Merge branch 'chapter-07-sequences' into develop

This commit is contained in:
Alexander Hess 2020-10-19 20:08:41 +02:00
commit dbcca7f936
Signed by: alexander
GPG key ID: 344EA5AB10D868E0
16 changed files with 8376 additions and 30 deletions

View file

@ -770,7 +770,7 @@
"- How is data stored in memory?\n",
" - *Chapter 5*: [Numbers & Bits <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/05_numbers/00_content.ipynb)\n",
" - *Chapter 6*: [Text & Bytes <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/06_text/00_content.ipynb)\n",
" - *Chapter 7*: Sequential Data\n",
" - *Chapter 7*: [Sequential Data <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/00_content.ipynb)\n",
" - *Chapter 8*: Map, Filter, & Reduce\n",
" - *Chapter 9*: Mappings & Sets\n",
" - *Chapter 10*: Arrays & Dataframes\n",

View file

@ -1340,9 +1340,9 @@
}
},
"source": [
"Different types imply different behaviors for the objects. The `b` object, for example, may be \"asked\" if it is a whole number with the [is_integer() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#float.is_integer) \"functionality\" that comes with *every* `float` object.\n",
"Different types imply different behaviors for the objects. The `b` object, for example, may be \"asked\" if it is a whole number with the [.is_integer() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#float.is_integer) \"functionality\" that comes with *every* `float` object.\n",
"\n",
"Formally, we call such type-specific functionalities **methods** (i.e., as opposed to functions) and we look at them in detail in [Chapter 10 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/10_classes/00_content.ipynb). For now, it suffices to know that we access them with the **dot operator** `.` on the object. Of course, `b` is a whole number, which the boolean object `True` tells us."
"Formally, we call such type-specific functionalities **methods** (i.e., as opposed to functions) and we look at them in detail in [Chapter 11 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/11_classes/00_content.ipynb). For now, it suffices to know that we access them with the **dot operator** `.` on the object. Of course, `b` is a whole number, which the boolean object `True` tells us."
]
},
{
@ -1377,7 +1377,7 @@
}
},
"source": [
"For an `int` object, this [is_integer() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#float.is_integer) check does *not* make sense as we already know it is an `int`: We see the `AttributeError` below as `a` does not even know what `is_integer()` means."
"For an `int` object, this [.is_integer() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#float.is_integer) check does *not* make sense as we already know it is an `int`: We see the `AttributeError` below as `a` does not even know what `is_integer()` means."
]
},
{

View file

@ -788,7 +788,7 @@
"\n",
"First, we divide the business logic into two functions `get_guess()` and `toss_coin()` that are controlled from within a `while`-loop.\n",
"\n",
"`get_guess()` not only reads in the user's input but also implements a simple input validation pattern in that the [strip() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html?highlight=__contains__#str.strip) and [lower() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html?highlight=__contains__#str.lower) methods remove preceding and trailing whitespace and lower case the input ensuring that the user may spell the input in any possible way (e.g., all upper or lower case). Also, `get_guess()` checks if the user entered one of the two valid options. If so, it returns either `\"heads\"` or `\"tails\"`; if not, it returns `None`."
"`get_guess()` not only reads in the user's input but also implements a simple input validation pattern in that the [.strip() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html?highlight=__contains__#str.strip) and [.lower() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html?highlight=__contains__#str.lower) methods remove preceding and trailing whitespace and lower case the input ensuring that the user may spell the input in any possible way (e.g., all upper or lower case). Also, `get_guess()` checks if the user entered one of the two valid options. If so, it returns either `\"heads\"` or `\"tails\"`; if not, it returns `None`."
]
},
{

View file

@ -1827,7 +1827,7 @@
"\n",
"The Python [documentation <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/tutorial/floatingpoint.html) provides another good discussion of floats and the goodness of their approximations.\n",
"\n",
"If we are interested in the exact bits behind a `float` object, we use the [hex() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#float.hex) method that returns a `str` object beginning with `\"0x1.\"` followed by the $fraction$ in hexadecimal notation and the $exponent$ as an integer after subtraction of $1023$ and separated by a `\"p\"`."
"If we are interested in the exact bits behind a `float` object, we use the [.hex() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#float.hex) method that returns a `str` object beginning with `\"0x1.\"` followed by the $fraction$ in hexadecimal notation and the $exponent$ as an integer after subtraction of $1023$ and separated by a `\"p\"`."
]
},
{
@ -1875,7 +1875,7 @@
}
},
"source": [
"Also, the [as_integer_ratio() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#float.as_integer_ratio) method returns the two smallest integers whose ratio best approximates a `float` object."
"Also, the [.as_integer_ratio() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#float.as_integer_ratio) method returns the two smallest integers whose ratio best approximates a `float` object."
]
},
{
@ -2030,7 +2030,7 @@
}
},
"source": [
"As seen in [Chapter 1 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/01_elements/00_content.ipynb#%28Data%29-Type-%2F-%22Behavior%22), the [is_integer() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#float.is_integer) method tells us if a `float` can be casted as an `int` object without any loss in precision."
"As seen in [Chapter 1 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/01_elements/00_content.ipynb#%28Data%29-Type-%2F-%22Behavior%22), the [.is_integer() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#float.is_integer) method tells us if a `float` can be casted as an `int` object without any loss in precision."
]
},
{
@ -2091,7 +2091,7 @@
}
},
"source": [
"As the exact implementation of floats may vary and be dependent on a particular Python installation, we look up the [float_info <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/sys.html#sys.float_info) attribute in the [sys <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/sys.html) module in the [standard library <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/index.html) to check the details. Usually, this is not necessary."
"As the exact implementation of floats may vary and be dependent on a particular Python installation, we look up the [.float_info <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/sys.html#sys.float_info) attribute in the [sys <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/sys.html) module in the [standard library <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/index.html) to check the details. Usually, this is not necessary."
]
},
{

