{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "# Chapter 7: Sequential Data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Content Review" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Read [Chapter 7](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/master/07_sequences.ipynb) of the book. Then work through the ten review questions." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Essay Questions " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Answer the following questions briefly with *at most* 300 characters per question!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Q1**: We have seen **containers** and **iterables** before in [Chapter 4](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/master/04_iteration.ipynb#Containers-vs.-Iterables). How do they relate to **sequences**? " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Q2**: Explain the difference between a **mutable** and an **immutable** object in Python with an example!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Q3**: What is the difference between a **shallow** and a **deep** copy of an object? How can one of them become a problem?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Q4.1**: `tuple` objects have *two* primary usages. First, they can be used in place of `list` objects where **mutability** is *not* required. Second, we use them to model **records**.\n", "\n", "Describe why `tuple` objects are a suitable replacement for `list` objects in general!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Q4.2**: What do we mean by a **record**? How are `tuple` objects suitable to model records? How can we integrate a **semantic** meaning when working with records?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Q5**: With the [map()](https://docs.python.org/3/library/functions.html#map) and [filter()](https://docs.python.org/3/library/functions.html#filter) built-ins and the [reduce()](https://docs.python.org/3/library/functools.html#functools.reduce) function from the [functools](https://docs.python.org/3/library/functools.html) module in the [standard library](https://docs.python.org/3/library/index.html), we can replace many tedious `for`-loops and `if` statements. What are some advantages of doing so?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### True / False Questions" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Motivate your answer with *one short* sentence!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Q6**: `sequence` objects are *not* part of core Python but may be imported from the [standard library](https://docs.python.org/3/library/index.html)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Q7**: Passing **mutable** objects as arguments to functions is not problematic because functions operate in a **local** scope without affecting the **global** scope." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Q8**: The **map-filter-reduce** paradigm is an excellent mental concept to organize one's code with. Then, there is a good chance that a program can be **parallelized** if the data input grows." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Q9**: `lambda` expressions are useful in the context of the **map-filter-reduce** paradigm, where we often do *not* re-use a `function` object more than once." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Coding Exercises" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Working with Lists" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Q10.1**: Write a function `nested_sum()` that takes a `list` object as its argument, which contains other `list` objects with numbers, and adds up the numbers! Use `nested_numbers` below to test your function!\n", "\n", "Hint: You need at least one `for`-loop." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "nested_numbers = [[1, 2, 3], [4], [5], [6, 7], [8], [9]]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def nested_sum():\n", " ..." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "nested_sum(nested_numbers)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Q10.2**: Provide a one-line expression to obtain the *same* result as `nested_sum()`!\n", "\n", "Hints: Use a *list comprehension*. You may want to use the built-in [sum()](https://docs.python.org/3/library/functions.html#sum) function several times." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Q10.3**: Generalize `nested_sum()` into a function `mixed_sum()` that can process a \"mixed\" `list` object, which contains numbers and other `list` objects with numbers! Use `mixed_numbers` below for testing!\n", "\n", "Hints: Use the built-in [isinstance()](https://docs.python.org/3/library/functions.html#isinstance) function to check how an element is to be processed. Get extra credit for adhering to *goose typing*, as explained in [Chapter 5](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/master/05_numbers.ipynb#Goose-Typing)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "mixed_numbers = [[1, 2, 3], 4, 5, [6, 7], 8, [9]]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def mixed_sum():\n", " ..." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "mixed_sum(nums)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Q10.4.1**: Write a function `cum_sum()` that takes a `list` object with numbers as its argument and returns a *new* `list` object with the **cumulative sums** of these numbers! So, `sum_up` below, `[1, 2, 3, 4, 5]`, should return `[1, 3, 6, 10, 15]`.\n", "\n", "Hint: The idea behind is similar to the [cumulative distribution function](https://en.wikipedia.org/wiki/Cumulative_distribution_function) from statistics." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sum_up = [1, 2, 3, 4, 5]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def cum_sum():\n", " ..." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "cum_sum(sum_up)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Q10.4.2**: We should always make sure that our functions also work in corner cases. What happens if your implementation of `cum_sum()` is called with an empty list `[]`? Make sure it handles that case *without* crashing! What would be a good return value in this corner case? Describe everything in the docstring.\n", "\n", "Hint: It is possible to write this without any extra input validation." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "cum_sum([])" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": false, "sideBar": true, "skip_h1_title": true, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": false, "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 2 }