"**Note**: Click on \"*Kernel*\" > \"*Restart Kernel and Clear All Outputs*\" in [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/) *before* reading this notebook to reset its output. If you cannot run this file on your machine, you may want to open it [in the cloud <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_mb.png\">](https://mybinder.org/v2/gh/webartifex/intro-to-python/main?urlpath=lab/tree/11_classes/02_content.ipynb)."
"In this second part of the chapter, we learn how we make our `Vector` and `Matrix` instances behave like Python's built-in sequence types, for example, `list` or `tuple` objects."
"As discussed in detail in [Chapter 7 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/07_sequences/00_content.ipynb#Collections-vs.-Sequences), a sequence is any finite and iterable container type with a *predictable* order of its elements such that we can label each element with an index in the range `0 <= index < len(sequence)`.\n",
"To make `Vector` and `Matrix` instances emulate sequences, we implement the `.__len__()` (cf., [reference <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/reference/datamodel.html#object.__len__)) and `.__getitem__()` (cf., [reference <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/reference/datamodel.html#object.__getitem__)) methods. While the former returns the total number of elements in a container and is automatically invoked on any object passed to the built-in [len() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#len) function, the latter is invoked by the interpreter behind the scenes when we use the indexing operator `[]`.\n",
"\n",
"In the example, both `.__len__()` and `.__getitem__()` delegate parts of the work to the embedded `list` object named `._entries`. This is a design principle known as [delegation <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Delegation_%28object-oriented_programming%29) in software engineering. Also, we implicitly invoke the `.__len__()` method inside the `.__init__()` method already via the `len(self)` expression. This reuses code and also ensures that we calculate the number of entries in one way only within the entire class."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"class Vector:\n",
"\n",
" def __init__(self, data):\n",
" self._entries = list(float(x) for x in data)\n",
" if len(self) == 0:\n",
" raise ValueError(\"a vector must have at least one entry\")\n",
"Now, we may obtain the number of elements with [len() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#len) and index into `Vector` instances."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"v = Vector([1, 2, 3])"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"3"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(v)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"1.0"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"v[0]"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Negative indexes work \"out of the box\" because of the delegation to the internal `list` object."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"3.0"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"v[-1]"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Somehow \"magically\" we can loop over `v` with a `for` statement. This works as Python simply loops over the indexes implied by `len(v)` and obtains the entries one by one."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.0 2.0 3.0 "
]
}
],
"source": [
"for entry in v:\n",
" print(entry, end=\" \")"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"`v` may also be looped over in reverse order with the [reversed() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#reversed) built-in."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.0 2.0 1.0 "
]
}
],
"source": [
"for entry in reversed(v):\n",
" print(entry, end=\" \")"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Membership testing with the `in` operator also comes \"for free.\" Here, Python compares the object to be searched to each element with the `==` operator and stops early once one compares equal. That constitutes a [linear search <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Linear_search) as seen before."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"1 in v"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"99 in v"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"So far, indexing is a *read-only* operation."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"ename": "TypeError",
"evalue": "'Vector' object does not support item assignment",
"\u001b[0;31mTypeError\u001b[0m: 'Vector' object does not support item assignment"
]
}
],
"source": [
"v[0] = 99"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Because a `Matrix` is two-dimensional, we must decide how we *flatten* the `._entries`. We *choose* to loop over the first row, then the second row, and so on. This is called a **[row major approach <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Row-_and_column-major_order)**.\n",
"\n",
"In addition to indexing by `int` objects, we also implement indexing by 2-`tuple`s of `int`s where the first element indicates the row and the second the column. Deciding what to do inside a method depending on the *type* of an argument is known as **type dispatching**. We achieve that with the built-in [isinstance() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#isinstance) function.\n",
