{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Note**: Click on \"*Kernel*\" > \"*Restart Kernel and Clear All Outputs*\" in [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/) *before* reading this notebook to reset its output. If you cannot run this file on your machine, you may want to open it [in the cloud ](https://mybinder.org/v2/gh/webartifex/intro-to-python/main?urlpath=lab/tree/01_elements/07_resources.ipynb)."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# Chapter 1: Elements of a Program (Further Resources)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"This PyCon 2015 talk by [Ned Batchelder](https://nedbatchelder.com/), a well-known Pythonista and the organizer of the [Python User Group](https://www.meetup.com/bostonpython/) in Boston, summarizes all situations where some sort of assignment is done in Python and, thus, reviews how *variables are just names referencing objects*. The content is intermediate, and, thus, it might be worthwhile to come back to this talk at a later point in time. However, the contents should be known by everyone claiming to be proficient in Python."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEABALDA4MChAODQ4SERATGCgaGBYWGDEjJR0oOjM9PDkzODdASFxOQERXRTc4UG1RV19iZ2hnPk1xeXBkeFxlZ2MBERISGBUYLxoaL2NCOEJjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY//AABEIAWgB4AMBIgACEQEDEQH/xAAbAAEAAgMBAQAAAAAAAAAAAAAAAQMCBAUHBv/EAEgQAAIBAwEEBAwDBQUHBQEAAAABAgMEERIFITFRE0Fh0RUWIjM0VXFzgZGTsQYUMkJSVHKhByNTwfBigpKi0uHiJGOUsvFD/8QAFwEBAQEBAAAAAAAAAAAAAAAAAAECA//EACIRAQACAwACAwEAAwAAAAAAAAABAhESEwMhMVFhQSMysf/aAAwDAQACEQMRAD8A8/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzpRUqiT4AYA2ugh2/MzpWcq89FGlUqS/dgm3/QDSB1PAt76vu/oy7h4FvfV939GXcBywdTwLe+r7v6Mu4eBb31fd/Rl3AcsHU8C3vq+7+jLuHgW99X3f0ZdwHLB1PAt7/AXf0Zdw8C3v8AAXf0ZdwHLB1PAt76vu/oy7h4FvfV939GXcBywdTwLe+r7v6Mu4eBb31fd/Rl3AcsHU8C3vq+7+jLuHgW99X3f0ZdwHLB1PAt76vu/oy7h4Fvf4C7+jLuA5YOp4FvfV939GXcPAt76vu/oy7gOWDqeBb3+Au/oy7h4FvfV939GXcBywdTwLe+r7v6Mu4eBb31fd/Rl3AcsHU8C3v8Bd/Rl3DwLe/wF39GXcBywdTwLe+r7v6Mu4eBb31fd/Rl3AcsHU8C3vq+7+jLuHgW99X3f0ZdwHLB1PAt76vu/oy7h4FvfV939GXcBywdTwLe/wABd/Rl3DwLe+r7v6Mu4Dlg6ngW99X3f0Zdw8C3vq+7+jLuA5YOp4FvfV939GXcPAt76vu/oy7gOWDcqWnRTcKlOcJrjGSaaMeghyYGqDKaUZyS4JmIAAAAAAAAAAAAAAAAAAAAAALKHno/H7FZZQ87H4gbcIOc4wj+qTSXtPWdj7MobKs4W9CKT/bn1zfNnlll6db+9j90ewR4GZGZJAIJBAAkEACQQSAAAAAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMZptxaeMPPEyAHI2ts5XFlUqVYU6lSlFyjJpN43trev6HnW1K9vXqUnbQ0qMFF+Qo7/gerXnoVx7qX2Z47PiaqNGr52XtMDOr52XtMAAAAAAAAAAAAAAAAAAAAAAAWUPOorLKHnV8QOjZenW/vY/dHsEeB4/ZenW/vY/dHsEeBmywzPmLTbVzV2+nK4g7C4q1LejTwsxlBLEs8fKakfS1IudKUFJxcotKS4rtOMvwts6FpQpUqcadajKM43EYR6RuLzlvAhC2/EDuLm7pxtY6bbXqSrLpXp/8Abx19W81Kv4iqXewa97CkqUYypqLoXUZSWqSWH5PkvfvWDoeA1K//ADlW+uJ1YxnGk9MF0ertUcvHVnJTL8M0alK6Va7rVKl04a6jjCL8h5W5JIehje/iKrb3NSlRsoVVTrwt253GhucsYwtL3b+JFx+JalCVxJ7OlK3trhUa1VVluzjDSxv4o0rmx2r4Vubm3o1oXMqy6KemlKloWEm5SepblvSOtW2FRrWt7QlVqKN3X6aTWPJeY7l2eSijWv8A8SVLOrfKOzZ1aVjOCrVFWS3SS3pY3vfw/qWeMToq9/PWU7d2tJVsKopucXuXseeouudhUbmntGEqtRK/cXPGPJ044fIzuNi211WuZ15TlG5oKhOPDcm2mu3eQc+H4spu1vKjoU5VLakq2mjcxqRlFvH6ktzXLBc9v11+cp1NnulWoW35inF1U9UeG/k93DeXT2G6uz7izuNoXFanWgoJyjBOKz1YSz8S6psijVu6tec5t1bb8tKO7GnLefbvAbEvbq+2ZQuLuhClOpCMlonlSTSeez2GqvxA2o0/yj/NSvHauj0nDG/VnHDTv4G9sywezrOFt+Zq14U0owdRRzGKWEtyXIqWxrdbbe1FKfSuONGfJ1YS1Y54WANZfiCK2xCwnSo4qVJU4yp3UZyTSz5UEtyftNatt+4uNlX1xCyq0aVCM100a0U3KMsYjufV147DZs/w1RtKlu4XdxKnbVXVpU5acRbznfjL49bL/AlHwRcbO6Wp0ddzbluytUsso1dq/iDwVGDnSpVIqnGctV1GNTfyhjMv6E334gq21e7p0NnyrxtKcatSfTKPkNZ5cdz3E3f4ao3VS6l+buKcbqEY1oQ04lpWE8tZXDgbNTYtGpK+k6tT/wBbRjRnw8lKLWV8x6Gt4Zu6m3aNpb2kZ287eNZylUUZJNpZ+HIz2Pt2W1a9WMbaFOFPKea6dSLTx5UMZX9Sx7Fgr22uqV1WpVKNGNB6dLVSCecPK+xNrsVUNo/nq13WuK3RumnOMFhN5/ZSzw6yDppgJYGCKAAIAAACQUQCQBAAIAJBRAJIAAkAUXnoVx7qX2Z49Piew3noVx7qX2Z49PiaqNGr52XtMDOr52XtMAAAAAAAAAAAAAAAAAAAAAAAWUPOr4lZZQ86viB0bL06397H7o9gjwPH7L06397H7o9gjwM2VmA+DNOd7RhdxtZSl00llR0veufs3fbmjOWLWw3Aate6o2+jpqsYa3pjqeMsyhXhObjGUm1x3NE2Z6fjYBpyvaMa/QOb6TUo6cPflNr4YT+Rfl82Njp+LQVZfMnL5sbnWFgK8vmRl82Nk6/i0FeXzYy+bGx1WAry+Yy+bG51WAry+bGXzY2Xr+LAV5fNjL5jc6rAV5fMZfMbJ1WAry+Yy+Y3Ov4tBVl82MvmNzqtBVl82MvmN16rQVZfNjL5jdOq0FWXzGXzG51WElWXzGXzG51Wgqy+YyxudVoKsvmWFict1tsqvPQrj3Uvszx2fE9hvPQrj3Uvszx6fE6VaaNXzsvaYGdXzsvaYAAAAAAAAAAAAAAAAAAAAAAAsoedXxKyyh51fEDo2Xp1v72P3R7BHgeP2Xp1v72P3R7BHgZlWT4M0p2tvO7VxJf38cJS1vdue7jweeHWbr4M5tXZ/SbUhfdIlKEdKhoymt/Ht37n1b+ZiXK/y2qlGnV064atL1LsZEKFClNzjSpwnN75KKTZXd2ULtQ1VJR05/TGDzn+aLF/Zq9tJW7nojNrMkt6Sed3J9vUYckKzhPaH51yUpKn0cElwWd+d+//AC3mymmtzTXYU29v0VpChKSemChmC0bsY3Y4EWdpG0oqnGc5rLeZyb+7Ekr1KLxhp54byTn7Ps5Ubm5qzeFOeKdPOdEf1P5ybfswb4lJhIC9o4BAEZWM5WOZK3gCvp6XTdDrXSfulhqKwS2g7p1G28+TjsS/yfzINpyjHGWlncssh1IJPy47tz38Civaupc0q8ZQTgmmpw1ZTae7fue7ialPYyi466kZKOEl0eMpKSWd+9+Vx7AOnrjnGpZxnGSOkhu8uO/hv4nPWymqdSn00XGpTUW3T8pNRS3PPDdwK47Kkq1OMp0tKWW1B5b1at2ZNr+oHSp16VRNwqReG1x61/8AhMqsEm9WcLLUd7x7EaD2dKUWqVelFKrKcWqecZUk09+/9W4mns6rTuOljcwcow0xUoPduS/e7ANuN3Rl0OHLFZaoPS8Pdn4bi1Si+DT3ZNGnZXFOFrFVqUlbrGOiflbsfvcjLZtpK2pyc90pPdHOdMF+mPw/zA3QAAAAEggkAQSCiAAQCSCQILSotN1dvGqvPQrj3Uvszx2fE9hvPQrj3Uvszx6fE7VdWjV87L2mBnV87L2mAAAAAAAAAAAAAAAAAAAAAAALKHnY/ErLKHnV8QOjZenW/vY/dHsEeB4/ZenW/vY/dHsEeBmysn+k5lWF49qQnBy/KJJTjrW+WHvXZwyuvdy39TqwY6FzZmcudomfhqXMLiWn8vUUMZ1ZaX3izG/jcztXG0lprtrTJtJR38XzXYbuhc2NC7TOJY0s0reVenSpRr05bqeak5VE2pbt27j1vJb+Zo/v/wBGbGhc2NC5samkuNKF7m86GjJdJUThJzXDCT4ST6ua3GtO12xOFNyea9OGYVHNaYy6Jx4c9b4n0Whc2NC5svtdbOZYqVsqv5hSpupU1pTlqeMJb2vYydozVexqQpZnvi5xS3ygpLUu3Mc7jpaFzY0LmyY95TSflyoyry2nKEZS/KRgqjeHxaxoxjh+0XbLhOnYU4zTisycYtYcYOTcV8I4Rv6FzY0LmxMSTSzA