View file

@ -581,7 +581,7 @@
}
},
"source": [
"A `complex` number comes with two **attributes** `real` and `imag` that return the two parts as `float` objects on their own."
"A `complex` number comes with two **attributes** `.real` and `.imag` that return the two parts as `float` objects on their own."
]
},
{
@ -640,7 +640,7 @@
}
},
"source": [
"Also, a `conjugate()` method is bound to every `complex` object. The [complex conjugate <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Complex_conjugate) is defined to be the complex number with identical real part but an imaginary part reversed in sign."
"Also, a `.conjugate()` method is bound to every `complex` object. The [complex conjugate <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Complex_conjugate) is defined to be the complex number with identical real part but an imaginary part reversed in sign."
]
},
{

View file

@ -2370,7 +2370,7 @@
"source": [
"Objects of type `str` come with many **methods** bound on them (cf., the [documentation <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#string-methods) for a full list). As seen before, they work like *normal* functions and are accessed via the **dot operator** `.`. Calling a method is also referred to as **method invocation**.\n",
"\n",
"The [find() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.find) method returns the index of the first occurrence of a character or a substring. If no match is found, it returns `-1`. A mirrored version searching from the right called [rfind() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.rfind) exists as well. The [index() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.index) and [rindex() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.rindex) methods work in the same way but raise a `ValueError` if no match is found. So, we can control if a search fails *silently* or *loudly*."
"The [.find() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.find) method returns the index of the first occurrence of a character or a substring. If no match is found, it returns `-1`. A mirrored version searching from the right called [.rfind() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.rfind) exists as well. The [.index() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.index) and [.rindex() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.rindex) methods work in the same way but raise a `ValueError` if no match is found. So, we can control if a search fails *silently* or *loudly*."
]
},
{
@ -2477,7 +2477,7 @@
}
},
"source": [
"[find() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.find) takes optional *start* and *end* arguments that allow us to find occurrences other than the first one."
"[.find() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.find) takes optional *start* and *end* arguments that allow us to find occurrences other than the first one."
]
},
{
@ -2560,7 +2560,7 @@
}
},
"source": [
"The [count() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.count) method does what we expect."
"The [.count() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.count) method does what we expect."
]
},
{
@ -2619,7 +2619,7 @@
}
},
"source": [
"As [count() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.count) is *case-sensitive*, we must **chain** it with the [lower() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.lower) method to get the count of all `\"L\"`s and `\"l\"`s."
"As [.count() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.count) is *case-sensitive*, we must **chain** it with the [.lower() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.lower) method to get the count of all `\"L\"`s and `\"l\"`s."
]
},
{
@ -2654,7 +2654,7 @@
}
},
"source": [
"Alternatively, we can use the [upper() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.upper) method and search for `\"L\"`s."
"Alternatively, we can use the [.upper() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.upper) method and search for `\"L\"`s."
]
},
{
@ -2689,7 +2689,7 @@
}
},
"source": [
"Because `str` objects are *immutable*, [upper() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.upper) and [lower() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.lower) return *new* `str` objects, even if they do *not* change the value of the original `str` object."
"Because `str` objects are *immutable*, [.upper() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.upper) and [.lower() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.lower) return *new* `str` objects, even if they do *not* change the value of the original `str` object."
]
},
{
@ -2833,7 +2833,7 @@
}
},
"source": [
"Besides [upper() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.upper) and [lower() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.lower) there exist also [title() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.title) and [swapcase() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.swapcase) methods."
"Besides [.upper() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.upper) and [.lower() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.lower) there exist also [.title() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.title) and [.swapcase() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.swapcase) methods."
]
},
{
@ -2940,9 +2940,9 @@
}
},
"source": [
"Another popular string method is [split() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.split): It separates a longer `str` object into smaller ones collected in a `list` object. By default, groups of contiguous whitespace characters are used as the *separator*.\n",
"Another popular string method is [.split() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.split): It separates a longer `str` object into smaller ones collected in a `list` object. By default, groups of contiguous whitespace characters are used as the *separator*.\n",
"\n",
"As an example, we use [split() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.split) to print out the individual words in `text` with more whitespace in between them."
"As an example, we use [.split() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.split) to print out the individual words in `text` with more whitespace in between them."
]
},
{
@ -2999,7 +2999,7 @@
}
},
"source": [
"The opposite of splitting is done with the [join() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.join) method. It is typically invoked on a `str` object that represents a separator (e.g., `\" \"` or `\", \"`) and connects the elements provided by an *iterable* argument (e.g., `words` below) into one *new* `str` object."
"The opposite of splitting is done with the [.join() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.join) method. It is typically invoked on a `str` object that represents a separator (e.g., `\" \"` or `\", \"`) and connects the elements provided by an *iterable* argument (e.g., `words` below) into one *new* `str` object."
]
},
{
@ -3095,7 +3095,7 @@
}
},
"source": [
"The [replace() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.replace) method creates a *new* `str` object with parts of the original `str` object potentially replaced."
"The [.replace() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.replace) method creates a *new* `str` object with parts of the original `str` object potentially replaced."
]
},
{
@ -3130,7 +3130,7 @@
}
},
"source": [
"Note how `sentence` itself remains unchanged. Bound to an immutable object, [replace() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.replace) must create *new* objects."
"Note how `sentence` itself remains unchanged. Bound to an immutable object, [.replace() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.replace) must create *new* objects."
]
},
{
@ -3165,7 +3165,7 @@
}
},
"source": [
"As seen previously, the [strip() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.strip) method is often helpful in cleaning text data from unreliable sources like user input from unnecessary leading and trailing whitespace. The [lstrip() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.lstrip) and [rstrip() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.rstrip) methods are specialized versions of it."
"As seen previously, the [.strip() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.strip) method is often helpful in cleaning text data from unreliable sources like user input from unnecessary leading and trailing whitespace. The [.lstrip() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.lstrip) and [.rstrip() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.rstrip) methods are specialized versions of it."
]
},
{
@ -3248,7 +3248,7 @@
}
},
"source": [
"When justifying a `str` object for output, the [ljust() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.ljust) and [rjust() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.rjust) methods may be helpful."
"When justifying a `str` object for output, the [.ljust() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.ljust) and [.rjust() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.rjust) methods may be helpful."
]
},
{
@ -3307,7 +3307,7 @@
}
},
"source": [
"Similarly, the [zfill() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.zfill) method can be used to pad a `str` representation of a number with leading `0`s for justified output."
"Similarly, the [.zfill() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.zfill) method can be used to pad a `str` representation of a number with leading `0`s for justified output."
]
},
{
@ -3706,7 +3706,7 @@
}
},
"source": [
"`str` objects also provide a [format() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.format) method that accepts an arbitrary number of *positional* arguments that are inserted into the `str` object in the same order replacing empty curly brackets `{}`. String interpolation with the [format() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.format) method is a more traditional and probably the most common way as of today. While f-strings are the recommended way going forward, usage of the [format() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.format) method is likely not declining any time soon."
"`str` objects also provide a [.format() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.format) method that accepts an arbitrary number of *positional* arguments that are inserted into the `str` object in the same order replacing empty curly brackets `{}`. String interpolation with the [.format() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.format) method is a more traditional and probably the most common way as of today. While f-strings are the recommended way going forward, usage of the [.format() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.format) method is likely not declining any time soon."
]
},
{
@ -3776,7 +3776,7 @@
}
},
"source": [
"The [format() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.format) method may alternatively be used with *keyword* arguments as well. Then, we must put the keywords' names within the curly brackets."
"The [.format() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#str.format) method may alternatively be used with *keyword* arguments as well. Then, we must put the keywords' names within the curly brackets."
]
},
{