"\n",
"Lastly, we ensure that integer indexing also works with negative values as we are used to from sequences in general.\n",
"\n",
"Note how all of the methods work together:\n",
"- `.__init__()`, `.__len__()`, and `.__getitem__()` reuse the `.n_rows` and `.n_cols` properties, and\n",
"- `.__init__()` and `.__getitem__()` invoke `.__len__()` via the `len(self)` expressions."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"code_folding": [],
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"class Matrix:\n",
"\n",
" def __init__(self, data):\n",
" self._entries = list(list(float(x) for x in r) for r in data)\n",
" for row in self._entries[1:]:\n",
" if len(row) != self.n_cols:\n",
" raise ValueError(\"rows must have the same number of entries\")\n",
" if len(self) == 0:\n",
" raise ValueError(\"a matrix must have at least one entry\")\n",
"\n",
" @property\n",
" def n_rows(self):\n",
" return len(self._entries)\n",
"\n",
" @property\n",
" def n_cols(self):\n",
" return len(self._entries[0])\n",
"\n",
" def __len__(self):\n",
" return self.n_rows * self.n_cols\n",
"\n",
" def __getitem__(self, index):\n",
" if isinstance(index, int):\n",
" if index < 0:\n",
" index += len(self)\n",
" if not (0 <= index < len(self)):\n",
" raise IndexError(\"integer index out of range\")\n",
" row, col = divmod(index, self.n_cols)\n",
" return self._entries[row][col]\n",
" elif (\n",
" isinstance(index, tuple) and len(index) == 2\n",
" and isinstance(index[0], int) and isinstance(index[1], int)\n",
" ):\n",
" return self._entries[index[0]][index[1]]\n",
" raise TypeError(\"index must be either an int or a tuple of two int's\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Now, we may use a `Matrix` instance just like any other sequence ..."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"m = Matrix([(1, 2, 3), (4, 5, 6), (7, 8, 9)])"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"9"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(m)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"1.0"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"m[0] # entry in the upper left corner"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"9.0"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"m[-1] # entry in the lower right corner"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"... but also index in the two dimensions separately."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"3.0"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"m[0, 2] # first row, third column"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/plain": [
"9.0"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"m[-1, -1] # last row, last column / lower right corner"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"As before, Python figures out the iteration on its own ..."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 "
]
}
],
"source": [
"for entry in m:\n",
" print(entry, end=\" \")"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 "
]
}
],
"source": [
"for entry in reversed(m):\n",
" print(entry, end=\" \")"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"... and makes the `in` operator do a linear search."
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"1 in m"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"99 in m"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"### The Python Data Model"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Sequence emulation itself is *not* a property of object-oriented languages in general. Instead, it is a behavior any data type may or may not exhibit in Python.\n",
"\n",
"The collection of all such behaviors a programming language offers is commonly referred to as its **object model**. In Python, the term **data model** is used instead and all possible behaviors are documented in the [language reference <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/reference/datamodel.html), in particular, in the section on special methods. We can think of the data model as the collection of all the behaviors we can make our user-defined data types follow. Pythonistas also use the term **protocol** instead of behavior, for example, we may say that \"the `Vector` and `Matrix` classes follow the sequence protocol.\"\n",
"So, merely defining the *two* `.__len__()` and `.__getitem__()` methods is enough to make instances of any user-defined type behave like the built-in sequences in [Chapter 7 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/07_sequences/00_content.ipynb). Yet, there we defined sequences as all objects having the *four* properties of being finite, iterable, and ordered container types. And, these properties correspond to special methods by the names of `.__len__()`, `.__iter__()`, `.__reversed__()`, and `.__contains__()` as we see in the next section. Thus, Python \"magically\" knows how to derive the logic for the `.__iter__()`, `.__reversed__()`, and `.__contains__()` methods from the combination of the `.__len__()` and `.__getitem__()` methods. In general, while some special methods are related, others are not. Understanding these relationships means understanding the Python data model and vice versa. That is what every aspiring data scientist should aim for.\n",
