diff --git a/05_numbers/02_content.ipynb b/05_numbers/02_content.ipynb new file mode 100644 index 0000000..89ff220 --- /dev/null +++ b/05_numbers/02_content.ipynb @@ -0,0 +1,1515 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "**Note**: Click on \"*Kernel*\" > \"*Restart Kernel and Clear All Outputs*\" in [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/) *before* reading this notebook to reset its output. If you cannot run this file on your machine, you may want to open it [in the cloud ](https://mybinder.org/v2/gh/webartifex/intro-to-python/develop?urlpath=lab/tree/05_numbers/02_content.ipynb)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# Chapter 5: Numbers & Bits (continued)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "In the third part of this chapter, we first look at the lesser known `complex` type. Then, we introduce a more abstract classification scheme for the numeric types." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## The `complex` Type" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "**What is the solution to $x^2 = -1$ ?**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "Some mathematical equations cannot be solved if the solution has to be in the set of the real numbers $\\mathbb{R}$. For example, $x^2 = -1$ can be rearranged into $x = \\sqrt{-1}$, but the square root is not defined for negative numbers. To mitigate this, mathematicians introduced the concept of an [imaginary number ](https://en.wikipedia.org/wiki/Imaginary_number) $\\textbf{i}$ that is *defined* as $\\textbf{i} = \\sqrt{-1}$ or often as the solution to the equation $\\textbf{i}^2 = -1$. So, the solution to $x = \\sqrt{-1}$ then becomes $x = \\textbf{i}$.\n", + "\n", + "If we generalize the example equation into $(mx-n)^2 = -1 \\implies x = \\frac{1}{m}(\\sqrt{-1} + n)$ where $m$ and $n$ are constants chosen from the reals $\\mathbb{R}$, then the solution to the equation comes in the form $x = a + b\\textbf{i}$, the sum of a real number and an imaginary number, with $a=\\frac{n}{m}$ and $b = \\frac{1}{m}$.\n", + "\n", + "Such \"compound\" numbers are called **[complex numbers ](https://en.wikipedia.org/wiki/Complex_number)**, and the set of all such numbers is commonly denoted by $\\mathbb{C}$. The reals $\\mathbb{R}$ are a strict subset of $\\mathbb{C}$ with $b=0$. Further, $a$ is referred to as the **real part** and $b$ as the **imaginary part** of the complex number.\n", + "\n", + "Complex numbers are often visualized in a plane like below, where the real part is depicted on the x-axis and the imaginary part on the y-axis." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "-" + } + }, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "`complex` numbers are part of core Python. The simplest way to create one is to write an arithmetic expression with the literal `j` notation for $\\textbf{i}$. The `j` is commonly used in many engineering disciplines instead of the symbol $\\textbf{i}$ from math as $I$ in engineering more often than not means [electric current ](https://en.wikipedia.org/wiki/Electric_current).\n", + "\n", + "For example, the answer to $x^2 = -1$ can be written in Python as `1j` like below. This creates a `complex` object with value `1j`. The same syntactic rules apply as with the above `e` notation: No spaces are allowed between the number and the `j`. The number may be any `int` or `float` literal; however, it is stored as a `float` internally. So, `complex` numbers suffer from the same imprecision as `float` numbers." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [], + "source": [ + "x = 1j" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "140084727448400" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "id(x)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "complex" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(x)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "1j" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "To verify that it solves the equation, let's raise it to the power of $2$." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x ** 2 == -1" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "Often, we write an expression of the form $a + b\\textbf{i}$." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(2+0.5j)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "2 + 0.5j" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "Alternatively, we may use the [complex() ](https://docs.python.org/3/library/functions.html#complex) built-in: This takes two parameters where the second is optional and defaults to `0`. We may either call it with one or two arguments of any numeric type or a `str` object in the format of the previous code cell without any spaces." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(2+0.5j)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "complex(2, 0.5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "By omitting the second argument, we set the imaginary part to $0$." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(2+0j)" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "complex(2) " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "The arguments to [complex() ](https://docs.python.org/3/library/functions.html#complex) may be any numeric type or properly formated `str` object." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(2+0.5j)" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "complex(\"2+0.5j\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "Arithmetic expressions work with `complex` numbers. They may be mixed with the other numeric types, and the result is always a `complex` number." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "outputs": [], + "source": [ + "c1 = 1 + 2j\n", + "c2 = 3 + 4j" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(4+6j)" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "c1 + c2" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(-2-2j)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "c1 - c2" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(2+2j)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "c1 + 1" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(0.5-4j)" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "3.5 - c2" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(5+10j)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "5 * c1" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(0.5+0.6666666666666666j)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "c2 / 6" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(-5+10j)" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "c1 * c2" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(0.44+0.08j)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "c1 / c2" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "A `complex` number comes with two **attributes** `real` and `imag` that return the two parts as `float` objects on their own." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x.real" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "1.0" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x.imag" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "Also, a `conjugate()` method is bound to every `complex` object. The [complex conjugate ](https://en.wikipedia.org/wiki/Complex_conjugate) is defined to be the complex number with identical real part but an imaginary part reversed in sign." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "-1j" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x.conjugate()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "The [cmath ](https://docs.python.org/3/library/cmath.html) module in the [standard library ](https://docs.python.org/3/library/index.html) implements many of the functions from the [math ](https://docs.python.org/3/library/math.html) module such that they work with complex numbers." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## The Numerical Tower" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "Analogous to the discussion of *containers* and *iterables* in [Chapter 4 ](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/04_iteration/02_content.ipynb#Containers-vs.-Iterables), we contrast the *concrete* numeric data types in this chapter with the *abstract* ideas behind [numbers in mathematics ](https://en.wikipedia.org/wiki/Number).\n", + "\n", + "The figure below summarizes five *major* sets of [numbers in mathematics ](https://en.wikipedia.org/wiki/Number) as we know them from high school:\n", + "\n", + "- $\\mathbb{N}$: [Natural numbers ](https://en.wikipedia.org/wiki/Natural_number) are all non-negative count numbers, e.g., $0, 1, 2, ...$\n", + "- $\\mathbb{Z}$: [Integers ](https://en.wikipedia.org/wiki/Integer) are all numbers *without* a fractional component, e.g., $-1, 0, 1, ...$\n", + "- $\\mathbb{Q}$: [Rational numbers ](https://en.wikipedia.org/wiki/Rational_number) are all numbers that can be expressed as a quotient of two integers, e.g., $-\\frac{1}{2}, 0, \\frac{1}{2}, ...$\n", + "- $\\mathbb{R}$: [Real numbers ](https://en.wikipedia.org/wiki/Real_number) are all numbers that can be represented as a distance along a line, and negative means \"reversed,\" e.g., $\\sqrt{2}, \\pi, \\text{e}, ...$\n", + "- $\\mathbb{C}$: [Complex numbers ](https://en.wikipedia.org/wiki/Complex_number) are all numbers of the form $a + b\\textbf{i}$ where $a$ and $b$ are real numbers and $\\textbf{i}$ is the [imaginary number ](https://en.wikipedia.org/wiki/Imaginary_number), e.g., $0, \\textbf{i}, 1 + \\textbf{i}, ...$\n", + "\n", + "In the listed order, the five sets are perfect subsets of the respective following sets, and $\\mathbb{C}$ is the largest set. To be precise, all sets are infinite, but they still have a different number of elements." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "The data types introduced in this chapter and its appendix are all *(im)perfect* models of *abstract* mathematical ideas.\n", + "\n", + "The `int` and `Fraction` types are the models \"closest\" to the idea they implement: Whereas $\\mathbb{Z}$ and $\\mathbb{Q}$ are, by definition, infinite, every computer runs out of bits when representing sufficiently large integers or fractions with a sufficiently large number of decimals. However, within a system-dependent range, we can model an integer or fraction without any loss in precision.\n", + "\n", + "For the other types, in particular, the `float` type, the implications of their imprecision are discussed in detail above.\n", + "\n", + "The abstract concepts behind the four outer-most mathematical sets are formalized in Python since [PEP 3141 ](https://www.python.org/dev/peps/pep-3141/) in 2007. The [numbers ](https://docs.python.org/3/library/numbers.html) module in the [standard library ](https://docs.python.org/3/library/index.html) defines what programmers call the **[numerical tower ](https://en.wikipedia.org/wiki/Numerical_tower)**, a collection of five **[abstract data types ](https://en.wikipedia.org/wiki/Abstract_data_type)**, or **abstract base classes** (ABCs) as they are called in Python jargon:\n", + "\n", + "- `Number`: \"any number\" (cf., [documentation ](https://docs.python.org/3/library/numbers.html#numbers.Number))\n", + "- `Complex`: \"all complex numbers\" (cf., [documentation ](https://docs.python.org/3/library/numbers.html#numbers.Complex))\n", + "- `Real`: \"all real numbers\" (cf., [documentation ](https://docs.python.org/3/library/numbers.html#numbers.Real))\n", + "- `Rational`: \"all rational numbers\" (cf., [documentation ](https://docs.python.org/3/library/numbers.html#numbers.Rational))\n", + "- `Integral`: \"all integers\" (cf., [documentation ](https://docs.python.org/3/library/numbers.html#numbers.Integral))" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [], + "source": [ + "import numbers" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['ABCMeta',\n", + " 'Complex',\n", + " 'Integral',\n", + " 'Number',\n", + " 'Rational',\n", + " 'Real',\n", + " '__all__',\n", + " '__builtins__',\n", + " '__cached__',\n", + " '__doc__',\n", + " '__file__',\n", + " '__loader__',\n", + " '__name__',\n", + " '__package__',\n", + " '__spec__',\n", + " 'abstractmethod']" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dir(numbers)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Duck Typing (continued)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "The primary purpose of ABCs is to classify the *concrete* data types and standardize how they behave. This guides us as the programmers in what kind of behavior we should expect from objects of a given data type. In this context, ABCs are not reflected in code but only in our heads.