View file

@ -0,0 +1,958 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"**Note**: Click on \"*Kernel*\" > \"*Restart Kernel and Clear All Outputs*\" in [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/) *before* reading this notebook to reset its output. If you cannot run this file on your machine, you may want to open it [in the cloud <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_mb.png\">](https://mybinder.org/v2/gh/webartifex/intro-to-python/develop?urlpath=lab/tree/07_sequences/00_content.ipynb)."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# Chapter 7: Sequential Data"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"We studied numbers (cf., [Chapter 5 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/05_numbers/00_content.ipynb)) and textual data (cf., [Chapter 6 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/06_text/00_content.ipynb)) first mainly because objects of the presented data types are \"simple.\" That is so for two reasons: First, they are *immutable*, and, as we saw in the \"*Who am I? And how many?*\" section in [Chapter 1 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/01_elements/03_content.ipynb#Who-am-I?-And-how-many?), mutable objects can quickly become hard to reason about. Second, they are \"flat\" in the sense that they are *not* composed of other objects.\n",
"\n",
"The `str` type is a bit of a corner case in this regard. While one could argue that a longer `str` object, for example, `\"text\"`, is composed of individual characters, this is *not* the case in memory as the literal `\"text\"` only creates *one* object (i.e., one \"bag\" of $0$s and $1$s modeling all characters).\n",
"\n",
"This chapter, [Chapter 8 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/08_mfr/00_content.ipynb), [Chapter 9 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/09_mappings/00_content.ipynb), and [Chapter 10 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/10_arrays/00_content.ipynb) introduce various \"complex\" data types. While some are mutable and others are not, they all share that they are primarily used to \"manage,\" or structure, the memory in a program (i.e., they provide references to other objects). Unsurprisingly, computer scientists refer to the ideas behind these data types as **[data structures <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Data_structure)**.\n",
"\n",
"In this chapter, we focus on data types that model all kinds of sequential data. Examples of such data are [spreadsheets <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Spreadsheet) or [matrices <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Matrix_%28mathematics%29) and [vectors <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Vector_%28mathematics_and_physics%29). These formats share the property that they are composed of smaller units that come in a sequence of, for example, rows/columns/cells or elements/entries."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Collections vs. Sequences"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"[Chapter 6 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/06_text/00_content.ipynb#A-\"String\"-of-Characters) already describes the **sequence** properties of `str` objects. In this section, we take a step back and study these properties one by one.\n",
"\n",
"The [collections.abc <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.abc.html) module in the [standard library <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/index.html) defines a variety of **abstract base classes** (ABCs). We saw ABCs already in [Chapter 5 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/05_numbers/02_content.ipynb#The-Numerical-Tower), where we use the ones from the [numbers <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/numbers.html) module in the [standard library <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/index.html) to classify Python's numeric data types according to mathematical ideas. Now, we take the ABCs from the [collections.abc <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.abc.html) module to classify the data types in this chapter according to their behavior in various contexts.\n",
"\n",
"As an illustration, consider `numbers` and `text` below, two objects of *different* types."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"numbers = [7, 11, 8, 5, 3, 12, 2, 6, 9, 10, 1, 4]\n",
"text = \"Lorem ipsum dolor sit amet.\""
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Among others, one commonality between the two is that we may loop over them with the `for` statement. So, in the context of iteration, both exhibit the *same* behavior."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"7 11 8 5 3 12 2 6 9 10 1 4 "
]
}
],
"source": [
"for number in numbers:\n",
" print(number, end=\" \")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"L o r e m i p s u m d o l o r s i t a m e t . "
]
}
],
"source": [
"for character in text:\n",
" print(character, end=\" \")"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"In [Chapter 4 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/04_iteration/02_content.ipynb#Containers-vs.-Iterables), we referred to such types as *iterables*. That is *not* a proper [English](https://dictionary.cambridge.org/spellcheck/english-german/?q=iterable) word, even if it may sound like one at first sight. Yet, it is an official term in the Python world formalized with the `Iterable` ABC in the [collections.abc <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.abc.html) module.\n",
"\n",
"For the data science practitioner, it is worthwhile to know such terms as, for example, the documentation on the [built-ins <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html) uses them extensively: In simple words, any built-in that takes an argument called \"*iterable*\" may be called with *any* object that supports being looped over. Already familiar [built-ins <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html) include [enumerate() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#enumerate), [sum() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#sum), or [zip() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#zip). So, they do *not* require the argument to be of a certain data type (e.g., `list`); instead, any *iterable* type works."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"import collections.abc as abc"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"collections.abc.Iterable"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"abc.Iterable"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"As seen in [Chapter 5 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/05_numbers/02_content.ipynb#Goose-Typing), we can use ABCs with the built-in [isinstance() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#isinstance) function to check if an object supports a behavior.\n",
"\n",
"So, let's \"ask\" Python if it can loop over `numbers` or `text`."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"isinstance(numbers, abc.Iterable)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"isinstance(text, abc.Iterable)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Contrary to `list` or `str` objects, numeric objects are *not* iterable."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"isinstance(999, abc.Iterable)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Instead of asking, we could try to loop over `999`, but this results in a `TypeError`."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"ename": "TypeError",
"evalue": "'int' object is not iterable",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-9-8249bf25b5b7>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mdigit\u001b[0m \u001b[0;32min\u001b[0m \u001b[0;36m999\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdigit\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mTypeError\u001b[0m: 'int' object is not iterable"
]
}
],
"source": [
"for digit in 999:\n",
" print(digit)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Most of the data types in this chapter and [Chapter 9 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/09_mappings/00_content.ipynb) and [Chapter 10 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/10_arrays/00_content.ipynb) exhibit three [orthogonal <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Orthogonality) (i.e., \"independent\") behaviors, formalized by ABCs in the [collections.abc <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.abc.html) module as:\n",
"- `Iterable`: An object may be looped over.\n",
"- `Container`: An object \"contains\" references to other objects; a \"whole\" is composed of many \"parts.\"\n",
"- `Sized`: The number of references to other objects, the \"parts,\" is *finite*.\n",
"\n",
"The characteristical operation supported by `Container` types is the `in` operator for membership testing."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"0 in numbers"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"\"l\" in text"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Alternatively, we could also check if `numbers` and `text` are `Container` types with [isinstance() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#isinstance)."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"isinstance(numbers, abc.Container)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"isinstance(text, abc.Container)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Numeric objects do *not* \"contain\" references to other objects, and that is why they are considered \"flat\" data types. The `in` operator raises a `TypeError`. Conceptually speaking, Python views numeric types as \"wholes\" without any \"parts.\""
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"isinstance(999, abc.Container)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"ename": "TypeError",
"evalue": "argument of type 'int' is not iterable",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-15-b3e0b3c32aec>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;36m9\u001b[0m \u001b[0;32min\u001b[0m \u001b[0;36m999\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m: argument of type 'int' is not iterable"
]
}
],
"source": [
"9 in 999"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Analogously, being `Sized` types, we can pass `numbers` and `text` as the argument to the built-in [len() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#len) function and obtain \"meaningful\" results. The exact meaning depends on the data type: For `numbers`, [len() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#len) tells us how many elements are in the `list` object; for `text`, it tells us how many [Unicode characters <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Unicode) make up the `str` object. *Abstractly* speaking, both data types exhibit the *same* behavior of *finiteness*."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"12"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(numbers)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"27"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(text)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"isinstance(numbers, abc.Sized)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"isinstance(text, abc.Sized)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"On the contrary, even though `999` consists of three digits for humans, numeric objects in Python have no concept of a \"size\" or \"length,\" and the [len() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#len) function raises a `TypeError`."
