intro-to-python/02_functions/00_content.ipynb
Alexander Hess 086d0bafec
Restructure folders & notebooks
- drop 'chapter_' prefix for chapter folders
- drop numbers for ToC sub-chapters
- split exercises into one problem set per notebook
- adjust titles in notebooks => show sub-chapter titles on the same
  line as the actual chapter titles
2020-10-15 15:45:48 +02:00

3064 lines
87 KiB
Text

{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"**Note**: Click on \"*Kernel*\" > \"*Restart Kernel and Clear All Outputs*\" in [JupyterLab](https://jupyterlab.readthedocs.io/en/stable/) *before* reading this notebook to reset its output. If you cannot run this file on your machine, you may want to open it [in the cloud <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_mb.png\">](https://mybinder.org/v2/gh/webartifex/intro-to-python/develop?urlpath=lab/tree/02_functions/00_content.ipynb)."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# Chapter 2: Functions & Modularization"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"In [Chapter 1 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/01_elements/00_content.ipynb#Example:-Averaging-all-even-Numbers-in-a-List), we simply typed the code to calculate the average of the even numbers in a list of whole numbers into several code cells. Then, we executed them one after another. We had no way of *reusing* the code except for either executing cells multiple times. And, whenever we find ourselves doing repetitive manual work, we can be sure that there must be a way of automating what we are doing.\n",
"\n",
"This chapter shows how Python offers language constructs that let us **define** functions ourselves that we may then **call** just like the built-in ones. Also, we look at how we can extend our Python installation with functionalities written by other people."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## [Built-in Functions <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Python comes with plenty of useful functions built in, some of which we have already seen before (e.g., [print() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#print), [sum() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#sum), [len() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#len), or [id() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#id)). The [documentation <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html) has the full list. Just as core Python itself, they are mostly implemented in C and thus very fast.\n",
"\n",
"Below, [sum() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#sum) adds up all the elements in the `numbers` list while [len() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#len) counts the number of elements in it."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"numbers = [7, 11, 8, 5, 3, 12, 2, 6, 9, 10, 1, 4]"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"78"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sum(numbers)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/plain": [
"12"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(numbers)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"`sum` and `len` are *no* [keywords <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/reference/lexical_analysis.html#keywords) like `for` or `if` but variables that reference *objects* in memory. Often, we hear people say that \"everything is an object in Python\" (e.g., this [question <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_so.png\">](https://stackoverflow.com/questions/40478536/in-python-what-does-it-mean-by-everything-is-an-object)). While this phrase may sound abstract in the beginning, it simply means that the entire memory is organized with \"bags\" of $0$s and $1$s, and there are even bags for the built-in functions. That is *not* true for many other languages (e.g., C or Java) and often a source of confusion for people coming to Python from another language.\n",
"\n",
"The built-in [id() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#id) function tells us where in memory a particular built-in function is stored."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"139940703477088"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"id(sum)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/plain": [
"139940703476048"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"id(len)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"[type() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#type) reveals that built-in functions like [sum() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#sum) or [len() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#len) are objects of type `builtin_function_or_method`."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"builtin_function_or_method"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(sum)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/plain": [
"builtin_function_or_method"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(len)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Python's object-oriented nature allows us to have functions work with themselves. While seemingly not useful from a beginner's point of view, that enables a lot of powerful programming styles later on."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/plain": [
"139940703475648"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"id(id)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/plain": [
"type"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(type)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"To execute a function, we **call** it with the **call operator** `()` as shown many times in [Chapter 1 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/01_elements/00_content.ipynb) and above.\n",
"\n",
"If we are unsure whether a variable references a function or not, we can verify that with the built-in [callable() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#callable) function.\n",
"\n",
"Abstractly speaking, *any* object that can be called with the call operator `()` is a so-called **callable**. And, objects of type `builtin_function_or_method` are just one kind of examples thereof. We will see another one already in the next sub-section."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"callable(sum)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"callable(len)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"`list` objects, for example, are *not* callable."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"callable(numbers)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Constructors"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The list of [built-in functions <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html) in the documentation should really be named a list of built-in *callables*.\n",
"\n",
"Besides the built-in functions, the list also features **constructors** for the built-in types. They may be used to **[cast <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Type_conversion)** (i.e., \"convert\") any object as an object of a given type.\n",
"\n",
"For example, to \"convert\" a `float` or a `str` into an `int` object, we use the [int() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#int) built-in. Below, *new* `int` objects are created from the `7.0` and `\"7\"` objects that are *newly* created themselves before being processed by [int() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#int) right away *without* ever being referenced by a variable."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"7"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"int(7.0)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"7"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"int(\"7\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Casting an object as an `int` is different from rounding with the built-in [round() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#round) function!"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"7"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"int(7.99)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"8"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"round(7.99)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Notice the subtle difference compared to the behavior of the `//` operator in [Chapter 1 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/01_elements/00_content.ipynb##%28Arithmetic#%29-Operators) that \"rounds\" towards minus infinity: [int() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#int) always \"rounds\" towards `0`."
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/plain": [
"-7"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"int(-7.99)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Not all conversions are valid and *runtime* errors may occur as the `ValueError` shows."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"ename": "ValueError",
"evalue": "invalid literal for int() with base 10: 'seven'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-18-af421b358f21>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"seven\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mValueError\u001b[0m: invalid literal for int() with base 10: 'seven'"
]
}
],
"source": [
"int(\"seven\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"We may also cast in the other direction with the [float() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#float) or [str() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#func-str) built-ins."
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"7.0"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"float(7)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"'7'"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"str(7)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Constructors are full-fledged objects as well."
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"94623097764960"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"id(int)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/plain": [
"94623097758720"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"id(float)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"They are of type `type`, which is different from `builtin_function_or_method` above."
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"type"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(int)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/plain": [
"type"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(float)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"As already noted, constructors are *callables*. In that regard, they behave the same as built-in functions. We may call them with the call operator `()`."
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"callable(int)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"callable(float)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The attentive student may already have discovered that we refer to `builtin_function_or_method` objects as \"built-in functions\" and `type` objects as just \"built-ins.\" For a beginner, that difference is not so important. But, the ambitious student should already be aware that such subtleties exist.\n",
"\n",
"Next, let's look at a third kind of callables."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Function Definitions"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"We may create so-called *user-defined* **functions** with the `def` statement (cf., [reference <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/reference/compound_stmts.html#function-definitions)). To extend an already familiar example, we reuse the introductory example from [Chapter 1 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/01_elements/00_content.ipynb#Best-Practices) in its final Pythonic version and transform it into the function `average_evens()` below. We replace the variable name `numbers` with `integers` for didactical purposes in the first couple of examples.\n",
"\n",
"A function's **name** must be chosen according to the same naming rules as ordinary variables since Python manages function names like variables. In this book, we further adopt the convention of ending function names with parentheses `()` in text cells for faster comprehension when reading (i.e., `average_evens()` vs. `average_evens`). These are *not* part of the name but must always be written out in the `def` statement for syntactic reasons.\n",
"\n",
"Functions may define an arbitrary number of **parameters** as inputs that can then be referenced within the indented **code block**: They are listed within the parentheses in the `def` statement (i.e., `integers` below). \n",
"\n",
"The code block is also called a function's **body**, while the first line starting with `def` and ending with a colon is the **header**.\n",
"\n",
"Together, the name and the list of parameters are also referred to as the function's **[signature <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Type_signature)** (i.e., `average_evens(integers)` below).\n",
"\n",
"A function may specify an *explicit* **return value** (i.e., \"result\" or \"output\") with the `return` statement (cf., [reference <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/reference/simple_stmts.html#the-return-statement)): Functions that have one are considered **fruitful**; otherwise, they are **void**. Functions of the latter kind are still useful because of their **side effects**. For example, the built-in [print() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#print) function changes what we see on the screen. Strictly speaking, [print() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#print) and other void functions also have an *implicit* return value, namely the `None` object.\n",
"\n",
"A function should define a **docstring** that describes what it does in a short subject line, what parameters it expects (i.e., their types), and what it returns, if anything. A docstring is a syntactically valid multi-line string (i.e., type `str`) defined within **triple-double quotes** `\"\"\"`. Strings are covered in depth in [Chapter 6 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/06_text/00_content.ipynb#The-str-Type). Widely adopted standards for docstrings are [PEP 257 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://www.python.org/dev/peps/pep-0257/) and section 3.8 of [Google's Python Style Guide <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_gh.png\">](https://github.com/google/styleguide/blob/gh-pages/pyguide.md)."
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"def average_evens(integers):\n",
" \"\"\"Calculate the average of all even numbers in a list.\n",
"\n",
" Args:\n",
" integers (list of int's): whole numbers to be averaged\n",
"\n",
" Returns:\n",
" average (float)\n",
" \"\"\"\n",
" evens = [n for n in integers if n % 2 == 0]\n",
" average = sum(evens) / len(evens)\n",
" return average"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Once defined, a function may be referenced just like any other variable by its name (i.e., *without* the parentheses)."
