intro-to-python/07_sequences/04_exercises.ipynb

664 lines
18 KiB
Text
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Note**: Click on \"*Kernel*\" > \"*Restart Kernel and Run All*\" in [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/) *after* finishing the exercises to ensure that your solution runs top to bottom *without* any errors. If you cannot run this file on your machine, you may want to open it [in the cloud <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_mb.png\">](https://mybinder.org/v2/gh/webartifex/intro-to-python/develop?urlpath=lab/tree/07_sequences/04_exercises.ipynb)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 7: Sequential Data (Coding Exercises)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The exercises below assume that you have read the [third part <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/03_content.ipynb) of Chapter 7.\n",
"\n",
"The `...`'s in the code cells indicate where you need to fill in code snippets. The number of `...`'s within a code cell give you a rough idea of how many lines of code are needed to solve the task. You should not need to create any additional code cells for your final solution. However, you may want to use temporary code cells to try out some ideas."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Packing & Unpacking with Functions"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the \"*Function Definitions & Calls*\" section in [Chapter 7 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/03_content.ipynb#Function-Definitions-&-Calls), we define the following function `product()`. In this exercise, you will improve it by making it more \"user-friendly.\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def product(*args):\n",
" \"\"\"Multiply all arguments.\"\"\"\n",
" result = args[0]\n",
"\n",
" for arg in args[1:]:\n",
" result *= arg\n",
"\n",
" return result"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `*` in the function's header line *packs* all *positional* arguments passed to `product()` into one *iterable* called `args`.\n",
"\n",
"**Q1**: What is the data type of `args` within the function's body?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" < your answer >"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Because of the packing, we may call `product()` with an abitrary number of *positional* arguments: The product of just `42` remains `42`, while `2`, `5`, and `10` multiplied together result in `100`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(42)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(2, 5, 10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"However, \"abitrary\" does not mean that we can pass *no* argument. If we do so, we get an `IndexError`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q2**: What line in the body of `product()` causes this exception? What is the exact problem?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" < your answer >"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In [Chapter 7 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/00_content.ipynb#Function-Definitions-&-Calls), we also pass a `list` object, like `one_hundred`, to `product()`, and *no* exception is raised."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"one_hundred = [2, 5, 10]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(one_hundred)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q3**: What is wrong with that? What *kind* of error (cf., [Chapter 1 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/01_elements/00_content.ipynb#Formal-vs.-Natural-Languages)) is that conceptually? Describe precisely what happens to the passed in `one_hundred` in every line within `product()`!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" < your answer >"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Of course, one solution is to *unpack* `one_hundred` with the `*` symbol. We look at another solution further below."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(*one_hundred)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's continue with the issue when calling `product()` *without* any argument.\n",
"\n",
"This revised version of `product()` avoids the `IndexError` from before."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def product(*args):\n",
" \"\"\"Multiply all arguments.\"\"\"\n",
" result = None\n",
"\n",
" for arg in args:\n",
" result *= arg\n",
"\n",
" return result"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q4**: Describe why no error occurs by going over every line in `product()`!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" < your answer >"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Unfortunately, the new version cannot process any arguments we pass in any more."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(42)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(2, 5, 10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q5**: What line causes troubles now? What is the exact problem?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" < your answer >"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q6**: Replace the `None` in `product()` above with something reasonable that does *not* cause exceptions! Ensure that `product(42)` and `product(2, 5, 10)` return a correct result.\n",
"\n",
"Hints: It is ok if `product()` returns a result *different* from the `None` above. Look at the documentation of the built-in [sum() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#sum) function for some inspiration."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def product(*args):\n",
" \"\"\"Multiply all arguments.\"\"\"\n",
" result = ...\n",
"\n",
" for arg in args:\n",
" result *= arg\n",
"\n",