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"isinstance(999, abc.Sized)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"ename": "TypeError",
"evalue": "object of type 'int' has no len()",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-21-ae09c1aa5305>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m999\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m: object of type 'int' has no len()"
]
}
],
"source": [
"len(999)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"These three behaviors are so essential that whenever they coincide for a data type, it is called a **collection**, formalized with the `Collection` ABC. That is where the [collections.abc <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.abc.html) module got its name from: It summarizes all ABCs related to collections; in particular, it defines a hierarchy of specialized kinds of collections.\n",
"\n",
"Without going into too much detail, one way to read the summary table at the beginning of the [collections.abc <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.abc.html) module's documention is as follows: The first column, titled \"ABC\", lists all collection-related ABCs in Python. The second column, titled \"Inherits from,\" indicates if the idea behind the ABC is *original* (e.g., the first row with the `Container` ABC has an empty \"Inherits from\" column) or a *combination* (e.g., the row with the `Collection` ABC has `Sized`, `Iterable`, and `Container` in the \"Inherits from\" column). The third and fourth columns list the methods that come with a data type following an ABC. We keep ignoring the methods named in the dunder style for now.\n",
"\n",
"So, let's confirm that both `numbers` and `text` are collections."
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"isinstance(numbers, abc.Collection)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"isinstance(text, abc.Collection)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"They share one more common behavior: When looping over them, we can *predict* the *order* of the elements or characters. The ABC in the [collections.abc <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.abc.html) module corresponding to this behavior is `Reversible`. While sounding unintuitive at first, it is evident that if something is reversible, it must have a forward order, to begin with.\n",
"\n",
"The [reversed() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#reversed) built-in allows us to loop over the elements or characters in reverse order."
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4 1 10 9 6 2 12 3 5 8 11 7 "
]
}
],
"source": [
"for number in reversed(numbers):\n",
" print(number, end=\" \")"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
". t e m a t i s r o l o d m u s p i m e r o L "
]
}
],
"source": [
"for character in reversed(text):\n",
" print(character, end=\" \")"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"isinstance(numbers, abc.Reversible)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"isinstance(text, abc.Reversible)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Collections that exhibit this fourth behavior are referred to as **sequences**, formalized with the `Sequence` ABC in the [collections.abc <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.abc.html) module."
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"isinstance(numbers, abc.Sequence)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"isinstance(text, abc.Sequence)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The data types introduced in this chapter are sequences. Nevertheless, we also look at some data types that are neither collections nor sequences but are still useful to model sequential data in practice in [Chapter 8 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/08_mfr/00_content.ipynb).\n",
"\n",
"In Python-related documentations, the terms collection and sequence are heavily used, and the data science practitioner should always think of them in terms of the three or four behaviors they exhibit.\n",
"\n",
"Data types that are collections but not sequences are covered in [Chapter 9 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/09_mappings/00_content.ipynb)."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.6"
},
"livereveal": {
"auto_select": "code",
"auto_select_fragment": true,
"scroll": true,
"theme": "serif"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": false,
"sideBar": true,
"skip_h1_title": true,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {
"height": "calc(100% - 180px)",
"left": "10px",
"top": "150px",
"width": "384px"
},
"toc_section_display": false,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 4
}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,257 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Note**: Click on \"*Kernel*\" > \"*Restart Kernel and Run All*\" in [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/) *after* finishing the exercises to ensure that your solution runs top to bottom *without* any errors. If you cannot run this file on your machine, you may want to open it [in the cloud <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_mb.png\">](https://mybinder.org/v2/gh/webartifex/intro-to-python/develop?urlpath=lab/tree/07_sequences/02_exercises.ipynb)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 7: Sequential Data (Coding Exercises)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The exercises below assume that you have read the [second part <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/01_content.ipynb) of Chapter 7.\n",
"\n",
"The `...`'s in the code cells indicate where you need to fill in code snippets. The number of `...`'s within a code cell give you a rough idea of how many lines of code are needed to solve the task. You should not need to create any additional code cells for your final solution. However, you may want to use temporary code cells to try out some ideas."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Working with Lists"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q1**: Write a function `nested_sum()` that takes a `list` object as its argument, which contains other `list` objects with numbers, and adds up the numbers! Use `nested_numbers` below to test your function!\n",
"\n",
"Hint: You need at least one `for`-loop."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"nested_numbers = [[1, 2, 3], [4], [5], [6, 7], [8], [9]]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def nested_sum(list_of_lists):\n",
" \"\"\"Add up numbers in nested lists.\n",
" \n",
" Args:\n",
" list_of_lists (list): A list containing the lists with the numbers\n",
" \n",
" Returns:\n",
" sum (int or float)\n",
" \"\"\"\n",
" ...\n",
" ...\n",
" ...\n",
"\n",
" return ..."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"nested_sum(nested_numbers)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q2**: Generalize `nested_sum()` into a function `mixed_sum()` that can process a \"mixed\" `list` object, which contains numbers and other `list` objects with numbers! Use `mixed_numbers` below for testing!\n",
"\n",
"Hints: Use the built-in [isinstance() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#isinstance) function to check how an element is to be processed."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"mixed_numbers = [[1, 2, 3], 4, 5, [6, 7], 8, [9]]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import collections.abc as abc"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def mixed_sum(list_of_lists_or_numbers):\n",
" \"\"\"Add up numbers in nested lists.\n",
" \n",
" Args:\n",
" list_of_lists_or_numbers (list): A list containing both numbers and\n",
" lists with numbers\n",
" \n",
" Returns:\n",
" sum (int or float)\n",
" \"\"\"\n",
" ...\n",
" ...\n",
" ...\n",
" ...\n",
" ...\n",
" ...\n",
"\n",
" return ..."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"mixed_sum(mixed_numbers)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q3.1**: Write a function `cum_sum()` that takes a `list` object with numbers as its argument and returns a *new* `list` object with the **cumulative sums** of these numbers! So, `sum_up` below, `[1, 2, 3, 4, 5]`, should return `[1, 3, 6, 10, 15]`.\n",
"\n",
"Hint: The idea behind is similar to the [cumulative distribution function <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Cumulative_distribution_function) from statistics."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sum_up = [1, 2, 3, 4, 5]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def cum_sum(numbers):\n",
" \"\"\"Create the cumulative sums for some numbers.\n",
"\n",
" Args:\n",
" numbers (list): A list with numbers for that the cumulative sums\n",
" are calculated\n",
" \n",
" Returns:\n",
" cum_sums (list): A list with all the cumulative sums\n",
" \"\"\"\n",
" ...\n",
" ...\n",
"\n",
" ...\n",
" ...\n",
" ...\n",
"\n",
" return ..."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cum_sum(sum_up)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q3.2**: We should always make sure that our functions also work in corner cases. What happens if your implementation of `cum_sum()` is called with an empty list `[]`? Make sure it handles that case *without* crashing! What would be a good return value in this corner case?\n",
"\n",
"Hint: It is possible to write this without any extra input validation."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cum_sum([])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" < your answer >"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.6"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": false,
"sideBar": true,
"skip_h1_title": true,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": false,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 4
}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,663 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Note**: Click on \"*Kernel*\" > \"*Restart Kernel and Run All*\" in [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/) *after* finishing the exercises to ensure that your solution runs top to bottom *without* any errors. If you cannot run this file on your machine, you may want to open it [in the cloud <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_mb.png\">](https://mybinder.org/v2/gh/webartifex/intro-to-python/develop?urlpath=lab/tree/07_sequences/04_exercises.ipynb)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 7: Sequential Data (Coding Exercises)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The exercises below assume that you have read the [third part <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/03_content.ipynb) of Chapter 7.\n",
"\n",
