Release 0.1.0

After refurbishing the project we prepare a new relaease.
There are no changes with respect to the contents as compared to v0.0.0
that are noteworthy release notes.
This commit is contained in:
Alexander Hess 2024-04-08 22:13:31 +02:00
commit 94e5112f10
Signed by: alexander
GPG key ID: 344EA5AB10D868E0
65 changed files with 387 additions and 387 deletions

View file

@ -8,7 +8,7 @@
}
},
"source": [
"**Note**: Click on \"*Kernel*\" > \"*Restart Kernel and Clear All Outputs*\" in [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/) *before* reading this notebook to reset its output. If you cannot run this file on your machine, you may want to open it [in the cloud <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_mb.png\">](https://mybinder.org/v2/gh/webartifex/intro-to-python/develop?urlpath=lab/tree/07_sequences/00_content.ipynb)."
"**Note**: Click on \"*Kernel*\" > \"*Restart Kernel and Clear All Outputs*\" in [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/) *before* reading this notebook to reset its output. If you cannot run this file on your machine, you may want to open it [in the cloud <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_mb.png\">](https://mybinder.org/v2/gh/webartifex/intro-to-python/main?urlpath=lab/tree/07_sequences/00_content.ipynb)."
]
},
{
@ -30,11 +30,11 @@
}
},
"source": [
"We studied numbers (cf., [Chapter 5 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/05_numbers/00_content.ipynb)) and textual data (cf., [Chapter 6 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/06_text/00_content.ipynb)) first mainly because objects of the presented data types are \"simple.\" That is so for two reasons: First, they are *immutable*, and, as we saw in the \"*Who am I? And how many?*\" section in [Chapter 1 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/01_elements/03_content.ipynb#Who-am-I?-And-how-many?), mutable objects can quickly become hard to reason about. Second, they are \"flat\" in the sense that they are *not* composed of other objects.\n",
"We studied numbers (cf., [Chapter 5 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/05_numbers/00_content.ipynb)) and textual data (cf., [Chapter 6 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/06_text/00_content.ipynb)) first mainly because objects of the presented data types are \"simple.\" That is so for two reasons: First, they are *immutable*, and, as we saw in the \"*Who am I? And how many?*\" section in [Chapter 1 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/01_elements/03_content.ipynb#Who-am-I?-And-how-many?), mutable objects can quickly become hard to reason about. Second, they are \"flat\" in the sense that they are *not* composed of other objects.\n",
"\n",
"The `str` type is a bit of a corner case in this regard. While one could argue that a longer `str` object, for example, `\"text\"`, is composed of individual characters, this is *not* the case in memory as the literal `\"text\"` only creates *one* object (i.e., one \"bag\" of $0$s and $1$s modeling all characters).\n",
"\n",
"This chapter, [Chapter 8 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/08_mfr/00_content.ipynb), [Chapter 9 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/09_mappings/00_content.ipynb), and [Chapter 10 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/10_arrays/00_content.ipynb) introduce various \"complex\" data types. While some are mutable and others are not, they all share that they are primarily used to \"manage,\" or structure, the memory in a program (i.e., they provide references to other objects). Unsurprisingly, computer scientists refer to the ideas behind these data types as **[data structures <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Data_structure)**.\n",
"This chapter, [Chapter 8 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/08_mfr/00_content.ipynb), [Chapter 9 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/09_mappings/00_content.ipynb), and [Chapter 10 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/10_arrays/00_content.ipynb) introduce various \"complex\" data types. While some are mutable and others are not, they all share that they are primarily used to \"manage,\" or structure, the memory in a program (i.e., they provide references to other objects). Unsurprisingly, computer scientists refer to the ideas behind these data types as **[data structures <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Data_structure)**.\n",
"\n",
"In this chapter, we focus on data types that model all kinds of sequential data. Examples of such data are [spreadsheets <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Spreadsheet) or [matrices <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Matrix_%28mathematics%29) and [vectors <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Vector_%28mathematics_and_physics%29). These formats share the property that they are composed of smaller units that come in a sequence of, for example, rows/columns/cells or elements/entries."
]
@ -58,9 +58,9 @@
}
},
"source": [
"[Chapter 6 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/06_text/00_content.ipynb#A-\"String\"-of-Characters) already describes the **sequence** properties of `str` objects. In this section, we take a step back and study these properties one by one.\n",
"[Chapter 6 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/06_text/00_content.ipynb#A-\"String\"-of-Characters) already describes the **sequence** properties of `str` objects. In this section, we take a step back and study these properties one by one.\n",
"\n",
"The [collections.abc <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.abc.html) module in the [standard library <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/index.html) defines a variety of **abstract base classes** (ABCs). We saw ABCs already in [Chapter 5 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/05_numbers/02_content.ipynb#The-Numerical-Tower), where we use the ones from the [numbers <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/numbers.html) module in the [standard library <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/index.html) to classify Python's numeric data types according to mathematical ideas. Now, we take the ABCs from the [collections.abc <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.abc.html) module to classify the data types in this chapter according to their behavior in various contexts.\n",
