{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 2: A first Example - Classifying Flowers"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The purpose of this notebook is to look at a first example of a typical data science application, namely **statistical learning**, which is often referred to by its more well-known name **machine learning**. To do so, we look at a very popular example involving the classification of flowers. Albeit simplistic and almost boring in its kind, the example is a rather good one to look at from a beginner's point of view as it does not involve too many decision variables. That makes understanding technicalities and visualizing the data set a lot easier."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## What is Machine Learning"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's at first review a couple of generic definitions to get started.\n",
"\n",
"Machine learning is the process of **extracting knowledge from data** in an automated fashion.\n",
"\n",
"Typical use cases regard making predictions on new and unseen data or simply understanding a given dataset better by finding patterns.\n",
"\n",
"Central to machine learning is the idea of **automating** the **decision making** from data **without** the user specifying **explicit rules** how these decisions should be made.\n",
"\n",
"That is in direct opposition to what we learned in the \"Expressing Logic\" section in Chapter 0, where we learned how to implement decision criterions \"by hand\" with the `if` statement."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Example Applications"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Types of Machine Learning"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Concete machine learning algorithms are commonly classified into three broad categories that may overlap as well:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- **Supervised** (focus of the example in this notebook): Each entry in the dataset comes with a **label**. Examples are a list of emails where spam mail is already marked as such or a sample of handwritten digits. The goal is to use the historic data to make predictions.\n",
"\n",
"- **Unsupervised**: There is no desired output associated with a data entry. In a sense, one can think of unsupervised learning as a means of discovering labels from the data itself. A popular example is the clustering of customer data.\n",
"\n",
"- **Reinforcement**: Conceptually, this can be seen as \"learning by doing\". Some kind of **reward function** tells how good a predicted outcome is. A rather recent and extremely popular example for his approach is the Alpha Go machine."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Types of Supervised Learning"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Algorithms from the supervised learning category are often broken down further into classification and regression:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- In **classification** tasks, the labels are *discrete*, such as \"spam\" or \"no spam\" for emails. Often, labels are nominal (e.g., colors of something), or ordinal (e.g., T-shirt sizes in S, M, or L).\n",
"- In **regression**, the labels are *continuous*. For example, given a person's age, education, and position, infer his/her salary."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example: Iris Flower Classification"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the example, we are given measurments regarding the size of various parts of the so-called Iris flower kind. A concrete flower always belongs to one of three distinct special Iris classes. This example application is about classifying a given flower into one of the three classes by only looking at the measurements."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Importing the Data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `sklearn` library provides several sample datasets, among which is also the Iris dataset.\n",
"\n",
"In a tabular visualization, the dataset could be portrayed somewhat like this:\n",
"\n",
"\n",
"\n",
"However, the data object imported from `sklearn` is organized slightly different. In particular, the so-called **features** are separated from the **labels**."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.datasets import load_iris"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"iris = load_iris()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Using Python's `dir()` function we can inspect the data object, i.e. find out what **attributes** it has."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['DESCR',\n",
" 'data',\n",
" 'data_module',\n",
" 'feature_names',\n",
" 'filename',\n",
" 'frame',\n",
" 'target',\n",
" 'target_names']"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dir(iris)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"`iris.data` provides us with a `numpy.ndarray`, where the first dimension equals the number of observed flowers (i.e., the **instances**) and the second dimension lists the various features of a flower."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[5.1, 3.5, 1.4, 0.2],\n",
" [4.9, 3. , 1.4, 0.2],\n",
" [4.7, 3.2, 1.3, 0.2],\n",
" [4.6, 3.1, 1.5, 0.2],\n",
" [5. , 3.6, 1.4, 0.2],\n",
" [5.4, 3.9, 1.7, 0.4],\n",
" [4.6, 3.4, 1.4, 0.3],\n",
" [5. , 3.4, 1.5, 0.2],\n",
" [4.4, 2.9, 1.4, 0.2],\n",
" [4.9, 3.1, 1.5, 0.1],\n",
" [5.4, 3.7, 1.5, 0.2],\n",
" [4.8, 3.4, 1.6, 0.2],\n",
" [4.8, 3. , 1.4, 0.1],\n",
" [4.3, 3. , 1.1, 0.1],\n",
" [5.8, 4. , 1.2, 0.2],\n",
" [5.7, 4.4, 1.5, 0.4],\n",
" [5.4, 3.9, 1.3, 0.4],\n",
" [5.1, 3.5, 1.4, 0.3],\n",
" [5.7, 3.8, 1.7, 0.3],\n",
" [5.1, 3.8, 1.5, 0.3],\n",
" [5.4, 3.4, 1.7, 0.2],\n",
" [5.1, 3.7, 1.5, 0.4],\n",
" [4.6, 3.6, 1. , 0.2],\n",
" [5.1, 3.3, 1.7, 0.5],\n",