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"<function __main__.average_evens(integers)>"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"average_evens"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"This works as functions are full-fledged *objects*. So, `average_evens` is just a name referencing an object in memory with an **identity**, a **type**, namely `function`, and a **value**. In that regard, `average_evens` is *no* different from the variable `numbers` or the built-ins' names."
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"139940571731424"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"id(average_evens)"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"function"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(average_evens)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Its value may seem awkward at first: It consists of a location showing where the function is defined (i.e., `__main__` here, which is Python's way of saying \"in this notebook\") and the signature wrapped inside angle brackets `<` and `>`.\n",
" \n",
"The angle brackets are a convention to indicate that the value may *not* be used as a *literal* (i.e., typed back into another code cell). [Chapter 11 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/11_classes/00_content.ipynb) introduces the concept of a **text representation** of an object, which is related to the *semantic* meaning of an object's value as discussed in [Chapter 1 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/01_elements/00_content.ipynb#Value-/-\"Meaning\"), and the angle brackets convention is one such way to represent an object as text. When executed, the angle brackets cause a `SyntaxError` because Python expects the `<` operator to come with an operand on both sides (cf., [Chapter 3 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/03_conditionals/00_content.ipynb#Relational-Operators))."
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"ename": "SyntaxError",
"evalue": "invalid syntax (<ipython-input-31-7f49dff38622>, line 1)",
"output_type": "error",
"traceback": [
"\u001b[0;36m File \u001b[0;32m\"<ipython-input-31-7f49dff38622>\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m <function __main__.average_evens(numbers)>\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n"
]
}
],
"source": [
"<function __main__.average_evens(numbers)>"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"`average_evens` is, of course, callable. So, the `function` type is the third kind of callable in this chapter."
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"callable(average_evens)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The built-in [help() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#help) function shows a function's docstring.\n",
"\n",
"Whenever we use code to analyze or obtain information on an object, we say that we **[introspect <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Type_introspection)** it."
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Help on function average_evens in module __main__:\n",
"\n",
"average_evens(integers)\n",
" Calculate the average of all even numbers in a list.\n",
" \n",
" Args:\n",
" integers (list of int's): whole numbers to be averaged\n",
" \n",
" Returns:\n",
" average (float)\n",
"\n"
]
}
],
"source": [
"help(average_evens)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"In JupyterLab, we can just as well add a question mark `?` to a function's name to achieve the same."
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/plain": [
"\u001b[0;31mSignature:\u001b[0m \u001b[0maverage_evens\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mintegers\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mDocstring:\u001b[0m\n",
"Calculate the average of all even numbers in a list.\n",
"\n",
"Args:\n",
" integers (list of int's): whole numbers to be averaged\n",
"\n",
"Returns:\n",
" average (float)\n",
"\u001b[0;31mFile:\u001b[0m ~/repos/intro-to-python/02_functions/<ipython-input-27-bcb78a3113d7>\n",
"\u001b[0;31mType:\u001b[0m function\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"average_evens?"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Two question marks `??` show a function's source code."
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/plain": [
"\u001b[0;31mSignature:\u001b[0m \u001b[0maverage_evens\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mintegers\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mSource:\u001b[0m \n",
"\u001b[0;32mdef\u001b[0m \u001b[0maverage_evens\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mintegers\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0;34m\"\"\"Calculate the average of all even numbers in a list.\u001b[0m\n",
"\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m Args:\u001b[0m\n",
"\u001b[0;34m integers (list of int's): whole numbers to be averaged\u001b[0m\n",
"\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m Returns:\u001b[0m\n",
"\u001b[0;34m average (float)\u001b[0m\n",
"\u001b[0;34m \"\"\"\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mevens\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mn\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mn\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mintegers\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mn\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0;36m2\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0maverage\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mevens\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m/\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mevens\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0maverage\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mFile:\u001b[0m ~/repos/intro-to-python/02_functions/<ipython-input-27-bcb78a3113d7>\n",
"\u001b[0;31mType:\u001b[0m function\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"average_evens??"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"[help() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#help) and the `?`s also work for built-ins."