"The [collections.abc <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.abc.html) module in the [standard library <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/index.html) defines a variety of **abstract base classes** (ABCs). We saw ABCs already in [Chapter 5 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/05_numbers/02_content.ipynb#The-Numerical-Tower), where we use the ones from the [numbers <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/numbers.html) module in the [standard library <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/index.html) to classify Python's numeric data types according to mathematical ideas. Now, we take the ABCs from the [collections.abc <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.abc.html) module to classify the data types in this chapter according to their behavior in various contexts.\n",
"\n",
"As an illustration, consider `numbers` and `text` below, two objects of *different* types."
]
@ -142,7 +142,7 @@
}
},
"source": [
"In [Chapter 4 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/04_iteration/02_content.ipynb#Containers-vs.-Iterables), we referred to such types as *iterables*. That is *not* a proper [English](https://dictionary.cambridge.org/spellcheck/english-german/?q=iterable) word, even if it may sound like one at first sight. Yet, it is an official term in the Python world formalized with the `Iterable` ABC in the [collections.abc <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.abc.html) module.\n",
"In [Chapter 4 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/04_iteration/02_content.ipynb#Containers-vs.-Iterables), we referred to such types as *iterables*. That is *not* a proper [English](https://dictionary.cambridge.org/spellcheck/english-german/?q=iterable) word, even if it may sound like one at first sight. Yet, it is an official term in the Python world formalized with the `Iterable` ABC in the [collections.abc <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.abc.html) module.\n",
"\n",
"For the data science practitioner, it is worthwhile to know such terms as, for example, the documentation on the [built-ins <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html) uses them extensively: In simple words, any built-in that takes an argument called \"*iterable*\" may be called with *any* object that supports being looped over. Already familiar [built-ins <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html) include [enumerate() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#enumerate), [sum() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#sum), or [zip() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#zip). So, they do *not* require the argument to be of a certain data type (e.g., `list`); instead, any *iterable* type works."
]
@ -192,7 +192,7 @@
}
},
"source": [
"As seen in [Chapter 5 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/05_numbers/02_content.ipynb#Goose-Typing), we can use ABCs with the built-in [isinstance() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#isinstance) function to check if an object supports a behavior.\n",
"As seen in [Chapter 5 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/05_numbers/02_content.ipynb#Goose-Typing), we can use ABCs with the built-in [isinstance() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#isinstance) function to check if an object supports a behavior.\n",
"\n",
"So, let's \"ask\" Python if it can loop over `numbers` or `text`."
]
@ -325,7 +325,7 @@
}
},
"source": [
"Most of the data types in this chapter and [Chapter 9 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/09_mappings/00_content.ipynb) and [Chapter 10 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/10_arrays/00_content.ipynb) exhibit three [orthogonal <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Orthogonality) (i.e., \"independent\") behaviors, formalized by ABCs in the [collections.abc <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.abc.html) module as:\n",
"Most of the data types in this chapter and [Chapter 9 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/09_mappings/00_content.ipynb) and [Chapter 10 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/10_arrays/00_content.ipynb) exhibit three [orthogonal <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Orthogonality) (i.e., \"independent\") behaviors, formalized by ABCs in the [collections.abc <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.abc.html) module as:\n",
"- `Iterable`: An object may be looped over.\n",
"- `Container`: An object \"contains\" references to other objects; a \"whole\" is composed of many \"parts.\"\n",
"- `Sized`: The number of references to other objects, the \"parts,\" is *finite*.\n",
@ -902,11 +902,11 @@
}
},
"source": [
"The data types introduced in this chapter are sequences. Nevertheless, we also look at some data types that are neither collections nor sequences but are still useful to model sequential data in practice in [Chapter 8 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/08_mfr/00_content.ipynb).\n",
"The data types introduced in this chapter are sequences. Nevertheless, we also look at some data types that are neither collections nor sequences but are still useful to model sequential data in practice in [Chapter 8 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/08_mfr/00_content.ipynb).\n",
"\n",
"In Python-related documentations, the terms collection and sequence are heavily used, and the data science practitioner should always think of them in terms of the three or four behaviors they exhibit.\n",
"\n",
"Data types that are collections but not sequences are covered in [Chapter 9 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/09_mappings/00_content.ipynb)."
"Data types that are collections but not sequences are covered in [Chapter 9 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/09_mappings/00_content.ipynb)."
]
}
],