" [4.8, 3.4, 1.9, 0.2],\n",
" [5. , 3. , 1.6, 0.2],\n",
" [5. , 3.4, 1.6, 0.4],\n",
" [5.2, 3.5, 1.5, 0.2],\n",
" [5.2, 3.4, 1.4, 0.2],\n",
" [4.7, 3.2, 1.6, 0.2],\n",
" [4.8, 3.1, 1.6, 0.2],\n",
" [5.4, 3.4, 1.5, 0.4],\n",
" [5.2, 4.1, 1.5, 0.1],\n",
" [5.5, 4.2, 1.4, 0.2],\n",
" [4.9, 3.1, 1.5, 0.2],\n",
" [5. , 3.2, 1.2, 0.2],\n",
" [5.5, 3.5, 1.3, 0.2],\n",
" [4.9, 3.6, 1.4, 0.1],\n",
" [4.4, 3. , 1.3, 0.2],\n",
" [5.1, 3.4, 1.5, 0.2],\n",
" [5. , 3.5, 1.3, 0.3],\n",
" [4.5, 2.3, 1.3, 0.3],\n",
" [4.4, 3.2, 1.3, 0.2],\n",
" [5. , 3.5, 1.6, 0.6],\n",
" [5.1, 3.8, 1.9, 0.4],\n",
" [4.8, 3. , 1.4, 0.3],\n",
" [5.1, 3.8, 1.6, 0.2],\n",
" [4.6, 3.2, 1.4, 0.2],\n",
" [5.3, 3.7, 1.5, 0.2],\n",
" [5. , 3.3, 1.4, 0.2],\n",
" [7. , 3.2, 4.7, 1.4],\n",
" [6.4, 3.2, 4.5, 1.5],\n",
" [6.9, 3.1, 4.9, 1.5],\n",
" [5.5, 2.3, 4. , 1.3],\n",
" [6.5, 2.8, 4.6, 1.5],\n",
" [5.7, 2.8, 4.5, 1.3],\n",
" [6.3, 3.3, 4.7, 1.6],\n",
" [4.9, 2.4, 3.3, 1. ],\n",
" [6.6, 2.9, 4.6, 1.3],\n",
" [5.2, 2.7, 3.9, 1.4],\n",
" [5. , 2. , 3.5, 1. ],\n",
" [5.9, 3. , 4.2, 1.5],\n",
" [6. , 2.2, 4. , 1. ],\n",
" [6.1, 2.9, 4.7, 1.4],\n",
" [5.6, 2.9, 3.6, 1.3],\n",
" [6.7, 3.1, 4.4, 1.4],\n",
" [5.6, 3. , 4.5, 1.5],\n",
" [5.8, 2.7, 4.1, 1. ],\n",
" [6.2, 2.2, 4.5, 1.5],\n",
" [5.6, 2.5, 3.9, 1.1],\n",
" [5.9, 3.2, 4.8, 1.8],\n",
" [6.1, 2.8, 4. , 1.3],\n",
" [6.3, 2.5, 4.9, 1.5],\n",
" [6.1, 2.8, 4.7, 1.2],\n",
" [6.4, 2.9, 4.3, 1.3],\n",
" [6.6, 3. , 4.4, 1.4],\n",
" [6.8, 2.8, 4.8, 1.4],\n",
" [6.7, 3. , 5. , 1.7],\n",
" [6. , 2.9, 4.5, 1.5],\n",
" [5.7, 2.6, 3.5, 1. ],\n",
" [5.5, 2.4, 3.8, 1.1],\n",
" [5.5, 2.4, 3.7, 1. ],\n",
" [5.8, 2.7, 3.9, 1.2],\n",
" [6. , 2.7, 5.1, 1.6],\n",
" [5.4, 3. , 4.5, 1.5],\n",
" [6. , 3.4, 4.5, 1.6],\n",
" [6.7, 3.1, 4.7, 1.5],\n",
" [6.3, 2.3, 4.4, 1.3],\n",
" [5.6, 3. , 4.1, 1.3],\n",
" [5.5, 2.5, 4. , 1.3],\n",
" [5.5, 2.6, 4.4, 1.2],\n",
" [6.1, 3. , 4.6, 1.4],\n",
" [5.8, 2.6, 4. , 1.2],\n",
" [5. , 2.3, 3.3, 1. ],\n",
" [5.6, 2.7, 4.2, 1.3],\n",
" [5.7, 3. , 4.2, 1.2],\n",
" [5.7, 2.9, 4.2, 1.3],\n",
" [6.2, 2.9, 4.3, 1.3],\n",
" [5.1, 2.5, 3. , 1.1],\n",
" [5.7, 2.8, 4.1, 1.3],\n",
" [6.3, 3.3, 6. , 2.5],\n",
" [5.8, 2.7, 5.1, 1.9],\n",
" [7.1, 3. , 5.9, 2.1],\n",
" [6.3, 2.9, 5.6, 1.8],\n",
" [6.5, 3. , 5.8, 2.2],\n",
" [7.6, 3. , 6.6, 2.1],\n",
" [4.9, 2.5, 4.5, 1.7],\n",
" [7.3, 2.9, 6.3, 1.8],\n",
" [6.7, 2.5, 5.8, 1.8],\n",
" [7.2, 3.6, 6.1, 2.5],\n",
" [6.5, 3.2, 5.1, 2. ],\n",
" [6.4, 2.7, 5.3, 1.9],\n",
" [6.8, 3. , 5.5, 2.1],\n",
" [5.7, 2.5, 5. , 2. ],\n",
" [5.8, 2.8, 5.1, 2.4],\n",
" [6.4, 3.2, 5.3, 2.3],\n",
" [6.5, 3. , 5.5, 1.8],\n",
" [7.7, 3.8, 6.7, 2.2],\n",
" [7.7, 2.6, 6.9, 2.3],\n",
" [6. , 2.2, 5. , 1.5],\n",
" [6.9, 3.2, 5.7, 2.3],\n",
" [5.6, 2.8, 4.9, 2. ],\n",
" [7.7, 2.8, 6.7, 2. ],\n",
" [6.3, 2.7, 4.9, 1.8],\n",
" [6.7, 3.3, 5.7, 2.1],\n",
" [7.2, 3.2, 6. , 1.8],\n",
" [6.2, 2.8, 4.8, 1.8],\n",
" [6.1, 3. , 4.9, 1.8],\n",
" [6.4, 2.8, 5.6, 2.1],\n",
" [7.2, 3. , 5.8, 1.6],\n",
" [7.4, 2.8, 6.1, 1.9],\n",
" [7.9, 3.8, 6.4, 2. ],\n",
" [6.4, 2.8, 5.6, 2.2],\n",
" [6.3, 2.8, 5.1, 1.5],\n",
" [6.1, 2.6, 5.6, 1.4],\n",
" [7.7, 3. , 6.1, 2.3],\n",
" [6.3, 3.4, 5.6, 2.4],\n",
" [6.4, 3.1, 5.5, 1.8],\n",
" [6. , 3. , 4.8, 1.8],\n",
" [6.9, 3.1, 5.4, 2.1],\n",
" [6.7, 3.1, 5.6, 2.4],\n",
" [6.9, 3.1, 5.1, 2.3],\n",
" [5.8, 2.7, 5.1, 1.9],\n",
" [6.8, 3.2, 5.9, 2.3],\n",
" [6.7, 3.3, 5.7, 2.5],\n",
" [6.7, 3. , 5.2, 2.3],\n",
" [6.3, 2.5, 5. , 1.9],\n",
" [6.5, 3. , 5.2, 2. ],\n",
" [6.2, 3.4, 5.4, 2.3],\n",
" [5.9, 3. , 5.1, 1.8]])"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"iris.data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To find out what the four features are, we can list them:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['sepal length (cm)',\n",
" 'sepal width (cm)',\n",
" 'petal length (cm)',\n",
" 'petal width (cm)']"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"iris.feature_names"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Similarly, we can also print the flowers' labels (a.k.a. targets):"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n",
" 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n",
" 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"iris.target"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The three flower classes are encoded with integers. Let's show the corresponding names:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array(['setosa', 'versicolor', 'virginica'], dtype='"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"feature_index = 2\n",
"colors = [\"blue\", \"red\", \"green\"]\n",
"\n",
"for label, color in zip(range(len(iris.target_names)), colors):\n",
" plt.hist(\n",
" iris.data[iris.target == label, feature_index],\n",
" label=iris.target_names[label],\n",
" color=color,\n",
" )\n",
"\n",
"plt.xlabel(iris.feature_names[feature_index])\n",
"plt.legend(loc=\"upper right\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Also, we can draw scatter plots of two features."