" return result"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(42)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(2, 5, 10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, calling `product()` without any arguments returns what we would best describe as a *default* or *start* value. To be \"philosophical,\" what is the product of *no* numbers? We know that the product of *one* number is just the number itself, but what could be a reasonable result when multiplying *no* numbers? The answer is what you use as the initial value of `result` above, and there is only *one* way to make `product(42)` and `product(2, 5, 10)` work."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q7**: Rewrite `product()` so that it takes a *keyword-only* argument `start`, defaulting to the above *default* or *start* value, and use `start` internally instead of `result`!\n",
"\n",
"Hint: Remember that a *keyword-only* argument is any parameter specified in a function's header line after the first and only `*` (cf., [Chapter 2 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/02_functions/00_content.ipynb#Keyword-only-Arguments))."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def product(*args, ...):\n",
" \"\"\"Multiply all arguments.\"\"\"\n",
" ...\n",
" ...\n",
"\n",
" return ..."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, we can call `product()` with a truly arbitrary number of *positional* arguments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(42)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(2, 5, 10)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Without any *positional* arguments but only the *keyword* argument `start`, for example, `start=0`, we can adjust the answer to the \"philosophical\" problem of multiplying *no* numbers. Because of the *keyword-only* syntax, there is *no* way to pass in a `start` number *without* naming it."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(start=0)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We could use `start` to inject a multiplier, for example, to double the outcomes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(42, start=2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(2, 5, 10, start=2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"There is still one issue left: Because of the function's name, a user of `product()` may assume that it is ok to pass a *collection* of numbers, like `one_hundred`, which are then multiplied."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(one_hundred)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q8**: What is a **collection**? How is that different from a **sequence**?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" < your answer >"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q9**: Rewrite the latest version of `product()` to check if the *only* positional argument is a *collection* type! If so, its elements are multiplied together. Otherwise, the logic remains the same.\n",
"\n",
"Hints: Use the built-in [len() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#len) and [isinstance() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#isinstance) functions to check if there is only *one* positional argument and if it is a *collection* type. Use the *abstract base class* `Collection` from the [collections.abc <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.abc.html) module in the [standard library <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/index.html). You may want to *re-assign* `args` inside the body."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import collections.abc as abc"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def product(*args, ...):\n",
" \"\"\"Multiply all arguments.\"\"\"\n",
" ...\n",
" ...\n",
"\n",
" ...\n",
" ...\n",
"\n",
" return ..."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"All *five* code cells below now return correct results. We may unpack `one_hundred` or not."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(42)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(2, 5, 10)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(one_hundred)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(*one_hundred)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Side Note**: Above, we make `product()` work with a single *collection* type argument instead of a *sequence* type to keep it more generic: For example, we can pass in a `set` object, like `{2, 5, 10}` below, and `product()` continues to work correctly. The `set` type is introducted in [Chapter 9 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/09_mappings/00_content.ipynb#The-set-Type), and one essential difference to the `list` type is that objects of type `set` have *no* order regarding their elements. So, even though `[2, 5, 10]` and `{2, 5, 10}` look almost the same, the order implied in the literal notation gets lost in memory!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product([2, 5, 10]) # the argument is a collection that is also a sequence"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product({2, 5, 10}) # the argument is a collection that is NOT a sequence"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"isinstance({2, 5, 10}, abc.Sequence) # sets are NO sequences"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's continue to improve `product()` and make it more Pythonic. It is always a good idea to mimic the behavior of built-ins when writing our own functions. And, [sum() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#sum), for example, raises a `TypeError` if called *without* any arguments. It does *not* return the \"philosophical\" answer to adding *no* numbers, which would be `0`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sum()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q10**: Adapt the latest version of `product()` to also raise a `TypeError` if called *without* any *positional* arguments!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def product(*args, ...):\n",
" \"\"\"Multiply all arguments.\"\"\"\n",
" ...\n",
" ...\n",
" ...\n",
" ...\n",
"\n",
" ...\n",
" ...\n",
"\n",
" return ..."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.6"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": false,
"sideBar": true,
"skip_h1_title": true,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": false,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 4
}