View file

@ -8,7 +8,7 @@
}
},
"source": [
"**Note**: Click on \"*Kernel*\" > \"*Restart Kernel and Clear All Outputs*\" in [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/) *before* reading this notebook to reset its output. If you cannot run this file on your machine, you may want to open it [in the cloud <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_mb.png\">](https://mybinder.org/v2/gh/webartifex/intro-to-python/develop?urlpath=lab/tree/07_sequences/01_content.ipynb)."
"**Note**: Click on \"*Kernel*\" > \"*Restart Kernel and Clear All Outputs*\" in [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/) *before* reading this notebook to reset its output. If you cannot run this file on your machine, you may want to open it [in the cloud <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_mb.png\">](https://mybinder.org/v2/gh/webartifex/intro-to-python/main?urlpath=lab/tree/07_sequences/01_content.ipynb)."
]
},
{
@ -209,7 +209,7 @@
"source": [
"Alternatively, we use the built-in [list() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#func-list) constructor to create a `list` object out of any (finite) *iterable* we pass to it as the argument.\n",
"\n",
"For example, we can wrap the [range() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#func-range) built-in with [list() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#func-list): As described in [Chapter 4 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/04_iteration/02_content.ipynb#Containers-vs.-Iterables), `range` objects, like `range(1, 13)` below, are iterable and generate `int` objects \"on the fly\" (i.e., one by one). The [list() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#func-list) around it acts like a `for`-loop and **materializes** twelve `int` objects in memory that then become the elements of the newly created `list` object. [PythonTutor <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](http://pythontutor.com/visualize.html#code=r%20%3D%20range%281,%2013%29%0Al%20%3D%20list%28range%281,%2013%29%29&cumulative=false&curstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false) shows this difference visually."
"For example, we can wrap the [range() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#func-range) built-in with [list() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#func-list): As described in [Chapter 4 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/04_iteration/02_content.ipynb#Containers-vs.-Iterables), `range` objects, like `range(1, 13)` below, are iterable and generate `int` objects \"on the fly\" (i.e., one by one). The [list() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#func-list) around it acts like a `for`-loop and **materializes** twelve `int` objects in memory that then become the elements of the newly created `list` object. [PythonTutor <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](http://pythontutor.com/visualize.html#code=r%20%3D%20range%281,%2013%29%0Al%20%3D%20list%28range%281,%2013%29%29&cumulative=false&curstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false) shows this difference visually."
]
},
{
@ -1691,7 +1691,7 @@
"source": [
"The `list` type is an essential data structure in any real-world Python application, and many typical `list`-related algorithms from computer science theory are already built into it at the C level (cf., the [documentation <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#mutable-sequence-types) or the [tutorial <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/tutorial/datastructures.html#more-on-lists) for a full overview; unfortunately, not all methods have direct links). So, understanding and applying the built-in methods of the `list` type not only speeds up the development process but also makes programs significantly faster.\n",
"\n",
"In contrast to the `str` type's methods in [Chapter 6 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/06_text/00_content.ipynb#String-Methods) (e.g., [.upper() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.upper) or [.lower() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.lower)), the `list` type's methods that mutate an object do so *in place*. That means they *never* create *new* `list` objects and return `None` to indicate that. So, we must *never* assign the return value of `list` methods to the variable holding the list!\n",
"In contrast to the `str` type's methods in [Chapter 6 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/06_text/00_content.ipynb#String-Methods) (e.g., [.upper() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.upper) or [.lower() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.lower)), the `list` type's methods that mutate an object do so *in place*. That means they *never* create *new* `list` objects and return `None` to indicate that. So, we must *never* assign the return value of `list` methods to the variable holding the list!\n",
"\n",
"Let's look at the following `names` example."
]
@ -2029,7 +2029,7 @@
"source": [
"The [.sort() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#list.sort) method and the [sorted() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#sorted) function sort the elements in `names` in alphabetical order, forward or backward. However, that does *not* hold in general.\n",
"\n",
"We mention above that `list` objects may contain objects of *any* type and even of *mixed* types. Because of that, the sorting is **[delegated <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Delegation_(object-oriented_programming))** to the elements in a `list` object. In a way, Python \"asks\" the elements in a `list` object to sort themselves. As `names` contains only `str` objects, they are sorted according the the comparison rules explained in [Chapter 6 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/06_text/00_content.ipynb#String-Comparison).\n",
"We mention above that `list` objects may contain objects of *any* type and even of *mixed* types. Because of that, the sorting is **[delegated <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Delegation_(object-oriented_programming))** to the elements in a `list` object. In a way, Python \"asks\" the elements in a `list` object to sort themselves. As `names` contains only `str` objects, they are sorted according the the comparison rules explained in [Chapter 6 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/06_text/00_content.ipynb#String-Comparison).\n",
"\n",
"To customize the sorting, we pass a keyword-only `key` argument to [.sort() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#list.sort) or [sorted() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#sorted), which must be a `function` object accepting *one* positional argument. Then, the elements in the `list` object are passed to that one by one, and the return values are used as the **sort keys**. The `key` argument is also a popular use case for `lambda` expressions.\n",
"\n",