56ta72s67f8Adb8eV2LG7PtOnoXNjQu0mspzlz72F3KvQ/LZUE05tSx1rKxldWeZRUtrqrbSjUVV1Y1Iy3VViSUs+Tv3buZ19C5saFzY1k5y5VSN/rmqcJuG9xzUX7qSXHnkxpUbtO1dalKpOnUk5TzHdF5S4vPWuZ19C7RoXNjWTnZxan5mhTm6NGVKpKtmENzUk1jfjPDj8DdoUJU7qVSTlJOlCGp9bTl3m7oXNk6FzY1lOcqwZ6FzY0LmxrK87MAZ6FzY0LmxrJzswBnoXaNC7RrJzswBnoXNk6FzY1k52VkmWhc2NC5sayc5Ygy0LmxoXNjWTnZgDPQubGhc2NZOdmBaY6F2mRqsYbpWY+VN56Fce6l9mePT4nsV56Fce6l9meOz4nWro0avnZe0wM6vnZe0wAAAAAAAAAAAAAAAAAAAAAABZQ87H4lZZQ86viB0bL06397H7o9gieP2Xp1v72P3R7BHgZsrN8DDX2GT4HLq2VaptWFzrXRxxuzLqUu3HXyMWmYcr2mPh0tfYNfYc3aVO4q1KVO3lUi3CflRm4pS3Ybx9iupbXzdxoqy0zknHNRp4zvSw9272Gdpc97Otr7AqibeMPG57+ByJ2+0dKjTqvOn9cqnB6Gt6697TK/yN8tXRylDVJtf37bTxHDb/a4PcNpOlnc19g19hpXVK4nSkqdTOZJ6U9D053rV7DUq2t+5t0akoeTiLlWbSWjGGut6t+RtJ0s66qp5xh43PeFVTbxh43PfwONGyvVJOEpwg5uTSrNy/Zw2+vg+J0Lei6dW4k15ypq4/wCzFf5DaTeza19g19hgBtJvZnr7Br7DADaTezPX2DX2GAG0m9mevsGvsMANpN7M9fYNfYYAbSb2Z6+wa+wwA2k3sz19g19hgBtJvZnr7Br7DADaTezPX2DX2GAG0m9mevsGvsMCRtJvZlr7Br7DAkbSb2Za+wa+wxIG0m9mevsMissNVnLpS0z8qrz0K491L7M8dnxPYbz0K491L7M8enxOtXRo1fOy9pgZ1fOy9pgAAAAAAAAAAAAAAAAAAAAAACyh51fErLKHnV8QOjZenW/vY/dHsEeB4/ZenW/vY/dHsEeBmys3wZzp16qv3RfkUVBPPRybnxziS3LGEbtf0er/ACP7FFvZW0qFOUqSbcU28vkI+WZpE+5ct31zRsYOlCrUqaqmddKUspS3LPHg0Xzu7xO5jGnDNOS0Po5aXHVjjzx8O06P5C1/wV82U3VC0tqcZfltblJQjGL4t+1nXMTP+rOlSnVqVbBVdM4zlS1YcNLTxy3mvO5nKlZyUp/qXSLo5Z/T3lFndWlfooOxnOpKCc3TT0puOccf9ZNnZdKnd2ca9a2jFz8qKSawn/vPPt3GLeGYzK1pWFFW5vZRuowWiVOScZRouScdTXPe8LfuN2nUqOtCDkpJ09TxSksvPHPBeziXfkLX/BXzZq1qVtRuZxnQjGlCi6mW+OO3O74o56NTStvUNwbzk1Lq0dP+5sn0md+t7orVFZ4/7RbZStru7qQjaqNJUozg298syks8eHkomjPD9dEFdSztKdOU3RWIpt731GjF0KUbVXNqtdws6o5UIZaxFtvjvXtwxozyj7dIbzkyr21a2rVbW0ceiSkpVYNxmm2t2Gt+7+qLVGE9sTtI2sY0qVOM5ScW86nLr1bl5PJjQ5R9uiDCNjaSSapRafWmzkO+s50YzoWEpOToySlJLMKktMXx7HuGhyj7dok5Erm2o1bmNxYyUKTajKLznEYvHHjmXsLKdW2qVKcI7Mrtyy5ZwtKUtOd7+O7qHM5R9ulvBoUo0sXEZ2inOhWVPEHjUnpae99