606 lines
14 KiB
Text
606 lines
14 KiB
Text
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "skip"
|
||
|
}
|
||
|
},
|
||
|
"source": [
|
||
|
"**Note**: Click on \"*Kernel*\" > \"*Restart Kernel and Clear All Outputs*\" in [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/) *before* reading this notebook to reset its output. If you cannot run this file on your machine, you may want to open it [in the cloud <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_mb.png\">](https://mybinder.org/v2/gh/webartifex/intro-to-python/develop?urlpath=lab/tree/07_sequences/05_appendix.ipynb)."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "slide"
|
||
|
}
|
||
|
},
|
||
|
"source": [
|
||
|
"# Chapter 7: Sequential Data (Appendix)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "skip"
|
||
|
}
|
||
|
},
|
||
|
"source": [
|
||
|
"In the [third part <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/03_content.ipynb#Tuples-are-like-\"Immutable-Lists\") of the chapter, we proposed the idea that `tuple` objects are like \"immutable lists.\" Often, however, we use `tuple` objects to represent a **record** of related **fields**. Then, each element has a *semantic* meaning (i.e., a descriptive name).\n",
|
||
|
"\n",
|
||
|
"As an example, think of a spreadsheet with information on students in a course. Each row represents a record and holds all the data associated with an individual student. The columns (e.g., matriculation number, first name, last name) are the fields that may come as *different* data types (e.g., `int` for the matriculation number, `str` for the names).\n",
|
||
|
"\n",
|
||
|
"A simple way of modeling a single student is as a `tuple` object, for example, `(123456, \"John\", \"Doe\")`. A disadvantage of this approach is that we must remember the order and meaning of the elements/fields in the `tuple` object.\n",
|
||
|
"\n",
|
||
|
"An example from a different domain is the representation of $(x, y)$-points in the $x$-$y$-plane. Again, we could use a `tuple` object like `current_position` below to model the point $(4, 2)$."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 1,
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "slide"
|
||
|
}
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"current_position = (4, 2)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "skip"
|
||
|
}
|
||
|
},
|
||
|
"source": [
|
||
|
"We implicitly assume that the first element represents the $x$ and the second the $y$ coordinate. While that follows intuitively from convention in math, we should at least add comments somewhere in the code to document this assumption."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## The `namedtuple` Type"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "skip"
|
||
|
}
|
||
|
},
|
||
|
"source": [
|
||
|
"A better way is to create a *custom* data type. While that is covered in depth in [Chapter 11 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/11_classes/00_content.ipynb), the [collections <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.html) module in the [standard library <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/index.html) provides a [namedtuple() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.html#collections.namedtuple) **factory function** that creates \"simple\" custom data types on top of the standard `tuple` type."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 2,
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "slide"
|
||
|
}
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"from collections import namedtuple"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "skip"
|
||
|
}
|
||
|
},
|
||
|
"source": [
|
||
|
"[namedtuple() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.html#collections.namedtuple) takes two arguments. The first argument is the name of the data type. That could be different from the variable `Point` we use to refer to the new type, but in most cases it is best to keep them in sync. The second argument is a sequence with the field names as `str` objects. The names' order corresponds to the one assumed in `current_position`."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 3,
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "fragment"
|
||
|
}
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"Point = namedtuple(\"Point\", [\"x\", \"y\"])"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "skip"
|
||
|
}
|
||
|
},
|
||
|
"source": [
|
||
|
"The `Point` object is a so-called **class**. That is what it means if an object is of type `type`. It can be used as a **factory** to create *new* `tuple`-like objects of type `Point`. In a way, [namedtuple() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.html#collections.namedtuple) gives us a way to create our own custom **constructors**."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 4,
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "fragment"
|
||
|
}
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"94457911453856"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 4,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"id(Point)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 5,
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "fragment"
|
||
|
}
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"type"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 5,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"type(Point)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "skip"
|
||
|
}
|
||
|
},
|
||
|
"source": [
|
||
|
"The value of `Point` is just itself in a *literal notation*."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 6,
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "fragment"
|
||
|
}
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"__main__.Point"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 6,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"Point"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "skip"
|
||
|
}
|
||
|
},
|
||
|
"source": [
|
||
|
"We write `Point(4, 2)` to create a *new* object of type `Point`."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 7,