View file

@ -4,7 +4,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"**Note**: Click on \"*Kernel*\" > \"*Restart Kernel and Run All*\" in [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/) *after* finishing the exercises to ensure that your solution runs top to bottom *without* any errors. If you cannot run this file on your machine, you may want to open it [in the cloud <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_mb.png\">](https://mybinder.org/v2/gh/webartifex/intro-to-python/develop?urlpath=lab/tree/07_sequences/02_exercises.ipynb)."
"**Note**: Click on \"*Kernel*\" > \"*Restart Kernel and Run All*\" in [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/) *after* finishing the exercises to ensure that your solution runs top to bottom *without* any errors. If you cannot run this file on your machine, you may want to open it [in the cloud <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_mb.png\">](https://mybinder.org/v2/gh/webartifex/intro-to-python/main?urlpath=lab/tree/07_sequences/02_exercises.ipynb)."
]
},
{
@ -18,7 +18,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"The exercises below assume that you have read the [second part <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/01_content.ipynb) of Chapter 7.\n",
"The exercises below assume that you have read the [second part <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/07_sequences/01_content.ipynb) of Chapter 7.\n",
"\n",
"The `...`'s in the code cells indicate where you need to fill in code snippets. The number of `...`'s within a code cell give you a rough idea of how many lines of code are needed to solve the task. You should not need to create any additional code cells for your final solution. However, you may want to use temporary code cells to try out some ideas."
]