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAGwCAYAAACpYG+ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABoWElEQVR4nO3deVxUVf8H8M8wyqICLinbjGIuhKmBS4k+pD1aahvGg1v+yrRsUROz3Co1LdPcAiuXrLSeXB5D1J4s00yMXMqNMkUzQkFC7UkFUQIdzu+PaSaG9V48zNyZ+bxfr3np3Dlz5jt3DsyXe8/5Xp0QQoCIiIjIDXg4OgAiIiIie2HiQ0RERG6DiQ8RERG5DSY+RERE5DaY+BAREZHbYOJDREREboOJDxEREbmNOo4OwN5KSkrw22+/wdfXFzqdztHhEBERkQJCCFy+fBnBwcHw8Kj5cRu3S3x+++03GI1GR4dBRERENZCdnQ2DwVDj57td4uPr6wvAvOP8/PwcHA0REREpkZ+fD6PRaP0erym3S3wsp7f8/PyY+BARETmZG52mwsnNRERE5DYcmviYTCZMmzYNLVu2hI+PD1q1aoVXX30V1V03NSUlBZ06dYKXlxdat26NVatW2SdgIiIicmoOPdX1xhtvYOnSpfjwww9x66234sCBAxgxYgT8/f0xbty4Cp+TmZmJ++67D08//TRWr16NHTt24IknnkBQUBD69u1r53dAREREzkQnqju8Uovuv/9+BAQE4P3337du+9e//gUfHx98/PHHFT5n8uTJ2LJlC3766SfrtiFDhuDSpUvYunVrta+Zn58Pf39/5OXlVTnHx2Qy4dq1ayreDWlR3bp1odfrHR0GERHdIKXf39Vx6BGf7t27491338XPP/+Mtm3b4ocffsC3336LRYsWVfqcvXv3ok+fPjbb+vbti/Hjx1fYvqioCEVFRdb7+fn5VcYkhMDZs2dx6dIlxe+DtK1hw4YIDAxk3SYiInJs4jNlyhTk5+fjlltugV6vh8lkwuzZszFs2LBKn3P27FkEBATYbAsICEB+fj4KCwvh4+Nj89icOXMwc+ZMxTFZkp5mzZqhXr16/LJ0YkIIXL16FefPnwcABAUFOTgiIiJyNIcmPuvXr8fq1auxZs0a3HrrrUhLS8P48eMRHByM4cOHS3mNqVOnYsKECdb7ljoAFTGZTNakp0mTJlJenxzLkgifP38ezZo142kvIiI359DEZ+LEiZgyZQqGDBkCAOjQoQNOnz6NOXPmVJr4BAYG4ty5czbbzp07Bz8/v3JHewDAy8sLXl5eiuKxzOmpV6+emrdBGmf5PK9du8bEh4jIzTl0OfvVq1fLXW9Dr9ejpKSk0udERUVhx44dNtu2b9+OqKgoaXHx9JZr4edJREQWDj3i88ADD2D27Nlo3rw5br31Vhw+fBiLFi3CyJEjrW2mTp2KnJwcfPTRRwCAp59+Gm+//TYmTZqEkSNH4uuvv8b69euxZcsWR70NIiKSwFRiQmpWKnIv5yLINwjRzaOh9+BRWpLLoYnPW2+9hWnTpmH06NE4f/48goOD8dRTT2H69OnWNrm5ucjKyrLeb9myJbZs2YLnnnsOiYmJMBgMeO+991jDh4jIiSWnJyN+azzO5J+xbjP4GZDYLxGx4bEOjIxcjUPr+DhCVXUA/vzzT2RmZqJly5bw9vZ2UIQkGz9XIm1LTk9G3Po4CNh+HelgPk2dNCiJyQ9Jq+PDa3XVEpMJSEkB1q41/2syOTqiip06dQo6nQ5paWmODoWI3JCpxIT4rfHlkh4A1m3jt46HqUSjv0TJ6TDxqQXJyUBoKHDXXcDDD5v/DQ01bycior+lZqXanN4qS0AgOz8bqVmpdoyKXBkTH8mSk4G4OOBMmZ/jnBzz9tpKfpKSktChQwf4+PigSZMm6NOnD65cuQIAeO+99xAeHg5vb2/ccsstWLJkifV5LVu2BABERkZCp9OhV69eAICSkhLMmjULBoMBXl5eiIiIsLkkSHFxMcaOHYugoCB4e3ujRYsWmDNnjvXxRYsWoUOHDqhfvz6MRiNGjx6NgoKC2nnzROS0ci/nSm1HVB0mPhKZTEB8PFDRrCnLtvHj5Z/2ys3NxdChQzFy5Eikp6cjJSUFsbGxEEJg9erVmD59OmbPno309HS8/vrrmDZtGj788EMAwPfffw8A+Oqrr5Cbm4vkvzKzxMRELFy4EAsWLMCPP/6Ivn374sEHH8TJkycBAIsXL8ann36K9evX48SJE1i9ejVCQ0OtMXl4eGDx4sU4evQoPvzwQ3z99deYNGmS3DdORE4vyFdZRXWl7Yiqw8nNpdzoJNiUFPNprers3An8dWBFikOHDqFz5844deoUWrRoYfNY69at8eqrr2Lo0KHWba+99ho+//xz7NmzB6dOnULLli1x+PBhREREWNuEhIRgzJgxePHFF63bbr/9dnTt2hXvvPMOxo0bh6NHj+Krr75SVCcnKSkJTz/9NP73v//d+BtWiZObibTLVGJCaGIocvJzKpzno4MOBj8DMuMzubTdzXFyswblKjwSq7SdUrfddht69+6NDh06YODAgVixYgUuXryIK1euICMjA48//jgaNGhgvb322mvIyMiotL/8/Hz89ttv6NGjh832Hj16ID09HQDw2GOPIS0tDWFhYRg3bhy2bdtm0/arr75C7969ERISAl9fXzzyyCP4448/cPXqVblvnoicmt5Dj8R+iQD+XsVlYbmf0C+BSQ9Jw8RHIqXXwJR9rUy9Xo/t27fjiy++QLt27fDWW28hLCwMP/30EwBgxYoVSEtLs95++ukn7Nu374Zes1OnTsjMzMSrr76KwsJCDBo0CHFxcQDMK8Xuv/9+dOzYERs2bMDBgwfxzjvvADDPDSIiKi02PBZJg5IQ4hdis93gZ+BSdpLOoQUMXU10NGAwmCcyV3QCUaczPx4dLf+1dTodevTogR49emD69Olo0aIFdu/ejeDgYPz666+VXvHe09MTgPkCrRZ+fn4IDg7G7t270bNnT+v23bt34/bbb7dpN3jwYAwePBhxcXHo168fLly4gIMHD6KkpAQLFy60XpJk/fr18t80EbmM2PBYxITFsHIz1TomPhLp9UBionn1lk5nm/xYpsEkJJjbyfTdd99hx44duOeee9CsWTN89913+P333xEeHo6ZM2di3Lhx8Pf3R79+/VBUVIQDBw7g4sWLmDBhApo1awYfHx9s3boVBoMB3t7e8Pf3x8SJEzFjxgy0atUKERERWLlyJdLS0rB69WoA5lVbQUFBiIyMhIeHBz755BMEBgaiYcOGaN26Na5du4a33noLDzzwAHbv3o1ly5bJfdNE5HL0Hnr0Cu3l6DDI1Qk3k5eXJwCIvLy8co8VFhaKY8eOicLCwht6jQ0bhDAYhDCnPuab0WjeXhuOHTsm+vbtK5o2bSq8vLxE27ZtxVtvvWV9fPXq1SIiIkJ4enqKRo0aiTvvvFMkJydbH1+xYoUwGo3Cw8ND9OzZUwghhMlkEq+88ooICQkRdevWFbfddpv44osvrM959913RUREhKhfv77w8/MTvXv3FocOHbI+vmjRIhEUFCR8fHxE3759xUcffSQAiIsXL9bOTqiCrM+ViIgcp6rvbzW4qqsUmat/TCYgNdU8kTkoyHx6S/aRHlKGq7qIiJyfrFVdPNVVS/R6uUvWiYiI6MZxVRcRERG5DSY+RERE5DaY+BAREZHbYOJDREREboOTm4n+Yioxaa54mhZj0nJc5Nw4rsgemPgQAUhOT0b81nicyT9j3WbwMyCxX6LDyuVrMSYtx0XOjeOK7IWnusjtJacnI259nM0vXADIyc9B3Po4JKcnMyaNx0XOjeOK7ImJD9XIqVOnoNPpkJaWpsn+lDKVmBC/NR4C5et4WraN3zoephJTucfdKSYtx0XOjeOK7I2JD9WI0WhEbm4u2rdv7+hQbkhqVmq5vzJLExDIzs9GalaqW8cEaDcucm4cV2RvnONTW5z8mhXXrl1D3bp1K31cr9cjMDDQjhFVr7i42Hq1eaVyL+dKbSeDFmNS83r2joucG8cV2RuP+NSG5GQgNBS46y7g4YfN/4aGmrfXgnfffRfBwcEoKSmx2R4TE4ORI0cCADZv3oxOnTrB29sbN998M2bOnInr169b2+p0OixduhQPPvgg6tevj9mzZ+PixYsYNmwYmjZtCh8fH7Rp0wYrV64EUPGpqaNHj+L++++Hn58ffH19ER0djYyMDABASUkJZs2aBYPBAC8vL0RERGDr1q1Vvq9du3bh9ttvh5eXF4KCgjBlyhSbmHv16oWxY8di/PjxuOmmm9C3b1/V+y7IN0hqOxm0GJOa17N3XOTcOK7I3pj4yJacDMTFAWfKHLrNyTFvr4XkZ+DAgfjjjz+wc+dO67YLFy5g69atGDZsGFJTU/Hoo48iPj4ex44dw/Lly7Fq1SrMnj3bpp9XXnkFDz30EI4cOYKRI0di2rRpOHbsGL744gukp6dj6dKluOmmmyqMIScnB3feeSe8vLzw9ddf4+DBgxg5cqQ1UUlMTMTChQuxYMEC/Pjjj+jbty8efPBBnDx5stL+7r33XnTt2hU//PADli5divfffx+vvfaaTbsPP/wQnp6e2L17N5YtW6Z630U3j4bBzwAddBU+roMORj8joptHq+67prQYk5bjIufGcUX2xsRHJpMJiI8HKrrgvWXb+PHmdhI1atQI/fv3x5o1a6zbkpKScNNNN+Guu+7CzJkzMWXKFAwfPhw333wz7r77brz66qtYvny5TT8PP/wwRowYgZtvvhnNmzdHVlYWIiMj0aVLF4SGhqJPnz544IEHKozhnXfegb+/P9atW4cuXbqgbdu2GDFiBMLCwgAACxYswOTJkzFkyBCEhYXhjTfeQEREBBISEirsb8mSJTAajXj77bdxyy23YMCAAZg5cyYWLlxoc2SrTZs2mDdvHsLCwqyvpYbeQ4/EfokAUO4Xr+V+Qr8Eu9YS0WJMWo6LnBvHFdkbEx+ZUlPLH+kpTQggO9vcTrJhw4Zhw4YNKCoqAgCsXr0aQ4YMgYeHB3744QfMmjULDRo0sN5GjRqF3NxcXL161dpHly5dbPp85plnsG7dOkRERGDSpEnYs2dPpa+flpaG6OjoCucF5efn47fffkOPHj1stvfo0QPp6ekV9peeno6oqCjodDqb9gUFBThTah937ty5ir2iTGx4LJIGJSHEL8Rmu8HPgKRBSQ6pIaLFmGzi8rWNK8QvxKFxkXPT6ngn18TJzTLlKpx8p7SdCg888ACEENiyZQu6du2K1NRUvPnmmwCAgoICzJw5E7Gx5X95eHt7W/9fv359m8f69++P06dP4/PPP8f27dvRu3dvjBkzBgsWLCjXj4+Pj+R3pEzZmGsqNjwWMWExmqoaq8WYLMouPRYVHeUkUkHL451cCxMfmYIUTr5T2k4Fb29vxMbGYvXq1fjll18QFhaGTp06AQA6deqEEydOoHXr1qr7bdq0KYYPH47hw4cjOjoaEydOrDDx6dixIz788MMKV4P5+fkhODgYu3fvRs+ePa3bd+/ejdtvv73C1w0PD8eGDRsghLAe9dm9ezd8fX1hMBhUvw8l9B569ArtVSt915TWYrIUmiub+Px2+TfErY/jX+d0Q7Q23sk18VSXTNHRgMEA6CqepAedDjAaze1qwbBhw7BlyxZ88MEHGDZsmHX79OnT8dFHH2HmzJk4evQo0tPTsW7dOrz88stV9jd9+nRs3rwZv/zyC44ePYrPPvsM4eHhFbYdO3Ys8vPzMWTIEBw4cAAnT57Ev//9b5w4cQIAMHHiRLzxxhv4z3/+gxMnTmDKlClIS0tDfHx8hf2NHj0a2dnZePbZZ3H8+HFs3rwZM2bMwIQJE+DhwWHrCCw0R0SugN8gMun1QKJ5kl655MdyPyGh1ur5/POf/0Tjxo1x4sQJPPzww9btffv2xWeffYZt27aha9eu6NatG9588020aNGiyv48PT0xdepUdOzYEXfeeSf0ej3WrVtXYdsmTZrg66+/RkFBAXr27InOnTtjxYoV1qM/48aNw4QJE/D888+jQ4cO2Lp1Kz799FO0adOmwv5CQkLw+eef4/vvv8dtt92Gp59+Go8//ni1yRrVHhaaIyJXoBNudnI+Pz8f/v7+yMvLg5+fn81jf/75JzIzM9GyZUubuS+qJSebV3eVnuhsNJqTngrm2VDtkva5urm1R9bi4eSHq223JnYNhnYYaoeIiMidVPX9rQbn+NSG2FggJsapKzcTlcVCc0TkCpj41Ba9HujVy9FREEljKTSXk59T4TwfHXQw+BlYaI6INI1zfIhIERaaIyJXwMSHiBRjoTkicnY81UVEqrDQHBE5M4ce8QkNDYVOpyt3GzNmTIXtV61aVa4tV+kQ2Z+l0NzQDkPRK7QXkx4ichoOPeKzf/9+mEpdsPOnn37C3XffjYEDB1b6HD8/P2tRPAA213IiIiIiqopDE5+mTZva3J87dy5atWplc1mDsnQ6HQIDAxW/RlFRkfXCnYC5DgARERG5J81Mbi4uLsbHH3+MkSNHVnkUp6CgAC1atIDRaERMTAyOHj1aZb9z5syBv7+/9WY0GmWHTkRERE5CM4nPpk2bcOnSJTz22GOVtgkLC8MHH3yAzZs34+OPP0ZJSQm6d++OM2cqL6M/depU5