"The `...`'s in the code cells indicate where you need to fill in code snippets. The number of `...`'s within a code cell give you a rough idea of how many lines of code are needed to solve the task. You should not need to create any additional code cells for your final solution. However, you may want to use temporary code cells to try out some ideas."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Packing & Unpacking with Functions"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the \"*Function Definitions & Calls*\" section in [Chapter 7 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/03_content.ipynb#Function-Definitions-&-Calls), we define the following function `product()`. In this exercise, you will improve it by making it more \"user-friendly.\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def product(*args):\n",
" \"\"\"Multiply all arguments.\"\"\"\n",
" result = args[0]\n",
"\n",
" for arg in args[1:]:\n",
" result *= arg\n",
"\n",
" return result"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `*` in the function's header line *packs* all *positional* arguments passed to `product()` into one *iterable* called `args`.\n",
"\n",
"**Q1**: What is the data type of `args` within the function's body?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" < your answer >"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Because of the packing, we may call `product()` with an abitrary number of *positional* arguments: The product of just `42` remains `42`, while `2`, `5`, and `10` multiplied together result in `100`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(42)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(2, 5, 10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"However, \"abitrary\" does not mean that we can pass *no* argument. If we do so, we get an `IndexError`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q2**: What line in the body of `product()` causes this exception? What is the exact problem?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" < your answer >"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In [Chapter 7 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/00_content.ipynb#Function-Definitions-&-Calls), we also pass a `list` object, like `one_hundred`, to `product()`, and *no* exception is raised."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"one_hundred = [2, 5, 10]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(one_hundred)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q3**: What is wrong with that? What *kind* of error (cf., [Chapter 1 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/01_elements/00_content.ipynb#Formal-vs.-Natural-Languages)) is that conceptually? Describe precisely what happens to the passed in `one_hundred` in every line within `product()`!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" < your answer >"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Of course, one solution is to *unpack* `one_hundred` with the `*` symbol. We look at another solution further below."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(*one_hundred)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's continue with the issue when calling `product()` *without* any argument.\n",
"\n",
"This revised version of `product()` avoids the `IndexError` from before."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def product(*args):\n",
" \"\"\"Multiply all arguments.\"\"\"\n",
" result = None\n",
"\n",
" for arg in args:\n",
" result *= arg\n",
"\n",
" return result"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q4**: Describe why no error occurs by going over every line in `product()`!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" < your answer >"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Unfortunately, the new version cannot process any arguments we pass in any more."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(42)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(2, 5, 10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q5**: What line causes troubles now? What is the exact problem?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" < your answer >"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q6**: Replace the `None` in `product()` above with something reasonable that does *not* cause exceptions! Ensure that `product(42)` and `product(2, 5, 10)` return a correct result.\n",
"\n",
"Hints: It is ok if `product()` returns a result *different* from the `None` above. Look at the documentation of the built-in [sum() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#sum) function for some inspiration."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def product(*args):\n",
" \"\"\"Multiply all arguments.\"\"\"\n",
" result = ...\n",
"\n",
" for arg in args:\n",
" result *= arg\n",
"\n",
" return result"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(42)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(2, 5, 10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, calling `product()` without any arguments returns what we would best describe as a *default* or *start* value. To be \"philosophical,\" what is the product of *no* numbers? We know that the product of *one* number is just the number itself, but what could be a reasonable result when multiplying *no* numbers? The answer is what you use as the initial value of `result` above, and there is only *one* way to make `product(42)` and `product(2, 5, 10)` work."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q7**: Rewrite `product()` so that it takes a *keyword-only* argument `start`, defaulting to the above *default* or *start* value, and use `start` internally instead of `result`!\n",
"\n",
"Hint: Remember that a *keyword-only* argument is any parameter specified in a function's header line after the first and only `*` (cf., [Chapter 2 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/02_functions/00_content.ipynb#Keyword-only-Arguments))."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def product(*args, ...):\n",
" \"\"\"Multiply all arguments.\"\"\"\n",
" ...\n",
" ...\n",
"\n",
" return ..."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, we can call `product()` with a truly arbitrary number of *positional* arguments."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(42)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(2, 5, 10)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Without any *positional* arguments but only the *keyword* argument `start`, for example, `start=0`, we can adjust the answer to the \"philosophical\" problem of multiplying *no* numbers. Because of the *keyword-only* syntax, there is *no* way to pass in a `start` number *without* naming it."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(start=0)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We could use `start` to inject a multiplier, for example, to double the outcomes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(42, start=2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(2, 5, 10, start=2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"There is still one issue left: Because of the function's name, a user of `product()` may assume that it is ok to pass a *collection* of numbers, like `one_hundred`, which are then multiplied."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(one_hundred)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q8**: What is a **collection**? How is that different from a **sequence**?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" < your answer >"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q9**: Rewrite the latest version of `product()` to check if the *only* positional argument is a *collection* type! If so, its elements are multiplied together. Otherwise, the logic remains the same.\n",
"\n",
"Hints: Use the built-in [len() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#len) and [isinstance() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#isinstance) functions to check if there is only *one* positional argument and if it is a *collection* type. Use the *abstract base class* `Collection` from the [collections.abc <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.abc.html) module in the [standard library <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/index.html). You may want to *re-assign* `args` inside the body."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import collections.abc as abc"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def product(*args, ...):\n",
" \"\"\"Multiply all arguments.\"\"\"\n",
" ...\n",
" ...\n",
"\n",
" ...\n",
" ...\n",
"\n",
" return ..."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"All *five* code cells below now return correct results. We may unpack `one_hundred` or not."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(42)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(2, 5, 10)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(one_hundred)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product(*one_hundred)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Side Note**: Above, we make `product()` work with a single *collection* type argument instead of a *sequence* type to keep it more generic: For example, we can pass in a `set` object, like `{2, 5, 10}` below, and `product()` continues to work correctly. The `set` type is introducted in [Chapter 9 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/09_mappings/00_content.ipynb#The-set-Type), and one essential difference to the `list` type is that objects of type `set` have *no* order regarding their elements. So, even though `[2, 5, 10]` and `{2, 5, 10}` look almost the same, the order implied in the literal notation gets lost in memory!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product([2, 5, 10]) # the argument is a collection that is also a sequence"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product({2, 5, 10}) # the argument is a collection that is NOT a sequence"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"isinstance({2, 5, 10}, abc.Sequence) # sets are NO sequences"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's continue to improve `product()` and make it more Pythonic. It is always a good idea to mimic the behavior of built-ins when writing our own functions. And, [sum() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#sum), for example, raises a `TypeError` if called *without* any arguments. It does *not* return the \"philosophical\" answer to adding *no* numbers, which would be `0`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sum()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q10**: Adapt the latest version of `product()` to also raise a `TypeError` if called *without* any *positional* arguments!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def product(*args, ...):\n",
" \"\"\"Multiply all arguments.\"\"\"\n",
" ...\n",
" ...\n",
" ...\n",
" ...\n",
"\n",
" ...\n",
" ...\n",
"\n",
" return ..."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"product()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.6"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": false,
"sideBar": true,
"skip_h1_title": true,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": false,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View file

