{ "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "**Note**: Click on \"*Kernel*\" > \"*Restart Kernel and Clear All Outputs*\" in [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/) *before* reading this notebook to reset its output. If you cannot run this file on your machine, you may want to open it [in the cloud ](https://mybinder.org/v2/gh/webartifex/intro-to-python/main?urlpath=lab/tree/05_numbers/01_content.ipynb)." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Chapter 5: Numbers & Bits (continued)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "In this second part of the chapter, we look at the `float` type in detail. It is probably the most commonly used one in all of data science, even across programming languages." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## The `float` Type" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "As we have seen before, some assumptions need to be made as to how the $0$s and $1$s in a computer's memory are to be translated into numbers. This process becomes a lot more involved when we go beyond integers and model [real numbers ](https://en.wikipedia.org/wiki/Real_number) (i.e., the set $\\mathbb{R}$) with possibly infinitely many digits to the right of the period like $1.23$.\n", "\n", "The **[Institute of Electrical and Electronics Engineers ](https://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers)** (IEEE, pronounced \"eye-triple-E\") is one of the important professional associations when it comes to standardizing all kinds of aspects regarding the implementation of soft- and hardware.\n", "\n", "The **[IEEE 754 ](https://en.wikipedia.org/wiki/IEEE_754)** standard defines the so-called **floating-point arithmetic** that is commonly used today by all major programming languages. The standard not only defines how the $0$s and $1$s are organized in memory but also, for example, how values are to be rounded, what happens in exceptional cases like divisions by zero, or what is a zero value in the first place.\n", "\n", "In Python, the simplest way to create a `float` object is to use a literal notation with a dot `.` in it." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [], "source": [ "b = 42.0" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "139923238853936" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "id(b)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "float" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "type(b)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "42.0" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "b" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "As with `int` literals, we may use underscores `_` to make longer `float` objects easier to read." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "slideshow": { "slide_type": "skip" } }, "outputs": [ { "data": { "text/plain": [ "0.123456789" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "0.123_456_789" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "In cases where the dot `.` is unnecessary from a mathematical point of view, we either need to end the number with it nevertheless or use the [float() ](https://docs.python.org/3/library/functions.html#float) built-in to cast the number explicitly. [float() ](https://docs.python.org/3/library/functions.html#float) can process any numeric object or a properly formatted `str` object." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [ { "data": { "text/plain": [ "42.0" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "42." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "42.0" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "float(42)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "42.0" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "float(\"42\")" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "Leading and trailing whitespace is ignored ..." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "slideshow": { "slide_type": "skip" } }, "outputs": [ { "data": { "text/plain": [ "42.87" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "float(\" 42.87 \")" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "... but not whitespace in between." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "slideshow": { "slide_type": "skip" } }, "outputs": [ { "ename": "ValueError", "evalue": "could not convert string to float: '42. 87'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[10], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;43mfloat\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m42. 87\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n", "\u001b[0;31mValueError\u001b[0m: could not convert string to float: '42. 87'" ] } ], "source": [ "float(\"42. 87\")" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "`float` objects are implicitly created as the result of dividing an `int` object by another with the division operator `/`." ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [ { "data": { "text/plain": [ "0.3333333333333333" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "1 / 3" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "In general, if we combine `float` and `int` objects in arithmetic operations, we always end up with a `float` type: Python uses the \"broader\" representation." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "42.0" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "40.0 + 2" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "slideshow": { "slide_type": "skip" } }, "outputs": [ { "data": { "text/plain": [ "42.0" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "21 * 2.0" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Scientific Notation" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "`float` objects may also be created with the **scientific literal notation**: We use the symbol `e` to indicate powers of $10$, so $1.23 * 10^0$ translates into `1.23e0`." ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [ { "data": { "text/plain": [ "1.23" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "1.23e0" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "Syntactically, `e` needs a `float` or `int` object in its literal notation on its left and an `int` object on its right, both without a space. Otherwise, we get a `SyntaxError`." ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "slideshow": { "slide_type": "skip" } }, "outputs": [ { "ename": "SyntaxError", "evalue": "invalid syntax (1434619204.py, line 1)", "output_type": "error", "traceback": [ "\u001b[0;36m Cell \u001b[0;32mIn[15], line 1\u001b[0;36m\u001b[0m\n\u001b[0;31m 1.23 e0\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" ] } ], "source": [ "1.23 e0" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "slideshow": { "slide_type": "skip" } }, "outputs": [ { "ename": "SyntaxError", "evalue": "invalid decimal literal (3971374856.py, line 1)", "output_type": "error", "traceback": [ "\u001b[0;36m Cell \u001b[0;32mIn[16], line 1\u001b[0;36m\u001b[0m\n\u001b[0;31m 1.23e 0\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid decimal literal\n" ] } ], "source": [ "1.23e 0" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "slideshow": { "slide_type": "skip" } }, "outputs": [ { "ename": "SyntaxError", "evalue": "invalid syntax (2795275998.py, line 1)", "output_type": "error", "traceback": [ "\u001b[0;36m Cell \u001b[0;32mIn[17], line 1\u001b[0;36m\u001b[0m\n\u001b[0;31m 1.23e0.0\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" ] } ], "source": [ "1.23e0.0" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "If we leave out the number to the left, Python raises a `NameError` as it unsuccessfully tries to look up a variable named `e0`." ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "slideshow": { "slide_type": "skip" } }, "outputs": [ { "ename": "NameError", "evalue": "name 'e0' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[18], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43me0\u001b[49m\n", "\u001b[0;31mNameError\u001b[0m: name 'e0' is not defined" ] } ], "source": [ "e0" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "So, to write $10^0$ in Python, we need to think of it as $1*10^0$ and write `1e0`." ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "1.0" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "1e0" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "To express thousands of something (i.e., $10^3$), we write `1e3`." ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "1000.0" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "1e3 # = thousands" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "Similarly, to express, for example, milliseconds (i.e., $10^{-3} s$), we write `1e-3`." ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "0.001" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "1e-3 # = milli" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Special Values" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "There are also three special values representing \"**not a number,**\" called `nan`, and positive or negative **infinity**, called `inf` or `-inf`, that are created by passing in the corresponding abbreviation as a `str` object to the [float() ](https://docs.python.org/3/library/functions.html#float) built-in. These values could be used, for example, as the result of a mathematically undefined operation like division by zero or to model the value of a mathematical function as it goes to infinity." ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [ { "data": { "text/plain": [ "nan" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "float(\"nan\") # also float(\"NaN\")" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "slideshow": { "slide_type": "skip" } }, "outputs": [ { "data": { "text/plain": [ "inf" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "float(\"+inf\") # also float(\"+infinity\") or float(\"infinity\")" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "inf" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "float(\"inf\") # also float(\"+inf\")" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "-inf" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "float(\"-inf\")" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "`nan` objects *never* compare equal to *anything*, not even to themselves. This happens in accordance with the [IEEE 754 ](https://en.wikipedia.org/wiki/IEEE_754) standard." ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [ { "data": { "text/plain": [ "False" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "float(\"nan\") == float(\"nan\")" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "Another caveat is that any arithmetic involving a `nan` object results in `nan`. In other words, the addition below **fails silently** as no error is raised. As this also happens in accordance with the [IEEE 754 ](https://en.wikipedia.org/wiki/IEEE_754) standard, we *need* to be aware of that and check any data we work with for any `nan` occurrences *before* doing any calculations." ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "nan" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "42 + float(\"nan\")" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "On the contrary, as two values go to infinity, there is no such concept as difference and *everything* compares equal." ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "float(\"inf\") == float(\"inf\")" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "Adding `42` to `inf` makes no difference." ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "slideshow": { "slide_type": "skip" } }, "outputs": [ { "data": { "text/plain": [ "inf" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "float(\"inf\") + 42" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "float(\"inf\") + 42 == float(\"inf\")" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "We observe the same for multiplication ..." ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "slideshow": { "slide_type": "skip" } }, "outputs": [ { "data": { "text/plain": [ "inf" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "42 * float(\"inf\")" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "slideshow": { "slide_type": "skip" } }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "42 * float(\"inf\") == float(\"inf\")" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "... and even exponentiation!" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "slideshow": { "slide_type": "skip" } }, "outputs": [ { "data": { "text/plain": [ "inf" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "float(\"inf\") ** 42" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "slideshow": { "slide_type": "skip" } }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "float(\"inf\") ** 42 == float(\"inf\")" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "Although absolute differences become unmeaningful as we approach infinity, signs are still respected." ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "slideshow": { "slide_type": "skip" } }, "outputs": [ { "data": { "text/plain": [ "inf" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "-42 * float(\"-inf\")" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "slideshow": { "slide_type": "skip" } }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "-42 * float(\"-inf\") == float(\"inf\")" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "As a caveat, adding infinities of different signs is an *undefined operation* in math and results in a `nan` object. So, if we (accidentally or unknowingly) do this on a real dataset, we do *not* see any error messages, and our program may continue to run with non-meaningful results! This is another example of a piece of code **failing silently**." ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "nan" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "float(\"inf\") + float(\"-inf\")" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "nan" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "float(\"inf\") - float(\"inf\")" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Imprecision" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "`float` objects are *inherently* imprecise, and there is *nothing* we can do about it! In particular, arithmetic operations with two `float` objects may result in \"weird\" rounding \"errors\" that are strictly deterministic and occur in accordance with the [IEEE 754 ](https://en.wikipedia.org/wiki/IEEE_754) standard.\n", "\n", "For example, let's add `1` to `1e15` and `1e16`, respectively. In the latter case, the `1` somehow gets \"lost.\"" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [ { "data": { "text/plain": [ "1000000000000001.0" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "1e15 + 1" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "1e+16" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "1e16 + 1" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "Interactions between sufficiently large and small `float` objects are not the only source of imprecision." ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [], "source": [ "from math import sqrt" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "2.0000000000000004" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sqrt(2) ** 2" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "0.30000000000000004" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "0.1 + 0.2" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "This may become a problem if we rely on equality checks in our programs." ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "False" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sqrt(2) ** 2 == 2" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "False" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "0.1 + 0.2 == 0.3" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "A popular workaround is to benchmark the absolute value of the difference between the two numbers to be checked for equality against a pre-defined `threshold` *sufficiently* close to `0`, for example, `1e-15`." ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [], "source": [ "threshold = 1e-15" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "abs((sqrt(2) ** 2) - 2) < threshold" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ "abs((0.1 + 0.2) - 0.3) < threshold" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "The built-in [format() ](https://docs.python.org/3/library/functions.html#format) function allows us to show the **significant digits** of a `float` number as they exist in memory to arbitrary precision. To exemplify it, let's view a couple of `float` objects with `50` digits. This analysis reveals that almost no `float` number is precise! After 14 or 15 digits \"weird\" things happen. As we see further below, the \"random\" digits ending the `float` numbers do *not* \"physically\" exist in memory! Rather, they are \"calculated\" by the [format() ](https://docs.python.org/3/library/functions.html#format) function that is forced to show `50` digits.\n", "\n", "The [format() ](https://docs.python.org/3/library/functions.html#format) function is different from the [format() ](https://docs.python.org/3/library/stdtypes.html#str.format) method on `str` objects introduced in the next chapter (cf., [Chapter 6 ](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/06_text/00_content.ipynb#format%28%29-Method)): Yet, both work with the so-called [format specification mini-language ](https://docs.python.org/3/library/string.html#format-specification-mini-language): `\".50f\"` is the instruction to show `50` digits of a `float` number." ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [ { "data": { "text/plain": [ "'0.10000000000000000555111512312578270211815834045410'" ] }, "execution_count": 49, "metadata": {}, "output_type": "execute_result" } ], "source": [ "format(0.1, \".50f\")" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "'0.20000000000000001110223024625156540423631668090820'" ] }, "execution_count": 50, "metadata": {}, "output_type": "execute_result" } ], "source": [ "format(0.2, \".50f\")" ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "'0.29999999999999998889776975374843459576368331909180'" ] }, "execution_count": 51, "metadata": {}, "output_type": "execute_result" } ], "source": [ "format(0.3, \".50f\")" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [ { "data": { "text/plain": [ "'0.33333333333333331482961625624739099293947219848633'" ] }, "execution_count": 52, "metadata": {}, "output_type": "execute_result" } ], "source": [ "format(1 / 3, \".50f\")" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "The [format() ](https://docs.python.org/3/library/functions.html#format) function does *not* round a `float` object in the mathematical sense! It just allows us to show an arbitrary number of the digits as stored in memory, and it also does *not* change these.\n", "\n", "On the contrary, the built-in [round() ](https://docs.python.org/3/library/functions.html#round) function creates a *new* numeric object that is a rounded version of the one passed in as the argument. It adheres to the common rules of math.\n", "\n", "For example, let's round `1 / 3` to five decimals. The obtained value for `roughly_a_third` is also *imprecise* but different from the \"exact\" representation of `1 / 3` above." ] }, { "cell_type": "code", "execution_count": 53, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "roughly_a_third = round(1 / 3, 5)" ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "0.33333" ] }, "execution_count": 54, "metadata": {}, "output_type": "execute_result" } ], "source": [ "roughly_a_third" ] }, { "cell_type": "code", "execution_count": 55, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "'0.33333000000000001517008740847813896834850311279297'" ] }, "execution_count": 55, "metadata": {}, "output_type": "execute_result" } ], "source": [ "format(roughly_a_third, \".50f\")" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "Surprisingly, `0.125` and `0.25` appear to be *precise*, and equality comparison works without the `threshold` workaround: Both are powers of $2$ in disguise." ] }, { "cell_type": "code", "execution_count": 56, "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [ { "data": { "text/plain": [ "'0.12500000000000000000000000000000000000000000000000'" ] }, "execution_count": 56, "metadata": {}, "output_type": "execute_result" } ], "source": [ "format(0.125, \".50f\")" ] }, { "cell_type": "code", "execution_count": 57, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "'0.25000000000000000000000000000000000000000000000000'" ] }, "execution_count": 57, "metadata": {}, "output_type": "execute_result" } ], "source": [ "format(0.25, \".50f\")" ] }, { "cell_type": "code", "execution_count": 58, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 58, "metadata": {}, "output_type": "execute_result" } ], "source": [ "0.125 + 0.125 == 0.25" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Binary Representations" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "To understand these subtleties, we need to look at the **[binary representation of floats ](https://en.wikipedia.org/wiki/Double-precision_floating-point_format)** and review the basics of the **[IEEE 754 ](https://en.wikipedia.org/wiki/IEEE_754)** standard. On modern machines, floats are modeled in so-called double precision with $64$ bits that are grouped as in the figure below. The first bit determines the sign ($0$ for plus, $1$ for minus), the next $11$ bits represent an $exponent$ term, and the last $52$ bits resemble the actual significant digits, the so-called $fraction$ part. The three groups are put together like so:" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "$$float = (-1)^{sign} * 1.fraction * 2^{exponent-1023}$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "A $1.$ is implicitly prepended as the first digit, and both, $fraction$ and $exponent$, are stored in base $2$ representation (i.e., they both are interpreted like integers above). As $exponent$ is consequently non-negative, between $0_{10}$ and $2047_{10}$ to be precise, the $-1023$, called the exponent bias, centers the entire $2^{exponent-1023}$ term around $1$ and allows the period within the $1.fraction$ part be shifted into either direction by the same amount. Floating-point numbers received their name as the period, formally called the **[radix point ](https://en.wikipedia.org/wiki/Radix_point)**, \"floats\" along the significant digits. As an aside, an $exponent$ of all $0$s or all $1$s is used to model the special values `nan` or `inf`.\n", "\n", "As the standard defines the exponent part to come as a power of $2$, we now see why `0.125` is a *precise* float: It can be represented as a power of $2$, i.e., $0.125 = (-1)^0 * 1.0 * 2^{1020-1023} = 2^{-3} = \\frac{1}{8}$. In other words, the floating-point representation of $0.125_{10}$ is $0_2$, $1111111100_2 = 1020_{10}$, and $0_2$ for the three groups, respectively." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "-" } }, "source": [ "" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "The crucial fact for the data science practitioner to understand is that mapping the *infinite* set of the real numbers $\\mathbb{R}$ to a *finite* set of bits leads to the imprecisions shown above!