Njf4is5lBjuUROuyZCUMj884xyyEOMss2ddSyt0L1YilmGNWLByrcY5yLaHO38pFzTHfpNLvtZwC87znmIH3FP//zeL/f1v8/1Os0nKpqXzljV5O9IR5anczv7gyypn+KJ840s6pngkujyT4/IPreHJX06zbKOgGP704SjJrmh4c6w6TLeg8tLGO17rGMaTkgY1BXrk2jiYE79jeUEpoiqbzPH9xBLfdwuPbGm5L9FoN9Iwn+fMXr+N32fjtxzfhtN9+OQ5F07x0JURjwMnDm+vKbufaaJwTPRNsavCxv72a4Wia/+MfziAlfPGDu2mpdvH5//Emp/omeOf2Br74oT1EUjmevziKx2Hl8W31q/L4rgUyeZ2fXBjBkJJ3bG+Ylrin6zq/8/dn6BlPUu934rJqCMyHl6YJaj0ONtR7KUiJwPyD12nl8W0NsyaNKRSLzWxD2T0AQoh3SCn3TfnTPxNCnAR+d7Ebt1TEM3m+c9oUA/mrl29wI2TOYf7XF6+X1L/+8qWuOQNzVyjJxSFT9P7ZM4NEUuaMQCR18+eJZJ6JlDl/2VLtKjnQnOydoKc4R7Wu1juthGu18A8n+kvzuS9fC/H49sbblnn12jgDkTQDkTTbmvxltcV/fiVELJ1nMJJhZ3OA//FKd8mI4K9e6eJ/fftmXr4WQkrJd98a4osf2sOJnonSPOSGOg+bGlbf8V0LXBiKlcxIzg3EphnC/OTiGMe7wySzBbrGknjsVuxWQTxboM7rIJEt8PCmOvojaZoDLqKZPFsafJz1RysyqFAoFotKuglCCPHAlF/ur3C9FYvHbinN325r9FJTrBHe2ujDX1TX2lLBg7zO68Bh0xACtjX6sVs1NCHY3uTHqgksmmBbkw+LJrBqgqaAs7Rua5ULIUwx/cU2ulgqtjX7EQIcNm3GwNhabZ4Hv8uG31X+PbKleK4aA05sFsGBjmosmkATgoMdNQTcttI8Ya3XPJct1a7Svlfr8V0LNAWcpXtp6v0DsKPZh8tmxWrR8DmteJ1W3HYrvqJxRa3Xgd9lo97nwOuwUu22YdEEzXdQ2qhQLCSVjNd8HvgrIUQAEMAE8LlFbdUSo2kaf/SBnQxEM6wLuolnC1wfTbK/o5poOseNsSR7K/BWrfbY+dwD68jpRjFxq4qCYeBz2tjVGsCQpvbyjpYAAqYNn21q8PG5gBObppVKolYbT+5sYndrAI/dSpW7vEDKkfVBtjT6cNutM5YrPbGjgcPravA7rQgheMeORjY1eDEkrK8zhVpe+N/fxi+ujPKuHaa4ydZGP81VLuwWTekYr2CaAi4+9+A6JNyWpNVW4+Frv3aUkWiGWp8DianY5XdYCSVzNPocZHWJ266RzUtsVlG6JxWKpWTOK1BKeQLYUwzMSCnXhKFFLFtgIpmj3ucg4LKzv8MMHImsji5NEYKzAxGujiZ4z64mAjMElv6JFImszq6WQDHAmkFg6lzYTA8C/xrQZm6pmrvO89ag/eLlUUZiGd6/pxmn3Uo8W6BrLEF70E29z4mUkmTOVP6SUiKEIOC28d69N2vWdUPSNZbE67BU5MWsWL6Umw8ei2fpGU/islvIFAyq3HY0AWcHouQLBhvqvKVlNjf6SspuBd3gVO8EfpeNDXXe27arUNwLZhMY+ZSU8u+mmFlMfg6sPhOLqRR0g2+c6CebN7g6muDjh9sBU13qmyf6KRiSM/1RnjtvJp30jif5vXdvv207feEUz741BJgKUvdtUPNWd8up3gn+64vXAXN+/tfftoHvvTXESCyDo1vj1x7ewOXhOM+dv+ksVU5K9Y0b47zRZbp7PXPQooQgVhG6IfnGiX7CySxdY0l2tgSYSJoqbyd6JgD46ME2vvPWIJm8zuWROJ88YpYzvnp9vLTMxw630aSGtRVLwGw9Zk/x/zXZnZjT1W3K3yvRKJGrP5F9ZTHldFTo4KdYQUzeb7L0+8ylJOr8K5Ybs2Vl/3/FH/+9lLJyA91VgNWi8cyBVnrCqWnZ0B6HlQ/sb2E4mmFHc4DtzX6ujZlD2eVoq3Hznt1NJLIFdrdW3aPWr272tVfza49sYCxuDmUDPLW7iSsjcTpq3KWEOonpELSj2V92O4fX1eCyW/A6rLTVqN7yasKiCT58oJWe8RROm4VcQWdnSwBNCHxOq2liUe3iQwda6BlPsXlK4uF9G4J4nVb8TpvqLSuWjEqyHM4JIUaAl4r/Xl6J88xSSiKpPD6ntaKa1RqPHZtFw+ewUtANEtkCVW47rdXu0rDnkfVBjsxRVqHKcOZHXjdIFo/1JH3jKao9drxO83J9+y3uVAGXjUOdN8tkhBDsaJ5ddclq0dhXQQKfYmnIFnQyeWPeHuOT93nAaWNjnZcqt22aUc3+Kee83uek3jc9k9tm0aYto1AsBZUkf20UQrQDDwFPAf9FCBGRUu5d7MYtJM9fHOXsQJQGv5OPH26b1VVKSsnfn+hnOJphW5OfsUSWUDzL3vYqHt1SuWWhYn7kCgZffqOHSCrP0fVB7tsQ5K9f7eYHZ4eoctn4jx/Zg28NJMStdZLZAl9+o4dkVufRrfXzslh88fIYp/vMGvW2ajc7WgI8seP2+niFYjkzZ9dRCNEKPIAZmPcB54GvLXK7Fpy+CVNMYiSWIVuY3eQ8pxsMR83R++5QklDcNIvon0gvbiPXOPFMviS8Mnm+LhUFWiLpfOkzxeomnMyRzJpCPv3zPOd9EykMCYORDAVD0hdW14xi5VHJUHYv8Cbwh1LKX690w0KIZuB7wHbAK6VcUsujhzbVcbw7zMZ675x1qw6rhYc313J1JMHBzmpCiRzdoaRSA1pkgl4HBzurGYykeWBjLQAfOdTG373ew7paD9ublCnAWqClysXu1gDjydw0Ja9KeHBjLcduhHnP7uaS2IxCsdKoJDDvAx4EPiGE+F3gKvBzKeWX5lgvDDwGfOvumrgwbKz3srG+8rrEAx01HOioKa6LCsr3iIc2TdfD3tdereaC1xiaJnhsW3kP5blYX+cticooFCuVSuaY3xJCXAeuYw5nfwp4BJg1MBczuTOzzeUuBj3jSX5xZYyWahdI+OapAbY1+fnNRzfOazuvXR/n6micQ501bGu6mdn7s0uj9E+keHBjLdfGkgzHMrxtc10ps7egG/z4/AiRdI53bGug3u+caReriguDMY73hNnc4JvxJebYjTCXhmPsb69mZ0uA8USW5y6M4HFYedeORqwa/N8/vUpXKMknDrdzf7HXPJW8bvCjc8PEMwXesb2BOp+jon0rVj7PnR/mu28NsqslwOcfWMcfP3eJoWiWzz/YSVPAxU8ujlDlsvPEDtP0xTAkz10YZjCSwZASv8vGkzsbVZ6CYtlTyRzzceA14APAReBhKeX8zIXvIW90hQklcrzVF+Xrx/sYi2f5xZUxhiKVzw9nCzqvd40znsjx6vXx0ucTyRyn+yKEEjl+cnGEcwNRQvEsx26ES8v0TaS5MhJnNJblZG9kIb/asubV6yHGEzleuz5OrswcfkE3eOXazWUATvdFGI5muD6aoGc8SddYkjduhBmLZ/lW0UTkVnrGU1wbTTASy3Cqd6KifStWB98+PcBYPMsLl0b5xbUxTvdFGYll+NapQU72TjAay3JlJF7KBRmKZbg4FOfScIzjPRMMTKQ5Pxhb4m+hUMxNJWYUT0opd0kpf01K+XeTrlN3ixDiC0KI40KI42NjYwuxSQDW1Zm6KLVeO7uL2ZxNARfBeRjd2y1ayTxhfa2n9LnPaaW2aHiwvclPdVHGb3KfAHVFQXwhoLN27dTHri8eg9ZqFzbL7aMkVotGR9A8Hp3FY9oRdKMJgdtuod7vpLnaVTKU2DWDyXyD34HHYUETorSdufatWB1sL45ctVa72N0cIOCyIQTsbauiI+hBCPMenbyGgh47fpeNgMtGvdeBzSJUzbpiRSDkIsveCCFeBB6fLfnr4MGDciGN2pPZAk6bBYsmGI1lqHHbsc5ggDAThiFJ5fXbdKx1Q5LJ63gcVnRDki3o03SvwRxuLehy1ZpP3MqkWXsiW8Bts6Bp5YPjpIb11GOayetYNIGtWFueKxhEUrlZpwDKHd+59q2YmcnztxKYej9ncgUSuQK1XvNaSed0bBYxTaegoBvkdAOLJpCSVWdYMvXcdf7u9ytap/uLTy1mkxaUSr8TVP69FmObd4oQ4oSU8uCtny+ajYoQwgb8ENgD/FgI8c+llG8s1v6mMlXU/k7neDVNlDWXsGiitH2LJm4LymCKFKyy+78i5nLlEeL2Y3rrg9Ju1eY8Z+WOr3IEWhtMvTacdivOKfdfuRdhq0WrSFBIoVhOLNrTTEqZBx5frO0rFAqFQrEamc1d6oOzrSil/ObCN0ehUCgUirXNbD3m987yNwmowKxQKBQKxQIzm7vUZ+9lQxQKhUKhWIksdEJZRXPMQoingB1AKfNCSvmvK26JQqFQKBSKiqhEYOTPgY8CvwUI4Blg2QqMKBQKhUKxkqmkjuB+KeUvARNSyj8A7gM2L26zFAqFQqFYm1QSmCe1LFNFx6g80LR4TVIoFAqFYu1SyRzz94QQVcAfAycxM7L/22I2SqFQKBSKtUolgfk/SCmzwD8IIb6HmQCWWdxmKRQKhUKxNqlkKPu1yR+klFkpZXTqZwqFQqFQKBaO2ZS/GoEWwCWE2IeZkQ3gB5RFi0KhUCgUi8BsQ9lPAL8MtAL/15TPY8A/X8Q2LRgTyRyn+yO017jZUOdd6uYo1gC6ITneHUYChzprsKwytyvdkLzZHUYAB1fh91MolgOzKX/9NfDXQogPSSn/4R62acF47sIwg5EMZ/qi/OrD68o6QSkUC8n5wSivXh8HwGHV2NdevcQtWljO9Ed4rfj9XHYLu1urlrZBCsUqpJI55leEEF8SQvwQQAixXQjx+UVu14LgKgZiu1VTb/aKe4J7ivXganwRnPqd3GvEb1yhuNdU8uT478V//6L4+xXga8CXFqtRC8W7djTS1ZCg0e/EYVUPEcXis7Hex4f2W5BIOoKepW7OgrOl0YfTpiEQtAdVqolidTMfDeyFpJIec62U8uuAASClLAD6orZqgbBbNbY2+qly2ynoBn3hFJn8imi6YpkSSeUYjKRnXaY96F6VQXmSjqCH9qCbgUiaaDq/1M1RKFYdlfSYk0KIIKawCEKIo0B0UVu1CPzw3DDXRhNUuW185r5ONDW0rZgn4WSOL7/eQ8GQvG1L3aqbP54Pr3eN89r1cexWjU8d7SDgsi11kxSKVUMlgfl3gO8CG4QQrwB1wIcXtVWLQDiZAyCWLpA3DByaGtpWzI9oOk/BkMDN62mtUfigHAAAHERJREFUMlH8/rmCQSJbUIF5BbHQFoWLuf+1ypyBWUp5UgjxCLAFs5b5spRyxY1fvWN7Ayd7J9hQ51XzzYo7ojPo5si6GmKZAkfWB5e6OUvK/RtrAajx2Gmpci1xaxSK1cWcgVkI4QR+A3gQczj7JSHEn0spV5QsZ3OVi2b1AFHcBUKIUkBa6wRcNp7cpbxsFDdRPeGFo5Kh7L8B4sD/W/z9E8DfYvoyL2vO9kf5xdUxOoMeIqkcPzo/zM7mAP/sya1ll//HXzvF6d4ID2+u41+/f+dtfzcMyffODtE/keJtm+vZ3uxf7K+gWOb83Wvd/PjCCLtbq/inT2ypaJ3BSJrvnRnE47DywX2t2K0a3zszyEAkzdu31rO10c9z54f5uzd6aKt286/euwO7tZI8zfnv2zVLydOJnjCvd4XZ3OBjf3sVv/o3xxlP5tjXVkVbjRtNCFqqXTy9t4WfXR7l2miC+zYE2b+G594VioWgksC8U0q5fcrvPxNCXFisBi0kp/sj5AoGV0binB2IkisYnOydIJLKUeW2T1s2l9M53j2BlJKXr4bKbi+aznN9NAGYQgsqMCt+fmWMXMHgeHeYRKaA1zn3LXVhMEYyq5PM6vRNpKjx2OkaSwJwpi/K1kY/z18aJZs3uDaa4NpYnO1NgQVp76373tzgm3HZU73m/XNuIMp4IstILEO2YHC6P0K2YOB1mN+1dzzJhcEYAG/1RVRgVijukkoC80khxFEp5esAQogjwPHFbdbCsLPZz0tXQ3QE3QQ9Nn54boQdLf7bgjKA3W5hT2sVb/VHOLKupuz2Ai4bHUE3/RNpdjQvzINSsbK5b0MtP7kwws4Wf0VBGcxa4CujcTx2K63VLhxWC201bgYjaXa0mC97j2yqoz+coqXaxfoFLL26dd+zsaslUOwxeznQUcVXj/Uynsyxs9lPa7XZY27wO2mtcbG5wce10QQ7W9R9oVgaVtNQupBSzr6AEBcxE796ix+1A5eBAiCllLvvthEHDx6Ux4+viFivKMPBgwdR52/los7fymXquVuMwDSfrOzVFBgXk6nHVAhxQkp58NZlKnnFf9dCNmq+ZPI6r14P4bJZ2d3q57XrYfwuG4en9GqjqTxv3Binwe9kT1tV6fOxeJYTPRN0BN3ohuTZtwY51FnN49sb77g95waiDETSHOqsocZze89bUTnpnHluPQ4rR9bVIMS9qy1fqH0PRdO81RdlY72XjfVeMrkCX3qlGykln3uwcn32b58a4PJwnI8cbGXdMjFcOdMf4ftnhohl8ownchzqrKGz1sN9G4JIKXm9K0yNx86BDjV0rVAsJJWUS/Xci4bMxLEbYd7qM/VMro3GCSXM+skGv6OkrvTzq2NcH01wfjBGS7WLWq8DgOcvjjAUzXBpOMbFwSiRdIEz/VGOrA/ic86/7jKazvPTiyNICbF0nmcOti3Qt1ybvHFjnDP95rmt9zlYfw8D0kLt+8fnhplI5bkyEucfvW0D3z0zxC+ujAFQ43HwiSPtc26jZzzJV4+ZA1LRdI4//OBdD0ItCH/+8+sMRdJcGIoTcFo53Rfh44fbkVJiSMnFoTgATQGnqnhQKBaQhUn1XEQmhQsm57MALJooJZ4A+J03zSqctptZpv7ium67haDXXNfrsNxxHbNjyvaVoMLd459ybiudn11u+w64ze14HFYsQtDgc5T+1hhwVrQNn8NWuq5qPI45lr53VLvtWDSBVRMIQSmD2++ylY6fzSLwrEKzDoViKVn2d9SetipqPHacNgt1PgdbG/14HBaC3psPsIc31dEZ9FDttk8L2O/c3sDWRh91PgcWTfDmjTDbmvx3XHritFn4xJF2xhM52muUgP/dsr+9mjqvA5fdUhrlWGn7fmpXM/0TKRoDTjRN8MiWeqo9dqSU7GmrbIi3xmvn335gJ92hJPetWz7CJb/35DZO9ITxO2xcGY1zdH0NCFG69luqXPidttLLiUKhWBiWbY/52dMD/OzSCABtNW7qfA50XedY9zhXhuMYhsHPL49ybSROoWDwWleIG6EEuYLBC5dG6RtPEUll+B+vdHO6d4JszqA3nCKRLRBN5Xj+4gihRIZMXufaaJx0TieUyPD8xRGiqRwjMfPnRKYwrV1+p411tR4smiCSynF9LIFhzJ5Ap5iZthr3PQnKyWyBa///9s48yqrizuOfbzc7NPuOCoiA7ChiNO67Y1wwapyJyyHxJDEuGeOYaPSYMYvR6JjExC2a8RAV48RE4g6igoKIgMq+CMhOQ9NA09303u83f1S95nX7enm9vddNfc7p0/fWq1u/37213ar7q19l5VFcdmgTkyWb97F2V27F+eodB5i+cAuFJS5OQUEp9722kndWZlbE2ZNXzObsg0SNJrdkH+R3s79g8aa9FXF2Hygi80BxxXmWL0t5RYcc5i3YkM3qzEMu57u2b8uAbh1RDT7cq8qOx86cQnbUsslGPLLzi9nk047WrZU797Nky37mrtvFy59u4+l5G3ngrTX8cfYa/vzBBsojbkobIN8/35KySMKyA4FAZVJyxPz4nPW8+MlWJHFXSRkXjx8EwP1vrWXWql2kSZwxog/rs/JpkyY6tUtndWYubdLT+PrRvfgy+yDt26axISuf7LxiXv50G6MGZrD7QDHPfbyFcYMy2JFTTI9ObTltRB+ycovpndGeBRuy2XewhDe6tSe/uJzcojLeW7M77je/g8VlTP9kKyVlESYe2Z2zju3b3I8pUEfMjP9bvI0DhaUc0aMjV51wJA++tYbXl+9EEg9+cxxDe3fhpr99RmlZhI827uWJa45nyp8XsDn7IC8t3sb0Lu05qldnXvxkKxEzTh3em8lDevLNJz/iYEk576zaxWd3n8vrqzJ57P0NAGTlFnLtSYO5918rySksZdaqXTx05QRe/GQrry7dQZrEvRePYmjvLkxftIXi0ghjB3XjvNH9vnIPe/KKvyK7Khv35PPa0p0AXDx+AMNrWKMcS1nEePGTrZRHjJOH9WLp1hzmrMti2fYcLBKh2L/LLNmSA8DMVdAmDd5asZvzRvfj2187ihmf7yCvqIyhvTsz5bhB9cilQCAQJSVHzLtz3WjDzNi5/5Dnz+x8Fx4xq9h6ryxiFeFl5RF257r4JWURDhaX+fiQc9CNVopKy9lX4I7d6Nkd5xWWVIxocgpLOehHTdVta1dUWl4xOsgtanGuww8rIkZFWcjzMyC78w6VsR37CzlQUEKpz8/9B91vuT7vIxFX3gpKyg6NEH06JeXuvNwgp7iEzJxD5TUzt5iyiCtnQEVZiy3He/KKKSmLUFwa8frFL0vxZFclNjyvOH6ceETMKPezPnlFZewvcPqVlxvVDc7NnK5lESO/uIwCX18SkRsIBOKTkiPmH58zgoKScjq2TWPqyUMqwu+8cBQPzVpLv64duOHUobz4yRYG9ejEhCO68dj7GxjRL4NLJw7k5SXbObZ/BmXl5fxpzkYmD+nBxeMH8uKibZw2vBejB3TlndVZnHx0Twb36szaXXkc2z+DiUf24KONezl3VF8OFJayePN+vjEu/tKqXl3ac97ofuw6UMTkahySBFKD9DRxyYSBrM/KZ5x3gHHnhSN5cOZaenVux5WTBpGens51Jw1mxY5cbjzjaAAeuGIc97+xhpEDMrhkohsFnj6iN7mFZZzkN7G45exhTF+4lVOG9eaInl34/mlD2ZNXjBncfMbRtGuTxg/PHMbHX+7jgjFuJHz9yYMxjB6d2nHa8N6kpaVxwZj+7Mwp5IQh8b9LD+7V+SuyqzJmYFfyi8swg/EJOPpol57GGSP7kFNQwklH92L8Ed2YvnALQ3t3ZH1WAbsOFJBTUFphBNatYzsyOrTlhlOGMrRvFwb36sxF4wawKfsgE44MDkYCgYZSq4OR5iDqYCSqS33WlEYiVrHHciQSIS2t5skAM2vWdbOtmZbqoCJeOWmqcpHK6cbmX3V1MPqs6lK3As1HcDDS8mgsByPNwp68Yv752XbSBFdOOjIh5x1rMnOZvXo3fTLa0zZN/POzHRzRsyP3TxkX1wJ7/vpslmzZx7H9u3Lh2Po7Gwm0XBZu3MvjczfQuV06v7xsLD07t+OVz3eQmVPE2cf2ZdwRjTfye3tFJut25zF5SE9OacTdqRZszGbRpn0M75vBN8Y3fKeneHUwEonwizfWsGrHAQpLy+jesR3fO/1ozhwZbCoCgaYiZV59v9yTT2GJc66/KftgQteuycylPGLsOlDE++uyiJixdW8BW/fGT2fVzgOYHboucPgxf0M2JWUR9heUsnRbDjmFpezYX+gdZ+TWnkAdKSuPsHZXHmau3DUmq3fmYgZf7G4ca+jKddBt1pJTUMbazFzyi0rZmVNEWcSYvyH+Ji+BQKBxSJkR84h+GazJzCUtTRzTNzEvTBOO7M6evGL6de3AyP4Z/H3JNob06syQapz/Hz+4B0s272fUgAzSa1ieEmi9nDe6L+t25ZLRwbl37dqhLcf07cLOnEImHtW90eS0SU9j4lHdWZuZ1+i7Lh13VA8WbdrHyP5dGmVbyMp10Fl09+zSjhOG9GT59hwyOralS/s2nDfqq1bjgdZJmJ5ODin1jTnQMmmp35gDjpB/LZem/sYcaHzq8o05JTpmSXuApvTJ3Rto7vm3ZMhMltzjgc+SKL8hBH0r519z0dKeO6SmzsnIu/qSis+vJppD38Fm1qdqYEp0zE2NpCXx3kpam8xkyk0V+YkS9E0OLfE+WqLOqURLe37J1DdljL8CgUAgEAiEjjkQCAQCgZTicOmYnz5MZCZTbqrIT5Sgb3JoiffREnVOJVra80uavofFN+ZAIBAIBFoKh8uIORAIBAKBFkHomAOBQCAQSCFadccsaaykf5c0uYnlDPD/JWmKpJ95uU3qWU3SpZI6NaWMOugwRtKxVcK+lix9akPSJEl9JaVLukzS+cnWKREk3ZxsHQKB+tLUbXFDSKW2rNV9Y5Y008wulHQbcA7wJnAKsN3MftZEMt83s7MlPQoUAu8DE4ETzOxbTSHTy92Jc8yyG5gBvGZm+5tKXhz5jwD9gFLcYvzvmtme6PNoLj3qiqT/BQQUA32BHUAu0NfMvp9M3eIhaR4QraBR37FjgJVmdnpytDq8kNQF6A7kmFl+ktVpMUiKN+gTMNPMzmtufWoj1dqylPGV3YhEt6W6HDjLzCLAU5LmN6HM6A4CY8zsXH/8jqQ5TSgTYJ2ZnSVpKPBNYIakYuBVM3uiiWUDTI52EJLGAy9LuqMZ5NaXY8zsDABJK8zsCn/c1PlUX14BJgDTzGwugKS3zezfkqpVgki6zcz+IGkC8Cfcy0Yb4C4zm5dc7eIj6WzgXtyLWy7QVVIG8BszezepyrUM8oGFuM449uVyfNI0qpmUastaY8c8WtJzwDCgPW4EC9ChCWX+VdJfgG2SXgA+wBXAZnFAbGabgEeARyT1Ay5rDrlAuqR2ZlZiZsslXQ68gBvVpSKx5f3umOOU3MnEzH4vqR1wg6QbgReTrVM9uRT4A/AwbiSyQVJv4FXcbFYq8kvgfDMriAZI6gy8A4SOuXbWAJebWaUt1STNTpI+tZFSbVlrnMoeHHO608xK/XTUaWb2dhPKHQhcgJsOOQAsMLNlTSXPy7zAzGY1pYxa5J8IbDazrJiwdOAqM3spWXpVh6QxwFozK48JawdcaGavJU+z2vH2CtcBI83srmTrkwiSlgK3Aw/FujiUNN/MTk2aYjUg6T3gHjNbGBN2EnC/mZ2TPM1aBt7uZq+ZlVQJb2NmZUlSq1pSrS1rdR1zIBBILST9d8zpo2aW46eFHzazG5OlV034juUuYBzOSDYCLMfpvCOZugVaP6FjDgQCgUAghWjVy6UCgUDq4lcxtCgk/THZOgRaP6FjjoOkMyW9UdfwRpA3RdLomPO5kmrdbkzSgMbQR1IfSTMbmk6qUd/8kjRQ0j+q+a0ibyTdHRM+RNLKOqZ/m6TrE9UrTjq3SPpuQ9NpDuKtEQX+lhRlEiTWH4KZ/SjZ+iQTSVO9PU1t8aZJurIe6d8Yr27E1i9JEyVdFPPbfXWxoJbjfUldE9UrTlrvSurR0HSqI3TMqcEUYHRtkeJwO/BMQ4Wb2R4gU1KqWsg2K2a208zq0qjcXXuUyngjru/SOBbWzwK3NkI6TYpfI/oz4E5Jr0uKbgz/mySqVSPRF1XvD+EB3FrmH0lKWZ2bialArR1zfTGzp8zsuVqiTQQuqiVOPC4ClplZbj2urcrzwE2NkE5cWmTHLKmzpDclLZO0UtLVPnySpA8kfSpplg555Jor6VFJS338E334iZI+lvS5pAWSRiaow7OSFvnrL/PhUyW9ImmmpPWSHoq55gZJX/hrnpH0mKSv45aTPOz1G+ajX+XjfSHptGrUuAKINiDpkv7H399ySbf68M2SHvBpL5F0vH82G+WW4ET5F3BNXe+/MUhWPnqZ4/3x55J+7o9/Kel7Vd7OO0p6SdIaSTOAjj78QaCj12W6Tzrd5+sqSe9I6hhH/NnAZ1HLVEnH+LfvZZI+kzRMbqT/gaRXJX0p6UFJ1/jysCJaRvxSns3R55DCTDaza83sO8A9uDWiSdmAPgFi/SFc5juM64BW49jFl/O1kqb78v0PeU+C8eqg3Aj4BGC6L/cdJf1c0mJfH5+WVO3SQzmPe5/64wmSTNJR/nyjpE6KGf16HZZJWgbc7MPa4ZayXe11uNonP9q3D19Kqm5W4xrcEr2oPtf7tnKZpOd92DRJT0pa6NM6U66dXyNpWkxarwH/keAjrztm1uL+cB3SMzHn3YC2wAKgjw+7GnjWH8+NxsdVrJX+uCvQxh+fC/zTH58JvBFHbkU47m3/Wn/cHfgC6Ix7o/zS69QB55nrSNxb5magp9d1HvCYv34acGWMnLnAI/74IuDdOLoMBT6NOf8h8I+Y++np/28GfuiPf4+zLM0A+gC7Y64fBKw4TPLxLlxF7wYsBmb58DnASGBITNq3x8gfD5ThPLoB5MekOcT/NtGf/z1aPqrI/gVwa8z5J7j1nvjy0snrnQMMwK3F3wH8wsf5T+APMdffA/xXsutkLfn8EdAu5rwHziPf7mTpVAeddwHPAduBjjHhS5KtWyPe4xCc849T/PmzwB11qIMnxKTRM+b4eeASfzyNmDYtJs4qX19v8XXvGmAw8LH//T7gDn+8HDjdHz8cUyen4tvOmGsW+LrSG9gLtI0jewuQ4Y/H4Nrs3rH34fV+Cefb4DKcc5moZf6n0frt464HejVF3rRUByMrcM40fotreOdJGguMBWb7l7Z0IDPmmr8BmNmHkrpK6o7roP4qaTiugLZNQIfzgUt16NtGB+Aof/ye+YX1klbjCl5v4AMz2+fDXwZG1JD+K/7/p7gKVJUBwJ6Y83OBp8yPxKJyPNE1uiuALmaWB+RJKpbU3cxygCyacIqqGpKVj/OAHwGbcB3EeX6kMNTM1kkaEhP3dOCPXuZySctrSHeTmS31xzXl2xoAuSVDg8xshk+/yIcDLDazTH++EefYAtwzOysmvSyg6rfbVOPHuJfXLAAz2y/pUuCqZCpVC1EfyffiXrii7jnvTZpGTcM2M/vIH7+AqxczqbkOxnKWpJ/iXih74jre12uQtwDnVOZ03ODmQlwnWMkDnK/X3c3sQx/0PFCTx7s3zawYKJaUhfMnsb1KnJ6+7QM3c/WymWXDV9rL183MJK3AvTyu8DqtwtXppT5etM3cW4Ne9aJFdsxm9oWk43GjyV/LOQOYAawys5OruyzO+a+AOWZ2uW+M5yaghoArzGxdpUDn9Lw4Jqic+j3naBrVXV9I3b2ZRdOKVNEtEpN2Bw55SWsWkpiPi3FTcl8Cs3EvTd/DdaYNoWq+x5vKrmu+Vc2n2DyMLQ/Nnm+JYmaL4oSV40YmKYmZbYkTlg80mZOiJBGvPoma6yAAkjoAT+BG0Nsk3UftZftD4DTcYOVV4E4v883EVa9EXdrcMklp5tw01yWtmtpLaMK611K/MQ8ECszsBdwUx/HAOqCPpJN9nLZynp6iRL9fngoc8CPabrhpQnDTI4kwC7g1+k1F0nG1xF8MnCGph5wB0BUxv+XhRn2J8AWVR2SzgR/4tJHUM8H0RgB1sipuLJKVj+a8EW3Djdg+xr2t34FrNKryIfBtL3MslX39lkpKZJYF3Gj5GK9HHrBd0hSffnslvltYs+dboFVxVLSu4cr5fGqug7FtVbQTzvazCXUxmJwHXAus9x3kPtyLeaW9DPwsXo6v51DZ/qU+7SW4+zraH7+Ps+PpBYm3l77d74/7VNjotMiOGTfnv0jO1d9/A7/2je2VwG+9scBS4Osx1xRJ+hx4CrjBhz0EPODDEx3V/go3ZbrcT3H8qqbI5rwF/QZYhPvmthnnuhPcyOEncoZIw+Kn8JX0DgIbJR3jg/4CbPX6LMN3JglwFg1/a02UZObjPCDLzAr98RFUmU7zPAl0kbQGZ3QSO6p+Gve8p8e5rjreprIB0XU4a9/luGm+/gmkBW5aMFX9DwdSn3XAzb589wCerKUOTsNtCrQUN5p8BvdiOAs3+KgRM9uMG5FHX4Ln43buircr3neAx72sWKOyOThjr1jjr7rwJs5+AzNbBdwPfODv8XcJpAMwCVhoTeVetCk+XKfaH1UMFpKoRxf/vw3uO8zlDUzvclxn1hi6fQj0SPYzagn52Aj3MQMY3gjpHAc8n+z7qaOuU4GBdYg3jfhGQ3HDG0Gvu2OOh+ANjOpw3W3A9Y0g/xbcxh7JyJM6329r+MPZd8xupLQeBc5pKl1b6oi5pXKff/tbiTM8+ldDEjNnNLS5oUrJrSv9nTXjXs6HOXfhGomG0puWY4w0leY3LqwLYS36YYI5Y8pn1AgORnAvNO81QjpxCb6yA4FAQngDu5m4af3jcZa415tZgaRJuGnBLkA2rkM+BTfi3YEzljkZ+AlwCc5AbgHwAzMzv1b0DTOr5HktNjyeDDPLlDQXt/zsLJwV+A3mLP07efljcVO3A3HL5a70eqzw93AP7lPDfNzU7Q7cGuZKBj6Szge+bWZT/fkxuE8rfXCGR1fhlkj+ArfsbRxu+dwK3HK3jsAUM9vor58BPGBxjOQChydhxBwIBOrDSOAJMxuFW+t5kzeE+xNuynkSbjR4v+9klwDXmNlE39E9ZmaTzWwsrqO6uC5Cq5MRE6WNmZ2Im2qO7mp1E7DfzEbjZhgmAZjbPrPQ6xQ1LhoOPG5mY3CdaqyRZpRTqGxrMN1fMwHXoUeXFk0AbgRG4WwJRnjd/kLlUfISnKVyIAC00OVSgUAg6TT3+tcoI2uREW/9/6m4b4KY2cqwFj2Q6oSOORAI1IfmXv9acXktMmpb/18bYS16IOmEqexAIFAfmnv9a5Ta1rnH4yPgWz7+aNw33yhhLXog5QgdcyAQqA/Nuv41Si0yquMJXGe+Gvg1bto86kMgrEUPpBzBKjsQCCSEt8p+wxtupTyS0nGbGhR5Bz7vAiN9J1/fNGcAPzWz9Q3U7TjgdnM7VwUCQPjGHAgEWj+dgDl+ylrATQ3plD3RtegN6phpWWvRA81EGDEHAoFAIJBChG/MgUAgEAikEKFjDgQCgUAghQgdcyAQCAQCKUTomAOBQCAQSCFCxxwIBAKBQAoROuZAIBAIBFKI/wfHJW+z3yjYwQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1243,9 +1249,9 @@ { "data": { "text/plain": [ - "array([1, 0, 1, 2, 2, 2, 2, 1, 0, 1, 0, 0, 2, 0, 0, 1, 0, 1, 2, 2, 0, 2,\n", - " 1, 2, 0, 0, 2, 2, 1, 2, 1, 1, 0, 0, 1, 1, 1, 0, 1, 2, 0, 0, 2, 2,\n", - " 1])" + "array([0, 0, 1, 2, 0, 0, 1, 1, 2, 0, 2, 0, 1, 0, 2, 0, 2, 1, 2, 0, 2, 2,\n", + " 2, 1, 2, 0, 2, 1, 1, 1, 1, 1, 0, 0, 2, 1, 2, 1, 0, 0, 1, 2, 1, 0,\n", + " 2])" ] }, "execution_count": 33, @@ -1351,9 +1357,9 @@ { "data": { "text/plain": [ - "array([1, 0, 1, 1, 2, 2, 2, 1, 0, 1, 0, 0, 2, 0, 0, 1, 0, 1, 2, 2, 0, 2,\n", - " 1, 1, 0, 0, 1, 2, 1, 2, 1, 1, 0, 0, 1, 1, 1, 0, 1, 2, 0, 0, 2, 2,\n", - " 1])" + "array([0, 0, 1, 2, 0, 0, 1, 1, 2, 0, 2, 0, 1, 0, 2, 0, 2, 1, 2, 0, 2, 2,\n", + " 2, 1, 2, 0, 2, 1, 1, 1, 1, 1, 0, 0, 2, 1, 2, 1, 0, 0, 1, 2, 1, 0,\n", + " 2])" ] }, "execution_count": 37, @@ -1380,9 +1386,9 @@ { "data": { "text/plain": [ - "array([1, 0, 1, 2, 2, 2, 2, 1, 0, 1, 0, 0, 2, 0, 0, 1, 0, 1, 2, 2, 0, 2,\n", - " 1, 2, 0, 0, 2, 2, 1, 2, 1, 1, 0, 0, 1, 1, 1, 0, 1, 2, 0, 0, 2, 2,\n", - " 1])" + "array([0, 0, 1, 2, 0, 0, 1, 1, 2, 0, 2, 0, 1, 0, 2, 0, 2, 1, 2, 0, 2, 2,\n", + " 2, 1, 2, 0, 2, 1, 1, 1, 1, 1, 0, 0, 2, 1, 2, 1, 0, 0, 1, 2, 1, 0,\n", + " 2])" ] }, "execution_count": 38, @@ -1409,7 +1415,7 @@ { "data": { "text/plain": [ - "(array([ 3, 23, 26]),)" + "(array([], dtype=int64),)" ] }, "execution_count": 39, @@ -1436,7 +1442,7 @@ { "data": { "text/plain": [ - "0.9333333333333333" + "1.0" ] }, "execution_count": 40, @@ -1491,7 +1497,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEWCAYAAABi5jCmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3de3xU1bnw8d8TEoSoRBA8IpgEjwIFwh0NgtcIXsH6Ci/2RBS1RsVLfVsVbHq8cMipF1S8VGm0CtK0gigqtioYRcWKCghEIyBqwk0hAgYwogGe94+9J50Jk8nMJHPLPN/PZz7MrL332k92wjyz11qzlqgqxhhjjEdKrAMwxhgTXywxGGOM8WGJwRhjjA9LDMYYY3xYYjDGGOPDEoMxxhgflhhMsxGRfBFZGIF6J4jIkuau16v+10Tkcq/XU0XkOxH5VkQyRWSPiLSKwHn3iMhxzV1vtIjIXSLy11jHYZqfJQYTNBGpEJGzGtquqiWqOjLMus8WkXdFZLeIVInIOyIyOvxog6eq56rqLDeOTOB3QC9VPVpVN6jqYaq6vynnEJHFIvLreuc9TFW/akq98UJEskVERSQ11rGYprPEYJpFU94QRGQM8DzwLNAV+A/gDmBU80QXkkxgu6pui8G5m529UZtwWGIwYXGbd94XkYdEZDtwl3eTjzgeEpFtIrJLRMpEpI+fegR4EPgfVX1KVatV9YCqvqOqVzdw7odFZKNb73IROcVr24kisszdtlVEHnTL24jIX0Vku4h8LyIfi8h/uNsWi8iv3buhRcAxbjPPzPqfhEWkg4g8IyJbRGSniLzklrcXkVfdu52d7vOu7rYi4BTgMbfex9xyFZHj3ecZIvKse3yliPxBRFK8rvUSEZnm1v21iJwb4HdTISKTRGQ18IOIpIrIMSLyglv/1yJyUxDX7HQR2eSnbn93je+6/37v/oxDReR4986v2m2am9NQzCa+WGIwTXES8BXOJ/yiettGAqcC3YEM4P8C2/3U0QM4FpgXwnk/BvoDHYC/Ac+LSBt328PAw6raDvhPYK5bfrkbx7HAkcC1wI/elarqm8C5wBa3mWeCn3PPBtKB3sBRwENueQrwDJCFc9fxI/CYW28h8B5wg1vvDX7qfdSN7zjgNOAy4Aqv7ScBa4GOwH3AX9yk2pBfAecDRwAHgAXAKqALkAfcLCJnu/s2dM1Ccar77xHuz/gB8D/AQqA9zp3go2HUa2LAEoNpii2q+qiq7lPVH+ttqwUOB3oCoqqfq+o3fuo40v3X3za/VPWvqrrdPe8DwCE4CcZz3uNFpKOq7lHVpV7lRwLHq+p+VV2uqruCPSeAiHTGSRzXqupOVa1V1XfcmLar6guqWqOqu3ES5WlB1tsKuAS4XVV3q2oF8AAw3mu3SlV90u3rmAV0xknIDXlEVTe6v5chQCdVnaKqP7v9Gk+654SGr1lT1eIkymNUda+qRmwAgWlelhhMU2xsaIOqvoXziflPwDYRKRaRdn529dxFdA72pCJyi4h87jZRfI/zSbuju/kqnLuUNW5z0QVu+WzgDeA5txnoPhFJC/acrmOBHaq6009M6SLyZ7cZaBdO08oREtxopo5AGlDpVVaJ8+ne41vPE1WtcZ8eFqBO799NFk7z2PeeB/B7/p1YGrpmTXUbIMBHIvKZiFzZTPWaCLPEYJoi4NS8qvqIqg4CeuG88dzqZ7e1OG9iFwdzQrc/4Tacpqn2qnoEUI3zBoSqfqGqv8Jp5rkXmCcih7qf7u9W1V7AycAFOM01odgIdBCRI/xs+x3OXctJbpOMp2nF09wT6Fp9x78/XXtkAptDjM+b9/k2Al+r6hFej8NV9Txo+JoBP+A0mzk/iJPkOgVxPtx6v1XVq1X1GOAa4HFPn4qJb5YYTESIyBAROcn9VP4DsBenrduHOvO+/xb4bxG5QkTaiUiKiAwXkWI/VR8O7AOqgFQRuQOouxMRkUtFpJOqHgC+d4sPiMgZIpLjvrntwnkjPiieQNymsNdw3uDai0iaiHgSwOE4/Qrfi0gH4M56h2/F6T/wV+9+nHb9IhE5XESy3GvSXN8R+AjY7XZItxWRViLSR0SGQMPXDFgHtBGR893f4x9wmu38qXKPqfsZRWSspwMe2ImTPEK65iY2LDGYSGmH0469E6dZZDtwv78dVXUeMA64EtiC8yY6FXjZz+5vAK/jvGlV4iQc72aTc4DPRGQPTqfqJW47+9E4Hdy7gM+Bd3Cal0I1HieprAG2ATe75dOBtjif/pe6MXp7GBjjjip6xE+9N+Ik0K+AJTid6k+HEd9B3MRzAU6H/ddujE/hNMFBA9dMVauBie6+m934NuGH27xVBLzvNlfl4vRtfOjW+wrwm5byvY2WTmyhHmOMMd7sjsEYY4wPSwzGGGN8WGIwxhjjwxKDMcYYHwk3wVbHjh01Ozs71mEYY0xCWb58+Xeq2tD3UHwkXGLIzs5m2bJlsQ7DGGMSiohUNr6Xw5qSjDHG+LDEYIwxxoclBmOMMT4Sro/Bn9raWjZt2sTevXtjHYoB2rRpQ9euXUlLC3XyUmNMPGgRiWHTpk0cfvjhZGdnE3jtEhNpqsr27dvZtGkT3bp1i3U4xpgwtIimpL1793LkkUdaUogDIsKRRx5pd2/GJLAWkRgASwpxxH4XxiS2FpMYjDHGNI8W0ceQaGbOnMnIkSM55phjYh2KMSYMZWVllJaWUl1dTUZGBnl5eeTk5DT7MbFidwwxMHPmTLZs2RLrMIwxYSgrK2PBggVUV1cDUF1dzYIFCygrK2vWY2IpKRNDSUk52dnFpKRMIzu7mJKS8ibX+cMPP3D++efTr18/+vTpw5w5c1i+fDmnnXYagwYN4uyzz+abb75h3rx5LFu2jPz8fPr378+PP/5IaWkpAwYMICcnhyuvvJKffvoJgMmTJ9OrVy/69u3LLbfcAsCCBQs46aSTGDBgAGeddRZbt25tcuzGmOCVlpZSW1vrU1ZbW0tpaWmzHhNLSdeUVFJSTkHBQmpq9gFQWbmLgoKFAOTn9wq73tdff51jjjmGf/zjH4DzieDcc8/l5ZdfplOnTsyZM4fCwkKefvppHnvsMaZNm8bgwYPZu3cvEyZMoLS0lO7du3PZZZfxxBNPMH78eObPn8+aNWsQEb7/3lmKd/jw4SxduhQR4amnnuK+++7jgQceaOJVMcYEy/OpP9jycI+JpaS7YygsXFKXFDxqavZRWLikSfXm5OSwaNEiJk2axHvvvcfGjRv59NNPGTFiBP3792fq1Kls2nTwcrlr166lW7dudO/eHYDLL7+cd999l4yMDNq0acNVV13Fiy++SHp6OuB8Z+Pss88mJyeH+++/n88++6xJcRtjQpORkRFSebjHxFLSJYYNG3aFVB6s7t27s2LFCnJycvjDH/7ACy+8QO/evVm5ciUrV66krKyMhQsXBl1famoqH330EWPGjOHVV1/lnHPOAeDGG2/khhtuoKysjD//+c/2fQFjoiwvL++gb/WnpaWRl5fXrMfEUtIlhszMdiGVB2vLli2kp6dz6aWXcuutt/Lhhx9SVVXFBx98ADjtiZ5P94cffji7d+8GoEePHlRUVLB+/XoAZs+ezWmnncaePXuorq7mvPPO46GHHmLVqlWAc+vZpUsXAGbNmtWkmI0xocvJyWHUqFF1n/YzMjIYNWpUwBFG4RwTS0nXx1BUNNynjwEgPT2VoqLhTaq3rKyMW2+9lZSUFNLS0njiiSdITU3lpptuorq6mn379nHzzTfTu3dvJkyYwLXXXkvbtm354IMPeOaZZxg7diz79u1jyJAhXHvttezYsYMLL7yQvXv3oqo8+OCDANx1112MHTuW9u3bc+aZZ/L11183KW5jTOhycnJCflMP55hYEVWNdQwhGTx4sNZfqOfzzz/nF7/4RdB1lJSUU1i4hA0bdpGZ2Y6iouFN6ng2Bwv1d2KMiSwRWa6qg4PZN+nuGMAZfWSJwBhj/Eu6PgZjjDGBRSwxiEgPEVnp9dglIjfX2+d0Ean22ueOSMVjjDEmOBFrSlLVtUB/ABFpBWwG5vvZ9T1VvSBScRhjjAlNtJqS8oAvVbUySuczxhgTpmglhkuAvzewbaiIrBKR10Skt78dRKRARJaJyLKqqqrIRWmMMSbyiUFEWgOjgef9bF4BZKlqP+BR4CV/dahqsaoOVtXBnTp1ilywceSOO+7gzTffDPm4xYsXc8EF1jJnjAlfNIarngusUNWDpgFV1V1ez/8pIo+LSEdV/S4KccWcqqKqpKQcnJ+nTJkSlRj27dtHampSjlo2xjQgGk1Jv6KBZiQROVrcdSBF5EQ3nu2RDqhkaQnZk7JJuTqF7EnZlCwtaVJ9kydP5k9/+lPd67vuuotp06Zx//33M2TIEPr27cudd94JQEVFBT169OCyyy6jT58+bNy4kQkTJtCnTx9ycnJ46KGHAJgwYQLz5s0D4OOPP+bkk0+mX79+nHjiiezevZu9e/dyxRVXkJOTw4ABA3j77bcPimvHjh388pe/pG/fvuTm5rJ69eq6+MaPH8+wYcMYP358k352Y0zLE9GPiiJyKDACuMar7FoAVZ0BjAGuE5F9wI/AJRrhr2KXLC2hYHYBNT/XAFC5o5KC2QUA5Ofmh1XnuHHjuPnmm7n++usBmDt3LpMmTeL999/no48+QlUZPXo07777LpmZmXzxxRfMmjWL3Nxcli9fzubNm/n0008B6qbX9vj5558ZN24cc+bMYciQIezatYu2bdvy8MMPIyKUlZWxZs0aRo4cybp163yOvfPOOxkwYAAvvfQSb731FpdddhkrV64EoLy8nCVLltC2bduwfmZjTMsV0cSgqj8AR9Yrm+H1/DHgsUjGUF/h/MK6pOBR83MNhfMLw04MAwYMYNu2bWzZsoWqqirat29fN5vqgAEDANizZw9ffPEFmZmZZGVlkZubC8Bxxx3HV199xY033sj555/PyJEjfepeu3YtnTt3ZsiQIQC0a+dM9rdkyRJuvPFGAHr27ElWVtZBiWHJkiW88MILAJx55pls376dXbuc1rvRo0dbUjDG+JV0jcsbdmwIqTxYY8eOZd68eXz77beMGzeOyspKbr/9dq655hqf/SoqKjj00EPrXrdv355Vq1bxxhtvMGPGDObOncvTTz/dpFiC4R2DMcZ4S7opMTI7ZIZUHqxx48bx3HPPMW/ePMaOHcvZZ5/N008/zZ49ewDYvHkz27ZtO+i47777jgMHDnDxxRczdepUVqxY4bO9R48efPPNN3z88ccA7N69m3379nHKKadQUuL0jaxbt44NGzbQo0cPn2O991m8eDEdO3asu+MwxpiGJN0dQ9FFRT59DADprdMpuqioSfX27t2b3bt306VLFzp37kznzp35/PPPGTp0KACHHXYYf/3rX2nVqpXPcZs3b+aKK67gwIEDAPzxj3/02d66dWvmzJnDjTfeyI8//kjbtm158803mThxItdddx05OTmkpqYyc+ZMDjnkEJ9j77rrLq688kr69u1Lenq6rd9gjAlKck67vbSEwvmFbNixgcwOmRRdVBR2/4Lxz6bdNia+2LTbjcjPzbdEYIwxDUi6PgZjjDGBWWIwxhjjwxKDMcYYH5YYjDHG+LDEYIwxxoclhgjZsmULY8aMCfm4X//615SXlwfcZ8aMGTz77LPhhmaMMQEl5fcYYilZprlOpN+JMckglO8xJOUdQ1lZGdOnT+fuu+9m+vTplJWVNam+hqbd7tOnDwAzZ85k9OjRnHnmmeTl5XHgwAEmTpxIz549GTFiBOedd17dFNunn346nsR32GGHUVhYSL9+/cjNzWXr1q0+9QOsX7+es846i379+jFw4EC+/PJL9uzZQ15eHgMHDiQnJ4eXX365ST+fMSa5JF1iKCsrY8GCBVRXVwNQXV3NggULmpQcxo0bx9y5c+tez507l5NOOslnnxUrVjBv3jzeeecdXnzxRSoqKigvL2f27Nl88MEHfuv94YcfyM3NZdWqVZx66qk8+eSTB+2Tn5/P9ddfz6pVq/jXv/5F586dadOmDfPnz2fFihW8/fbb/O53vyPR7gyNMbHT8ts06iktLaW2ttanrLa2ltLSUnJycsKq09+028cee6zPPiNGjKBDhw6AMx322LFjSUlJ4eijj+aMM87wW2/r1q3rlukcNGgQixYt8tm+e/duNm/ezEUXXQRAmzZt6n6e3//+97z77rukpKSwefNmtm7dytFHHx3Wz2dMS1ZWVkZpaSnV1dVkZGSQl5cX9ntBS5F0icFzpxBsebDqT7tdXzjTXKelpeEucEerVq3Yt29fUMeVlJRQVVXF8uXLSUtLIzs7m71794Z8fmNaOk8LgufDoqcFAUjq5JB0TUkZGRkhlQer/rTbgQwbNowXXniBAwcOsHXrVhYvXhzWOQ8//HC6du3KSy+9BMBPP/1ETU0N1dXVHHXUUaSlpfH2229TWVkZVv3GtHSBWhCSWdIlhry8PNLS0nzK0tLSyMvLa1K99afdDuTiiy+ma9eu9OrVi0svvZSBAweGnZhmz57NI488Qt++fTn55JP59ttvyc/PZ9myZeTk5PDss8/Ss2fPsOo2pqWLVAtCokvK4arx0Ka4Z88eDjvsMLZv386JJ57I+++/36L6AGy4qkkE06dP95sEMjIyuPnmm2MQUeTYtNuNyMnJiXn74QUXXMD333/Pzz//zH//93+3qKRgTKLIy8vz6WOA5mlBSHQRSwwi0gOY41V0HHCHqk732keAh4HzgBpggqr6rm3ZQoXbr2BaPltIKno8HxBj3YIQbyKWGFR1LdAfQERaAZuB+fV2Oxc4wX2cBDzh/mtMUipZWuKz9GzljkoKZhcAWHKIkHhoQYg30ep8zgO+VNX6w2MuBJ5Vx1LgCBEJ3HNrTAtWOL/QZz1ygJqfayicXxijiEwyilZiuAT4u5/yLsBGr9eb3DIfIlIgIstEZFlVVVWEQjQm9jbs2BBSuTGREPHEICKtgdHA8+HWoarFqjpYVQd36tSp+YIzJs5kdsgMqdyYSIjGHcO5wApV3epn22bAe+6Irm5Zi/TKK69wzz33hHyc98R6TbVs2TJuuukmwPlC3FlnnUX//v2ZM2dOUFN+e1u8eHHdlB2meRRdVER663SfsvTW6RRdVBTwuJKlJWRPyibl6hSyJ2VTsrQkkmGaMDT35J2RFI3hqr/CfzMSwCvADSLyHE6nc7WqfhOFmGJi9OjRjB49OqYxDB48mMGDnaHMn3zyCQArV64E8DuVh4kuTwdzKKOSrMM6/iXa1BsRvWMQkUOBEcCLXmXXisi17st/Al8B64EngYmRjMejvKSE4uxspqWkUJydTXlJ0z9dVVRU0LNnTyZMmED37t3Jz8/nzTffZNiwYZxwwgl89NFHzJw5kxtuuAGA559/nj59+tCvXz9OPfVUAPbv388tt9xCnz596Nu3L48++uhB57nuuusYPHgwvXv35s4776wrnzx5Mr169aJv377ccsstDZ7D8yl/27ZtXHrppXz88cf079+fL7/80ufOZOHChQwdOpSBAwcyduxY9uzZA8Drr79Oz549GThwIC+++CKm+eXn5lNxbwUHnjxAxb0Vjb65W4d1/Eu0qTciesegqj8AR9Yrm+H1XIHrIxlDfeUlJSwsKGBfjfMfaVdlJQsLnE9XvfKb9ulq/fr1PP/88zz99NMMGTKEv/3tbyxZsoRXXnmF//3f/+WXv/xl3b5TpkzhjTfeoEuXLnz//fcAFBcXU1FRwcqVK0lNTWXHjh0HnaOoqIgOHTqwf/9+8vLyWL16NV26dGH+/PmsWbMGEamrz985PI466iieeuoppk2bxquvvuqz7bvvvmPq1Km8+eabHHroodx77708+OCD3HbbbVx99dW89dZbHH/88XaHESeswzr+JdrUG0k3V9KSwsK6pOCxr6aGJYVN/3TVrVs3cnJySElJoXfv3uTl5SEi5OTkUFFR4bPvsGHDmDBhAk8++ST79+8H4M033+Saa66pW+HNM023t7lz5zJw4EAGDBjAZ599Rnl5ORkZGbRp04arrrqKF198kfT09AbPEYylS5dSXl7OsGHD6N+/P7NmzaKyspI1a9bQrVs3TjjhBESESy+9NMwrZZqTdVjHv0hN3hkpSZcYdm3w/ymqofJQHHLIIXXPU1JS6l6npKQcNGX2jBkzmDp1Khs3bmTQoEFs37690fq//vprpk2bRmlpKatXr+b8889n7969pKam8tFHHzFmzBheffVVzjnnnLDPAaCqjBgxgpUrV7Jy5UrKy8v5y1/+EuxlMFEWboe1iZ5ITd4ZKUmXGNpl+v8U1VB5pHz55ZecdNJJTJkyhU6dOrFx40ZGjBjBn//857okUr8padeuXRx66KFkZGSwdetWXnvtNcCZkK+6uprzzjuPhx56iFWrVjV4jmDk5uby/vvvs379esBZSW7dunX07NmTiooKvvzySwD+/veGxhSYpgh1hFF+bj7F44vJ6pCFIGR1yKJ4fLF1PMeRnJwcRo0aVXeHkJGRwahRo+Ky4xmScBK94UVFPn0MAKnp6Qwviu6nq1tvvZUvvvgCVSUvL49+/frRp08f1q1bR9++fUlLS+Pqq6+u66wG6NevHwMGDKBnz54ce+yxDBs2DHBWcrvwwgvZu3cvqsqDDz7Y4DneeeedRmPr1KkTM2fO5Fe/+hU//fQTAFOnTqV79+4UFxdz/vnnk56ezimnnMLu3bsjcHWSV7gjjPJz8y0RxLlEmnojKafdLi8pYUlhIbs2bKBdZibDi4qa3PFsfNm02+HJnpRN5Y6DF1bK6pBFxb0V0Q/ItBg27XYjeuXnWyIwcclGGJl4kHR9DMbEMxthZOJBi0kMidYk1pLZ7yJ8NsLIxIMWkRjatGnD9u3b7Q0pDqgq27dvp02bNrEOJSHZCCMTDxrsfBaRV4I4foeqTmjWiBrhr/O5traWTZs2sXfv3miGYhrQpk0bunbtetC4bWNM7DRX5/MvgF8HOg/wp1ACi5S0tDS6desW6zCMMaZFCJQYClU14KB3Ebm7meMxxhgTYw32Majq3MYODmYfY4wxiaXR7zGIyGCgEMhy9xeciVH7Rjg2Y4wxMRDMF9xKgFuBMuBAZMMxxhgTa8EkhipVDWaEkjHGmBYgmMRwp4g8BZQCP3kKVdWW7zLGmBYomMRwBdATSOPfTUmK13KdxhhjWo5gEsMQVe0R8UiMMcbEhWASw79EpJeqlodauYgcATwF9MG5y7hSVT/w2n468DLwtVv0oqpOCfU8xpj4VVZWRmlpKdXV1WRkZJCXlxeRdQmidZ5kEExiyAVWisjXOH0MoQxXfRh4XVXHiEhrIN3PPu+p6gVBR2yMSRhlZWUsWLCA2tpaAKqrq1mwYAFAs75pR+s8ySKYxHBOOBWLSAZwKjABQFV/Bn4Opy5jTGIqLS2te7P2qK2tpbS0tFnfsKN1nmQRzOyqnXEmy6tU1UpgJ3B0EMd1A6qAZ0TkExF5SkQO9bPfUBFZJSKviUhvfxWJSIGILBORZVVVVUGc2hgTD6qrq0Mqj/fzJItgEsMTwB6v13vcssakAgOBJ1R1APADMLnePiuALFXtBzwKvOSvIlUtVtXBqjq4U6dOQZzaGBMPMjIyQiqP9/Mki2ASg6jX3NyqeoDgmqA2AZtU9UP39TycRFFHVXep6h73+T+BNBHpGFTkxpi4l5eXd9D062lpaeTl5SXkeZJFMInhKxG5SUTS3MdvgK8aO0hVvwU2iohnqGse4DOySUSOFhFxn5/oxrM9pJ/AmDhWsrSE7EnZpFydQvakbEqWliT0eUKVk5PDqFGj6j65Z2RkMGrUqEbb/cvKypg+fTp3330306dPp6ysLCLnMf41uFBP3Q4iRwGPAGfiDDktBW5W1W2NVi7SH2e4amucZHIFMA5AVWeIyA3AdcA+4Efgt6r6r0B1+luox5h4VLK0hILZBdT8XFNXlt46vdlXZIvWeaKl/ggjcD792xt904SyUE+jiSHeWGIwiSJ7UjaVOyoPKs/qkEXFvRUJd55omT59ut9O44yMDG6++eYYRNQyhJIYGmxKEpGCIE7U6D7GJKsNOzaEVB7v54kWG2EUe4E6kSeLyHcBtgvwG6C4eUMypmXI7JDp95N8ZofMhDxPtGRkZDR4x2CiI1Dn8zvAqACPC4BFkQ7QmERVdFER6a19v+yf3jqdoouKEvI80WIjjGKvwTsGVb0imoEY09J4On4L5xeyYccGMjtkUnRRUbN3COfn5rP9uTf5seRFUqp3cSCjHW0n/J+E7HgGZ4TRhg0bWL58OaqKiNCvX7+k7HiO1fxPwXwfwRgTpvzc/Ii/Qb9xzz389HgJrdxRPK2qd/HT4yW8cXQPzp5c/zul8a+srIxVq1bhGRijqqxatYrMzMykSg6xnP8pmO8xGGPiWNl99yH15gmS2lrK7rsvRhE1TaB5j5JJLK+DJQZjEpzu3BlSebyzUUmOWF6HRpuSROQQ4GIg23t/WzfBmPgg7duDnyQg7dvHIJqms1FJjlheh2DuGF4GLsT5dvIPXg9jTBzIue02tN4oHk1LI+e222IUka837rmHaR06cL8I0zp04I177gm4v41KcsTyOgTT+dxVVcNak8EYE3meDuay++5Dd+5E2ren7223xUXH8xv33MPqO+5AamsRgJ07WX3HHQANxufpWE321dhieR