View file

@ -8,7 +8,7 @@
}
},
"source": [
"**Note**: Click on \"*Kernel*\" > \"*Restart Kernel and Clear All Outputs*\" in [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/) *before* reading this notebook to reset its output. If you cannot run this file on your machine, you may want to open it [in the cloud <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_mb.png\">](https://mybinder.org/v2/gh/webartifex/intro-to-python/develop?urlpath=lab/tree/07_sequences/03_content.ipynb)."
"**Note**: Click on \"*Kernel*\" > \"*Restart Kernel and Clear All Outputs*\" in [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/) *before* reading this notebook to reset its output. If you cannot run this file on your machine, you may want to open it [in the cloud <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_mb.png\">](https://mybinder.org/v2/gh/webartifex/intro-to-python/main?urlpath=lab/tree/07_sequences/03_content.ipynb)."
]
},
{
@ -172,7 +172,7 @@
"\n",
"The revised `add_xyz()` function below is more natural to reason about as it does *not* modify the passed in `arg` internally. [PythonTutor <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](http://pythontutor.com/visualize.html#code=letters%20%3D%20%5B%22a%22,%20%22b%22,%20%22c%22%5D%0A%0Adef%20add_xyz%28arg%29%3A%0A%20%20%20%20new_arg%20%3D%20arg%5B%3A%5D%0A%20%20%20%20new_arg.extend%28%5B%22x%22,%20%22y%22,%20%22z%22%5D%29%0A%20%20%20%20return%20new_arg%0A%0Aletters_with_xyz%20%3D%20add_xyz%28letters%29&cumulative=false&curstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false) shows that as well. This approach is following the **[functional programming <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Functional_programming)** paradigm that is going through a \"renaissance\" currently. Two essential characteristics of functional programming are that a function *never* changes its inputs and *always* returns the same output given the same inputs.\n",
"\n",
"For a beginner, it is probably better to stick to this idea and not change any arguments as the original `add_xyz()` above. However, functions that modify and return the argument passed in are an important aspect of object-oriented programming, as explained in [Chapter 11 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/11_classes/00_content.ipynb)."
"For a beginner, it is probably better to stick to this idea and not change any arguments as the original `add_xyz()` above. However, functions that modify and return the argument passed in are an important aspect of object-oriented programming, as explained in [Chapter 11 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/11_classes/00_content.ipynb)."
]
},
{
@ -1469,7 +1469,7 @@
}
},
"source": [
"In the \"*List Operations*\" section in the [second part <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/01_content.ipynb#List-Operations) of this chapter, the `*` symbol **unpacks** the elements of a `list` object into another one. This idea of *iterable unpacking* is built into Python at various places, even *without* the `*` symbol.\n",
"In the \"*List Operations*\" section in the [second part <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/07_sequences/01_content.ipynb#List-Operations) of this chapter, the `*` symbol **unpacks** the elements of a `list` object into another one. This idea of *iterable unpacking* is built into Python at various places, even *without* the `*` symbol.\n",
"\n",
"For example, we may write variables on the left-hand side of a `=` statement in a literal `tuple` style. Then, any *finite* iterable on the right-hand side is unpacked. So, `numbers` is unpacked into *twelve* variables below."
]
@ -2041,7 +2041,7 @@
}
},
"source": [
"Unpacking allows us to rewrite the iterative `fibonacci()` function from [Chapter 4 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/04_iteration/02_content.ipynb#\"Hard-at-first-Glance\"-Example:-Fibonacci-Numbers-%28revisited%29) in a concise way."
"Unpacking allows us to rewrite the iterative `fibonacci()` function from [Chapter 4 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/04_iteration/02_content.ipynb#\"Hard-at-first-Glance\"-Example:-Fibonacci-Numbers-%28revisited%29) in a concise way."
]
},
{
@ -2376,7 +2376,7 @@
}
},
"source": [
"In the \"*Packing & Unpacking with Functions*\" [exercise <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/04_exercises.ipynb), we look at `product()` in more detail.\n",
"In the \"*Packing & Unpacking with Functions*\" [exercise <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/07_sequences/04_exercises.ipynb), we look at `product()` in more detail.\n",
"\n",
"While we needed to unpack `one_hundred` above to avoid the semantic error, unpacking an argument in a function call may also be a convenience in general. For example, to print the elements of `one_hundred` in one line, we need to use a `for` statement, until now. With unpacking, we get away *without* a loop."
]