\n", "\n", "So, floats are usually good approximations of real numbers only with their first $14$ or $15$ digits. If more precision is required, we need to revert to other data types such as a `Decimal` or a `Fraction`, as shown in the next two sections.\n", "\n", "This [blog post](http://fabiensanglard.net/floating_point_visually_explained/) gives another neat and *visual* way as to how to think of floats. It also explains why floats become worse approximations of the reals as their absolute values increase.\n", "\n", "The Python [documentation ](https://docs.python.org/3/tutorial/floatingpoint.html) provides another good discussion of floats and the goodness of their approximations.\n", "\n", "If we are interested in the exact bits behind a `float` object, we use the [.hex() ](https://docs.python.org/3/library/stdtypes.html#float.hex) method that returns a `str` object beginning with `\"0x1.\"` followed by the $fraction$ in hexadecimal notation and the $exponent$ as an integer after subtraction of $1023$ and separated by a `\"p\"`." ] }, { "cell_type": "code", "execution_count": 59, "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [], "source": [ "one_eighth = 1 / 8" ] }, { "cell_type": "code", "execution_count": 60, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "'0x1.0000000000000p-3'" ] }, "execution_count": 60, "metadata": {}, "output_type": "execute_result" } ], "source": [ "one_eighth.hex()" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "Also, the [.as_integer_ratio() ](https://docs.python.org/3/library/stdtypes.html#float.as_integer_ratio) method returns the two smallest integers whose ratio best approximates a `float` object." ] }, { "cell_type": "code", "execution_count": 61, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "(1, 8)" ] }, "execution_count": 61, "metadata": {}, "output_type": "execute_result" } ], "source": [ "one_eighth.as_integer_ratio()" ] }, { "cell_type": "code", "execution_count": 62, "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [ { "data": { "text/plain": [ "'0x1.555475a31a4bep-2'" ] }, "execution_count": 62, "metadata": {}, "output_type": "execute_result" } ], "source": [ "roughly_a_third.hex()" ] }, { "cell_type": "code", "execution_count": 63, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "(3002369727582815, 9007199254740992)" ] }, "execution_count": 63, "metadata": {}, "output_type": "execute_result" } ], "source": [ "roughly_a_third.as_integer_ratio()" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "`0.0` is also a power of $2$ and thus a *precise* `float` number." ] }, { "cell_type": "code", "execution_count": 64, "metadata": { "slideshow": { "slide_type": "skip" } }, "outputs": [], "source": [ "zero = 0.0" ] }, { "cell_type": "code", "execution_count": 65, "metadata": { "slideshow": { "slide_type": "skip" } }, "outputs": [ { "data": { "text/plain": [ "'0x0.0p+0'" ] }, "execution_count": 65, "metadata": {}, "output_type": "execute_result" } ], "source": [ "zero.hex()" ] }, { "cell_type": "code", "execution_count": 66, "metadata": { "slideshow": { "slide_type": "skip" } }, "outputs": [ { "data": { "text/plain": [ "(0, 1)" ] }, "execution_count": 66, "metadata": {}, "output_type": "execute_result" } ], "source": [ "zero.as_integer_ratio()" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "As seen in [Chapter 1 ](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/main/01_elements/00_content.ipynb#%28Data%29-Type-%2F-%22Behavior%22), the [.is_integer() ](https://docs.python.org/3/library/stdtypes.html#float.is_integer) method tells us if a `float` can be casted as an `int` object without any loss in precision." ] }, { "cell_type": "code", "execution_count": 67, "metadata": { "slideshow": { "slide_type": "skip" } }, "outputs": [ { "data": { "text/plain": [ "False" ] }, "execution_count": 67, "metadata": {}, "output_type": "execute_result" } ], "source": [ "roughly_a_third.is_integer()" ] }, { "cell_type": "code", "execution_count": 68, "metadata": { "slideshow": { "slide_type": "skip" } }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 68, "metadata": {}, "output_type": "execute_result" } ], "source": [ "one = roughly_a_third / roughly_a_third\n", "\n", "one.is_integer()" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "As the exact implementation of floats may vary and be dependent on a particular Python installation, we look up the [.float_info ](https://docs.python.org/3/library/sys.html#sys.float_info) attribute in the [sys ](https://docs.python.org/3/library/sys.html) module in the [standard library ](https://docs.python.org/3/library/index.html) to check the details. Usually, this is not necessary." ] }, { "cell_type": "code", "execution_count": 69, "metadata": { "slideshow": { "slide_type": "skip" } }, "outputs": [], "source": [ "import sys" ] }, { "cell_type": "code", "execution_count": 70, "metadata": { "slideshow": { "slide_type": "skip" } }, "outputs": [ { "data": { "text/plain": [ "sys.float_info(max=1.7976931348623157e+308, max_exp=1024, max_10_exp=308, min=2.2250738585072014e-308, min_exp=-1021, min_10_exp=-307, dig=15, mant_dig=53, epsilon=2.220446049250313e-16, radix=2, rounds=1)" ] }, "execution_count": 70, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sys.float_info" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.2" }, "livereveal": { "auto_select": "code", "auto_select_fragment": true, "scroll": true, "theme": "serif" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": false, "sideBar": true, "skip_h1_title": true, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": { "height": "calc(100% - 180px)", "left": "10px", "top": "150px", "width": "384px" }, "toc_section_display": false, "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 4 }