OXlWW/Z2dm1EL22vfLKK4iIiLjhflJSUqDT6XDp0iXFz3nssccwYMCAG35tIiIiGTRzyYq+ffvC09MT//3vfxU/59q1awgPD8fQoUPx6quvKnqOXS5ZoTEFBQUoKipCkyZNbqif4uJiXLhwAQEBAYrnVuXl5UEIgYYNG97Qa98IV/1ciYjciUtdsuL06dP46quvkJycrOp5devWRWRkJH755ZdaiqzmTCUmzSz3bdCgARo0aFDp48XFxfD09Ky2H09PT1XzqwDA399fVXsiIqLapIlTXStXrkSzZs1w3333qXqeyWTCkSNHEBSkrWsDJacnIzQxFHd9eBceTn4Yd314F0ITQ5Gcri6xU+rdd99FcHAwSkpKbLbHxMRg5MiR5U51WU4/zZ49G8HBwQgLCwMA7NmzBxEREfD29kaXLl2wadMm6HQ6pKWlASh/qmvVqlVo2LAhvvzyS4SHh6NBgwbo168fcnNzy72WRUlJCebNm4fWrVvDy8sLzZs3x+zZs62PT548GW3btkW9evVw8803Y9q0abh27ZrcHUZERG7L4YlPSUkJVq5cieHDh6NOHdsDUI8++iimTp1qvT9r1ixs27YNv/76Kw4dOoT/+7//w+nTp/HEE0/YO+xKJacnI259HM7k2847ysnPQdz6uFpJfgYOHIg//vgDO3futG67cOECtm7dimHDhlX4nB07duDEiRPYvn07PvvsM+Tn5+OBBx5Ahw4dcOjQIbz66quYPHlyta999epVLFiwAP/+97/xzTffICsrCy+88EKl7adOnYq5c+di2rRpOHbsGNasWYOAgADr476+vli1ahWOHTuGxMRErFixAm+++aaKveFaTCUmpJxKwdoja5FyKgWmElP1TyIioko5/FTXV199haysLIwcObLcY1lZWfDw+Ds3u3jxIkaNGoWzZ8+iUaNG6Ny5M/bs2YN27drZM+RKmUpMiN8aX+EFHAUEdNBh/NbxiAmLkXraq1GjRujfvz/WrFmD3r17AwCSkpJw00034a677kJqamq559SvXx/vvfee9RTXsmXLoNPpsGLFCnh7e6Ndu3bIycnBqFGjqnzta9euYdmyZWjVqhUAYOzYsZg1a1aFbS9fvozExES8/fbbGD58OACgVatW+Mc//mFt8/LLL1v/HxoaihdeeAHr1q3DpEmTVOwR15Ccnoz4rfE2SbTBz4DEfom8NAQRUQ05PPG55557UNn86pSUFJv7b775pqb/+k/NSi13pKc0AYHs/GykZqWiV2gvqa89bNgwjBo1CkuWLIGXlxdWr16NIUOG2CSOpXXo0MFmXs+JEyfQsWNHm8m/t99+e7WvW69ePWvSAwBBQUE4f/58hW3T09NRVFRkTc4q8p///AeLFy9GRkYGCgoKcP369RuaxOasLEcOyybRliOHvC4WEVHNOPxUlyvJvZxbfSMV7dR44IEHIITAli1bkJ2djdTU1EpPcwHmIz4y1K1b1+a+TqerNJH18fGpsq+9e/di2LBhuPfee/HZZ5/h8OHDeOmll1BcXCwlVmdR3ZFDABi/dTxPexER1QATH4mCfJVNslbaTg1vb2/ExsZi9erVWLt2LcLCwtCpUyfFzw8LC8ORI0dsqlzv379faoxt2rSBj48PduzYUeHje/bsQYsWLfDSSy+hS5cuaNOmDU6fPi01Bmeg5sghERGpw8RHoujm0TD4GaBDxTVudNDB6GdEdPPoWnn9YcOGYcuWLfjggw+qPNpTkYcffhglJSV48sknkZ6eji+//BILFiwAIO96aN7e3pg8eTImTZqEjz76CBkZGdi3bx/ef/99AObEKCsrC+vWrUNGRgYWL16MjRs3SnltZ+LII4dERK6OiY9Eeg89EvslAkC55MdyP6FfQq3V8/nnP/+Jxo0b48SJE3j44YdVPdfPzw///e9/kZaWhoiICLz00kuYPn06AEgt+jdt2jQ8//zzmD59OsLDwzF48GDrnKAHH3wQzz33HMaOHYuIiAjs2bMH06ZNk/bazsKRRw6JiFydZio324s9KjdXtBrH6GdEQr8Ep5qQunr1aowYMQJ5eXnVzs/RMmer3GwqMSE0MRQ5+TkVzvPRQQeDnwGZ8ZkOK4pJRGRvLlW52dXEhsciJixGM5Wblfroo49w8803IyQkBD/88AMmT56MQYMGOXXS44wsRw7j1sdBB51N8mOPI4dERK6MiU8t0XvopS9Zr21nz57F9OnTcfbsWQQFBWHgwIE2VZXJfmLDY5E0KKnCOj41PXKopcuoEBE5Ck91leJsp0RIGWf+XGUlKyyGSETOjqe6iNyAjCOHLIZIRPQ3ruqqgJsdBHN57vx5shgiEZEtJj6lWKoQX7161cGRkEyWz7NslWl3wGKIRES2eKqrFL1ej4YNG1rrytSrV09a8T6yPyEErl69ivPnz6Nhw4bQ691vIi+LIRIR2WLiU0ZgYCAAVHqhTXI+DRs2tH6u7obFEImIbDHxKUOn0yEoKAjNmjXDtWvXHB0O3aC6deu65ZEeC8tlVKorhlhbl1EhItIaJj6V0Ov1bv2FSa6BxRCJiGwx8SFyce5SDFGLMWkV9xW5MxYwJHITrlwMUYsxaRX3FTkrWd/fTHyISLHKiiFaTps5ohiiFmPSKu4rcmayvr9Zx4eIFNFiMUQtxqRV3FdEZkx8iEgRLRZD1GJMWsV9RWTGxIeIFNFiMUQtxqRV3FdEZkx8iEgRLRZD1GJMWsV9RWTGxIeIFLEUQ7RMhC1LBx2Mfka7FkPUYkxaxX1FZMbEh4gUsRRDBFDuy9NRxRC1GJNWcV8RmTHxISLFLMUQQ/xCbLYb/AwOWwqtxZi0ivuKiHV8HB0OkVMqvl6MJQeWIONCBlo1boXRXUbDs46nQ2NiNWLluK/IGbGAYQ0x8SG6Maz8S0SOwAKGRGR3lsq/ZevB5OTnIG59HJLTkx0UGRGRMkx8iEgRVv4lIlfAxIeIFGHlXyJyBUx8iEgRVv4lIlfAxIeIFGHlXyJyBUx8iEgRVv4lIlfAxIeIFGHlXyJyBUx8iEgxTVf+NZmAlBRg7VrzvyauLiOi8hya+ISGhkKn05W7jRkzptLnfPLJJ7jlllvg7e2NDh064PPPP7djxEQUGx6LU/GnsHP4TqyJXYOdw3ciMz7TsUlPcjIQGgrcdRfw8MPmf0NDzduJiEqp48gX379/P0yl/ir76aefcPfdd2PgwIEVtt+zZw+GDh2KOXPm4P7778eaNWswYMAAHDp0CO3bt7dX2ERuT++hR6/QXo4Owyw5GYiLA8oWoc/JMW9PSgJiWVGaiMw0dcmK8ePH47PPPsPJkyeh05WfQDl48GBcuXIFn332mXVbt27dEBERgWXLlil6DV6ygsiFmEzmIztnKqkvpNMBBgOQmQnoOfeIyJm53CUriouL8fHHH2PkyJEVJj0AsHfvXvTp08dmW9++fbF3795K+y0qKkJ+fr7NjYhcRGpq5UkPYD4KlJ1tbkdEBA0lPps2bcKlS5fw2GOPVdrm7NmzCAgIsNkWEBCAs2fPVvqcOXPmwN/f33ozGo2yQiYiR8tVWCxRaTsicnmaSXzef/999O/fH8HBwVL7nTp1KvLy8qy37Oxsqf0TkQMFKSyWqLQdEbk8h05utjh9+jS++uorJFezAiMwMBDnzp2z2Xbu3DkEBgZW+hwvLy94eXlJiZOINCY62jyHJyen/ORm4O85PtEsqkhEZpo44rNy5Uo0a9YM9913X5XtoqKisGPHDptt27dvR1RUVG2GR0RapdcDieaiiig7N9ByPyGBE5uJyMrhiU9JSQlWrlyJ4cOHo04d2wNQjz76KKZOnWq9Hx8fj61bt2LhwoU4fvw4XnnlFRw4cABjx461d9hEJEFxUSESPh6LZxP6IuHjsSguKlTfSWwskJQEkyEYKaHA2vZASihgMoZwKTsRlePwU11fffUVsrKyMHLkyHKPZWVlwcPj79yse/fuWLNmDV5++WW8+OKLaNOmDTZt2sQaPkROaNI7A7Do/GaYLD/iedvwwuvvYEKzGMwbs0lVX8nhQPx4Hc5c/nubwRdIDAeY9hBRaZqq42MPrOND5HiT3hmA+b9vNt8pfYbqr99GE5sqT36S05MRtz4OAra/yizXD3P4pTSISAqXq+NDRO6huKgQi85XkPSUur/o/GZFp71MJSbEb40vl/QAsG4bv3U8TCW8bhcRmTHxISK7WvLJRPPprYrrlAI6wORhbled1KxUnMmvvIChgEB2fjZSs1jAkIjMmPgQkV1l/O+ktHa5l5UVJlTajohcHxMfIrKrVje1kdYuyFdZYUKl7YjI9THxISK7Gj1wPvQlQAXTcswEoC8xt6tOdPNoGPwM1onMZemgg9HPiOjmLGBIRGZMfIjIrjy9fDChWYz5Ttnk56/7E5rFwNPLp9q+9B56JPYzFzAsm/xY7if0S4DegwUMiciMiQ8R2d28MZswsWkM9GUSH71Qt5QdAGLDY5E0KAkhfiE22w1+Bi5lJ6JyWMeHSMtMJiA11Xx18aAg8zWnNHD5BVOJCalZqci9nIsg3yBEN4+u0VGV4qJCLPlkIjL+dxKtbmqD0QPnKzrSU2Ff14ux5MASZFzIQKvGrTC6y2h41vGsUV9EpD2yvr+Z+BBpVXIyEB8PnCm1XNtgMF+byoGXYUhOT0b81nibZeQGPwMS+yU67OiKFmMiIrmY+NQQEx9yCsnJQFxc+SuOWy686aBrUGmxSrIWYyIi+Zj41BATH9I8kwkIDbU90lOaTmc+8pOZadfTXqYSE0ITQystGKiDDgY/AzLjM+02mViLMRFR7eAlK4hcVWpq5UkPYD4KlJ1tbmdHWqySrMWYiEjbmPgQaU2uwirDSttJosUqyVqMiYi0jYkPkdYEKawyrLSdJFqskqzFmIhI25j4EGlNdLR5Do+ukqt46nSA0WhuZ8+wNFglWYsxEZG2MfEh0hq93rxkHSif/FjuJyTYvZ6PFqskazEmItI2Jj7k1EwlJqScSsHaI2uRcioFphKTo0OSIzbWvGQ9xLYaMQwGhy1lB/6ukhzcINhme4hvcI2WjZv+LETKgrFY+3xfpCwYC9OfhTWOSWbl5uLrxUjYl4BnP38WCfsSUHy9WHUfRKRNXM5OTsstitZpsHJz8spJiD+2EGcalFi3GQo8kNjuecSOmKe8n6kDEF+0GWf8/95myAMSvWIQO2eT6rhkVZOetH0SFu1dBJP4O4nW6/SYEDUB8+5W/v6ISC7W8akhJj6ugUXrHCN55STEnZ5v3uulzizp/voYklpMVJT8JE8dgDivzZX3U1Sz5OdGTdo+CfP3VH5V+IndJzL5IXIQhyQ+ly5dwsaNG5GamorTp0/j6tWraNq0KSIjI9G3b1907969xoHYCxMf58eidY5hulaM0Bfr4Ux9EyqaS6wTgOGKHpmvX4W+buXXyDL9WWjuxw+V95MPcz/eNbtuV00UXy9Gvdfr2RzpKUuv0+Pqi1d5DTAiB7BrAcPffvsNTzzxBIKCgvDaa6+hsLAQERER6N27NwwGA3bu3Im7774b7dq1w3/+858aB0OkBIvWOUbqliU406DipAcAhA7IbmBC6pYlVffz9kTz6a2q+vE3t7OnJQeWVJn0AIBJmLDkQNXvj4i0rY6SRpGRkRg+fDgOHjyIdu3aVdimsLAQmzZtQkJCArKzs/HCCy9IDZTIgkXrHCP3XIaUdrm5JwEFf6zl5p5U9HqyZFxQ9v6UtiMibVKU+Bw7dgxNmjSpso2Pjw+GDh2KoUOH4o8//pASHFFFWLTOMYICWgFnFbar6vGgNsCVbdX3E9RGaWhStGpcddxq2xGRNnFyMzkdyxyfnPyccpObAc7xqS2WOT459U0QEub45Pih8n44x4eIypD1/a3oiE9Zv/32G7799lucP38eJSUlNo+NGzeuxsEQKWEpWhe3Pg466GySHxatqz36up5IbDcBcafnQydskxbLaqyEdhOqTHoAQO/tg0SvGMRhc+X9eMXYNekBAM86npgQNaHKVV0ToiYw6SFycqqP+KxatQpPPfUUPD090aRJE+hKVZbV6XT49ddfpQcpE4/4uI6K6vgY/YxI6JfApewVkVQTyFzHZ5F5ovNfjAV6JLSbcMN1fIx55qTHEUvZLVjHh0ibHFbHx2g04umnn8bUqVPh4eF8hZ+Z+LgWWUXrXF5yMhAfD5wptRrOYDBfGkNtFejkZJjin0Vqnd+Q2wAIKgCirwdDn/iW6r5MfxYi9e2JyM09iaCgNogeO9/uR3oqUny9GEsOLEHGhQy0atwKo7uM5pEeIgdzWOLTpEkTfP/992jVyjkn+DHxIbeTnAzExQFlf9QtR2vVXAJDZl9ERCrYtY5PaY8//jg++eSTGr8gEdmRyWQ+0lPR3zeWbePHm9vZsy8iIgdRfcTHZDLh/vvvR2FhITp06IC6devaPL5o0SKpAcrGIz7kVlJSgLvuqr7dzp1Ar17264uISCWHreqaM2cOvvzyS4SFhQFAucnNRKQhuQqLOCppJ7MvIiIHUZ34LFy4EB988AEee+yxWgiHiKQKUljEUUk7mX0RETmI6jk+Xl5e6NGjR23EQkSyRUebV29VdjRWpwOMRnM7e/ZFROQgqhOf+Ph4vPXWW7URCxHJptebl6wD5RMWy/2EBGX1fGT2RUTkIKonNz/00EP4+uuv0aRJE9x6663lJjcnJydLDVA2Tm4mt1RRHR+j0Zyo1KCOj7S+iIgUctjk5oYNGyKWv9yI7ENStWXExgIxMdL6Kux/DyZ+/AhOXsxAm0atMP///g0fnwbq+5KIxSyJSAmHX6Q0JycHkydPxhdffIGrV6+idevWWLlyJbp06VJh+5SUFNxVwZLa3NxcBAYGVvt6POJDTkNmtWWJBqwbgM0nNpfbHhMWg01DNtk/IFR8+RKDnwGJ/RJ5+RIiF+GwAoaZmZk4efJkue0nT57EqVOnVPV18eJF9OjRA3Xr1sUXX3yBY8eOYeHChWjUqFG1zz1x4gRyc3Ott2bNmql6bSJNs1RILp30AEBOjnm7g04pV5b0AMDmE5sxYN0A+wYEc9ITtz7OJukBgJz8HMStj0NyurZPvxORfalOfB577DHs2bOn3PbvvvtO9RL3N954A0ajEStXrsTtt9+Oli1b4p577lF0OYxmzZohMDDQenPG64YRVUijFZILiwsrTXosNp/YjMLiQjtFZD69Fb81HgLl95Vl2/it42EqYTVpIjJTnS0cPny4wuXs3bp1Q1pamqq+Pv30U3Tp0gUDBw5Es2bNEBkZiRUrVih6bkREBIKCgnD33Xdj9+7dlbYrKipCfn6+zY1I01JTyx/pKU0IIDvb3M6OJn41UWo7GVKzUssd6SlNQCA7PxupWfbdV0SkXaoTH51Oh8uXL5fbnpeXB5PKv0B//fVXLF26FG3atMGXX36JZ555BuPGjcOHH35Y6XOCgoKwbNkybNiwARs2bIDRaESvXr1w6NChCtvPmTMH/v7+1pvRaFQVI5HdabRC8sk/yp/ivpF2MuReVrYPlLYjItenOvG58847MWfOHJskx2QyYc6cOfjHP/6hqq+SkhJ06tQJr7/+OiIjI/Hkk09i1KhRWLZsWaXPCQsLw1NPPYXOnTuje/fu+OCDD9C9e3e8+eabFbafOnUq8vLyrLfs7GxVMRLZnUYrJLdp0kZqOxmCfJXtA6XtiMj1qV7O/sYbb+DOO+9EWFgYov+q0Jqamor8/Hx8/fXXqvoKCgpCu3btbLaFh4djw4YNqvq5/fbb8e2331b4mJeXF7y8vFT1R+RQlgrJOTkVz/PR6cyP27lC8vw+8/HO/ncUtbOX6ObRMPgZkJOfU+E8Hx10MPgZEN2c1aSJyEz1EZ927drhxx9/xKBBg3D+/HlcvnwZjz76KI4fP4727dur6qtHjx44ceKEzbaff/4ZLVq0UNVPWloagnh9IHIVGq2Q7OPpg5iwmCrbxITFwMfTx04RAXoPPRL7mfeVDrb7ynI/oV8C6/kQkZVD6/js378f3bt3x8yZMzFo0CB8//33GDVqFN59910MGzYMgPlUVU5ODj766CMAQEJCAlq2bIlbb70Vf/75J9577z289dZb2LZtG3r37l3ta7KOD9U2aYX0kpNR/NyzWBL8GzIaAa0uAqNzQ+C5aHHN6vhIKoYos46PrH2VnJ6McZ+PQ05BjnWbwTcEif0Xs44PkYuwa+XmrKwsNG/eXHGnOTk5CAkJqbZd165dsXHjRkydOhWzZs1Cy5YtkZCQYE16AHNhwqysLOv94uJiPP/888jJyUG9evXQsWNHfPXVVxUWNSSyN5mF9Cb57sOix8/BVOpPkxd0ZzHBdx/mQcJlJmpYDHHTkE0oLC7ExK8m4uQfJ9GmSRvM7zNf9ZEeqUUH9+2D7mwuULp4dG4usG8fwMSHiEpRdMQnICAAAwYMwBNPPIGuXbtW2CYvLw/r169HYmIinnzySYwbN056sDLwiA/VFkshvbJzTSynXJIGJSn+Qp+0fRLm76l8rszE7hMx7+55CgP7qxhi2R91y2mzpCS7V4KWua+SV05C3On55p5Kne3S/dV1UouJiB2hcF8RkWbJ+v5WlPj88ccfmD17Nj744AN4e3ujc+fOCA4Ohre3Ny5evIhjx47h6NGj6NSpE6ZNm4Z77723xgHVNiY+VBtMJSaEJoZWWlPGMsk2Mz6z2lM5xdeLUe/1ejCJystD6HV6XH3xKjzreFYTmAkIDa28LpBlonRmpt3mDMncV6ZrxQh9sR7O1DehzBQfc18CMFzRI/P1q9DXrWZfEZGm2fWSFU2aNMGiRYuQm5uLt99+G23atMH//vc/66Urhg0bhoMHD2Lv3r2aTnqIaovMQnpLDiypMukBAJMwYcmBJQoC014xRJn7KnXLEpxpUHHSAwBCB2Q3MCF1i4J9RURuQdVydh8fH8TFxSEuLq624iFySjIL6WVcyFDUl6J2GiyGKHNf5Z5Ttq+UtiMi18cLXBFJILOQXqvG1V+rTnE7DRZDlLmvggKU7Sul7YjI9THxIZLAUkivbC0ZCx10MPoZFRXSG91lNPS6que26HV6jO4yWkFgfxVDLFsPyBqYDjAa7VoMUea+ir5vNAwFeutE5nJ9CcBYoEf0fQr2FRG5BSY+RBLILKTnWccTE6ImVNlmQtSE6ic2A5oshihzX+nreiKxnXlflU1+LPcT2k3gxGYisnJoAUNH4KquGpJU/E56WNeKkbplCXLPZSAooBWi7xvt0C+55PRkjPtiHHIuly6kZ0Bi/xrU8dk+CQv3LEQJSqzbPOCB57s/r3wpuzWwZJjGj0OqPge5DYCgAiC6xAD9m+rr+MhSUR0fo58RCf0SVO+r5JWTEH9skXmis6WvAj0S2k2o0VJ2meNKWkFLIjdn1wKG5OYkFr+TGlbZL7uzgGH3C0is4ZedLJWdwlGrm6EbgnyDbJKoIN8gdDN0U91XcjgQP16HM5f/3mbwBRLDobYUojSx4bGICYuRkhTEjpiHmGuvSUlWZI4rqUUaiUiKGh3xOXnyJHbu3Inz58+jpKTE5rHp06dLC6428IiPShosfgdos2id1KJ8Gu3L1ckcV9zvRHLZtYBhaStWrMAzzzyDm266CYGBgdCVmjeg0+lw6NChGgdjD0x8VNBg8TtAm0XrpBbl02hfrk7muOJ+J5LPrgUMS3vttdcwe/ZsnD17FmlpaTh8+LD1pvWkh1TSYPE7QJtF66QW5dNoX65O5rjififSLtWJz8WLFzFw4MDaiIW0RoPF7wBtFq2TWpRPo325OpnjivudSLtUJz4DBw7Etm3baiMW0hoNFr8DtFm0TmpRPo325epkjivudyLtUjTHZ/Hixdb/X7lyBYsWLcJ9992HDh06oG7dujZttXpVdgvO8VHBMscnJ6f85GbA4XN8cuqbIDQ2xycnP6fcZFagZvNytNaXq5M5rrjfieSz63L2N9980+Z+gwYNsGvXLuzatctmu06n03ziQypYit/FxZmTnNLJj4OK3wF/F62LOz0fOgGbLylHFa2zFOWLWx8HHXQ2X3aqi/JptC9XJ3Nccb8TaRcLGFL1KqrjYzSakx4t1fHBjRWtkxKTzKJ8Gu3L1ckcV9zvRPI4bDn7rFmz8MILL6BevXo22wsLCzF//nzW8dESmdWWWblZeUwSK/UWXy/GkgNLkHEhA60at8LoLqOVXaqiorg0uK+0Sua+kvkZErkzhyU+er0eubm5aNasmc32P/74A82aNYPJZKrkmdrgNomPRqstk3JSq/5yPDgEKzcTyeOwOj5CCJuihRY//PADGjduXONASCJLteWyNXhycszbk5MdExcpZqn6W7YWTE5+DuLWxyE5XcVnyPHgEFI/QyKSRvERn0aNGkGn01kzrdLJj8lkQkFBAZ5++mm88847tRasDC5/xEej1ZZJOalVfzkeHIKVm4nks/tFShMSEiCEwMiRIzFz5kz4+/tbH/P09ERoaCiioqJqHAhJoqbacq9edguLlFNT9bdXaK9qOuN4cASpnyERSaU48Rk+fDgAoGXLlujevXu5+j2kERqttkzKSa36y/HgEKzcTKRdihMfi8jISBQWFqKwsNBmu06ng5eXFzw9uVrBoTRabZmUk1r1l+PBIVi5mUi7VE9ubtiwIRo1alTu1rBhQ/j4+KBFixaYMWMGSkpKaiNeqk50tHnORgUT0AGYtxuN5nakSdHNo2HwM1gL3ZWlgw5GPyOimyv4DDkeHELqZ0hEUqlOfFatWoXg4GC8+OKL2LRpEzZt2oQXX3wRISEhWLp0KZ588kksXrwYc+fOrY14qTqWastA+S87B1ZbJuUsVX8BlPviVF31l+PBIaR+hkQkleo6Pr1798ZTTz2FQYMG2Wxfv349li9fjh07duDf//43Zs+ejePHj0sNVgaXX9VlodFqy1oms/CgDMnpyYj/YhzOXM6xbjP6GpDQ3/F1fFgMURlWbiaSx+6ruiz27NmDZcuWldseGRmJvXv3AgD+8Y9/ICsrq8ZBkQSxsUBMjCarLWuRFgvNxa7ch5g3c5FqAHIbAEEFQPSZ36A/uw+YV4OYyv6NU8Or1ZS7pMNZwLD7BSQ68FIhWhUbHouYsBhNJdRE7k71EZ+2bdsiNja23KmsKVOmYOPGjThx4gQOHDiAmJgY5OTkVNKL47jNER9SzFJoruxVtC2nJJIGJdk/+Zk0CZg/v/LHJ04E5ilMMiwFDMv+qFtOdSUlKT7qk7xyEuJOzzfvqQou4pnUYiKTHyKqFQ67ZMWnn36KgQMH4pZbbkHXrl0BAAcOHMDx48eRlJSE+++/H0uXLsXJkyexaNGiGgdWW5j4UGmaLDRXXAzUq2cuPlgZvR64ehWobhWlxAKGpmvFCH2xHs7UN6GiObs6ARiu6JH5+lWe9iIi6Rx2yYoHH3wQx48fR//+/XHhwgVcuHAB/fv3x/Hjx3H//fcDAJ555hlNJj1EZakpNGc3S5ZUnfQA5seXLKm+LzUFDKvrassS8+mtShaICR2Q3cCE1C0K4iIichDVc3wAcxFDrtoiV6DJQnMZGfLaSSxgmHtOWVxK2xEROUKNEp9Lly7h+++/x/nz58vV63n00UelBEZkD5osNNeqlbx2EgsYBgW0As4q6CpAYfxERA6geo7Pf//7XwwbNgwFBQXlLlaq0+lw4cIF6UHKxDk+VJpljk9Ofk65yc2AC83xycmpeBVXDeb45NQ3QXCODxHZmcPm+Dz//PMYOXIkCgoKcOnSJVy8eNF603rSQ1SWJgvNeXoCEyZU3WbChOqTHkBqAUN9XU8ktjPHpSu7QOyv+wntJjDpISJNU5345OTkYNy4cahXr15txEMSma4VI2VTAtYufxYpmxJgulbs6JA0KTY8FkmDkhDiF2Kz3eBnqNlSdpMJSEkB1q41/1vdROWKzJtnXrJeNiHR69UtZQfMS9WTkoDgYNvtISGqlrIDQOyIeUhqMRHBV2x/dYRc8eBS9srIGA9EJI3qOT59+/bFgQMHcPPNN9dGPCQJi8ypI63QnMwKyfPmAa+9Zl69lZFhntMzerSyIz0Vqex6XWp16wbdxSCgVEVpBAUB3brJ6d+VSK6YTUQ3TvUcn/fffx+zZs3CiBEj0KFDB9StW9fm8QcffFBVADk5OZg8eTK++OILXL16Fa1bt8bKlSvRpUuXSp+TkpKCCRMm4OjRozAajXj55Zfx2GOPKXo9d5jjwyJzDiKxUKBW49JksUet0up4IHJSDitg6OFR+dkxnU4Hk4rDuBcvXkRkZCTuuusuPPPMM2jatClOnjyJVq1aoVUlK1YyMzPRvn17PP3003jiiSewY8cOjB8/Hlu2bEHfvn2rfU1XT3xYZM5BJBYK1Gpcmiz2qFVaHQ9ETsxh1+oqu3z9RrzxxhswGo1YuXKldVvLli2rfM6yZcvQsmVLLFy4EAAQHh6Ob7/9Fm+++WaFiU9RURGKioqs9/Pz8yVFr03WInOVKF1krteA8fYLzNWpKRTYq5fdwpIZl5pij71Cq+7L5Wl1PBCR+snNpf3555839OKffvopunTpgoEDB6JZs2aIjIzEihUrqnzO3r170adPH5ttffv2tV4gtaw5c+bA39/fejMajTcUs9axyJyDSCwUKJXMAoZaLPaoVVodD0SkPvExmUx49dVXERISggYNGuDXX38FAEybNg3vv/++qr5+/fVXLF26FG3atMGXX36JZ555BuPGjcOHH35Y6XPOnj2LgIAAm20BAQHIz89HYWFhufZTp05FXl6e9Zadna0qRmejtHgci8xJJrFQoFQyCxhqsdijVml1PBCR+sRn9uzZWLVqFebNmwfPUqtL2rdvj/fee09VXyUlJejUqRNef/11REZG4sknn8SoUaOwbNkytWFVysvLC35+fjY3VxZ932gYCvTl6qxY6ARgLNAj+r7R9g3M1UVHm+dsVLZySqcDjEZzOyeNK7p5NAx+hnL1jqxdQQejnxHRze38HrVIq+OBiNQnPh999BHeffddDBs2DPpSk/Juu+02HD9+XFVfQUFBaNeunc228PBwZGVlVfqcwMBAnDt3zmbbuXPn4OfnBx8fH1Wv74pYZM5BJBYKlEpmAUMtFnvUKq2OByKqWQHD1q1bl9teUlKCa9euqeqrR48eOHHihM22n3/+GS1atKj0OVFRUdixY4fNtu3btyMqKkrVa7syS5G5kCu2v1QNV/Rcyl6bLIUCQ2wLIcJgcOzSZYlxSS/26Mq0Oh6I3Jzq5eydO3fGc889h//7v/+Dr68vfvjhB9x8882YNWsWtm/fjtTUVMV97d+/H927d8fMmTMxaNAgfP/99xg1apT1iBJgnqOTk5ODjz76CMDfy9nHjBmDkSNH4uuvv8a4ceO4nL0CpmvFSN2yBLnnMhAU0ArR943mkR57MJnMq3Vyc81zOKKjtfGXvcS4iosKseSTicj430m0uqkNRg+cD08vBx9xdYP9TuTOpH1/C5U2bdok/P39xdy5c0W9evXE/PnzxRNPPCE8PT3Ftm3b1HYn/vvf/4r27dsLLy8vccstt4h3333X5vHhw4eLnj172mzbuXOniIiIEJ6enuLmm28WK1euVPx6eXl5AoDIy8tTHSsRCbHhg4nC8IJe4BVYb4YX9GLDBxMdGNQGIQwGIcwLxc03g8G8nYhcgqzvb9VHfAAgNTUVs2bNwg8//ICCggJ06tQJ06dPxz333FPzDMxO3OmID5FsmqwKzgrJRG7BYZWbnR0TH6Ka0WRVcFZIJnIbsr6/b6iAIRG5D2tV8EpWaJeuCm6/oFRUSCYigsJLVjRq1Ag6hVd2vnDhwg0FRETapMmq4KyQTEQqKUp8EhISajkMItK6oIBWwFmF7eyFFZKJSCXO8SEiRSxzfHLqmyC0NscnJ6f85GaAc3yIXAjn+BCRXWmyKjgrJBORSkx8iCxMJiAlBVi71vyvyVSjboqvFiDhjYfw7OSOSHjjIRRfLah5SCUmpJxKwdoja5FyKgWmkprFJIsmq4KzQjLVMkm/GkgjeKqLCDDXgomPt10hZDCYjyao+OKc9NLtWFRnP0yl/qTQlwATrnfFvNnfqwspPRnxW+NxJv/vmAx+BiT2S3T4pSE0WRWcFZKpFkj61UASsI5PDTHxoXIkFcCb9NLtmF93/1/PLfXAX91OvKY8+UlOT0bc+jgI2MZkuRgor4tFVPtYG1NbmPjUEBMfsiGpAF7x1QLUe8MXJh0qrnMjAL0Ark6+DM96DaoOqcSE0MRQmyM9NiFBB4OfAZnxmbwSOlEtYW1M7ZH1/a1oOXusipQ2OTm5xsEQ2Z2aAni9elXabMlbj9ic3ipHB5h05nbjJ2+sOqSs1EqTHgAQEMjOz0ZqVip6hVYeExHVnKRfDaRBihIff3//2o6DyDEkFcDLuJAB1Ku+m4wL1Rf3y72sLCal7YhIPdbGdF2KEp+VK1fWdhxEjiGpAF6rxq2AP49U202rxtUX9wvyVRaT0nZEpB5rY7ouzvEh9yapAF5tzPHJyc8pN7kZ4BwfIntgbUztcWgBw6SkJAwaNAjdunVDp06dbG5ETkVSATzPeg0w4XpX852yvyT/uj/hetdqkx4A0HvokdjPHJOuTBZluZ/QL4FJD1EtYm1M16U68Vm8eDFGjBiBgIAAHD58GLfffjuaNGmCX3/9Ff3796+NGIkqJaXAX2UF8EJCVK1XnTf7e0y81hX6MomPXqhbyg4AseGxSBqUhBDfYJvtBt+Qmi9ll1mFjRXdqBZobVixNqZ6WvsMKyRUCgsLE2vWrBFCCNGgQQORkZEhhBBi2rRpYsyYMWq7s7u8vDwBQOTl5Tk6FLpBG45tEIZFBoFXYL0ZFhnEhmMbatDZBiFCQoQwH9U230JCzNtVKrpyWbw5d4AYO6mDeHPuAFF05bL6eIQQYuJEcb2Oh9gZCrGmPcTOUIjrdTyEmDhRfV8bNghhMNi+P4OhRu9Pal9Ef9HysLp+XYidO4VYs8b87/Xrjo5Im2r7M5T1/a068fHx8RGnTp0SQgjRtGlTkZaWJoQQ4ueffxaNGze+oWDsgYmPa9hwbIPQvaKzSXrwCoTuFZ3QvaJTl/xs2CCETmf70wqYt+l0jvnNO3Fi+XhK39QkPzLfnxb3FTk9DivnZ4/PUNb3t+pTXYGBgbhw4QIAoHnz5ti3bx8AIDMzE8K95kmTg5hKTIjfGl/hxF/LtvFbxys77WUymevRVzR2LdvGj7fv8driYmDRoqrbLFpkblcdme9Pi/uKnB6HlfNzts9QdeLzz3/+E59++ikAYMSIEXjuuedw9913Y/DgwXjooYekB0hUlpoCf9V3pqJKmb0sWVL9bwiTydyuOjLfnxb3FTk9Divn52yfoaI6PqW9++67KCkpAQCMGTMGTZo0wZ49e/Dggw/iqaeekh4gUVlSC/xpsUpZRvVFDhW3k/n+tLivyOlxWDk/Z/sMVSc+Hh4e8PD4+0DRkCFDMGTIEKlBEVVFaoE/LVYpa1V9kUPF7WS+Py3uK3J6HFbOz9k+wxoVMLx48SLef/99pKenAwDatWuHESNGoHHjxtIDlI0FDJ2f1AJ/WqxSVlwM1KtX9ekuvR64ehXw9Ky6L5nvT4v7ipweh5Xzs9dn6LACht988w1atmyJxYsX4+LFi7h48SIWL16Mli1b4ptvvqlxIERKSS3wp8UqZZ6ewIQJVbeZMKH6pAeQ+/60uK/I6XFYOT+n+wzVLgNr3769GDVqlLheqpDB9evXxZNPPinat29/Q0vM7IHL2V1HRXV8jIuMNa/jU7YAhdHo2HW0EycKodfbxqTXy6vjU9P3p8V9RU6Pw8r51fZnKOv7W/WpLh8fH6SlpSEsLMxm+4kTJxAREYHCwkKJaZl8PNXlWkzXipG6ZQlyz2UgKKAVou8bDX1dBUdCKuzMZF52kJtrPhkdHV2zP1Fk9QPA9GchUt+eiNzckwgKaoPosfOh9/apUV8oLjavBMvIMM8PGj1a2VGjihQWAhMnAidPAm3aAPPnAz41jIvoLxJ/dMhBavMzlPb9rTZT6t69u9i4cWO57Rs3bhR33HHHDWVh9sAjPi5Ei6VeJcYkvTK1rH0l80gUEZFCDjvi85///AeTJk3Cs88+i27dugEA9u3bh3feeQdz585FeHi4tW3Hjh1rnpHVEh7xcRHJyUBcXPmZdJYTyo64kI7EmJLTkxG3Pq7c5G3LHCZV1+uSua8mTTIf3anMxInAvHnK+iIiUkHW97fqxKf0UvYKO9TpIISATqeDSStlGkth4uMCLEsIKquY5YhlIBJjsqxaq6xIY41WrcnYVzJXmxERqSTr+1t1HZ/MzMwavxiRFGrKhPbq5XQxqalM3Su06r6k7is1FaXHj6+6HRGRg6hOfFq0aFEbcRApp8UyoRJj0mxlapkVpYmIHER1HR8A+Pe//40ePXogODgYp0+fBgAkJCRg8+bNUoMjqpAWy4RKjEmzlallVpQmInIQ1YnP0qVLMWHCBNx77724dOmSdR5Pw4YNkZCQIDs+ovKio83zUspWyrLQ6QCj0dzOCWOKbh4Ng5+hXHFGa1fQwehnRHRzBe9P5r4aPbr6eUB6vbkdEZFGqU583nrrLaxYsQIvvfQS9KV+CXbp0gVHjhyRGhxRhbRYJlRiTJqtTC2zojQRkYOoTnwyMzMRGRlZbruXlxeuXLkiJSjSIJMJSEkB1q41/3sjK/aKi81fts8+a/63uFh9H7Gx5mXYwcG220NCar6U/UbfoyWmkBDb7QaD6phiw2ORNCgJIX62fRn8DOqWskuOC/PmmZesl02U9HouZbcDmT+G5Nw4Fm6A2sI/4eHhYtOmTUIIIRo0aCAyMjKEEEIsXrxYREZGquprxowZAoDNLSwsrNL2K1euLNfey8tL1WuygGENaLX4ncy4ZPZ1/boQO3cKsWaN+d9Sl3dR3ZXputiZuVOs+XGN2Jm5U1w31bwvmXGJoiIh3nxTiLFjzf8WFdW8L1JEi/U6yTHcdSzI+v5WnfisWLFChISEiHXr1on69euLtWvXitdee836fzVmzJghbr31VpGbm2u9/f7775W2X7lypfDz87Npf/bsWVWvycRHpQ0bhNDpbH/CAPM2nU7dT9rEieX7KX1Tk/zIjEtmX0S1gEOULNx5LDgs8RFCiI8//li0bt1a6HQ6odPpREhIiHjvvfdU9zNjxgxx2223KW6/cuVK4e/vr/p1SmPio8L16+X/rCj7k2Y0KjtyUFRU/khP2Zter+zIgcy4ZPZFVAs4RMnC3ceCrO/vGi1nHzZsGE6ePImCggKcPXsWZ86cweOPP16jU20nT55EcHAwbr75ZgwbNgxZWVlVti8oKECLFi1gNBoRExODo0ePVtm+qKgI+fn5NjdSSE3xu+qoKX5nz7hk9kVUCzhEyYJjQQ7ViU9hYSGuXr0KAKhXrx4KCwuRkJCAbdu2qX7xO+64A6tWrcLWrVuxdOlSZGZmIjo6GpcvX66wfVhYGD744ANs3rwZH3/8MUpKStC9e3ecqWIkzJkzB/7+/tab0WhUHafb0mrxO5lxabEYIlEpHKJkwbEgh+rEJyYmBh999BEA4NKlS7j99tuxcOFCxMTEYOnSpar66t+/PwYOHIiOHTuib9+++Pzzz3Hp0iWsX7++wvZRUVF49NFHERERgZ49eyI5ORlNmzbF8uXLK32NqVOnIi8vz3rLzs5WFaNb02rxO5lxabEYIlEpHKJkwbEgh+rE59ChQ4j+q9hZUlISAgMDcfr0aXz00UdYvHjxDQXTsGFDtG3bFr/88oui9nXr1kVkZGSV7b28vODn52dzI4W0WvxOZlxaLIZIVAqHKFlwLMihOvG5evUqfH19AQDbtm1DbGwsPDw80K1bN+vlK2qqoKAAGRkZCFKYrppMJhw5ckRxe1JJq8XvZMalxWKIRKVwiJIFx4IkamdDd+jQQSQmJoqsrCzh5+cn9uzZI4QQ4sCBAyIgIEBVX88//7xISUkRmZmZYvfu3aJPnz7ipptuEufPnxdCCPHII4+IKVOmWNvPnDlTfPnllyIjI0McPHhQDBkyRHh7e4ujR48qfk2u6qqBiopGGI3arONT07hk9uUOZNYEcnGySh5pdYhqdSi4cqkprY6F2uaw5eyffPKJqFu3rvDw8BB33323dfvrr78u+vXrp6qvwYMHi6CgIOHp6SlCQkLE4MGDxS+//GJ9vGfPnmL48OHW++PHjxfNmzcXnp6eIiAgQNx7773i0KFDql6TiU8NabX4ncy4tPobXGvctXpaDcjM84XQ3hDV6lCQvd+1SGtjwR5kfX/rhBBC7VGis2fPIjc3F7fddhs8PMxny77//nv4+fnhlltukXpESrb8/Hz4+/sjLy+P832I1EpOBuLizN8lpVmOs9f0ciEuaNIkYP78yh939it8aHUouPp+d2eyvr9rlPg4MyY+RDVkMgGhoZUXEtHpzDMvMzPdfpJBcTFQr17Vpav0euDqVee8pqtWh4Kr73d3J+v7u0YFDInIDbF6mmIy63VqkVaHgqvvd5KDiQ8RKcPqaYrJrNepRVodCq6+30kOJj5EpAyrpykms16nFml1KLj6fic5OMeHiJSxTOzIySk/oxXgHJ9SXH2uiVaHgqvvd3fHOT5EZF+snqaYzHqdWqTVoeDq+53kYOJDRMrFxprXKYeE2G43GLiUvYx588xLp8t++ev1rrGkWqtDwdX3O904nuoiIvVMJvOSndxc80SO6Gge6alEcbF5FVFGhnluyejRrnXEQavvT6txUc2xjk8NMfEhIpIjORmIj7dd2m4wmE+D8eAfycY5PkRE5DCWys1l6/nk5Ji3Jyc7Ji6i6jDxISIiVUwm85Geis4XWLaNH199MUEiR2DiQ0REqmi1cjOREkx8iIhIFa1WbiZSgokPERGpotXKzURKMPEhIiJVoqPNq7fKFi+00OkAo9HcjkhrmPgQEZEqWq3cTKREHUcHQORyWNyPSpE5HLQ0tCyVmyuq45OQwDo+FdHS5+fOmPgQycSKblSKzOGgxaEVGwvExPDLXAktfn7uipWbiWSxVHQr+yNlOfbPa1m5FZnDgUPLufHzk4OXrKghJj5UK0wmIDS08uImOp35z7vMTP457AZkDgcOLefGz08eXrKCSEtY0Y1KkTkcOLScGz8/7WHiQyQDK7pRKTKHA4eWc+Pnpz1MfIhkYEU3KkXmcODQcm78/LSHc3yIZLCcyM/JqfjKjTyR71ZkDgcOLefGz08ezvEh0hJWdKNSZA4HDi3nxs9Pe5j4kHMzmYCUFGDtWvO/JpPjYrFUdAsJsd1uMHC9qpORMawswyE42HZ7SIj64SCzL9lk/ggWFgJjxwJ9+5r/LSyUFaVj8VeDtrCAITkvLVYEY0U3pyd7WFV2PSu19u0rPwH2t9/M2x013GXuqwEDgM2b/76/bRvwzjvmH6dNm2RE61j81aAhws3k5eUJACIvL8/RodCN2LBBCJ1OCPNp879vOp35tmGDoyMkJyRzWMnsa+LE8v2Uvk2cqP693iiZ7y8mpur3FxNTW++CnIms729Obibnw4pgVAu0WnSwuBioV6/qU0h6PXD1KuDpWXVfssh8f4WF5vdXnatXAR8f1aGSC+HkZnJfrAhGtUCrRQeXLKl+3ozJZG5nLzLf38SJyl5TaTui6jDxIefDimBUC7RadDAjQ1lfStvJIPP9nTyprC+l7Yiqw8SHnA8rglEt0GrRwVatlPWltJ0MMt9fmzbK+lLajqg6nONDzocVwagWaLXooJbn+Mh4f5zjQ0pxjg+5L1YEo1qg1aKDnp7AhAlVt5kwwX5JDyD3/fn4mJd5VyUmhkkPycPEh5wTK4JRLZA5rGT2NW+eeXJv2URCrzdvnzdPeV+yyHx/mzZVnvy4Sh0f0g6e6pLFZHLtylRafX9ajcvFaXG3y4ypuNi8Siojwzx3ZvTomh9RKSw0JycnT5rnqcyfX/OjFwUFwCOP/B3Xv/8NNGigvh+Z+0pmXzL3Fbkead/fN1xR6AbMmDFDALC5hYWFVfmc9evXi7CwMOHl5SXat28vtmzZouo1a6WA4YYNQhgMthW3DAbXKaLn6u+PVNHicJAZk8y+Jk4UQq+37Uuvr1nBQVl9afHzI1JC1ve3wxOfW2+9VeTm5lpvv//+e6Xtd+/eLfR6vZg3b544duyYePnll0XdunXFkSNHFL+m9MTH1SsIu/r7I1W0OBzcodqyrL60+PkRKeUSlZtfeeUVbNq0CWlpaYraDx48GFeuXMFnn31m3datWzdERERg2bJlivqQeqrL1SsIu/r7I1W0OBzcodqyrL60+PkRqeEyq7pOnjyJ4OBg3HzzzRg2bBiysrIqbbt371706dPHZlvfvn2xd+/eSp9TVFSE/Px8m5s0rl5B2NXfH6mixeHgDtWWZfWlxc+PyBEcmvjccccdWLVqFbZu3YqlS5ciMzMT0dHRuHz5coXtz549i4CAAJttAQEBOHv2bKWvMWfOHPj7+1tvRqNR3htw9QrCrv7+SBUtDgd3qLYsqy8tfn5EjuDQxKd///4YOHAgOnbsiL59++Lzzz/HpUuXsH79emmvMXXqVOTl5Vlv2dnZ0vp2+QrCrv7+SBUtDgd3qLYsqy8tfn5EjuDwU12lNWzYEG3btsUvv/xS4eOBgYE4d+6czbZz584hMDCw0j69vLzg5+dnc5MmOtp8UrxsBS8LnQ4wGs3tnJGrvz9SRYvDQWZMMvsaPbr6eTJ6vbmdvfrS4udH5AiaSnwKCgqQkZGBoEr+5IiKisKOHTtstm3fvh1RUVH2CK88V68g7Orvj1TR4nBwh2rLsvrS4udH5BBS1pjV0PPPPy9SUlJEZmam2L17t+jTp4+46aabxPnz54UQQjzyyCNiypQp1va7d+8WderUEQsWLBDp6elixowZjl/OLkTFhTGMRtdZGyr7/V2/LsTOnUKsWWP+9/r1God23XRd7MzcKdb8uEbszNwprptq3hcpI7MOTFGREG++KcTYseZ/i4rkxVTTISqzL63W8QkJYR0fcj4uUcdn8ODBIigoSHh6eoqQkBAxePBg8csvv1gf79mzpxg+fLjNc9avXy/atm0rPD09xa233qqNAoZCSP0y1yRZ70/it+aGYxuEYZFB4BVYb4ZFBrHhGH+D16aKvjhDQtR/hDKTAiHk/gjK7EtWcierLxYwJGflEnV8HIFXZ3eg5GQgLq785Zwtx9lVXOAnOT0ZcevjIGDblw7mvpIGJSE2nNfrkk3WRzhpkvlyBJVx1PWnXJ3EH0Eiu5P1/c3Eh+xDYvU0U4kJoYmhOJNfcV866GDwMyAzPhN6D05YkEXWRyizuB8pxwKG5OxcpoAhuQmJ1dNSs1IrTXoAQEAgOz8bqVmsxCaTrI9QZnE/Uo4FDInMmPiQfUisnpZ7WVlfStuRMrI+QpnF/Ug5FjAkMmPiQ/YhsXpakK+yvpS2I2VkfYQyi/uRcixgSGTGOT5kH5YJBjk55WdWAjWa45OTn1NucjPAOT61RdZHyDk+jiHxR5DIITjHh5yLxOppeg89EvuZ+7Ks4rJ29df9hH4JTHokk/URyizuR8qxgCGRGRMfsp/YWPN62ZAQ2+0Gg+p1tLHhsUgalIQQP9u+DH4GLmWvRZaPsOzpkOBgdR/hvHnmJeseZX4D6fWut5S9uNicUDz7rPnf4mLHxSLxR5DIadVxdADkZmJjgZgY89KR3FzzN2h0dI3+zIwNj0VMWAxSs1KRezkXQb5BiG4ezSM9tWzfPqDMJfNw9qx5u5ovzm7dzB9/Ts7f2wIDzdtdxaRJwKJFtqf1XnjBfETLUcmdxB9BIqfEOT5EpJiswoPuUEiPRRqJ5GIBwxpi4kNUM7ImJbtDIT1O4CaSj5ObiciuZBUedIdCeizSSKRdTHyISBFZhQfdoZAeizQSaRcTHyJSRFbhQXcopMcijUTaxTk+RKSI7Dk+rlxIj3N8iOTjHB8isitZhQfdoZAeizQSaRcTHyJSzFJ4sGxSorbwoDsU0pO1r4hILp7qIiLViovNK5IyMszzVEaPrtnRC5NJXiE9WTHJptW4iJwN6/jUEBMfItdTUYVkvd6xFZKJSC5Z39+8ZAURObXKKiSbTH9vZ/JDRBY84kNETourp4jcB1d1EZHbY4VkIlKLiQ8ROS1WSCYitZj4EJHTYoVkIlKLc3yIyGlxjg+R++AcHyJye6yQTERqcTk7ETmMjAKGlqXqCxcCJSV/b/fwAJ5/3vFL2WUWaXTlmIjshUd8iMghkpPNFyu96y7g4YfN/4aGmrer1a1b+au5BwWZtzuSzPfoyjER2RPn+BCR3SUnA3Fx5a/ObrlIqZrrdcnsSyYtxqXFmIiU4iUraoiJD5FjmUzmIwxnzlT8uE5nvlhpZmb1p19k9iWTFuPSYkxEanByMxE5pdTUyr98AfPRiOxsczt79iWTFuPSYkxEjsDEh4jsKjdXXjuZfcmkxbi0GBORIzDxISK7KjsJ+UbayexLJi3GpcWYiByBc3yIyK4sc01ycspPsgVqNsdHRl8yaTEuLcZEpAbn+BCRU9LrgcRE8/8tq4ksLPcTEpR9+crsSyYtxqXFmIgcgYkPKWIyASkpwNq15n+ruyI2UVViY81Lp0NCbLcbDOqXVMvsSyYtxqXFmIjsjae6qFrJyUB8vO2KEIPB/Ncjf1HSjZBZQVir1Yi1GJcWYyKqjsvV8Zk7dy6mTp2K+Ph4JCQkVNhm1apVGDFihM02Ly8v/Pnnn4pfh4mPOix4RkREWiDr+1sT1+rav38/li9fjo4dO1bb1s/PDydOnLDe15U9WU3SmEzmIz0VpcZCmJOf8eOBmBj+tUhERM7B4XN8CgoKMGzYMKxYsQKNGjWqtr1Op0NgYKD1FhAQUGX7oqIi5Ofn29xIGRY8IyIiV+PwxGfMmDG477770KdPH0XtCwoK0KJFCxiNRsTExODo0aNVtp8zZw78/f2tN6PRKCNst8CCZ0RE5GocmvisW7cOhw4dwpw5cxS1DwsLwwcffIDNmzfj448/RklJCbp3744zVRyWmDp1KvLy8qy37OxsWeG7PBY8IyIiV+OwOT7Z2dmIj4/H9u3b4e3treg5UVFRiIqKst7v3r07wsPDsXz5crz66qsVPsfLywteXl5SYnY30dHm1VvVFTyLjrZ/bERERDXhsCM+Bw8exPnz59GpUyfUqVMHderUwa5du7B48WLUqVMHJgWFYurWrYvIyEj88ssvdojY/bDgGRERuRqHJT69e/fGkSNHkJaWZr116dIFw4YNQ1paGvQKvk1NJhOOHDmCIJ5rqTUseEZERK7EYae