@ -0,0 +1,609 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"**Note**: Click on \"*Kernel*\" > \"*Restart Kernel and Clear All Outputs*\" in [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/) *before* reading this notebook to reset its output. If you cannot run this file on your machine, you may want to open it [in the cloud <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_mb.png\">](https://mybinder.org/v2/gh/webartifex/intro-to-python/develop?urlpath=lab/tree/07_sequences/05_appendix.ipynb)."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# Chapter 7: Sequential Data (Appendix)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"In the [third part <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/03_content.ipynb#Tuples-are-like-\"Immutable-Lists\") of the chapter, we proposed the idea that `tuple` objects are like \"immutable lists.\" Often, however, we use `tuple` objects to represent a **record** of related **fields**. Then, each element has a *semantic* meaning (i.e., a descriptive name).\n",
"\n",
"As an example, think of a spreadsheet with information on students in a course. Each row represents a record and holds all the data associated with an individual student. The columns (e.g., matriculation number, first name, last name) are the fields that may come as *different* data types (e.g., `int` for the matriculation number, `str` for the names).\n",
"\n",
"A simple way of modeling a single student is as a `tuple` object, for example, `(123456, \"John\", \"Doe\")`. A disadvantage of this approach is that we must remember the order and meaning of the elements/fields in the `tuple` object.\n",
"\n",
"An example from a different domain is the representation of $(x, y)$-points in the $x$-$y$-plane. Again, we could use a `tuple` object like `current_position` below to model the point $(4, 2)$."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"current_position = (4, 2)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"We implicitly assume that the first element represents the $x$ and the second the $y$ coordinate. While that follows intuitively from convention in math, we should at least add comments somewhere in the code to document this assumption."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## The `namedtuple` Type"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"A better way is to create a *custom* data type. While that is covered in depth in [Chapter 11 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/11_classes/00_content.ipynb), the [collections <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.html) module in the [standard library <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/index.html) provides a [namedtuple() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.html#collections.namedtuple) **factory function** that creates \"simple\" custom data types on top of the standard `tuple` type."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"from collections import namedtuple"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"[namedtuple() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.html#collections.namedtuple) takes two arguments. The first argument is the name of the data type. That could be different from the variable `Point` we use to refer to the new type, but in most cases it is best to keep them in sync. The second argument is a sequence with the field names as `str` objects. The names' order corresponds to the one assumed in `current_position`."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [],
"source": [
"Point = namedtuple(\"Point\", [\"x\", \"y\"])"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The `Point` object is a so-called **class**. That is what it means if an object is of type `type`. It can be used as a **factory** to create *new* `tuple`-like objects of type `Point`. In a way, [namedtuple() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.html#collections.namedtuple) gives us a way to create our own custom **constructors**."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"94457911453856"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"id(Point)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"type"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(Point)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The value of `Point` is just itself in a *literal notation*."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"__main__.Point"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Point"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"We write `Point(4, 2)` to create a *new* object of type `Point`."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"current_position = Point(4, 2)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Now, `current_position` has a somewhat nicer representation. In particular, the coordinates are named `x` and `y`."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"Point(x=4, y=2)"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"current_position"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"It is *not* a `tuple` any more but an object of type `Point`."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"140376178109184"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"id(current_position)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"__main__.Point"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(current_position)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"We use the dot operator `.` to access the defined attributes."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"4"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"current_position.x"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"2"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"current_position.y"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"As before, we get an `AttributeError` if we try to access an undefined attribute."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"ename": "AttributeError",
"evalue": "'Point' object has no attribute 'z'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-13-b30d0b930bac>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mcurrent_position\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mz\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mAttributeError\u001b[0m: 'Point' object has no attribute 'z'"
]
}
],
"source": [
"current_position.z"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"`current_position` continues to work like a `tuple` object! That is why we can use `namedtuple` as a replacement for `tuple`. The underlying implementations exhibit the *same* computational efficiencies and memory usages.\n",
"\n",
"For example, we can index into or loop over `current_position` as it is still a sequence with the familiar four properties."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"4"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"current_position[0]"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/plain": [
"2"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"current_position[1]"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4\n",
"2\n"
]
}
],
"source": [
"for number in current_position:\n",
" print(number)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2\n",
"4\n"
]
}
],
"source": [
"for number in reversed(current_position):\n",
" print(number)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"2"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(current_position)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.6"
},
"livereveal": {
"auto_select": "code",
"auto_select_fragment": true,
"scroll": true,
"theme": "serif"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": false,
"sideBar": true,
"skip_h1_title": true,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {
"height": "calc(100% - 180px)",
"left": "10px",
"top": "150px",
"width": "384px"
},
"toc_section_display": false,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View file