View file

@ -4,7 +4,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"**Note**: Click on \"*Kernel*\" > \"*Restart Kernel and Run All*\" in [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/) *after* finishing the exercises to ensure that your solution runs top to bottom *without* any errors. If you cannot run this file on your machine, you may want to open it [in the cloud <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_mb.png\">](https://mybinder.org/v2/gh/webartifex/intro-to-python/develop?urlpath=lab/tree/07_sequences/04_exercises.ipynb)."
"**Note**: Click on \"*Kernel*\" > \"*Restart Kernel and Run All*\" in [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/) *after* finishing the exercises to ensure that your solution runs top to bottom *without* any errors. If you cannot run this file on your machine, you may want to open it [in the cloud <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_mb.png\">](https://mybinder.org/v2/gh/webartifex/intro-to-python/main?urlpath=lab/tree/07_sequences/04_exercises.ipynb)."
]
},
{
@ -18,7 +18,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"The exercises below assume that you have read the [third part <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/03_content.ipynb) of Chapter 7.\n",
"The exercises below assume that you have read the [third part <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/07_sequences/03_content.ipynb) of Chapter 7.\n",
"\n",
"The `...`'s in the code cells indicate where you need to fill in code snippets. The number of `...`'s within a code cell give you a rough idea of how many lines of code are needed to solve the task. You should not need to create any additional code cells for your final solution. However, you may want to use temporary code cells to try out some ideas."
]
@ -34,7 +34,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"In the \"*Function Definitions & Calls*\" section in [Chapter 7 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/03_content.ipynb#Function-Definitions-&-Calls), we define the following function `product()`. In this exercise, you will improve it by making it more \"user-friendly.\""
"In the \"*Function Definitions & Calls*\" section in [Chapter 7 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/07_sequences/03_content.ipynb#Function-Definitions-&-Calls), we define the following function `product()`. In this exercise, you will improve it by making it more \"user-friendly.\""
]
},
{
@ -128,7 +128,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"In [Chapter 7 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/00_content.ipynb#Function-Definitions-&-Calls), we also pass a `list` object, like `one_hundred`, to `product()`, and *no* exception is raised."
"In [Chapter 7 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/07_sequences/00_content.ipynb#Function-Definitions-&-Calls), we also pass a `list` object, like `one_hundred`, to `product()`, and *no* exception is raised."
]
},
{
@ -153,7 +153,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q3**: What is wrong with that? What *kind* of error (cf., [Chapter 1 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/01_elements/00_content.ipynb#Formal-vs.-Natural-Languages)) is that conceptually? Describe precisely what happens to the passed in `one_hundred` in every line within `product()`!"
"**Q3**: What is wrong with that? What *kind* of error (cf., [Chapter 1 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/01_elements/00_content.ipynb#Formal-vs.-Natural-Languages)) is that conceptually? Describe precisely what happens to the passed in `one_hundred` in every line within `product()`!"
]
},
{
@ -331,7 +331,7 @@
"source": [
"**Q7**: Rewrite `product()` so that it takes a *keyword-only* argument `start`, defaulting to the above *default* or *start* value, and use `start` internally instead of `result`!\n",
"\n",
"Hint: Remember that a *keyword-only* argument is any parameter specified in a function's header line after the first and only `*` (cf., [Chapter 2 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/02_functions/00_content.ipynb#Keyword-only-Arguments))."
"Hint: Remember that a *keyword-only* argument is any parameter specified in a function's header line after the first and only `*` (cf., [Chapter 2 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/02_functions/00_content.ipynb#Keyword-only-Arguments))."
]
},
{
@ -544,7 +544,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"**Side Note**: Above, we make `product()` work with a single *collection* type argument instead of a *sequence* type to keep it more generic: For example, we can pass in a `set` object, like `{2, 5, 10}` below, and `product()` continues to work correctly. The `set` type is introducted in [Chapter 9 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/09_mappings/00_content.ipynb#The-set-Type), and one essential difference to the `list` type is that objects of type `set` have *no* order regarding their elements. So, even though `[2, 5, 10]` and `{2, 5, 10}` look almost the same, the order implied in the literal notation gets lost in memory!"
"**Side Note**: Above, we make `product()` work with a single *collection* type argument instead of a *sequence* type to keep it more generic: For example, we can pass in a `set` object, like `{2, 5, 10}` below, and `product()` continues to work correctly. The `set` type is introducted in [Chapter 9 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/09_mappings/00_content.ipynb#The-set-Type), and one essential difference to the `list` type is that objects of type `set` have *no* order regarding their elements. So, even though `[2, 5, 10]` and `{2, 5, 10}` look almost the same, the order implied in the literal notation gets lost in memory!"
]
},
{

