Streamline slides

This commit is contained in:
Alexander Hess 2020-10-22 18:55:22 +02:00
parent 7b339acd54
commit f49e417988
Signed by: alexander
GPG key ID: 344EA5AB10D868E0
2 changed files with 50 additions and 10 deletions

View file

@ -614,7 +614,11 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 21, "execution_count": 21,
"metadata": {}, "metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [], "outputs": [],
"source": [ "source": [
"def fibonacci(i):\n", "def fibonacci(i):\n",
@ -636,7 +640,11 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 22, "execution_count": 22,
"metadata": {}, "metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [ "outputs": [
{ {
"data": { "data": {
@ -655,14 +663,22 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [ "source": [
"#### Efficiency of Algorithms" "#### Efficiency of Algorithms"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [ "source": [
"Timing the code cells below with the `%%timeit` magic shows how doubling the input (i.e., `12` becomes `24`) more than doubles how long it takes `fibonacci()` to calculate the solution. This is actually an understatement as we see the time go up by roughly a factor of $1000$ (i.e., from nano-seconds to milli-seconds). That is an example of **exponential growth**." "Timing the code cells below with the `%%timeit` magic shows how doubling the input (i.e., `12` becomes `24`) more than doubles how long it takes `fibonacci()` to calculate the solution. This is actually an understatement as we see the time go up by roughly a factor of $1000$ (i.e., from nano-seconds to milli-seconds). That is an example of **exponential growth**."
] ]
@ -670,7 +686,11 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 23, "execution_count": 23,
"metadata": {}, "metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
@ -688,7 +708,11 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 24, "execution_count": 24,
"metadata": {}, "metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
@ -729,7 +753,11 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [ "source": [
"### \"Easy at second Glance\" Example: [Fibonacci Numbers <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Fibonacci_number) (revisited)" "### \"Easy at second Glance\" Example: [Fibonacci Numbers <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Fibonacci_number) (revisited)"
] ]
@ -797,7 +825,11 @@
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [ "source": [
"When we follow the flow of execution closely, we realize that the intermediate results represented by the left-most path in the graph above are calculated first. `fibonacci(1)`, the left-most leaf node $F(1)$, is the first base case reached, followed immediately by `fibonacci(0)`. From that moment onwards, the flow of execution moves back up the left-most path while adding together the two corresponding child nodes. Effectively, this mirrors the *iterative* implementation in that the order of all computational steps are *identical* (cf., the \"*Hard at first Glance*\" example in [Chapter 4 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/04_iteration/02_content.ipynb#\"Hard-at-first-Glance\"-Example:-Fibonacci-Numbers--(revisited))).\n", "When we follow the flow of execution closely, we realize that the intermediate results represented by the left-most path in the graph above are calculated first. `fibonacci(1)`, the left-most leaf node $F(1)$, is the first base case reached, followed immediately by `fibonacci(0)`. From that moment onwards, the flow of execution moves back up the left-most path while adding together the two corresponding child nodes. Effectively, this mirrors the *iterative* implementation in that the order of all computational steps are *identical* (cf., the \"*Hard at first Glance*\" example in [Chapter 4 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/04_iteration/02_content.ipynb#\"Hard-at-first-Glance\"-Example:-Fibonacci-Numbers--(revisited))).\n",
"\n", "\n",
@ -1000,7 +1032,11 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 32, "execution_count": 32,
"metadata": {}, "metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [ "outputs": [
{ {
"ename": "RecursionError", "ename": "RecursionError",

View file

@ -526,7 +526,11 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 17, "execution_count": 17,
"metadata": {}, "metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [], "outputs": [],
"source": [ "source": [
"import collections.abc as abc" "import collections.abc as abc"