From 8c9af64b4e5fbfb787edf756bbc7494e1ed680ec Mon Sep 17 00:00:00 2001
From: Alexander Hess <alexander@webartifex.biz>
Date: Wed, 6 Nov 2019 16:19:16 +0100
Subject: [PATCH] Add review and exercises for notebook 07

---
 07_sequences_review_and_exercises.ipynb | 389 ++++++++++++++++++++++++
 1 file changed, 389 insertions(+)
 create mode 100644 07_sequences_review_and_exercises.ipynb

diff --git a/07_sequences_review_and_exercises.ipynb b/07_sequences_review_and_exercises.ipynb
new file mode 100644
index 0000000..17e1ffc
--- /dev/null
+++ b/07_sequences_review_and_exercises.ipynb
@@ -0,0 +1,389 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "\n",
+    "# Chapter 7: Sequential Data"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Content Review"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Read [Chapter 7](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/master/07_sequences.ipynb) of the book. Then work through the ten review questions."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Essay Questions "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Answer the following questions briefly with *at most* 300 characters per question!"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "**Q1**: We have seen **containers** and **iterables** before in [Chapter 4](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/master/04_iteration.ipynb#Containers-vs.-Iterables). How do they relate to **sequences**? "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    " "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "**Q2**: Explain the difference between a **mutable** and an **immutable** object in Python with an example!"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    " "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "**Q3**: What is the difference between a **shallow** and a **deep** copy of an object? How can one of them become a problem?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    " "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "**Q4.1**: `tuple` objects have *two* primary usages. First, they can be used in place of `list` objects where **mutability** is *not* required. Second, we use them to model **records**.\n",
+    "\n",
+    "Describe why `tuple` objects are a suitable replacement for `list` objects in general!"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    " "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "**Q4.2**: What do we mean by a **record**? How are `tuple` objects suitable to model records? How can we integrate a **semantic** meaning when working with records?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    " "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "**Q5**: With the [map()](https://docs.python.org/3/library/functions.html#map) and [filter()](https://docs.python.org/3/library/functions.html#filter) built-ins and the [reduce()](https://docs.python.org/3/library/functools.html#functools.reduce) function from the [functools](https://docs.python.org/3/library/functools.html) module in the [standard library](https://docs.python.org/3/library/index.html), we can replace many tedious `for`-loops and `if` statements. What are some advantages of doing so?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    " "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### True / False Questions"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Motivate your answer with *one short* sentence!"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "**Q6**: `sequence` objects are *not* part of core Python but may be imported from the [standard library](https://docs.python.org/3/library/index.html)."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    " "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "**Q7**: Passing **mutable** objects as arguments to functions is not problematic because functions operate in a **local** scope without affecting the **global** scope."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    " "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "**Q8**: The **map-filter-reduce** paradigm is an excellent mental concept to organize one's code with. Then, there is a good chance that a program can be **parallelized** if the data input grows."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    " "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "**Q9**: `lambda` expressions are useful in the context of the **map-filter-reduce** paradigm, where we often do *not* re-use a `function` object more than once."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    " "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Coding Exercises"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Working with Lists"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "**Q10.1**: Write a function `nested_sum()` that takes a `list` object as its argument, which contains other `list` objects with numbers, and adds up the numbers! Use `nested_numbers` below to test your function!\n",
+    "\n",
+    "Hint: You need at least one `for`-loop."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "nested_numbers = [[1, 2, 3], [4], [5], [6, 7], [8], [9]]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def nested_sum():\n",
+    "    ..."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "nested_sum(nested_numbers)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "**Q10.2**: Provide a one-line expression to obtain the *same* result as `nested_sum()`!\n",
+    "\n",
+    "Hints: Use a *list comprehension*. You may want to use the built-in [sum()](https://docs.python.org/3/library/functions.html#sum) function several times."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "**Q10.3**: Generalize `nested_sum()` into a function `mixed_sum()` that can process a \"mixed\" `list` object, which contains numbers and other `list` objects with numbers! Use `mixed_numbers` below for testing!\n",
+    "\n",
+    "Hints: Use the built-in [isinstance()](https://docs.python.org/3/library/functions.html#isinstance) function to check how an element is to be processed. Get extra credit for adhering to *goose typing*, as explained in [Chapter 5](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/master/05_numbers.ipynb#Goose-Typing)."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "mixed_numbers = [[1, 2, 3], 4, 5, [6, 7], 8, [9]]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def mixed_sum():\n",
+    "    ..."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "mixed_sum(nums)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "**Q10.4.1**: Write a function `cum_sum()` that takes a `list` object with numbers as its argument and returns a *new* `list` object with the **cumulative sums** of these numbers! So, `sum_up` below, `[1, 2, 3, 4, 5]`, should return `[1, 3, 6, 10, 15]`.\n",
+    "\n",
+    "Hint: The idea behind is similar to the [cumulative distribution function](https://en.wikipedia.org/wiki/Cumulative_distribution_function) from statistics."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "sum_up = [1, 2, 3, 4, 5]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def cum_sum():\n",
+    "    ..."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "cum_sum(sum_up)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "**Q10.4.2**: We should always make sure that our functions also work in corner cases. What happens if your implementation of `cum_sum()` is called with an empty list `[]`? Make sure it handles that case *without* crashing! What would be a good return value in this corner case? Describe everything in the docstring.\n",
+    "\n",
+    "Hint: It is possible to write this without any extra input validation."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "cum_sum([])"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.3"
+  },
+  "toc": {
+   "base_numbering": 1,
+   "nav_menu": {},
+   "number_sections": false,
+   "sideBar": true,
+   "skip_h1_title": true,
+   "title_cell": "Table of Contents",
+   "title_sidebar": "Contents",
+   "toc_cell": false,
+   "toc_position": {},
+   "toc_section_display": false,
+   "toc_window_display": false
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}