"On the contrary, we could also look at special methods individually. Whereas `.__len__()` is invoked on the object passed to [len() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#len), Python \"translates\" the indexing operator applied on any name like `a[i]`, for example, into the method invocation `a.__getitem__(i)`. So, in both cases, the special methods are executed according to a deterministic rule of the language. In that sense, they act as some sort of syntactic sugar. Thus, they even work if only one of them is defined. For example, without `.__len__()`, iteration with a `for`-loop still works but only in forward direction."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### More on Iteration"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"When implementing the sequence protocol for our `Matrix` class, we had to make the assumption that the user of our class wants to loop over the entries in a rows first fashion. While such assumptions can often be justified by referring to popular conventions (e.g., mathematicians usually look at matrices also in a \"row by column\" way), we could instead provide several iteration methods such that the user may choose one, just like `dict` objects come with several built-in methods that provide iteration.\n",
"\n",
"In the revised `Matrix` class below, we add the `.rows()`, `.cols()`, and `.entries()` methods that return `generator`s providing different and memory efficient ways of looping over the entries. `.rows()` and `.cols()` sequentially produce `Vector` instances representing individual rows and columns. This is in line with a popular idea in linear algebra to view a matrix as a collection of either row or column vectors. Further, `.entries()` by default produces the entries in the matrix one by one in a flat and row major fashion. Called with the optional `row_major=False` flag, it does the same in a column major fashion. The optional `reverse=True` flag allows iteration in backwards order.\n",
"\n",
"We also implement the `.__iter__()` (cf., [reference <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/reference/datamodel.html#object.__iter__)) and `.__reversed__()` (cf., [reference <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/reference/datamodel.html#object.__reversed__)) methods that immediately forward invocation to `.entries()`. So, Python does not need to fall back to `.__len__()` and `.__getitem__()` as we described above."
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"class Matrix:\n",
"\n",
" def __init__(self, data):\n",
" self._entries = list(list(float(x) for x in r) for r in data)\n",
" return (self._entries[r][c] for r in rows for c in cols)\n",
" return (self._entries[r][c] for c in cols for r in rows)\n",
"\n",
" def __iter__(self):\n",
" return self.entries()\n",
"\n",
" def __reversed__(self):\n",
" return self.entries(reverse=True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The revised version of `Vector` below also works without `.__len__()` and `.__getitem__()` methods and leaves the creation of memory efficient `generator`s up to the embedded `list` object in `._entries` by using the built-in [iter() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#iter) and [reversed() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#reversed) functions. Also, `.__repr__()` now relies on the sequence protocol as the instance loops over \"itself\" with `for x in self`, a subtle reuse of code again. "
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [],
"source": [
"class Vector:\n",
"\n",
" def __init__(self, data):\n",
" self._entries = list(float(x) for x in data)\n",
"In the above implementations, the instance attribute `._entries` on a `Vector` or `Matrix` instance references either a `list` or a `list` of row `list`s , which is by the convention of the leading underscore `_` an implementation detail. If users of our classes adhere to this convention, `Vector` and `Matrix` instances can be regarded as *immutable*.\n",
"In line with the implied immutability, we implemented the `.transpose()` method such that it returns a *new* `Matrix` instance. Instead, we could make the method change the internal `self._entries` attribute *in place* as we do in the next example. To indicate this mutation to the user of the `Matrix` class clearly, the revised `.transpose()` method returns `None`. That mirrors, for example, how the mutating methods of the built-in `list` type behave (cf., [Chapter 7 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/07_sequences/01_content.ipynb#List-Methods)).\n",
"Such decisions are better made consciously when designing a custom data type. The main trade-off is that immutable data types are typically easier to reason about when reading code whereas mutable data types tend to be more memory efficient and make programs faster as less copying operations take place in memory. However, this trade-off only becomes critical when we deal with big amounts of data."
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"class Matrix:\n",
"\n",
" def __init__(self, data):\n",
" self._entries = list(list(float(x) for x in r) for r in data)\n",
"\u001b[0;31mAttributeError\u001b[0m: 'NoneType' object has no attribute 'transpose'"
]
}
],
"source": [
"m.transpose().transpose()"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Enabling Method Chaining"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"To fix the missing method chaining, we end the `.transpose()` method with `return self`, which returns a reference to the instance on which the method is invoked."