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "slide"
|
||
|
}
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"current_position = Point(4, 2)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "skip"
|
||
|
}
|
||
|
},
|
||
|
"source": [
|
||
|
"Now, `current_position` has a somewhat nicer representation. In particular, the coordinates are named `x` and `y`."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 8,
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "fragment"
|
||
|
}
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"Point(x=4, y=2)"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 8,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"current_position"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "skip"
|
||
|
}
|
||
|
},
|
||
|
"source": [
|
||
|
"It is *not* a `tuple` any more but an object of type `Point`."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 9,
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "fragment"
|
||
|
}
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"140376178109184"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 9,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"id(current_position)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 10,
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "fragment"
|
||
|
}
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"__main__.Point"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 10,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"type(current_position)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "skip"
|
||
|
}
|
||
|
},
|
||
|
"source": [
|
||
|
"We use the dot operator `.` to access the defined attributes."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 11,
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "slide"
|
||
|
}
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"4"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 11,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"current_position.x"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 12,
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "fragment"
|
||
|
}
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"2"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 12,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"current_position.y"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "skip"
|
||
|
}
|
||
|
},
|
||
|
"source": [
|
||
|
"As before, we get an `AttributeError` if we try to access an undefined attribute."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 13,
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "skip"
|
||
|
}
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"ename": "AttributeError",
|
||
|
"evalue": "'Point' object has no attribute 'z'",
|
||
|
"output_type": "error",
|
||
|
"traceback": [
|
||
|
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||
|
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
||
|
"\u001b[0;32m<ipython-input-13-b30d0b930bac>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mcurrent_position\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mz\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
||
|
"\u001b[0;31mAttributeError\u001b[0m: 'Point' object has no attribute 'z'"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"current_position.z"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "skip"
|
||
|
}
|
||
|
},
|
||
|
"source": [
|
||
|
"`current_position` continues to work like a `tuple` object! That is why we can use `namedtuple` as a replacement for `tuple`. The underlying implementations exhibit the *same* computational efficiencies and memory usages.\n",
|
||
|
"\n",
|
||
|
"For example, we can index into or loop over `current_position` as it is still a sequence with the familiar four properties."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 14,
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "slide"
|
||
|
}
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"4"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 14,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"current_position[0]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 15,
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "skip"
|
||
|
}
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"2"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 15,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"current_position[1]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 16,
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "fragment"
|
||
|
}
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"4\n",
|
||
|
"2\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"for number in current_position:\n",
|
||
|
" print(number)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 17,
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "fragment"
|
||
|
}
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"2\n",
|
||
|
"4\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"for number in reversed(current_position):\n",
|
||
|
" print(number)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 18,
|
||
|
"metadata": {
|
||
|
"slideshow": {
|
||
|
"slide_type": "fragment"
|
||
|
}
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"2"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 18,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"len(current_position)"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.8.6"
|
||
|
},
|
||
|
"livereveal": {
|
||
|
"auto_select": "code",
|
||
|
"auto_select_fragment": true,
|
||
|
"scroll": true,
|
||
|
"theme": "serif"
|
||
|
},
|
||
|
"toc": {
|
||
|
"base_numbering": 1,
|
||
|
"nav_menu": {},
|
||
|
"number_sections": false,
|
||
|
"sideBar": true,
|
||
|
"skip_h1_title": true,
|
||
|
"title_cell": "Table of Contents",
|
||
|
"title_sidebar": "Contents",
|
||
|
"toc_cell": false,
|
||
|
"toc_position": {
|
||
|
"height": "calc(100% - 180px)",
|
||
|
"left": "10px",
|
||
|
"top": "150px",
|
||
|
"width": "384px"
|
||
|
},
|
||
|
"toc_section_display": false,
|
||
|
"toc_window_display": false
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 4
|
||
|
}
|