2CmSupGHhUVQPPYhUlNiWGMYljWocOfpu5aN+eW3bsiH5ASSyUKTEavGMQkTKcSfNSgStE5CtCX9rTGJPEdOdO507BT7mJX4GakmwdZmNMk7S0jvFk0WDns9dSnlM9z73LoheiMSZRxXvHuPEvmFFJPuswi0grYFBkwjEmfiX7ojvhOHvyZNqPGIGKoICK0H7EiLjoGDcNCzTt9u0ishvoKyK73MduYBvOEFZjkoZnMZzKHZUoSuWOSgpmFzT7m3a0zhMtb9xzDzsXLUJUEUBU2bloUaNDVk1sBTMq6Y+qenuU4mmUjUoysWCL7oTHRiXFj2YZleTleREZWK+sGqhU1X0hR2dMArJFd8Jjo5ISUzB9DI8DS3EW5HnSff48sFZERgkCJiIAABS6SURBVEYwNmPiRkOL3kRi0Z1onCdaGhp9ZKOS4lswiWELMEBVB6vqIKA/8BUwAkjM6RuNCZEtuhMeG5WUmIJJDN1V9TPPC1UtB3qq6leNHSgiR4jIPBFZIyKfi8jQettFRB4RkfUistpPk5UxcSE/N5/i8cVkdchCELI6ZFE8vjgii+6Ec55wRjJFY/TT2ZMn03fKFGjfHgVo356+U6bYqKQ4F0zn8xxgB/CcWzQO6AiMB5ao6pAAx84C3lPVp0SkNZCuqt97bT8PuBE4DzgJeFhVTwoUj3U+G+PLM5Kp5ueaurL01ukBE0o4x5jEFkrnczCJoS0wERjuFr2P0++wF+eNfk8Dx2UAK4HjtIGTiMifgcWq+nf39VrgdFX9pqF4LDEY4yuckUwtbfSTaVyzjkpS1R+BB9xHfX6TgqsbUAU8IyL9gOXAb1TVe8ruLsBGr9eb3DKfxCAiBUABQGZmYnbCGRMp4Yxkammjn0zzarSPQUSGicgiEVknIl95HkHUnQoMBJ5Q1QE4aziE1bCoqsVu5/fgTp06hVOFMS1WOCOZWtroJ9O8gul8/gvwIE5T0hCvR2M2AZtU9UP39TycROFtM3Cs1+uubpkxJkjhjGRqaaOfTPMK5gtu1ar6WqgVq+q3IrJRRHqo6logDyivt9srwA0i8hxO53N1oP4FY8zBPJ3FhfML2bBjA5kdMim6qChgJ3I4x4SrrKws6RfdSTTBdD7fA7QCXsRZjwEAVV3RaOUi/YGngNY43324AmdUE6o6Q0QEeAw4B6gBrlDVgD3L1vlsTOIoKytjwYIF1NbW1pWlpaUxatQoSw5R1txTYniGj3pXqMCZjR2oqivrHQcww2u7AtcHEYMxJgGVlpb6JAWA2tpaSktLLTHEsWBGJZ0RjUCMMS1PdXV1SOUmPgQzKuk/ROQvIvKa+7qXiFwV+dCMMYkuIyMjpHITH4JpSpoJPAMUuq/XAXNwRisZkzRKlpZEpbO2JcnLy/Pbx5CXlxfwOOuwdsTqOgSTGDqq6lwRuR1AVfeJyP4Ix2VMXKk/hYRnAR3AkkMAnjexUN7c6ndYV1dXs2DBAp/6kkEsr0MwieEHETkSp8MZEcnFWY/BmKRROL/QZ14hgJqfayicX2iJoRE5OTkhvZFZh7UjltchmMTwW5zvG/yniLwPdALGRDQqY+KMTSERPdZh7YjldWi089n9vsJpwMnANUBvVV0d6cCMiSc2hUT0WIe1I5bXocHEICL/x/MARgM9gO7AKLfMmKRhU0hET15eHmn1FvcJpsO6pYnldQjUlDQqwDbF+Sa0MUkh3CkkbCRT6MLpsG6JYnkdGp0SI97YlBgmUdhiOCaehDIlRjCzqxpjwhBoJJMx8cwSgzERYiOZTKKyxGBMhNhIJpOoGux8bmzkkapa57MxARRdVOS3j8FGMpl4Z6OSjImQ/Nx83l//PsXvFbP/wH5apbTi8qGXW8eziXsNJgZVvSKagRjT0pQsLWHWB7PYf8CZWmz/gf3M+mAWw44fZsnBxLVgpsRARM4HegNtPGWqOiVSQRnTEtj8SiZRBbMewwyc5ThvBAQYC2RFOC5jEp6NSjKJKphRSSer6mXATlW9GxiKMzWGMSYAG5VkElUwieFH998aETkGqAU6B1O5iFSISJmIrBSRg76uLCKni0i1u32liNwRfOjRUVJSTnZ2MSkp08jOLqakpDzWIZkYKVlaQvakbFKuTiF7UjYlS0sC7m/zK5lEFUwfw6sicgRwP7ACZ0TSUyGc4wxV/S7A9vdU9YIQ6ouakpJyCgoWUlOzD4DKyl0UFCwEID+/VyxDM1EWzkI94c6vZEysNTpXkogcoqo/eZ7jdEDv9ZQ1cmwFMLihxCAipwO3hJIYojlXUnZ2MZWVuw4qz8pqR0VFQVRiMPEhe1I2lTsqDyrP6pBFxb0V0Q/ImBA191xJH3ieqOpPqlrtXdYIBRaKyHIRaeiddKiIrBKR10Skt78dRKRARJaJyLKqqqogT910GzYcnBQClZuWyzqSTTIJ9M3no4EuQFsRGYAzIgmgHZDe0HH1DFfVzSJyFLBIRNao6rte21cAWaq6R0TOA14CTqhfiaoWA8Xg3DEEee4my8xs5/eOITOzXbRCMHEis0Om3zsG60g2LVGgO4azgWlAV+BB4AH38f+A3wdTuapudv/dBswHTqy3fZeq7nGf/xNIE5GOIf4MEVNUNJz0dN/cmZ6eSlHR8BhFZGLFOpJNMmkwMajqLFU9A5igqmd4PS4MZp4kETlURA73PAdGAp/W2+doERH3+YluPNub8PM0q/z8XhQXjyQrqx0iTt9CcfHIiHQ82+in+Jafm0/x+GKyOmQhCFkdsmxdBdNiBdP5fDRQBByjqueKSC9gqKr+pZHjjsO5SwCnyepvqlokItcCqOoMEbkBuA7YhzMs9req+q9A9bbEhXrqj34C584kUknIGJN8Qul8DiYxvAY8AxSqaj8RSQU+UdWYrLPXEhODjX4yxkRac49K6qiqc4EDAKq6D9jfhPhMPTb6yRgTT4JJDD+IyJE4Q08RkVygOqJRJZmGRjnZ6CdjTCwEkxh+C7wC/KeIvA88izOhnmkmNvrJGBNPGp0SQ1VXiMhpQA+c7zKsVdXaiEeWRDwdzIWFS9iwYReZme0oKhpuHc/GmJgIpvO5DTARGI7TnPQeMENV90Y+vIO1xM5nY4yJtFA6n4OZRO9ZYDfwqPv6v4DZOOsyGGOMaWGCSQx9VNW7TeNtEbFvXxljTAsVTOfzCnckEgAichJgbTnGGNNCBXPHMAj4l4h4ppHMBNaKSBmgqto3YtEZY4yJumDuGM4BugGnuY9ubtkFwKjIhRYfbA4jE22hrhRnTHMLZrjqwXMNJwlbwc1EWzgrxRnT3IK5Y0hahYVLfCa2A6ip2Udh4ZIYRWRausL5hXVJwaPm5xoK5xfGKCKTjCwxBGBzGJlos5XiTDywxBCAzWFkoq2hFeFspTgTTZYYAgh3DiPrsDbhspXiTDywxBBAOCu4eTqsKyt3ofrvDmtLDiYYtlKciQeNzpUUb+J9riRbdMcYE4+ae6EeEwLrsDbGJDpLDM3MOqyNMYnOEkMzs0V3jDGJLqKJQUQqRKRMRFaKyEEdA+J4RETWi8hqERkYyXjCMXHiIlJTH0BkGqmpDzBx4qKA++fn9+Lyy3vTqpUA0KqVcPnlve2b0saYhBGNO4YzVLV/A50e5wInuI8C4IkoxBO0iRMX8cQTq9i/3+mg379feeKJVQGTQ0lJObNmfeZzzKxZn9moJGNMwoh1U9KFwLPqWAocISKdYxxTneLi1SGVg02jYYxJfJFODAosFJHlIuJvrGYXYKPX601umQ8RKRCRZSKyrKqqKkKhHszzqT/YcrBRScaYxBfpxDBcVQfiNBldLyKnhlOJqhar6mBVHdypU6fmjTAATz9BsOVgo5KMMYkvoolBVTe7/24D5gMn1ttlM3Cs1+uubllcKCjwvwZRQ+Vgo5KMMYkvYolBRA4VkcM9z4GRwKf1dnsFuMwdnZQLVKvqN5GKKdQRRo8/PoLrruvnM8Louuv68fjjIxo8JpxpNEz4bFEbY5pfxKbEEJHjcO4SwFkQ6G+qWiQi1wKo6gwREeAxnBXhaoArVDXgfBfhTonhGWFUX2Nv9CZ+1V/UBpwJ52xuIWMOFsqUGEkzV1Jq6gN+O41btRL27ftdc4Rmoix7UjaVOw5eYDCrQxYV91ZEPyBj4pjNleRHOCOMTHyzRW2MiYykSQzhjDAy8c0WtTEmMpImMYQzwsjEN1vUxpjISJrEEM4IIxPfbFEbYyIjaTqfjTEmmVnnszHGmLBZYjDGGOPDEoMxxhgflhgaUVJSTnZ2MSkp08jOLrZ1FYwxLV5q47skr5KScgoKFtatr1BZuYuCgoUANveRMabFsjuGAGzRHWNMMrLEEIAtumOMSUaWGAKwRXeMMcnIEkMAtuiOMSYZWWIIID+/F0OHdvYpGzq0c6MdzzaSyRiTyCwxBDBx4iJKSzf6lJWWbgy48ptnJFNl5S5U/z2SyZKDMSZRWGIIoLh4dUjlYCOZjDGJzxJDAOEs7mMjmYwxic4SQwDhLO5jI5mMMYnOEkMA4SzuYyOZjDGJLuKJQURaicgnIvKqn20TRKRKRFa6j19HOp5QhLO4T35+L4qLR5KV1Q4RyMpqR3HxSJtCwxiTMCK+UI+I/BYYDLRT1QvqbZsADFbVG4KtzxbqMcaY0MXNQj0i0hU4H3gqkucxxhjTfCLdlDQduA04EGCfi0VktYjME5Fj/e0gIgUiskxEllVVVUUkUGOMMY6IJQYRuQDYpqrLA+y2AMhW1b7AImCWv51UtVhVB6vq4E6dOkUgWmOMMR6RvGMYBowWkQrgOeBMEfmr9w6qul1Vf3JfPgUMimA8YbHpLYwxySZiiUFVb1fVrqqaDVwCvKWql3rvIyLeExGNBj6PVDzhsOktjDHJKOrfYxCRKSIy2n15k4h8JiKrgJuACdGOJxCb3sIYk4yisrSnqi4GFrvP7/Aqvx24PRoxhMOmtzDGJCP75nMANr2FMSYZWWIIwKa3MMYko6RKDKGOMLLpLYwxySjiU2I0t3CnxPCMMPLuTE5PT7U3emNMUoibKTHiiY0wMsaY4CRNYrARRsYYE5ykSQw2wsgYY4KTNInBRhgZY0xwkiYx2AgjY4wJTtKMSjLGmGRmo5KMMcaEzRKDMcYYH5YYjDHG+LDEYIwxxoclBmOMMT4sMRhjjPGRcMNVRaQKqHRfdgS+i2E48cKug10DD7sOdg086l+HLFXtFMyBCZcYvInIsmDH5bZkdh3sGnjYdbBr4NGU62BNScYYY3xYYjDGGOMj0RNDcawDiBN2HewaeNh1sGvgEfZ1SOg+BmOMMc0v0e8YjDHGNDNLDMYYY3wkRGIQkXNEZK2IrBeRyX62HyIic9ztH4pIdvSjjLwgrsMEEakSkZXu49exiDOSRORpEdkmIp82sF1E5BH3Gq0WkYHRjjHSgrgGp4tItdffwR3RjjHSRORYEXlbRMpF5DMR+Y2ffZLhbyGY6xD634OqxvUDaAV8CRwHtAZWAb3q7TMRmOE+vwSYE+u4Y3QdJgCPxTrWCF+HU4GBwKcNbD8PeA0QIBf4MNYxx+AanA68Gus4I3wNOgMD3eeHA+v8/H9Ihr+FYK5DyH8PiXDHcCKwXlW/UtWfgeeAC+vtcyEwy30+D8gTEYlijNEQzHVo8VT1XWBHgF0uBJ5Vx1LgCBHpHJ3ooiOIa9Diqeo3qrrCfb4b+BzoUm+3ZPhbCOY6hCwREkMXYKPX600c/IPX7aOq+4Bq4MioRBc9wVwHgIvd2+Z5InJsdEKLK8Fep5ZuqIisEpHXRKR3rIOJJLfpeADwYb1NSfW3EOA6QIh/D4mQGEzwFgDZqtoXWMS/76JMclmBMy9OP+BR4KUYxxMxInIY8AJws6ruinU8sdLIdQj57yEREsNmwPuTb1e3zO8+IpIKZADboxJd9DR6HVR1u6r+5L58ChgUpdjiSTB/Ly2aqu5S1T3u838CaSLSMcZhNTsRScN5MyxR1Rf97JIUfwuNXYdw/h4SITF8DJwgIt1EpDVO5/Ir9fZ5BbjcfT4GeEvdXpcWpNHrUK/9dDROe2OyeQW4zB2RkgtUq+o3sQ4qmkTkaE8fm4iciPP/vEV9UHJ/vr8An6vqgw3s1uL/FoK5DuH8PaQ2d6DNTVX3icgNwBs4I3OeVtXPRGQKsExVX8G5MLNFZD1Op9wlsYs4MoK8DjeJyGhgH851mBCzgCNERP6OM8qio4hsAu4E0gBUdQbwT5zRKOuBGuCK2EQaOUFcgzHAdSKyD/gRuKQFflAaBowHykRkpVv2eyATkudvgeCuQ8h/DzYlhjHGGB+J0JRkjDEmiiwxGGOM8WGJwRhjjA9LDMYYY3xYYjDGGOPDEoMx1M1A+WoYxx0jIvMa2LZYRAa7z3/vVZ7d0Myo9Y6fKSJfi8i1ocblp65x7iyjIf+MJvlYYjCmCVR1i6qOCWLX3ze+i1+3umPRm0RV5wAtbhp2ExmWGExCEJFDReQf7kRgn4rIOLd8kIi8IyLLReQNz7e/3U/rD7vzz3/qfuMTETlRRD4QkU9E5F8i0qOR8/5DRPq6zz/xzGUvIlNE5GrvT/8i0lZEnhORz0VkPtDWLb8HaOvGUuJW3UpEnnTn0F8oIm2DuAb/ISLz3WuwSkROds+/xr27WCciJSJyloi8LyJfeH5uY0JhicEkinOALaraT1X7AK+7c8Q8CoxR1UHA00CR1zHpqtofZ72Op92yNcApqjoAuAP430bO+x5wiohk4HyjfJhbfgrwbr19rwNqVPUXON9GHgSgqpOBH1W1v6rmu/ueAPxJVXsD3wMXB3ENHgHecSdDGwh85pYfDzwA9HQf/wUMB24h/DsVk8TifkoMY1xlwAMici/OoiPviUgfoA+wyJ0KphXgPRfO38FZv0BE2onIETiLmcwSkRMAxZ1KIoD3gJuAr4F/ACNEJB3opqprxXe1wFNx3rxR1dUisjpAvV+rqmcKg+VAdoB9Pc4ELnPr3w9Ui0h7t64yABH5DChVVRWRsiDrNcaHJQaTEFR1nThLM54HTBWRUmA+8JmqDm3oMD+v/wd4W1Uvct/UFzdy6o+BwcBXOFOZdwSuxnkzb4qfvJ7vx212aoa6Dni9PoD9HzdhsKYkkxBE5BicZpq/AvfjNKWsBTqJyFB3nzTxXYTE0w8xHGdmzWqcKdk9Uy9PaOy87mp5G4GxwAc4dxC3cHAzEm7Zf7nn7AP09dpW6zZ9NUUpTnMVItLKbd4yptlZYjCJIgf4yJ1B8k5gqvumPQa4V0RWASuBk72O2SsinwAzgKvcsvuAP7rlwX6afg/Ypqo/us+7uv/W9wRwmIh8DkzB966iGFjt1fkcjt8AZ7hNRMuBXk2oy5gG2eyqpkUSkcXALaq6LNaxhEtEZuL0p/j9nkQY9Z2Oc00uaI76TMtldwzGxK9q4H+a6wtuwOPAziZHZVo8u2Mwxhjjw+4YjDHG+LDEYIwxxoclBmOMMT4sMRhjjPFhicEYY4yP/w+AUt4PwV1AggAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAzsklEQVR4nO3de3xU5bXw8d9KAoVYiCBUUUxCTwUEEiCAQEFRI1YR8HiEg21AwUuKeDm+rR616Vsvbd62RyteEaNVUNIKxcsR7xovFSvKRUIkAiom3KzcNIABTch6/9g76SRMkpnJ3DJ7fT+ffJh59t7PfvaMzpq9nzVri6pijDHGu5JiPQBjjDGxZYHAGGM8zgKBMcZ4nAUCY4zxOAsExhjjcRYIjDHG4ywQmLARkTwReTUC/c4UkeXh7ten/5dE5BKf578Tkd0i8k8RSReRAyKSHIH9HhCRH4a732gRkbdE5PJYj8O0nQUCEzARqRCRs5pbrqrFqnp2iH3/RET+LiL7RWSXiLwtIpNDH23gVPVcVV3ojiMd+CUwQFWPU9Utqvp9VT3cln34+9B0+93cln7jRaSDtYksCwQmLEQkpQ3bTgH+BjwO9AaOBX4DTArP6IKSDuxR1Z0x2HfYteV9Md5hgcCExP0G+K6IzBWRPcCtvt8KxTFXRHaKyD4RKRORQX76EeAu4Leq+oiqVqlqnaq+rapXNLPve0Rkq9vvahE51WfZKSKyyl32pYjc5bZ3EpFFIrJHRL4WkZUicqy77C0Rudw923kNON69bLNARDJFROs/UEWku4g8JiI7ROQrEXnWbe8mIs+7ZzNfuY97u8sKgVOB+91+73fbVUR+5D5OE5HH3e0rReTXIpLk81ovF5E73b4/F5FzW3hvKkTkRhFZB3wjIikiMkpE/uEee6mInN7kvdzsno19LiJ5bvutIrLIZ71Gr4VP+8nAfGC0e3xfu+0TRKTc7Xe7iFzf3JhNbFkgMG0xEtiM8w2+sMmys4HTgL5AGvCfwB4/ffQDTgSWBrHflcAQoDvwF+BvItLJXXYPcI+qdgX+DVjitl/ijuNE4BhgNnDQt1NVfR04F9jhXraZ6WffTwCpwEDgB8Bctz0JeAzIwDmrOAjc7/ZbALwDXO32e7Wffu9zx/dDYBxwMTDLZ/lIYCPQA/gf4M9uEG3OT4HzgKNx3p8XgN/hvGbXA0+JSE8ROQq4FzhXVbsAPwbWttDvEVT1Y5zX8z33+I52F/0Z+Lnb7yDgjWD6NdFjgcC0xQ5VvU9Va1X1YJNlNUAXoD8gqvqxqn7hp49j3H/9LfNLVRep6h53v38CvocTUOr3+yMR6aGqB1R1hU/7McCPVPWwqq5W1X2B7hNARHrhBIrZqvqVqtao6tvumPao6lOqWq2q+3EC47gA+00GLgJuVtX9qloB/AmY4bNapao+7M5VLAR64XzAN+deVd3qvi/TgRdV9UX3bOs1YBUwwV23DhgkIp1V9QtVXR/YK9KqGmCAiHR1X681YerXhJkFAtMWW5tboKpv4HwjfgDYKSJFItLVz6r1Zwm9At2piFwvIh+LSJV7GSIN55sywGU4ZyEb3Ms/E932J4BXgCfdyzr/IyIdAt2n60Rgr6p+5WdMqSLykHtZZx/wd+BoCSzbqAfQAaj0aasETvB5/s/6B6pa7T78fgt9+r43GcBU97LQ1+5rNhboparfANNwvtF/ISIviEj/AMYciAtxgk2lOJP/o8PUrwkzCwSmLVosXauq96rqMGAAzofzDX5W24jzoXVhIDt05wP+G+dSUzf3MkQVIO4+P1HVn+JctvkjsFREjnK/vd+mqgNwLn9MxLn8EoytQHcROdrPsl/inJWMdC9LnVY/ZPffll6r3TjfnjN82tKB7UGOz5fv/rYCT6jq0T5/R6nqHwBU9RVVHY8TjDcAD7vbfYNzGazecQHuD7fflap6Ps578Sz/ukxn4owFAhMRIjJCREa637q/AQ7hXIJoRJ066L8A/q+IzBKRriKSJCJjRaTIT9ddgFpgF5AiIr8BGs40RGS6iPRU1Trga7e5TkTOEJEs9xv6PpwP3iPG0xL30tZLwDx3criDiNR/4HfBmRf4WkS6A7c02fxLnOv//vo9jPMhWSgiXUQkw31NFvlbPwSLgEnipOgmizNxfrqI9BaRY0XkfHeu4FvgAP96XdYCp4nzW4o04OYW9vEl0FtEOgKISEdxfleSpqo1OK95UK+3iR4LBCZSuuJ8s/wK5zLHHuAOfyuq6lKcyxOXAjtwPlR+B/yvn9VfAV4GNrn9HqLxZZBzgPUicgBn4vgi9zr5cTgT0vuAj4G3cS4XBWsGThDZAOwErnPb7wY643y7X+GO0dc9wBQ36+deP/1egxMwNwPLcSbBHw1hfEdQ1a3A+cCvcALoVpyzsyT37xc4r/tenHmNK93tXgMWA+uA1cDzLezmDWA98E8R2e22zQAq3Etls4G8cByPCT+xG9MYY4y32RmBMcZ4nAUCY4zxOAsExhjjcRYIjDHG49pdQaoePXpoZmZmrIdhjDHtyurVq3erak9/y9pdIMjMzGTVqlWxHoYxxrQrIlLZ3DK7NGSMMR5ngcAYYzzOAoExxnhcu5sj8KempoZt27Zx6NChWA/FAJ06daJ379506BBscU9jTCwkRCDYtm0bXbp0ITMzk5bv1WEiTVXZs2cP27Zto0+fPrEejjEmAAkRCA4dOmRBIE6ICMcccwy7du2K9VCMibiysjJKSkqoqqoiLS2N3NxcsrKyYj2soCVEIAAsCMQRey+MF5SVlbFs2TJqamoAqKqqYtmyZQDtLhjYZLExxoSgpKSkIQjUq6mpoaSkJEYjCp0FghhYsGABO3bsiPUwjDFtUFVVFVR7PLNAEAMWCIxp/9LS0oJqj2eeDATFxeVkZhaRlHQnmZlFFBeXt7nPb775hvPOO4/BgwczaNAgFi9ezOrVqxk3bhzDhg3jJz/5CV988QVLly5l1apV5OXlMWTIEA4ePEhJSQlDhw4lKyuLSy+9lG+//RaAm266iQEDBpCdnc31118PwLJlyxg5ciRDhw7lrLPO4ssvv2zz2I0xwcvNzT0iRbpDhw7k5ubGaERtoKrt6m/YsGHaVHl5+RFtzVm0aL2mps5VuKPhLzV1ri5atD7gPvxZunSpXn755Q3Pv/76ax09erTu3LlTVVWffPJJnTVrlqqqjhs3TleuXKmqqgcPHtTevXvrxo0bVVV1xowZOnfuXN29e7f27dtX6+rqVFX1q6++UlXVvXv3NrQ9/PDD+otf/KJN446UYN4TY9qrdevW6dy5c/XWW2/VuXPn6rp162I9pGYBq7SZz9WEyRoKVEHBcqqraxu1VVfXUlCwnLy8ASH3m5WVxS9/+UtuvPFGJk6cSLdu3fjoo48YP348AIcPH6ZXr15HbLdx40b69OlD3759Abjkkkt44IEHuPrqq+nUqROXXXYZEydOZOLEiYDzm4lp06bxxRdf8N1331muvjExlJWV1e4yhPzx3KWhLVv2BdUeqL59+7JmzRqysrL49a9/zVNPPcXAgQNZu3Yta9eupaysjFdffTXg/lJSUvjggw+YMmUKzz//POeccw4A11xzDVdffTVlZWU89NBD9mtqY0ybeS4QpKd3Dao9UDt27CA1NZXp06dzww038P7777Nr1y7ee+89wEkrW79+PQBdunRh//79APTr14+Kigo+/fRTAJ544gnGjRvHgQMHqKqqYsKECcydO5fS0lLAyUg44YQTAFi4cGGbxmyMMZBAPygLVGHhWPLzX210eSg1NYXCwrFt6resrIwbbriBpKQkOnTowIMPPkhKSgrXXnstVVVV1NbWct111zFw4EBmzpzJ7Nmz6dy5M++99x6PPfYYU6dOpba2lhEjRjB79mz27t3L+eefz6FDh1BV7rrrLgBuvfVWpk6dSrdu3TjzzDP5/PPP2zRuY4wRZw6h/Rg+fLg2vTHNxx9/zMknnxxwH8XF5RQULGfLln2kp3elsHBsm+YHzJGCfU+MMZElIqtVdbi/ZZ47IwDIyxtgH/zGGOOK2ByBiPQTkbU+f/tE5Lom65wuIlU+6/wmUuMxxhjjX8TOCFR1IzAEQESSge3AM35WfUdVJ0ZqHMYYY1oWrayhXOAzVW325snGGGNiI1qB4CLgr80sGy0ipSLykogM9LeCiOSLyCoRWWV17o0xJrwiHghEpCMwGfibn8VrgAxVHQzcBzzrrw9VLVLV4ao6vGfPnhEbqzHGeFE0zgjOBdao6hHV0VR1n6oecB+/CHQQkR5RGFPc+81vfsPrr78e9HZvvfVWQzkKY4wJRDTSR39KM5eFROQ44EtVVRE5BScw7YnCmOJCfcGnpKQj4/Htt98elTHU1taSkuLJLGJjjCuiZwQichQwHnjap222iMx2n04BPhKRUuBe4CKNwi/cilcUk3ljJklXJJF5YybFK4rb1N9NN93EAw880PD81ltv5c477+SOO+5gxIgRZGdnc8sttwBQUVFBv379uPjiixk0aBBbt25l5syZDBo0iKysLObOnQvAzJkzWbp0KQArV67kxz/+MYMHD+aUU05h//79HDp0iFmzZpGVlcXQoUN58803jxjX3r17+fd//3eys7MZNWoU69ataxjfjBkzGDNmDDNmzGjTsRtj2r+IfhVU1W+AY5q0zfd5fD9wfyTH0FTximLyn8in+rtqACr3VpL/RD4AeaPyQupz2rRpXHfddVx11VUALFmyhBtvvJF3332XDz74AFVl8uTJ/P3vfyc9PZ1PPvmEhQsXMmrUKFavXs327dv56KOPAPj6668b9f3dd98xbdo0Fi9ezIgRI9i3bx+dO3fmnnvuQUQoKytjw4YNnH322WzatKnRtrfccgtDhw7l2Wef5Y033uDiiy9m7dq1AJSXl7N8+XI6d+4c0jEbYxKH54rOFTxT0BAE6lV/V03BMwUh9zl06FB27tzJjh07KC0tpVu3bg3VRocOHUpOTg4bNmzgk08+ASAjI4NRo0YB8MMf/pDNmzdzzTXX8PLLL9O1a+Pidxs3bqRXr16MGDECgK5du5KSksLy5cuZPn06AP379ycjI+OIQLB8+fKGb/xnnnkme/bsYd8+p8rq5MmTLQgYYwAPlpjYsndLUO2Bmjp1KkuXLuWf//wn06ZNo7Kykptvvpmf//znjdarqKjgqKOOanjerVs3SktLeeWVV5g/fz5Llizh0UcfbdNYAuE7BmOMt3nujCC9e3pQ7YGaNm0aTz75JEuXLmXq1Kn85Cc/4dFHH+XAgQMAbN++nZ07dx6x3e7du6mrq+PCCy/kd7/7HWvWrGm0vF+/fnzxxResXLkSgP3791NbW8upp55KcbEzt7Fp0ya2bNlCv379Gm3ru85bb71Fjx49jjjjMMYYz50RFF5Q2GiOACC1YyqFFxS2qd+BAweyf/9+TjjhBHr16kWvXr34+OOPGT16NADf//73WbRoEcnJyY222759O7NmzaKurg6A3//+942Wd+zYkcWLF3PNNddw8OBBOnfuzOuvv86cOXO48sorycrKIiUlhQULFvC9732v0ba33norl156KdnZ2aSmptr9C4wxfnmzDPWKYgqeKWDL3i2kd0+n8ILCkCeKjX9WhtqY+GJlqJvIG5VnH/zGGOPy3ByBMcaYxiwQGGOMx1kgMMYYj7NAYIwxHufJyWJjTPiUlZVRUlJCVVUVaWlp5ObmkpWVFethmSDYGUGE7NixgylTpgS93YQJE46oN9RUqCWqjQm3srIyli1bRlVVFQBVVVUsW7aMsrKyGI/MBMPOCCLk+OOPb6ge6qu1ss8vvvhiq31Hq0S1Ma0pKSmhpqamUVtNTQ0lJSV2VtCOePKMoKysjLvvvpvbbruNu+++u83fXporQz1o0CAAFixYwOTJkznzzDPJzc2lurqa//zP/2TAgAFccMEFjBw5kvofyWVmZrJ7924qKio4+eSTueKKKxg4cCBnn302Bw8eBFovUV1RUcGpp55KTk4OOTk5/OMf/2jT8RnTnPozgUDbTXzyXCCIxKnstGnTWLJkScPzJUuWMHLkyEbrrFmzhqVLl/L2228zb948unXrRnl5Ob/97W9ZvXq1334/+eQTrrrqKtavX8/RRx/NU0891Wh5fYnqe+65h9LSUl5//XU6d+7MD37wA1577TXWrFnD4sWLufbaa0M+NmNakpaWFlS