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"class Matrix:\n",
"\n",
" def __init__(self, data):\n",
" self._entries = list(list(float(x) for x in r) for r in data)\n",
"The downside of this approach is that a user may unknowingly end up with *two* references to the *same* instance. That can only be mitigated by clear documentation."
"Analogous to the `.__getitem__()` method above, there are also the `.__setitem__()` (cf., [reference <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/reference/datamodel.html#object.__setitem__)) and `.__delitem__()` (cf., [reference <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/reference/datamodel.html#object.__delitem__)) methods that assign a new element to or delete an existing element from a sequence.\n",
"\n",
"Whereas deleting an individual entry in a `Vector` or `Matrix` instance may *not* really make sense semantically, we interpret this as setting the corresponding entry to \"unknown\" (i.e., `NaN`). Also, we implement changing individual entries via index assignment. Here, `.__setitem__()` delegates the assignment to the embedded `list` object after casting the assigned value as a `float`. While the example below only allows indexing by an integer, it could be generalized to slicing as well."
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"class Vector:\n",
"\n",
" def __init__(self, data):\n",
" self._entries = list(float(x) for x in data)\n",
"After this discussion of mutable `Vector` and `Matrix` classes, we continue with immutable implementations in the rest of this chapter. To lower the chance that we accidently design parts of our classes to be mutable, we replace the built-in [list() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#func-list) constructor with [tuple() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#func-tuple) in the `.__init__()` methods. As we learn in [Chapter 7 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/07_sequences/03_content.ipynb#Tuples-are-like-%22Immutable-Lists%22), `tuple`s are like immutable `list`s."
"A function is considered **polymorphic** if it can work with *different* data types. The main advantage is reuse of the function's code. Polymorphism goes hand in hand with the concept of [duck typing <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Duck_typing), first mentioned in [Chapter 4 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/04_iteration/00_content.ipynb#Duck-Typing) in the context of input validation.\n",
"We know polymorphic functions already: The built-in [sum() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#sum) function is a trivial example that works with all kinds of `iterable` arguments."
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"10"
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sum((1, 2, 3, 4))"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"10"
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sum([1, 2, 3, 4])"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"10"
]
},
"execution_count": 54,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sum({1, 2, 3, 4})"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/plain": [
"10"
]
},
"execution_count": 55,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sum({1: 996, 2: 997, 3: 998, 4: 999}) # loops over the keys"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"As we implemented the `Vector` and `Matrix` classes to be iterable, we may pass them to [sum() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#sum) as well."
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"10.0"
]
},
"execution_count": 56,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sum(Vector([1, 2, 3, 4]))"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"10.0"
]
},
"execution_count": 57,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sum(Matrix([(1, 2), (3, 4)]))"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"A polymorphic function with a semantic meaning in the context of linear algebra would be one that calculates the [Euclidean norm <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Norm_%28mathematics%29#Euclidean_norm) for vectors, which is a generalization of the popular [Pythagorean theorem <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Pythagorean_theorem). Extending the same kind of computation to a matrix results in the even more general [Frobenius norm <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm):"
"The `norm()` function below can handle both a `Vector` or a `Matrix` instance and is therefore polymorphic. In this sense, `Vector` and `Matrix` instances \"walk\" and \"quack\" alike. In particular, they they both can provide all their entries as a flat sequence."
"While `norm()` is intended to work with `Vector` or `Matrix` instances ..."
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"5.477225575051661"
]
},
"execution_count": 60,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"norm(Vector([1, 2, 3, 4]))"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"5.477225575051661"
]
},
"execution_count": 61,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"norm(Matrix([(1, 2), (3, 4)]))"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"... it also works for any sequence of numbers."
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/plain": [
"5.477225575051661"
]
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"norm([1, 2, 3, 4])"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"An important criterion if different classes are compatible in the sense that the same polymorphic function can work with them is that they implement the same **interface**.\n",
"\n",
"Whereas many other programming languages formalize this [concept <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Protocol_%28object-oriented_programming%29), in Python the term refers to the loose idea that different classes define the same attributes and implement the various protocols behind the special methods in a consistent way. This is what it means to \"walk\" and \"quack\" alike."