@ -0,0 +1,85 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# Chapter 7: Sequential Data (TL;DR)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"**Sequences** are an *abstract* concept that summarizes *four* behaviors an object may or may not exhibit. Sequences are\n",
"- **finite** and\n",
"- **ordered**\n",
"- **containers** that we may\n",
"- **loop over**.\n",
"\n",
"Examples are the `list`, `tuple`, but also the `str` types.\n",
"\n",
"Objects that exhibit all behaviors *except* being ordered are referred to as **collections**.\n",
"\n",
"The objects inside a sequence are called its **elements** and may be labeled with a unique **index**, an `int` object in the range $0 \\leq \\text{index} < \\lvert \\text{sequence} \\rvert$.\n",
"\n",
"`list` objects are **mutable**. That means we can change the references to the other objects it contains, and, in particular, re-assign them.\n",
"\n",
"On the contrary, `tuple` objects are like **immutable** lists: We can use them in place of any `list` object as long as we do *not* need to mutate it. Often, `tuple` objects are also used to model **records** of related **fields**."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.6"
},
"livereveal": {
"auto_select": "code",
"auto_select_fragment": true,
"scroll": true,
"theme": "serif"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": false,
"sideBar": true,
"skip_h1_title": true,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {
"height": "calc(100% - 180px)",
"left": "10px",
"top": "150px",
"width": "384px"
},
"toc_section_display": false,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View file