Slv8AYy+jThSvK8KcdMdMHjPtJNcJPijEzlsAAw4pIAKJIAAkAAACABIAAAAQWlRaaq7eJTeehXHupfZnj0+J7DeehXHupfZnj0+J2q6tGr52XtMDOr52XtMAAAAAAAAAAAAAAAAAAAAAAAWUPOorLKHnV8QOjZenW/vY/dHsEeB4/ZenW/vY/dHsEeBmVKsXKjOK4uLS+RqU617TpxgrWi9KSz07Wf8AlN18PgVmJnDFvJr6wo/M338HQ/8AkP8A6DCtO5r03TrbPtqkHv0yrtr/AOhtAm9mOv5DShCpTlCVPZdnGUIqMXGrjC6l+gsp1bulCMKdjbxjFYSVdpJf8BsgvS0/07fkOT+au2pNV1iMtLarx45xjzXHJH5hSqJ1rK2quVFzdxUrRxKG5PL0cN/IuqbGo1HXc6tVutJT4QxFpt7lpw+PF5ZnRsI0rmnKF1UzSpaOiUaaWn2KOeK6uRdm+341bKtRv7eFa32VYypp5h/fReHued0Xh8O0l1405TlQo2dtNySnOlXim3l4y3T55+Jv0rNUaFvRp1asY0MYw15SSxh7jUew7ZwrU5SqOlWeZwSisrLeNSWrGebJsdvz/qmntGv+YlCVRSUKaqy114qDi89fR9jJhc0acaFKVCzm4PFLpLnLjhrCXkdTaXyNqeyqdXV0latJVKHQVU9P95FZxndx8p8MFUdm2lu6VKdeSnPMYZUIuXlKfBRS/Z+WS7HWJ/jXne2//qKfgyzqKOmc1GompylJxSXk73qT+ZsO+6GdSCtbSnVUFGSjX8pJLKX6OrOcdphHZtvmtToXU5VoqCSk01T0Sc4rCS637cG0tn03dOvKpUeXq6PK0qTjpb4Z4buOBsdY+mpabVjQo2tCjbUKcJ006SlcNbtyS/Tx3ofmreFKpD8ls5U5SWtdNuby8fsb96ePYbUNmQVKnTlWqz6NRjFvTnCkpJbl/spGFrsa3tZJ0pSwpqUVpisYTSWUsteU+LY3TrH0rhcdNPoY7NtJRqU+ki+mzGpFpJ48jfuwvY0bNN16WOj2dawwsLTWxu4/uGats3qryaxCn0cIpcMtN/ZfI2MGZvKdfyGjGnWVOcJWFvUVSp0ktdfOZZTT/R1YWPYi6gqzrVatanCnqUUlGerhnsXM2ASbTKT5ZmMYAAZcgABAAFAkEASQCQIJBBAAJKILSotNVdvGpvPQrj3Uvszx6fE9hvPQrj3Uvszx6fE7VdWjV87L2mBnV87L2mAAAAAAAAAAAAAAAAAAAAAAALKHnY/ErLKHnY/EDo2Xp1v72P3R7BHgeP2Xp1v72P3R7BHgZssMn+krLeox0rkYmMud6zb4YAz0x/0ydMTOssc5Vgs0x5DTHkXWU5y49XZdSVtUUKrjWnVc3JSeHHW2ovKa4djMPBNRRlpnHXO16B1JSblGWJJSzhZ49nA7emPIaI8jt18jWlnJhs6rUrxqXUoOOZPTCctzejHLhpfzM7KxqW1xOpKonGcEmtTflapPO/saXwOnojyGiPIk+S8xg0s5F5s+5r3NedGuqUatF09WcuL04TW7dv7fgYUtn3dKFqtcJ9DXdWWupzjKOFiCX7WeB2tEeQ0R5HP2a2aNnaK2lWeZPpJuW+pKW74m0WaY8hpXImsyk+OZVgs0rkNK5DWU5yrBZpjyGhchrJzlWCzSuQ0rkNZOcsCCzSuQ0rkNZOcqwWaVyGlchrJzlgDPTHkNMeQ1k5ywILNK5DSuQ1k5ywBnpXIaVyGsnOVZJnpXIaVyGsnOVYLNK5DQuQ1lecqy0jSuRkWIw3Ss1UXnoVx7qX2Z49PiexXnoVx7qX2Z47PidattGr52XtMDOr52XtMAAAAAAAAAAAAAAAAAAAAAAAWUPOr4lZZQ86viB0bL06397H7o9gieP2Xp1v72P3R7BHgZssMwCCCQAAAAQAAAAAACQIJAKAAAAAAQSCCCQAIJAAgkEFEggkgAAAAAAIJAgkgBVV56Fce6l9meOz4nsN56Fce6l9mePT4m6o0avnZe0wM6vnZe0wAAAAAAAAAAAAAAAAAAAAAABZQ86viVllDzq+IHRsvTrf3sfuj2CPA8fsvTrf3sfuj2CPAzZYZkEkEEgAIAAAACgAAAJAEAkAQSAAAAAAACASAAIIAAAkEEgfNfjPbt5sOjaSs1SbqykpdJHPDHefK+P22f3bX6b7zr/wBpvo2zv55/aJ5+zUD6nx+2z+7a/TfePH7bP7tr9N958uAPqfH7bP7tr9N95Hj9tn921+m+8+XAH1Hj9tn921+m+8zX47221lQtfpvvPmral0tVI7MbKnGC3ZfNmZmIbrWZbNX8cbZnSnCcLbTJOL/u31/E+ddxN8vkdCtbx1tJbjlzjpm48mWJZmMMZeU23xZGESCojAwSCiMIYJAEYIJfAgAAAAAAAAAAAAAAFlDzqKyyh51fEDo2Xp1v72P3R7BHgeP2Xp1v72P3R7BHgZssMwCCCQAEAAAABRIIJAAAAAAAAAAAAAAAAIIBJBQJBBBJAAHxH9pvo2z/AOep9onwB9//AGm+jbP/AJ6n2ifAPgahQAAAABs2Dxcpamm+tLJ3cdJjFSUeXs/1g+et903U1Rj0a1Ybw5b0sL5nao46PpFLEeKwzF3XxymVJSrLe9y5/wCu04VZ6q05ZynJ4Z2LlSnbykk1nc/YcVrHEtGboABpgDACAAAh8CCXwIKAAAAAAAAAAAAAAWUPOx+JWWUPOx+IHRsvTrf3sfuj2CJ4/ZenW/vY/dHsEeBmyswARAAAAAAAJAgkAoAAAAAAAAEEkEEggkoAgASQSAIJBAEggkD4f+030bZ/89T7RPgOo+//ALTfRtn/AM9T7RPgHwLCgJI6wBlCEpyxFEHQtqeKSWN/FhVNO2S/VvN+hWVKCWhSxwecFeklIxPtqPSytczqR04UY8kak6WrjFSL8N8E37DFxcXvTXY1wEeifbUqWy0twymt+Gap1Tn3EOjqtLg96NRLMwqDAZpkYHWCA+BiS+BBQAAAAAAAAAAAAACyh52JWWUPOr4gdGy9Ot/ex+6PYInj9l6db+9j90ewRM2VmQURvbaVKNRVoaJdeVu4cfmix1qanKLnFNR1PL6uZEWAwlWpwzrnGKWMtvC3mLuKCgputTUXwepY/wBb0BaCr8zQSz01PGnV+tcOYV1buMpKvSajxetbgLQVSuaMf/6JtNJqO/GeHAtyUCSAQSCAUSAQBIIJAAAAACAAAAAAgEkASCCQPh/7TfRtn/z1PtE+AZ9//ab6Ps/+ep9onwlGl01TTqxuznGTUKwO/wDhzZNrtGnUdxGpKSeFpnpSSx2PmcxWK/xP+X/udLZt3PZtCdOioSlN51TjldXV8CTKuxU/DWzYSgnSq4lJRy6vs38O0zjsPZai3BVquXFYWrreFv3GrH8QVPJ129J6WpbvJ3iW3oyg4Ozel9XTyXs+XVyMe2vTansvZ9OiqkLbMZPCblJf5lf5a0e78st+d2qXVjt7Smp+INawrRLfnzjfVgwW3WuFpTxybbHtPTTcGrqvClFqMKkoJtvqf9SitHTUeVjO/jkmdxUncOs5b9Umo9SzxRM5SupxWIppPgX2uYn3/WvqWppmvdw1x1x4x4+w2JW9VVsOOE1xJvKSpWspRnqfW8dRcmJcoMBmmAABB8DEl8CCgAAAAAAAAAAAAAFlDzq+JWZU5KM03wA3qdR0qkakf1QakvgeubOvaO0bOFzbyUoTXxi+tPtPHenh2/I2LTaleym52lzVot8dEms+1dZJjI9bhYQjFf3tWTjFRUnjKSxjq7Catp0lSEnNy8pOTbxuWd2Eu3B5h42bW9YVvku4eNm1vWNb5LuGB6lVoOUVom4y1qbl1/Yqp2EYVXJyeFp0797aabb3deF8jzLxs2t6wrfJdw8bNresa3yXcMD0+VjCVRSdSru4RysL+hMrKnJLy55UnJPdxbb5drPL/Gza3rGt8l3Dxs2t6xrfJdwwPUYWkIakpyxLHkrCSw+SRsYPJvGza3rGt8l3Dxs2t6xrfJdwwPWQeTeNm1vWNb5LuHjZtb1hW+S7iYHrIPJvGza3rCt8l3Dxs2t6xrfJdxcD1kHk3jZtb1jW+S7h42bW9Y1vku4YHrIPJvGza3rGt8l3Dxs2t6xrfJdxMD1oHkvjZtb1jW+S7h42bW9Y1vku4uB60QeTeNm1vWNb5LuHjZtb1jW+S7hgesknkvjZtb1jW+S7h42bW9Y1vku4mB60DyXxs2t6xrfJdw8bNresa3yXcXA9ZB5N42bW9Y1vku4eNm1vWNb5LuJgetA8l8bNresa3yXcPGza3rGt8l3FwPpP7SoSnR2dGEXKTnNJLr3RPjraxuKdVSqQUFj9qSX+Znf7autoqCvLmpV6PLhq6mzXjdUoz1Ri0l1Nk9tRj+unG1b41aa+Lf2RmrWPXW+UTnraUP8ADRktp0eujn2P/sTWXXHj+2/+WpddSb/3V3k/l6H71T5ruNFbUteu3n/xr/pMltWz/hZ/UX/STWV/x/bb/L2/71T5ruI6C3/fq/0ZreFrP+Dn9X/xHhe0/hJ/V/8AEayn+P7bEqNt1Vanxiu8iMKdKWpXC3c4FK2xafwcvq/9hU2xaypyjGz0yaaUnUbx8MDEmfG2lXg15ynPs3r74InWmoOpRjGcorOJPccOtdOpHTpjjOU0ki2x2hK0quUodLFxa0ylzWP8xrj2xN1NzSnQrzp1ViabUlnOHneVM29p38b+5lWjbxouTbai85y8mnk25p6wRkZKD4EE5IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD//2Q==\n",
"text/html": [
"\n",
" \n",
" "
],
"text/plain": [
""
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from IPython.display import YouTubeVideo\n",
"YouTubeVideo(\"_AEJHKGk9ns\", width=\"60%\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
},
"livereveal": {
"auto_select": "code",
"auto_select_fragment": true,
"scroll": true,
"theme": "serif"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": false,
"sideBar": true,
"skip_h1_title": true,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {
"height": "calc(100% - 180px)",
"left": "10px",
"top": "150px",
"width": "303.333px"
},
"toc_section_display": false,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 4
}