\n", + "\n", + "For, example, as all numeric data types are `Complex` numbers in the abstract sense, they all work with the built-in [abs() ](https://docs.python.org/3/library/functions.html#abs) function (cf., [documentation ](https://docs.python.org/3/library/numbers.html#numbers.Complex)). While it is intuitively clear what the [absolute value ](https://en.wikipedia.org/wiki/Absolute_value) (i.e., \"distance\" from $0$) of an integer, a fraction, or any real number is, [abs() ](https://docs.python.org/3/library/functions.html#abs) calculates the equivalent of that for complex numbers. That concept is called the [magnitude ](https://en.wikipedia.org/wiki/Magnitude_%28mathematics%29) of a number, and is really a *generalization* of the absolute value.\n", + "\n", + "Relating back to the concept of **duck typing** mentioned in [Chapter 4 ](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/04_iteration/00_content.ipynb#Duck-Typing), `int`, `float`, and `complex` objects \"walk\" and \"quack\" alike in context of the [abs() ](https://docs.python.org/3/library/functions.html#abs) function." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "abs(-1)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "42.87" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "abs(-42.87)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "The absolute value of a `complex` number $x$ is defined with the Pythagorean Theorem where $\\lVert x \\rVert = \\sqrt{a^2 + b^2}$ and $a$ and $b$ are the real and imaginary parts." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "5.0" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "abs(3 + 4j)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "On the contrary, only `Real` numbers in the abstract sense may be rounded with the built-in [round() ](https://docs.python.org/3/library/functions.html#round) function." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "100" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "round(123, -2)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "42" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "round(42.1)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "`Complex` numbers are two-dimensional. So, rounding makes no sense here and leads to a `TypeError`. So, in the context of the [round() ](https://docs.python.org/3/library/functions.html#round) function, `int` and `float` objects \"walk\" and \"quack\" alike whereas `complex` objects do not." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "ename": "TypeError", + "evalue": "type complex doesn't define __round__ method", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mround\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;36m2j\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m: type complex doesn't define __round__ method" + ] + } + ], + "source": [ + "round(1 + 2j)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Goose Typing" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "Another way to use ABCs is in place of a *concrete* data type.\n", + "\n", + "For example, we may pass them as arguments to the built-in [isinstance() ](https://docs.python.org/3/library/functions.html#isinstance) function and check in which of the five mathematical sets the object `1 / 10` is." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "isinstance(1 / 10, float)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "A `float` object is a generic `Number` in the abstract sense but may also be seen as a `Complex` or `Real` number." + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "isinstance(1 / 10, numbers.Number)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "isinstance(1 / 10, numbers.Complex)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "isinstance(1 / 10, numbers.Real)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "Due to the `float` type's inherent imprecision, `1 / 10` is *not* a `Rational` number." + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "False" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "isinstance(1 / 10, numbers.Rational)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "However, if we model `1 / 10` as a `Fraction` object (cf., [Appendix ](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/05_numbers/03_appendix.ipynb#The-Fraction-Type)), it is recognized as a `Rational` number." + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "from fractions import Fraction" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "isinstance(Fraction(\"1/10\"), numbers.Rational)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "Replacing *concrete* data types with ABCs is particularly valuable in the context of \"type checking:\" The revised version of the `factorial()` function below allows its user to take advantage of *duck typing*: If a real but non-integer argument `n` is passed in, `factorial()` tries to cast `n` as an `int` object with the [int() ](https://docs.python.org/3/library/functions.html#int) built-in.