Add initial version of chapter 09, part 2
This commit is contained in:
parent
f02a5f0e01
commit
0fe9cca303
4 changed files with 1206 additions and 1 deletions
|
@ -874,7 +874,7 @@
|
||||||
"\n",
|
"\n",
|
||||||
"To understand this in detail, we have to study algorithms and data structures (e.g., with [this book](https://www.amazon.de/Introduction-Algorithms-Press-Thomas-Cormen/dp/0262033844/ref=sr_1_1?__mk_de_DE=%C3%85M%C3%85%C5%BD%C3%95%C3%91&crid=1JNE8U0VZGU0O&qid=1569837169&s=gateway&sprefix=algorithms+an%2Caps%2C180&sr=8-1)), a discipline within computer science, and dive into the analysis of **[time complexity of algorithms <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Time_complexity)**.\n",
|
"To understand this in detail, we have to study algorithms and data structures (e.g., with [this book](https://www.amazon.de/Introduction-Algorithms-Press-Thomas-Cormen/dp/0262033844/ref=sr_1_1?__mk_de_DE=%C3%85M%C3%85%C5%BD%C3%95%C3%91&crid=1JNE8U0VZGU0O&qid=1569837169&s=gateway&sprefix=algorithms+an%2Caps%2C180&sr=8-1)), a discipline within computer science, and dive into the analysis of **[time complexity of algorithms <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Time_complexity)**.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Luckily, in the Fibonacci case, the inefficiency can be resolved with a **caching** (i.e., \"reuse\") strategy from the field of **[dynamic programming <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Dynamic_programming)**, namely **[memoization <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Memoization)**. We do so in [Chapter 9 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/09_mappings/00_content.ipynb#Memoization), after introducing the `dict` data type.\n",
|
"Luckily, in the Fibonacci case, the inefficiency can be resolved with a **caching** (i.e., \"reuse\") strategy from the field of **[dynamic programming <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Dynamic_programming)**, namely **[memoization <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Memoization)**. We do so in [Chapter 9 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/09_mappings/02_content.ipynb#Memoization), after introducing the `dict` data type.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Let's measure the average run times for `fibonacci()` and varying `i` arguments with the `%%timeit` [cell magic](https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-timeit) that comes with Jupyter."
|
"Let's measure the average run times for `fibonacci()` and varying `i` arguments with the `%%timeit` [cell magic](https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-timeit) that comes with Jupyter."
|
||||||
]
|
]
|
||||||
|
|
1201
09_mappings/02_content.ipynb
Normal file
1201
09_mappings/02_content.ipynb
Normal file
File diff suppressed because it is too large
Load diff
BIN
09_mappings/static/fibonacci_call_graph.png
Normal file
BIN
09_mappings/static/fibonacci_call_graph.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 32 KiB |
|
@ -240,3 +240,7 @@ If this is not possible,
|
||||||
- [exercises <img height="12" style="display: inline-block" src="static/link/to_nb.png">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/09_mappings/01_exercises.ipynb)
|
- [exercises <img height="12" style="display: inline-block" src="static/link/to_nb.png">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/09_mappings/01_exercises.ipynb)
|
||||||
[<img height="12" style="display: inline-block" src="static/link/to_mb.png">](https://mybinder.org/v2/gh/webartifex/intro-to-python/develop?urlpath=lab/tree/09_mappings/01_exercises.ipynb)
|
[<img height="12" style="display: inline-block" src="static/link/to_mb.png">](https://mybinder.org/v2/gh/webartifex/intro-to-python/develop?urlpath=lab/tree/09_mappings/01_exercises.ipynb)
|
||||||
(Working with Nested Data)
|
(Working with Nested Data)
|
||||||
|
- [content <img height="12" style="display: inline-block" src="static/link/to_nb.png">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/09_mappings/02_content.ipynb)
|
||||||
|
[<img height="12" style="display: inline-block" src="static/link/to_mb.png">](https://mybinder.org/v2/gh/webartifex/intro-to-python/develop?urlpath=lab/tree/09_mappings/02_content.ipynb)
|
||||||
|
(`**kwargs` in Function Definitions;
|
||||||
|
Memoization)
|
||||||
|
|
Loading…
Reference in a new issue