7iU+eCwQtncqGyl8Z6hNPPLHROuPHj6d79+6AUx76oosuAmDQoEFkZ2f77bdPnz4MGTIEgGHDhlFRUdFoeXMlqmtqarjiiivIyspi6tSplJeXh3xsxrQkNzeXDh06NGrr0KEDubm5MRqRCYXn5ggidSrbtAx1U6GUffYtIpecnNxwaag1c+fO5dhjj6W0tJS6ujo6deoU9L6NCUT9PIBlDbVvngsEaWlpfj/023oqO23aNK644gp2797N22+/zbffftvsumPGjGHJkiWcccYZlJeXh3xZyrdE9YgRI9i/fz+dO3emqqqK3r17k5SUxMKFCzl8+HCoh2VMq7KysuyDv53z3KWhSJ3KNi1D3ZI5c+awa9cuBgwYwK9//WsGDhwYUiDyLVE9ePBgxo8fz6FDh5gzZw4LFy5k8ODBbNiwwW5CY4xpkSfLUMf6BzCHDx+mpqaGTp068dlnn3HWWWexceNGOnbsGLUxRJqVoTYmvlgZ6iZifSpbXV3NGWecQU1NDarKvHnzEioIGGPaF08Ggljr0qULTc9qjDEmVjw3R2CMMaaxiAUCEeknImt9/vaJyHVN1hERuVdEPhWRdSKSE6nxGGOM8S9il4ZUdSMwBEBEkoHtwDNNVjsXOMn9Gwk86P5rjDEmSqJ1aSgX+ExVK5u0nw88ro4VwNEi0nLupTHGmLCKViC4CPirn/YTgK0+z7e5bY2ISL6IrBKRVbt27YrQECPvueee4w9/+EPQ251++ulhm1xetWpVQ+2hb7/9lrPOOoshQ4awePFiLr/88qDKUbz11ltMnDgxLOMyxsROxLOGRKQjMBm4OdQ+VLUIKALndwRhGlrUTZ48mcmTJ8d0DMOHD2f4cCeV+MMPPwRg7dq1AH5LYxhjEl80zgjOBdao6pd+lm0HfKuz9XbbIqq8uJiizEzuTEqiKDOT8uLiNvdZUVFB//79mTlzJn379iUvL4/XX3+dMWPGcNJJJ/HBBx+wYMECrr76agD+9re/MWjQIAYPHsxpp50GOD80u/766xsK0d13331H7OfKK69k+PDhDBw4kFtuuaWh/aabbmLAgAFkZ2dz/fXXN7uP+m/xO3fuZPr06axcuZIhQ4bw2WefNTrzePXVVxk9ejQ5OTlMnTqVAwcOAPDyyy/Tv39/cnJyePrpp9v8uhlj4oCqRvQPeBKY1cyy84CXAAFGAR+01t+wYcO0qfLy8iPamrN+0SKdm5qqd0DD39zUVF2/aFHAffjz+eefa3Jysq5bt04PHz6sOTk5OmvWLK2rq9Nnn31Wzz//fH3sscf0qquuUlXVQYMG6bZt21RV9auvvlJV1Xnz5umFF16oNTU1qqq6Z88eVVUdN26crly5slFbbW2tjhs3TktLS3X37t3at29fraura9Sfv328+eabet555x3x2Hc/u3bt0lNPPVUPHDigqqp/+MMf9LbbbtODBw9q7969ddOmTVpXV6dTp05ttL2vYN4TE5hF7y3SjP/OULlcNOO/M3TRe237b9Z4C7BKm/lcjegZgYgcBYwHnvZpmy0is92nLwKbgU+Bh4E5kRwPwPKCAmqrqxu11VZXs7ygoM199+nTh6ysLJKSkhg4cCC5ubmICFlZWUeUkB4zZgwzZ87k4YcfbigK9/rrr/Pzn/+84Q5m9WWrfS1ZsoScnByGDh3K+vXrKS8vJy0tjU6dOnHZZZfx9NNPk5qa2uw+ArFixQrKy8sZM2YMQ4YMYeHChVRWVrJhwwb69OnDSSedhIgwffr0EF8pE6ziFcXkP5FP5d5KFKVybyX5T+RTvKLtZ7PGRHSOQFW/AY5p0jbf57ECV0VyDE3t27IlqPZg+JaNTkpKanielJREbW1to3Xnz5/P+++/zwsvvMCwYcOavTmNr88//5w777yTlStX0q1bN2bOnMmhQ4dISUnhgw8+oKSkhKVLl3L//ffzxhtvhLQPcM4Sx48fz1//2nh+v34uwURfwTMFVH/X+AtM9XfVFDxTQN6ovBiNyiQKz/2yuGt6elDtkfLZZ58xcuRIbr/9dnr27MnWrVsZP348Dz30UEPQ2Lt3b6Nt9u3bx1FHHUVaWhpffvklL730EgAHDhygqqqKCRMmMHfuXEpLS5vdRyBGjRrFu+++y6effgrAN998w6ZNm+jfvz8VFRV89tlnAEcEChM5W/b6/6LSXLsxwfBcIBhbWEiKe+mkXkpqKmMLC6M6jhtuuIGsrCwGDRrUcM/hyy+/nPT0dLKzsxk8eDB/+ctfGm0zePBghg4dSv/+/fnZz37GmDFjANi/fz8TJ04kOzubsWPHctdddzW7j0D07NmTBQsW8NOf/pTs7GxGjx7Nhg0b6NSpE0VFRZx33nnk5OTwgx/8ILwvimlWenf/X1SaazcmGJ4sQ11eXMzyggL2bdlC1/R0xhYWMiDPTq/DycpQh1f9HIHv5aHUjqkUzSiyS0MmIFaGuokBeXn2wW/alfoP+4JnCtiydwvp3dMpvKDQgoAJC08GAmNirXhFcdAf6nmj8uyDP87E+iZX4ZIwgUBVEZFYD8MA7e1yY7Q1vcxTnwoK2Ad9O1JWVsayZcuoqakBoKqqimXLlgG0u2CQEJPFnTp1Ys+ePfYBFAdUlT179tCpU6dYDyVutZQKatqPkpKShiBQr6amhpKSkhiNKHTNnhGIyHMBbL9XVWeGbzih6d27N9u2baM9F6RLJJ06daJ3796xHkbcslTQxFBVVRVUezxr6dLQycDlLSwX4IHwDic0HTp0oE+fPrEehjEBSe+eTuXephXZLRW0vUlLS/P7oZ+WlhaD0bRNS5eGClT17Rb+3gJui9I4jUkYhRcUktqx8W9ZUjumUnhBdH/LYtomNzeXDh06NGrr0KEDubm5MRpR6Jo9I1DVJa1tHMg6xpjG8kbl8e6n71L0ThGH6w6TnJTMJaMvabcTxYmSOROs+mOMxrFH+jVuNWtIRIYDBUCGu77glAnKDtsojPGQ4hXFLHxvIYfrnEKAh+sOs/C9hYz50Zh2FwwSKXMmFFlZWRE/zmi8xoFkDRUDjwEXApOAie6/xpgQJFLWUCJlzsSraLzGgfyOYJeqBpJBZIwJQCJlDSVS5ky8isZrHEgguEVEHgFKgG/rG1XVbk9lTAgSKWsokTJn4lU0XuNALg3NAoYA5+BcEqq/PGSMCUEiZQ0lUuZMvIrGaxzIGcEIVe0Xtj0ak4CCqR2USAXkopk541XReI1bLUMtIo8Bd6hqedj22gb+ylAbE0tWItq0By2VoQ7k0tAoYK2IbBSRdSJSJiLrwjtEY9qvRMoCMt4UyKWhcyI+CmPasUTKAjLeFMgZQS+c4nKVqloJfAUcF9lhGdN+2G0kTXsXSCB4EDjg8/yA22aMIbGygIw3BRIIRH1mlFW1jgS6oY0xbZU3Ko+iGUVkdM9AEDK6Z9hEsWlXAvlA3ywi1/Kvs4A5wOZAOheRo4FHgEGAApeq6ns+y08H/hf43G16WlVvD6RvY+KJ3UYyMXi1gF4ggWA2cC/wa5wP8xIgP8D+7wFeVtUpItIRSPWzzjuqaj9QM8bElJcL6LUaCFR1J3BRsB2LSBpwGjDT7ec74Ltg+zHGmGhoqbhbogeCZucIRKTVb/2trNMH2AU8JiIfisgjInKUn/VGi0ipiLwkIgOb24+IrBKRVXY7SmNMJHi5gF5LZwQ3icjuFpYL8F9AUQt95wDXqOr7InIPcBPwf33WWQNkqOoBEZkAPAuc1LQjVS2q38/w4cPtDvXGmLDzcgG9lgLB27R+34HXWli2Ddimqu+7z5fiBIIGqrrP5/GLIjJPRHqoaksByBhjwi43N7fRHAF4p4BeS7eqnNWWjlX1nyKyVUT6qepGIBdoVK9IRI4DvlRVFZFTcC5V7WnLfo0x8S8es3OysrLYsmULq1evRlUREQYPHtziuOLxOEIR6d8DXAMUuxlDm4FZIjIbQFXnA1OAK0WkFjgIXKStVcEzxrRr8ZqdU1ZWRmlpKfUfQapKaWkp6enpfscVr8cRikB+UBYyVV2rqsNVNVtV/11Vv1LV+W4QQFXvV9WBqjpYVUep6j8iOR5jTOzF6+0tgx1XvB5HKCIaCIwxpql4zc4JdlzxehyhaPXSkIh8D+fG9Zm+69svgI0xoYjX7JxgxxWvxxGKQM4I/hc4H6gFvvH5M8aYoMXr7S2DHVe8HkcoApks7q2qdk8CY0xYxOvtLYMdV7weRygCCQT/EJEsVS2L+GiMMSaGsrKygvogD3b9UEU6TbXZQCAiZThF5lJw0j43A9/i/KJYVTU7bKMwxnhGIqVdRkM0Xq+WzgisIqgxJuy8XNwtFNF4vVr6ZXElgIg8oaozfJeJyBPADL8bGmNMCxIp7TIaovF6BZI11KgiqIgkA8PCNgJjjKe0lI5pjhSN16ulMtQ3i8h+IFtE9rl/+4GdOCmlxhgTtERKu4yGaLxezQYCVf29qnYB7lDVru5fF1U9RlVvDtsIjDEBKV5RTOaNmSRdkUTmjZkUryiO9ZBCkpWVxaRJkxq+0aalpTFp0iSbH2hGNF4vaa3Gm4jk+GmuAipVtTZsIwnQ8OHDddWqVdHerTExVbyimPwn8qn+rrqhLbVjKkUziuxeySYgIrJaVYf7WxbIHME8YAXOjWEedh//DdgoImeHbZTGmGYVPFPQKAgAVH9XTcEzBTEakUkkgQSCHcBQt4roMGAITknp8cD/RHBsxhjXlr1bgmo3JhiBBIK+qrq+/omqlgP9VXVz5IZljPGV3j09qHZjghFIIFgvIg+KyDj3bx5Q7lYlrWltY2NM2xVeUEhqx9RGbakdUym8oDBGIzKJJJBaQzOBOcB17vN3getxgsAZERmVMe1M8YpiCp4pYMveLaR3T6fwgsIWJ3GDrR1T31cw+zAmUK1mDcUbyxoy8SbYjJ6mtWPAyQu3FEoTSW3KGhKRMSLymohsEpHN9X/hH6Yx7VOwGT2JdItDkxgCuTT0Z+D/AKuBw5EdjjHtT7AZPVZrx8SbQCaLq1T1JVXdqap76v8iPjJj2olgM3qs1o6JN4EEgjdF5A4RGS0iOfV/ER+ZMe1EsBk9VmvHxJtALg2NdP/1nWRQ4MzWNhSRo4FHgEHuNpeq6ns+ywW4B5gAVAMzVXVNQCM3Jk4Em9GTSLc4NIkhollDIrIQeEdVHxGRjkCqqn7ts3wCcA1OIBgJ3KOqI/125rKsIWMCF2xaaygifRtFEx5tzRo6VkT+LCIvuc8HiMhlAWyXBpyGM9mMqn7nGwRc5wOPq2MFcLSI9Gqtb2NM6+rTWiv3VqIolXsryX8iP6xVS+tTYesnuutvo1hWZrc4b08CmSNYALwCHO8+38S/flzWkj7ALuAxEflQRB4RkaOarHMCsNXn+Ta3zRjTRtEoVGepsIkhkEDQQ1WXAHUAbunpQNJIU4Ac4EFVHQp8A9wUyiBFJF9EVonIql27doXShTGeE41CdZYKmxgCCQTfiMgxOJO9iMgonPsRtGYbsE1V33efL8UJDL62Ayf6PO/ttjWiqkVu9dPhPXv2DGDXxphoFKqzVNjEEEgg+AXwHPBvIvIu8DjOBG+LVPWfwFYR6ec25QLlTVZ7DrhYHKNwfrPwRcCjN8Y0KxqF6iwVNjG0mj6qqmtEZBzQDxBgo6oGWnX0GqDYzRjaDMwSkdluv/OBF3Eyhj7FSR+dFfwhGGP8iUahOkuFTQzNpo+KyH+0tKGqPh2REbXC0keNMSZ4LaWPtnRGMKmFZQrEJBAYY4wJr2YDgaraZRpjjPGAQCaLjTHGJDALBMYY43GBFJ0zxlOiUZ/H66w+UXxpNhDEa9aQMZHU9LaT9fV5AAsGYdL0Vp319YkACwYxYllDxvhoqT6PBYLwaKk+kQWC2LCsIWN8RKM+j9dZfaL4E9AcgYicBwwEOtW3qertkRqUMbGS3j2dyr2VfttNeKSlpfn90Lf6RLETyP0I5gPTcMpFCDAVyIjwuIyJiWjU5/E6q08UfwJJH/2xql4MfKWqtwGjgb6RHZYxsZE3Ko+iGUVkdM9AEDK6Z1A0o8jmB8IoKyuLSZMmNZwBpKWlMWnSJJsfiKFWb1UpIu+r6kgRWQH8B7AHWK+qP4rGAJuK51pDxcXlFBQsZ8uWfaSnd6WwcCx5eQPCtr6J39TOOYvmUPROEYfrDpOclEz+qfnMmz4v1sNKGJZu2nah1hqq97x7E/o7gDU4GUOPhG94iaG4uJz8/Feprq4FoLJyH/n5rwL4/XAPdn0Tv6mdcxbN4cG3H2x4frjucMNzCwZtZ+mmkRfIGcH3VPXb+sc4E8aH6tuiLV7PCDIzi6is3HdEe0ZGVyoq8tu8voHMGzP9TuRmdM+g4o8V0R+QK+XnKRyuO/KmfclJydQ+VBuDESWWu+++u9nJ5euuuy76A2qn2nTzeuC9+geq+q2qVvm2GceWLUd+qIez3cRvaqe/INBSuwmOpZtGXrOBQESOE5FhQGcRGSoiOe7f6UBqc9t5VXp614i2m+jcejEUyUnJQbWb4NjtMCOvpTOCnwB34txH+C7gT+7f/wF+FfmhtS+FhWNJTW085ZKamkJh4diwrG/iN7Uz/1T/l/KaazfBsXTTyGs2EKjqQlU9A5ipqmf4/J1vdYaOlJc3gKKis8nI6IqIc62/qOjsZid+g13fhJbaWbyimMwbM0m6IonMGzMpXlEc9nHNmz6PK8dd2XAGkJyUzJXjrrSJ4jCxdNPIC2Sy+DigEDheVc8VkQHAaFX9czQG2FS8Thab+NM0ywicMwj7XYDxorZOFj8GvAIc7z7fBFwXnqEZEzktFZAzxvxLIIGgh6ouAeoAVLUWsHQIE/fiNcvImHgTSCD4RkSOwfkhGSIyCrC8LRP34jXLyJh4E0gg+AXwHPBvIvIu8DhOATpj4lq8ZhkZE29aLTGhqmtEZBzQD6f66EZVrWllMwBEpALYj3MpqbbpRIX7m4T/BT53m5628tYmXOonhOOxNpEx8aTVQCAinYA5wFicy0PviMh8VT0U4D7OUNXdLSx/R1UnBtiX8bhgi87ljcoL+oM/XgvbGRMpgRSdexznW/197vOfAU/g3JfAmKiJRtG5eC1sZ0wkBfI7gnJVHdBaWzPbfg58hXMm8ZCqFjVZfjrwFLAN2AFcr6rrW+rTfkfgXdEoOhevhe2Maau2lqFeIyKjVHWF29lIINBP4rGqul1EfgC8JiIbVPXvvn0DGap6QEQmAM8CJ/k5gHwgHyA93TI+vCoa6aCWcmq8KJCsoWHAP0Skwp38fQ8YISJlIrKupQ1Vdbv7707gGeCUJsv3qeoB9/GLQAcR6eGnnyJVHa6qw3v27BnIcZkEFI10UEs5NV4USCA4B+gDjHP/+rhtE4FJzW0kIkeJSJf6x8DZwEdN1jlORMR9fIo7nj3BH4bxgmikg1rKqfGiVgOBqla29NfCpscCy0WkFPgAeEFVXxaR2SIy211nCvCRu869wEXa2qRFAikuLiczs4ikpDvJzCyiuLg81kOKa9G4n7Dds9h4UauTxfEmUSaLm96qEpwy1FaB1BgTCW0tOmcioKBgeaMgAFBdXUtBwfIYjcgY41UWCGLEblVpjIkXFghixG5VaYyJFxYIYsRuVWmMiRcWCGLEblVpjIkXljVkjDEeYFlDxhhjmmWBwBhjPM4CgTHGeJwFAmOM8TgLBMYY43GeCAShFHezgnDGGK8I5MY07VrT4m6VlfvIz38VoNmc/VC2McaY9irhzwhCKe5mBeGMMV6S8IEglOJuVhDOGOMlCR8IQinuZgXhjDFekvCBIJTiblYQzhjjJQkfCEIp7hatgnBz5rxGSsqfELmTlJQ/MWfOa61uY9lMwSleUUzmjZkkXZFE5o2ZFK8ojvWQjIk7VnQuRubMeY0HHyw9ov3KKwczb954v9vY7S2DU7yimPwn8qn+rrqhLbVjqt2D2HhSS0XnLBDESErKnzh8+MjXPjlZqK39pd9tMjOLqKw8csI6I6MrFRX5YR9je5d5YyaVeyuPaM/onkHFHyuiPyBjYsiqj8Yhf0GgpXawbKZgbdm7Jah2Y7zKAkGMJCdLUO1g2UzBSu+eHlS7MV5lgSBG8vOzg2oHy2YKVuEFhaR2TG3UltoxlcILCmM0ImPiU0QDgYhUiEiZiKwVkSMu7IvjXhH5VETWiUhOJMcTT+bNG09u7omN2nJzT2x2ohhCz2byaqZR3qg8imYUkdE9A0HI6J5hE8XG+BHRyWIRqQCGq+ruZpZPAK4BJgAjgXtUdWRLfSbKZHG0MoAs08gYA/E9WXw+8Lg6VgBHi0ivGI8pKqJVz8jqJhljWhPpQKDAqyKyWkT85TeeAGz1eb7NbWtERPJFZJWIrNq1a1eEhhpd0coAskwjY0xrIh0IxqpqDnAucJWInBZKJ6papKrDVXV4z549wzvCGIlWBpBlGhljWhPRQKCq291/dwLPAKc0WWU74Dtj2tttS3jRygCyTCNjTGsiFghE5CgR6VL/GDgb+KjJas8BF7vZQ6OAKlX9IlJjiifRqmcUrf0YY9qviGUNicgPcc4CwLkT2l9UtVBEZgOo6nwREeB+4BygGpilqi2mBEUra6i4uJyCguVs2bKP9PSuFBaOtQ9PY0y71VLWUMRuVamqm4HBftrn+zxW4KpIjSFUdqtKY4yXxDp9NC5ZyqUxxkssEPhhKZfGGC+xQOCHpVwaY7zEAoEflnJpjPESCwR+5OUN4JJLBjaUhE5OFi65ZKAVdzPGJCQLBH4UF5ezcOH6hpvEHD6sLFy4vsUP9vpMo8rKfaj+K9PIgoExJt5ZIPAjlKwhyzQyxrRXFgj8CCVryDKNjDHtlQUCP0LJGrJMI2NMe2WBwI9QsoYs08gY015ZIPAjlEJtVtzNGNNeRazWkBfl5Q2wD35jTLtjgcAPKzpnjPESuzTkh6WCGmO8xAKBH5YKaozxEgsEflgqqDHGSywQ+GGpoMYYL7FA4EeoReeMMaY9skDgRyhF54wxpr2yQOCHZQ0ZY7zEAoEfljVkjPESCwR+WNaQMcZLLBD4YVlDxhgviXggEJFkEflQRJ73s2ymiOwSkbXu3+WRHk8grICcMcZLolFr6L+Aj4HmrqssVtWrozCOoFgBOWOMV0T0jEBEegPnAY9Ecj/GGGNCF+lLQ3cD/w3UtbDOhSKyTkSWisiJ/lYQkXwRWSUiq3bt2hWJcRpjjGdFLBCIyERgp6qubmG1ZUCmqmYDrwEL/a2kqkWqOlxVh/fs2TMCozXGGO+K5BnBGGCyiFQATwJnisgi3xVUdY+qfus+fQQYFsHxGGOM8SNigUBVb1bV3qqaCVwEvKGq033XEZFePk8n40wqG2OMiaKo36FMRG4HVqnqc8C1IjIZqAX2AjNb23716tW7RaTSfdoD2B2pscY5Lx87ePv47di9qy3Hn9HcAlHVEPuMPRFZparDYz2OWPDysYO3j9+O3ZvHDpE7fvtlsTHGeJwFAmOM8bj2HgiKYj2AGPLysYO3j9+O3bsicvzteo7AGGNM27X3MwJjjDFtZIHAGGM8Lu4DgYicIyIbReRTEbnJz/Lvichid/n7IpIZg2FGTADHH5elvMNBRB4VkZ0i8lEzy0VE7nVfm3UikhPtMUZKAMd+uohU+bzvv4n2GCNFRE4UkTdFpFxE1ovIf/lZJ5Hf+0COP7zvv6rG7R+QDHwG/BDoCJQCA5qsMweY7z6+CKesdczHHsXjnwncH+uxRuj4TwNygI+aWT4BeAkQYBTwfqzHHMVjPx14PtbjjNCx9wJy3MddgE1+/rtP5Pc+kOMP6/sf72cEpwCfqupmVf0Op2bR+U3WOZ9/FatbCuSKiERxjJEUyPEnLFX9O84vzptzPvC4OlYARzcpW9JuBXDsCUtVv1DVNe7j/TilZ05osloiv/eBHH9YxXsgOAHY6vN8G0e+IA3rqGotUAUcE5XRRV4gxw8BlPJOUIG+PolqtIiUishLIjIw1oOJBPdS71Dg/SaLPPHet3D8EMb3P94DgWldQKW8TcJZA2So6mDgPuDZ2A4n/ETk+8BTwHWqui/W44m2Vo4/rO9/vAeC7YDvN9zebpvfdUQkBUgD9kRldJHX6vGrt0t5B/LfR0JS1X2qesB9/CLQQUR6xHhYYSMiHXA+BItV9Wk/qyT0e9/a8Yf7/Y/3QLASOElE+ohIR5zJ4OearPMccIn7eApOuetE+ZVcq8fv8VLezwEXuxkko4AqVf0i1oOKBhE5rn4uTEROwfl/OSG+ALnH9WfgY1W9q5nVEva9D+T4w/3+R70MdTBUtVZErgZewcmgeVRV1zcpZf1n4AkR+RRncu2i2I04vAI8/qBLebcXIvJXnOyIHiKyDbgF6ACgqvOBF3GyRz4FqoFZsRlp+AVw7FOAK0WkFjgIXJRAX4DGADOAMhFZ67b9CkiHxH/vCez4w/r+W4kJY4zxuHi/NGSMMSbCLBAYY4zHWSAwxhiPs0BgjDEeZ4HAGGM8zgKBMTRUc3w+hO2OF5GlzSx7S0SGu49/5dOe2VxV0SbbLxCRz0VkdrDj8tPXNLdSZ9DHaBKfBQJj2kBVd6jqlABW/VXrq/h1g5s33iaquhhImBLlJrwsEJh2QUSOEpEX3CJbH4nINLd9mIi8LSKrReSV+l9au9/G73FrtX/k/voSETlFRN4TkQ9F5B8i0q+V/b4gItnu4w/r676LyO0icoXvt3sR6SwiT4rIxyLyDNDZbf8D0NkdS7HbdbKIPCxOvflXRaRzAK/BsSLyjPsalIrIj939b3DPHjaJSLGInCUi74rIJ/XHbUxLLBCY9uIcYIeqDlbVQcDLbj2W+4ApqjoMeBQo9NkmVVWH4Nyz4lG3bQNwqqoOBX4D/L9W9vsOcKqIpOH8enuM234q8Pcm614JVKvqyTi/BB4GoKo3AQdVdYiq5rnrngQ8oKoDga+BCwN4De4F3nYLjeUA6932HwF/Avq7fz8DxgLXE/qZiPGQuC4xYYyPMuBPIvJHnBtyvCMig4BBwGtu2ZVkwLfezF/Bqe0vIl1F5GicG30sFJGTAMUt29CCd4Brgc+BF4DxIpIK9FHVjdL4jnin4XxYo6rrRGRdC/1+rqpr3cergczmV21wJnCx2/9hoEpEurl9lQGIyHqgRFVVRMoC7Nd4nAUC0y6o6iZxbkc4AfidiJQAzwDrVXV0c5v5ef5b4E1VvcD9EH+rlV2vBIYDm3HKfPcArsD58G6Lb30eH8a9jBSGvup8ntdh/4+bANilIdMuiMjxOJddFgF34Fwa2Qj0FJHR7jodpPENOurnEcbiVKeswilTXl+ueGZr+3XvDLcVmAq8h3OGcD1HXhbCbfuZu89BQLbPshr3UlZblOBcfkJEkt3LVca0mQUC015kAR+41RhvAX7nfkhPAf4oIqXAWuDHPtscEpEPgfnAZW7b/wC/d9sD/bb8DrBTVQ+6j3u7/zb1IPB9EfkYuJ3GZw1FwDqfyeJQ/BdwhnvJZzUwoA19GdPAqo+ahCQibwHXq+qqWI8lVCKyAGc+xO/vFELo73Sc12RiOPozicPOCIyJX1XAb8P1gzJgHvBVm0dlEo6dERhjjMfZGYExxnicBQJjjPE4CwTGGONxFgiMMcbjLBAYY4zH/X/yN4xDSxJ3cwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1542,36 +1548,36 @@ "name": "stdout", "output_type": "stream", "text": [ - "1 0.9777777777777777\n", - "2 0.9333333333333333\n", - "3 0.9555555555555556\n", - "4 0.8888888888888888\n", - "5 0.9333333333333333\n", - "6 0.9333333333333333\n", - "7 0.9333333333333333\n", - "8 0.9333333333333333\n", - "9 0.9555555555555556\n", - "10 0.9333333333333333\n", - "11 0.9555555555555556\n", - "12 0.9333333333333333\n", - "13 0.9333333333333333\n", - "14 0.9333333333333333\n", - "15 0.9333333333333333\n", - "16 0.9333333333333333\n", - "17 0.9333333333333333\n", - "18 0.9333333333333333\n", - "19 0.9333333333333333\n", - "20 0.9333333333333333\n", - "21 0.9333333333333333\n", - "22 0.9333333333333333\n", - "23 0.9111111111111111\n", - "24 0.9333333333333333\n", - "25 0.9111111111111111\n", - "26 0.9333333333333333\n", - "27 0.9111111111111111\n", - "28 0.9111111111111111\n", - "29 0.9333333333333333\n", - "30 0.9333333333333333\n" + "1 1.0\n", + "2 0.9555555555555556\n", + "3 1.0\n", + "4 0.9777777777777777\n", + "5 1.0\n", + "6 1.0\n", + "7 1.0\n", + "8 0.9777777777777777\n", + "9 0.9777777777777777\n", + "10 0.9777777777777777\n", + "11 0.9777777777777777\n", + "12 0.9777777777777777\n", + "13 1.0\n", + "14 0.9777777777777777\n", + "15 0.9555555555555556\n", + "16 0.9777777777777777\n", + "17 0.9555555555555556\n", + "18 0.9777777777777777\n", + "19 0.9777777777777777\n", + "20 0.9777777777777777\n", + "21 0.9555555555555556\n", + "22 0.9777777777777777\n", + "23 0.9555555555555556\n", + "24 0.9777777777777777\n", + "25 0.9555555555555556\n", + "26 0.9777777777777777\n", + "27 0.9555555555555556\n", + "28 0.9777777777777777\n", + "29 0.9777777777777777\n", + "30 0.9777777777777777\n" ] } ], @@ -1647,7 +1653,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.9" + "version": "3.7.9" }, "toc": { "base_numbering": 1, @@ -1664,5 +1670,5 @@ } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 }