\n", + "\n", + "Two popular and distinguished Pythonistas, [Luciano Ramalho ](https://github.com/ramalho) and [Alex Martelli ](https://en.wikipedia.org/wiki/Alex_Martelli), coin the term **goose typing** to specifically mean using the built-in [isinstance() ](https://docs.python.org/3/library/functions.html#isinstance) function with an ABC (cf., Chapter 11 in this [book](https://www.amazon.com/Fluent-Python-Concise-Effective-Programming/dp/1491946008) or this [summary](https://dgkim5360.github.io/blog/python/2017/07/duck-typing-vs-goose-typing-pythonic-interfaces/) thereof)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "### Example: [Factorial ](https://en.wikipedia.org/wiki/Factorial) (revisited)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [], + "source": [ + "def factorial(n, *, strict=True):\n", + " \"\"\"Calculate the factorial of a number.\n", + "\n", + " Args:\n", + " n (int): number to calculate the factorial for; must be positive\n", + " strict (bool): if n must not contain decimals; defaults to True;\n", + " if set to False, the decimals in n are ignored\n", + "\n", + " Returns:\n", + " factorial (int)\n", + "\n", + " Raises:\n", + " TypeError: if n is not an integer or cannot be cast as such\n", + " ValueError: if n is negative\n", + " \"\"\"\n", + " if not isinstance(n, numbers.Integral):\n", + " if isinstance(n, numbers.Real):\n", + " if n != int(n) and strict:\n", + " raise TypeError(\"n is not integer-like; it has non-zero decimals\")\n", + " n = int(n)\n", + " else:\n", + " raise TypeError(\"Factorial is only defined for integers\")\n", + "\n", + " if n < 0:\n", + " raise ValueError(\"Factorial is not defined for negative integers\")\n", + " elif n == 0:\n", + " return 1\n", + " return n * factorial(n - 1)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "`factorial()` works as before, but now also accepts, for example, `float` numbers." + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "factorial(0)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "6" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "factorial(3)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "6" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "factorial(3.0)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "With the keyword-only argument `strict`, we can control whether or not a passed in `float` object may come with decimals that are then truncated. By default, this is not allowed and results in a `TypeError`." + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [ + { + "ename": "TypeError", + "evalue": "n is not integer-like; it has non-zero decimals", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mfactorial\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m3.1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m\u001b[0m in \u001b[0;36mfactorial\u001b[0;34m(n, strict)\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnumbers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mReal\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mn\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mn\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mstrict\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 19\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"n is not integer-like; it has non-zero decimals\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 20\u001b[0m \u001b[0mn\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mn\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mTypeError\u001b[0m: n is not integer-like; it has non-zero decimals" + ] + } + ], + "source": [ + "factorial(3.1)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "In non-strict mode, the passed in `3.1` is truncated into `3` resulting in a factorial of `6`." + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "6" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "factorial(3.1, strict=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "skip" + } + }, + "source": [ + "For `complex` numbers, `factorial()` still raises a `TypeError` because they are neither an `Integral` nor a `Real` number." + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [ + { + "ename": "TypeError", + "evalue": "Factorial is only defined for integers", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mfactorial\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;36m2j\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m\u001b[0m in \u001b[0;36mfactorial\u001b[0;34m(n, strict)\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0mn\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mn\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 22\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Factorial is only defined for integers\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 23\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mn\u001b[0m \u001b[0;34m<\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mTypeError\u001b[0m: Factorial is only defined for integers" + ] + } + ], + "source": [ + "factorial(1 + 2j)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.6" + }, + "livereveal": { + "auto_select": "code", + "auto_select_fragment": true, + "scroll": true, + "theme": "serif" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": false, + "sideBar": true, + "skip_h1_title": true, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": { + "height": "calc(100% - 180px)", + "left": "10px", + "top": "150px", + "width": "384px" + }, + "toc_section_display": false, + "toc_window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/README.md b/README.md index 66d7135..d9adfa3 100644 --- a/README.md +++ b/README.md @@ -127,6 +127,11 @@ Alternatively, the content can be viewed in a web browser Special Values; Imprecision; Binary & Hexadecimal Representations) + - [content ](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/05_numbers/02_content.ipynb) + [](https://mybinder.org/v2/gh/webartifex/intro-to-python/develop?urlpath=lab/tree/05_numbers/02_content.ipynb) + (`complex` Type; + Numerical Tower; + Duck vs. Goose Typing) #### Videos