View file

@ -8,7 +8,7 @@
}
},
"source": [
"**Note**: Click on \"*Kernel*\" > \"*Restart Kernel and Clear All Outputs*\" in [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/) *before* reading this notebook to reset its output. If you cannot run this file on your machine, you may want to open it [in the cloud <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_mb.png\">](https://mybinder.org/v2/gh/webartifex/intro-to-python/develop?urlpath=lab/tree/07_sequences/05_appendix.ipynb)."
"**Note**: Click on \"*Kernel*\" > \"*Restart Kernel and Clear All Outputs*\" in [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/) *before* reading this notebook to reset its output. If you cannot run this file on your machine, you may want to open it [in the cloud <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_mb.png\">](https://mybinder.org/v2/gh/webartifex/intro-to-python/main?urlpath=lab/tree/07_sequences/05_appendix.ipynb)."
]
},
{
@ -30,7 +30,7 @@
}
},
"source": [
"In the [third part <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/03_content.ipynb#Tuples-are-like-\"Immutable-Lists\") of the chapter, we proposed the idea that `tuple` objects are like \"immutable lists.\" Often, however, we use `tuple` objects to represent a **record** of related **fields**. Then, each element has a *semantic* meaning (i.e., a descriptive name).\n",
"In the [third part <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/07_sequences/03_content.ipynb#Tuples-are-like-\"Immutable-Lists\") of the chapter, we proposed the idea that `tuple` objects are like \"immutable lists.\" Often, however, we use `tuple` objects to represent a **record** of related **fields**. Then, each element has a *semantic* meaning (i.e., a descriptive name).\n",
"\n",
"As an example, think of a spreadsheet with information on students in a course. Each row represents a record and holds all the data associated with an individual student. The columns (e.g., matriculation number, first name, last name) are the fields that may come as *different* data types (e.g., `int` for the matriculation number, `str` for the names).\n",
"\n",
@ -82,7 +82,7 @@
}
},
"source": [
"A better way is to create a *custom* data type. While that is covered in depth in [Chapter 11 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/11_classes/00_content.ipynb), the [collections <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.html) module in the [standard library <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/index.html) provides a [namedtuple() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.html#collections.namedtuple) **factory function** that creates \"simple\" custom data types on top of the standard `tuple` type."
"A better way is to create a *custom* data type. While that is covered in depth in [Chapter 11 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/11_classes/00_content.ipynb), the [collections <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.html) module in the [standard library <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/index.html) provides a [namedtuple() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.html#collections.namedtuple) **factory function** that creates \"simple\" custom data types on top of the standard `tuple` type."
]
},
{

View file

@ -11,7 +11,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"The questions below assume that you have read the [first <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/00_content.ipynb), [second <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/01_content.ipynb), and the [third <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/03_content.ipynb) part of Chapter 7. Some questions regard the [Appendix <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/05_appendix.ipynb); that is indicated with a **\\***.\n",
"The questions below assume that you have read the [first <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/07_sequences/00_content.ipynb), [second <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/07_sequences/01_content.ipynb), and the [third <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/07_sequences/03_content.ipynb) part of Chapter 7. Some questions regard the [Appendix <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/07_sequences/05_appendix.ipynb); that is indicated with a **\\***.\n",
"\n",
"Be concise in your answers! Most questions can be answered in *one* sentence."
]
@ -34,7 +34,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q1**: We have seen **containers** and **iterables** before in [Chapter 4 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/04_iteration/02_content.ipynb#Containers-vs.-Iterables). How do they relate to **sequences**? "
"**Q1**: We have seen **containers** and **iterables** before in [Chapter 4 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/04_iteration/02_content.ipynb#Containers-vs.-Iterables). How do they relate to **sequences**? "
]
},
{