@ -0,0 +1,252 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 7: Sequential Data (Review Questions)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The questions below assume that you have read the [first <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/00_content.ipynb), [second <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/01_content.ipynb), and the [third <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/03_content.ipynb) part of Chapter 7. Some questions regard the [Appendix <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/05_appendix.ipynb); that is indicated with a **\\***.\n",
"\n",
"Be concise in your answers! Most questions can be answered in *one* sentence."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Essay Questions "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Answer the following questions *briefly*!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q1**: We have seen **containers** and **iterables** before in [Chapter 4 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/04_iteration/02_content.ipynb#Containers-vs.-Iterables). How do they relate to **sequences**? "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" < your answer >"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q2**: What are **abstract base classes**? How can we make use of the ones from the [collections.abc <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/collections.abc.html) module in the [standard library <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/index.html)?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" < your answer >"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q3**: How are the *abstract behaviors* of **reversibility** and **finiteness** essential for *indexing* and *slicing* sequences?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" < your answer >"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q4**: Explain the difference between **mutable** and **immutable** objects in Python with the examples of the `list` and `tuple` types!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" < your answer >"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q5**: What is the difference between a **shallow** and a **deep** copy of an object? How can one of them become a \"problem?\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" < your answer >"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q6**: Many **list methods** change `list` objects \"**in place**.\" What do we mean by that?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" < your answer >"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q7.1**: `tuple` objects have *two* primary usages. First, they can be used in place of `list` objects where **mutability** is *not* required. Second, we use them to model data **records**.\n",
"\n",
"Describe why `tuple` objects are a suitable replacement for `list` objects in general!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" < your answer >"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q7.2\\***: What do we mean by a **record**? How are `tuple` objects suitable to model records? How can we integrate a **semantic meaning** when working with records into our code?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" < your answer >"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q8**: How is (iterable) **packing** and **unpacking** useful in the context of **function definitions** and **calls**?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" < your answer >"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## True / False Questions"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Motivate your answer with *one short* sentence!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q9**: `sequence` objects are *not* part of core Python but may be imported from the [standard library <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/index.html)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" < your answer >"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q10**: The built-in [.sort() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/stdtypes.html#list.sort) function takes a *finite* **iterable** as its argument an returns a *new* `list` object. On the contrary, the [sorted() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#sorted) method on `list` objects *mutates* them *in place*."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" < your answer >"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q11**: Passing **mutable** objects as arguments to functions is not problematic because functions operate in a **local** scope without affecting the **global** scope."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" < your answer >"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.6"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": false,
"sideBar": true,
"skip_h1_title": true,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": false,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View file

@ -139,7 +139,7 @@ If this is not possible,
- [further resources <img height="12" style="display: inline-block" src="static/link/to_nb.png">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/05_numbers/06_resources.ipynb)
[<img height="12" style="display: inline-block" src="static/link/to_mb.png">](https://mybinder.org/v2/gh/webartifex/intro-to-python/develop?urlpath=lab/tree/05_numbers/06_resources.ipynb)
- *Chapter 6*: Text & Bytes
- [content <img height="12" style="display: inline-block" src="static/link/to_nb.png">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/06_numbers/00_content.ipynb)
- [content <img height="12" style="display: inline-block" src="static/link/to_nb.png">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/06_text/00_content.ipynb)
[<img height="12" style="display: inline-block" src="static/link/to_mb.png">](https://mybinder.org/v2/gh/webartifex/intro-to-python/develop?urlpath=lab/tree/06_text/00_content.ipynb)
(`str` Type;
Reading Files;
@ -161,3 +161,31 @@ If this is not possible,
- [review questions <img height="12" style="display: inline-block" src="static/link/to_nb.png">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/06_text/04_review.ipynb)
- [further resources <img height="12" style="display: inline-block" src="static/link/to_nb.png">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/06_text/05_resources.ipynb)
[<img height="12" style="display: inline-block" src="static/link/to_mb.png">](https://mybinder.org/v2/gh/webartifex/intro-to-python/develop?urlpath=lab/tree/06_text/05_resources.ipynb)
- *Chapter 7*: Sequential Data
- [content <img height="12" style="display: inline-block" src="static/link/to_nb.png">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/00_content.ipynb)
[<img height="12" style="display: inline-block" src="static/link/to_mb.png">](https://mybinder.org/v2/gh/webartifex/intro-to-python/develop?urlpath=lab/tree/07_sequences/00_content.ipynb)
(Collections vs. Sequences;
ABCs: `Container`, `Iterable`, `Sized`, & `Reversible`)
- [content <img height="12" style="display: inline-block" src="static/link/to_nb.png">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/01_content.ipynb)
[<img height="12" style="display: inline-block" src="static/link/to_mb.png">](https://mybinder.org/v2/gh/webartifex/intro-to-python/develop?urlpath=lab/tree/07_sequences/01_content.ipynb)
(`list` Type;
Indexing & Slicing;
Shallow vs. Deep Copies;
List Methods & Operations)
- [exercises <img height="12" style="display: inline-block" src="static/link/to_nb.png">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/02_exercises.ipynb)
[<img height="12" style="display: inline-block" src="static/link/to_mb.png">](https://mybinder.org/v2/gh/webartifex/intro-to-python/develop?urlpath=lab/tree/07_sequences/02_exercises.ipynb)
(Working with Lists)
- [content <img height="12" style="display: inline-block" src="static/link/to_nb.png">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/03_content.ipynb)
[<img height="12" style="display: inline-block" src="static/link/to_mb.png">](https://mybinder.org/v2/gh/webartifex/intro-to-python/develop?urlpath=lab/tree/07_sequences/03_content.ipynb)
(Modifiers vs. Pure Functions;
`tuple` Type;
Packing & Unpacking;
`*args` in Function Definitions)
- [exercises <img height="12" style="display: inline-block" src="static/link/to_nb.png">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/04_exercises.ipynb)
[<img height="12" style="display: inline-block" src="static/link/to_mb.png">](https://mybinder.org/v2/gh/webartifex/intro-to-python/develop?urlpath=lab/tree/07_sequences/04_exercises.ipynb)
(Packing & Unpacking with Functions)
- [appendix <img height="12" style="display: inline-block" src="static/link/to_nb.png">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/05_appendix.ipynb)
[<img height="12" style="display: inline-block" src="static/link/to_mb.png">](https://mybinder.org/v2/gh/webartifex/intro-to-python/develop?urlpath=lab/tree/07_sequences/05_appendix.ipynb)
(`namedtuple` Type)
- [summary <img height="12" style="display: inline-block" src="static/link/to_nb.png">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/06_summary.ipynb)
- [review questions <img height="12" style="display: inline-block" src="static/link/to_nb.png">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/07_sequences/07_review.ipynb)

View file

@ -19,6 +19,7 @@ For a more *detailed version* with **clickable links**
- **Part B: Managing Data and Memory**
- *Chapter 5*: Numbers & Bits
- *Chapter 6*: Text & Bytes
- *Chapter 7*: Sequential Data
#### Videos