6fH190b59e5tt9evXR5MmTazbH330UYSEhFjnAM2aNQvdunVD69atcenSJcyfPx+nT5/GE088Yff43UlsrHnJOgueOTdXLxaoxZiISHs0UcenMllZWfDw+Pug1MWLFzFq1CicPXsWjRo1QufOnbFnzx60a9fOgVG6B70e6NXL0VFQTcmsvq3FSt5ajImItEkzlZvthZWbyd3IrL6txUreWoyJiORzuUtW2AsTH3InJhMQGlp5IUrLyrzMzOpPC8nsSxYtxkREtUPW97fDCxgSUe2RWX1bi5W8tRgTEWkbEx8iFyaz+rYWK3lrMSYi0jYmPkQuTGb1bS1W8tZiTESkbUx8iFyYpfp22QKUFjodYDQqq74tsy9ZtBgTEWkbEx8iFyaz+rYWK3lrMSYi0jYmPkQuTmb17cr6Cglx3LJxVhcnIjU0XcCQiOSQXX27bBEMRxfFYHVxIlKKdXyISDEWCyQiR2EdHyKyK5PJfFmIiv5UsmwbP97cjohIq5j4EJEiLBZIRK6AiQ8RKcJigUTkCpj4EJEiLBZIRK6AiQ8RKcJigUTkCpj4EJEiLBZIRK6AiQ8RKcZigUTk7FjAkIhUYbFAInJmTHyISDW9HujVy9FREBGpx1NdRERE5DaY+BAREZHbYOJDREREboOJDxEREbkNJj5ERETkNpj4EBERkdtg4kNERERug4kPERERuQ0mPkREROQ23K5ysxACAJCfn+/gSIiIiEgpy/e25Xu8ptwu8bl8+TIAwGg0OjgSIiIiUuvy5cvw9/ev8fN14kZTJydTUlKC3377Db6+vtDpdFL7zs/Ph9FoRHZ2Nvz8/KT2TZXjfncM7nfH4H53DO53xyi93319fXH58mUEBwfDw6PmM3Xc7oiPh4cHDAZDrb6Gn58ffzAcgPvdMbjfHYP73TG43x3Dst9v5EiPBSc3ExERkdtg4kNERERug4mPRF5eXpgxYwa8vLwcHYpb4X53DO53x+B+dwzud8eojf3udpObiYiIyH3xiA8RERG5DSY+RERE5DaY+BAREZHbYOJDREREboOJj0Jz5sxB165d4evri2bNmmHAgAE4ceJEtc/75JNPcMstt8Db2xsdOnTA559/bodoXUdN9vuqVaug0+lsbt7e3naK2DUsXboUHTt2tBYNi4qKwhdffFHlczjWb5za/c6xLt/cuXOh0+kwfvz4KttxvMulZL/LGu9MfBTatWsXxowZg3379mH79u24du0a7rnnHly5cqXS5+zZswdDhw7F448/jsOHD2PAgAEYMGAAfvrpJztG7txqst8Bc5XP3Nxc6+306dN2itg1GAwGzJ07FwcPHsSBAwfwz3/+EzExMTh69GiF7TnW5VC73wGOdZn279+P5cuXo2PHjlW243iXS+l+BySNd0E1cv78eQFA7Nq1q9I2gwYNEvfdd5/NtjvuuEM89dRTtR2ey1Ky31euXCn8/f3tF5SbaNSokXjvvfcqfIxjvfZUtd851uW5fPmyaNOmjdi+fbvo2bOniI+Pr7Qtx7s8ava7rPHOIz41lJeXBwBo3LhxpW327t2LPn362Gzr27cv9u7dW6uxuTIl+x0ACgoK0KJFCxiNxmr/YqaqmUwmrFu3DleuXEFUVFSFbTjW5VOy3wGOdVnGjBmD++67r9w4rgjHuzxq9jsgZ7y73UVKZSgpKcH48ePRo0cPtG/fvtJ2Z8+eRUBAgM22gIAAnD17trZDdElK93tYWBg++OADdOzYEXl5eViwYAG6d++Oo0eP1voFal3JkSNHEBUVhT///BMNGjTAxo0b0a5duwrbcqzLo2a/c6zLsW7dOhw6dAj79+9X1J7jXQ61+13WeGfiUwNjxozBTz/9hG+//dbRobgVpfs9KirK5i/k7t27Izw8HMuXL8err75a22G6jLCwMKSlpSEvLw9JSUkYPnw4du3aVemXMMmhZr9zrN+47OxsxMfHY/v27ZwYbkc12e+yxjsTH5XGjh2Lzz77DN988021GWZgYCDOnTtns+3cuXMIDAyszRBdkpr9XlbdunURGRmJX375pZaic02enp5o3bo1AKBz587Yv38/EhMTsXz58nJtOdblUbPfy+JYV+/gwYM4f/48OnXqZN1mMpnwzTff4O2330ZRURH0er3Nczjeb1xN9ntZNR3vnOOjkBACY8eOxcaNG/H111+jZcuW1T4nKioKO3bssNm2ffv2Ks/Xk62a7PeyTCYTjhw5gqCgoFqI0H2UlJSgqKiowsc41mtPVfu9LI519Xr37o0jR44gLS3NeuvSpQuGDRuGtLS0Cr98Od5vXE32e1k1Hu83PD3aTTzzzDPC399fpKSkiNzcXOvt6tWr1jaPPPKImDJlivX+7t27RZ06dcSCBQtEenq6mDFjhqhbt644cuSII96CU6rJfp85c6b48ssvRUZGhjh48KAYMmSI8Pb2FkePHnXEW3BKU6ZMEbt27RKZmZnixx9/FFOmTBE6nU5s27ZNCMGxXlvU7neO9dpRdnURx7t9VLffZY13nupSaOnSpQCAXr162WxfuXIlHnvsMQBAVlYWPDz+PojWvXt3rFmzBi+//DJefPFFtGnTBps2bapyYi7Zqsl+v3jxIkaNGoWzZ8+iUaNG6Ny5M/bs2cO5KSqcP38ejz76KHJzc+Hv74+OHTviyy+/xN133w2AY722qN3vHOv2wfHuGLU13nVCCCE7WCIiIiIt4hwfIiIichtMfIiIiMhtMPEhIiIit8HEh4iIiNwGEx8iIiJyG0x8iIiIyG0w8SEiIiK3wcSHiIiI3AYTHyKyq8ceewwDBgyQ1p9Op8OmTZsqffzUqVPQ6XRIS0ursp9evXph/Pjxql+/uLgYrVu3xp49e1Q/V81rhIaG4sCBA7X2GkTugokPETm13Nxc9O/fX3H7lJQU6HQ6XLp0ScrrL1u2DC1btkT37t2l9FcRT09PvPDCC5g8eXKtvQaRu2DiQ0ROLTAwEF5eXg55bSEE3n77bTz++OO1/lrDhg3Dt99+i6NHj9b6axG5MiY+RG4kKSkJHTp0gI+PD5o0aYI+ffrgypUr1sffe+89hIeHw9vbG7fccguWLFlifcxyymjdunXo3r07vL290b59e+zatcvaxmQy4fHHH0fLli3h4+ODsLAwJCYmKo5PCIGmTZsiKSnJui0iIgJBQUHW+99++y28vLxw9epVAOVPdX3//feIjIyEt7c3unTpgsOHD9u8h7vuugsA0KhRI+h0OuvFbgGgpKQEkyZNQuPGjREYGIhXXnmlyngPHjyIjIwM3HfffTbbz5w5g6FDh6Jx48aoX78+unTpgu+++w4A8MorryAiIgIffPABmjdvjgYNGmD06NEwmUyYN28eAgMD0axZM8yePdumz0aNGqFHjx5Yt25d9TuSiCrFq7MTuYnc3FwMHToU8+bNw0MPPYTLly8jNTUVlusUr169GtOnT8fbb7+NyMhIHD58GKNGjUL9+vUxfPhwaz8TJ05EQkIC2rVrh0WLFuGBBx5AZmYmmjRpgpKSEhgMBnzyySdo0qQJ9uzZgyeffBJBQUEYNGhQtTHqdDrceeedSElJQVxcHC5evIj09HT4+Pjg+PHjuOWWW7Br1y507doV9erVK/f8goIC3H///bj77rvx8ccfIzMzE/Hx8dbHjUYjNmzYgH/96184ceIE/Pz84OPjY338ww8/xIQJE/Ddd99h7969eOyxx9CjRw/r1dHLSk1NRdu2beHr62sTQ8+ePRESEoJPP/0UgYGBOHToEEpKSqxtMjIy8MUXX2Dr1q3IyMhAXFwcfv31V7Rt2xa7du3Cnj17MHLkSPTp0wd33HGH9Xm33347UlNTq92PRFQFQURu4eDBgwKAOHXqVIWPt2rVSqxZs8Zm26uvviqioqKEEEJkZmYKAGLu3LnWx69duyYMBoN44403Kn3dMWPGiH/961/W+8OHDxcxMTGVtl+8eLG49dZbhRBCbNq0Sdxxxx0iJiZGLF26VAghRJ8+fcSLL75obQ9AbNy4UQghxPLly0WTJk1EYWGh9fGlS5cKAOLw4cNCCCF27twpAIiLFy/avG7Pnj3FP/7xD5ttXbt2FZMnT6401vj4ePHPf/7TZtvy5cuFr6+v+OOPPyp8zowZM0S9evVEfn6+dVvfvn1FaGioMJlM1m1hYWFizpw5Ns9NTEwUoaGhlcZDRNXjqS4iN3Hbbbehd+/e6NChAwYOHIgVK1bg4sWLAIArV64gIyMDjz/+OBo0aGC9vfbaa8jIyLDpJyoqyvr/OnXqoEuXLkhPT7due+edd9C5c2c0bdoUDRo0wLvvvousrCzFcfbs2RPHjh3D77//jl27dqFXr17o1asXUlJScO3aNezZswe9evWq8Lnp6eno2LEjvL29K4y3Oh07drS5HxQUhPPnz1favrCw0Oa1ACAtLQ2RkZFo3Lhxpc8LDQ21OUoUEBCAdu3awcPDw2Zb2df28fGxnuIjopph4kPkJvR6PbZv344vvvgC7dq1w1tvvYWwsDBkZmaioKAAALBixQqkpaVZbz/99BP27dun+DXWrVuHF154AY8//ji2bduGtLQ0jBgxAsXFxYr76NChAxo3boxdu3bZJD67du3C/v37ce3atVpbQVW3bl2b+zqdzuYUVVk33XSTNXm0KH3qTM3rKHntCxcuoGnTptX2T0SVY+JD5EZ0Oh169OiBmTNn4vDhw/D09MTGjRsREBCA4OBg/Prrr2jdurXNrWXLljZ9lE6Erl+/joMHDyI8PBwAsHv3bnTv3h2jR49GZGQkWrduXe6IkZIYo6OjsXnzZhw9ehT/+Mc/0LFjRxQVFWH58uXo0qUL6tevX+Fzw8PD8eOPP+LPP/+sMF7AvDQcME/EvlGRkZE4fvy4dZ4UYD5qlJaWhgsXLtxw/2X99NNPiIyMlN4vkTth4kPkJr777ju8/vrrOHDgALKyspCcnIzff//dmrTMnDkTc+bMweLFi/Hzzz/jyJEjWLlyJRYtWmTTzzvvvIONGzfi+PHjGDNmDC5evIiRI0cCANq0aYMDBw7gyy+/xM8//4xp06Zh//79qmPt1asX1q5di4iICDRo0AAeHh648847sXr1avTs2bPS5z388MPQ6XQYNWoUjh07hs8//xwLFiywadOiRQvodDp89tln+P33361Hu2rirrvuQkFBgc0S86FDhyIwMBADBgzA7t278euvv2LDhg3Yu3dvjV/HIjU1Fffcc88N90Pkzpj4ELkJPz8/fPPNN7j33nvRtm1bvPzyy1i4cKG1+N8TTzyB9957DytXrkSHDh3Qs2dPrFq1qtwRn7lz52Lu3Lm47bbb8O233+LTTz/FTTfdBAB46qmnEBsbi8GDB+OOO+7AH3/8gdGjR6uOtWfPnjCZTDZzeXr16lVuW1kNGjTAf//7Xxw5cgSRkZF46aWX8MYbb9i0CQkJwcyZMzFlyhQEBARg7NixquOzaNKkCR566CGsXr3aus3T0xPbtm1Ds2bNcO+996JDhw6YO3cu9Hp9jV8HAPbu3Yu8vDzExcXdUD9E7k4nSh+jJSKqxKlTp9CyZUscPnwYERERjg5HM3788UfcfffdyMjIQIMGDWrtdQYPHozbbrsNL774Yq29BpE74BEfIqIb0LFjR7zxxhvIzMystdcoLi5Ghw4d8Nxzz9XaaxC5Cx7xISJFeMSHiFwBEx8iIiJyGzzVRURERG6DiQ8RERG5DSY+RERE5DaY+BAREZHbYOJDREREboOJDxEREbkNJj5ERETkNpj4EBERkdv4f2Y+21jvrxEsAAAAAElFTkSuQmCC",
"text/plain": [
"