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Help on built-in function sum in module builtins:\n",
"\n",
"sum(iterable, /, start=0)\n",
" Return the sum of a 'start' value (default: 0) plus an iterable of numbers\n",
" \n",
" When the iterable is empty, return the start value.\n",
" This function is intended specifically for use with numeric values and may\n",
" reject non-numeric types.\n",
"\n"
]
}
],
"source": [
"help(sum)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Function Calls"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Once defined, we may call a function with the call operator `()` as often as we wish. The formal parameters are then filled in by **passing** *expressions* (e.g., literals or variables) as **arguments** to the function within the parentheses."
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"7.0"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"average_evens([7, 11, 8, 5, 3, 12, 2, 6, 9, 10, 1, 4])"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"7.0"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"average_evens(numbers)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"A function call's return value is commonly assigned to a variable for subsequent use. Otherwise, we lose access to the returned object right away."
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [],
"source": [
"result = average_evens(numbers)"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"7.0"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Scoping Rules"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Local Scope disappears"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The parameters listed in a function's definition (i.e., `integers` in the example) and variables created *inside* it during execution (i.e., `evens` and `average`) are **local** to that function. That means they only reference an object in memory *while* the function is being executed and are dereferenced immediately when the function call returns. We say they go out of **scope**. That is why we see the `NameError`s below."
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'integers' is not defined",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-41-756dfa02d4a8>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mintegers\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'integers' is not defined"
]
}
],
"source": [
"integers"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'evens' is not defined",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-42-df246468d241>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mevens\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'evens' is not defined"
]
}
],
"source": [
"evens"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'average' is not defined",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-43-c3fe9b4213f6>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0maverage\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'average' is not defined"
]
}
],
"source": [
"average"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"[PythonTutor <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](http://pythontutor.com/visualize.html#code=numbers%20%3D%20%5B7,%2011,%208,%205,%203,%2012,%202,%206,%209,%2010,%201,%204%5D%0A%0Adef%20average_evens%28integers%29%3A%0A%20%20%20%20evens%20%3D%20%5Bn%20for%20n%20in%20integers%20if%20n%20%25%202%20%3D%3D%200%5D%0A%20%20%20%20average%20%3D%20sum%28evens%29%20/%20len%28evens%29%0A%20%20%20%20return%20average%0A%0Aresult%20%3D%20average_evens%28numbers%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false) visualizes what happens in memory: To be precise, in the exact moment when the function call is initiated and `numbers` passed in as the `integers` argument, there are *two* references to the *same* `list` object (cf., steps 4-5 in the visualization). We also see how Python creates a *new* **frame** that holds the function's local scope (i.e., \"internal names\") in addition to the **global** frame. Frames are nothing but [namespaces <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Namespace) to *isolate* the names of different **scopes** from each other. The list comprehension `[n for n in integers if n % 2 == 0]` constitutes yet another frame that is in scope as the `list` object assigned to `evens` is *being* created (cf., steps 6-20). When the function returns, only the global frame is left (cf., last step)."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Global Scope is everywhere"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"On the contrary, while a function is *being* executed, it may reference the variables of **enclosing scopes** (i.e., \"outside\" of it). This is a common source of *semantic* errors. Consider the following stylized and incorrect example `average_wrong()`. The error is hard to spot with eyes: The function never references the `integers` parameter but the `numbers` variable in the **global scope** instead."
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"def average_wrong(integers):\n",
" \"\"\"Calculate the average of all even numbers in a list.\n",
"\n",
" Args:\n",
" integers (list of int's): whole numbers to be averaged\n",
"\n",
" Returns:\n",
" average (float)\n",
" \"\"\"\n",
" evens = [n for n in numbers if n % 2 == 0]\n",
" average = sum(evens) / len(evens)\n",
" return average"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"`numbers` in the global scope is, of course, *not* changed by merely defining `average_wrong()`."
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"[7, 11, 8, 5, 3, 12, 2, 6, 9, 10, 1, 4]"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"numbers"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Sometimes a function may return a correct solution for *some* inputs ..."
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"7.0"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"average_wrong(numbers) # correct by accident"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"... but still be wrong *in general*."
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"7.0"
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"average_wrong([123, 456, 789])"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"[PythonTutor <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](http://pythontutor.com/visualize.html#code=numbers%20%3D%20%5B7,%2011,%208,%205,%203,%2012,%202,%206,%209,%2010,%201,%204%5D%0A%0Adef%20average_wrong%28integers%29%3A%0A%20%20%20%20evens%20%3D%20%5Bn%20for%20n%20in%20numbers%20if%20n%20%25%202%20%3D%3D%200%5D%0A%20%20%20%20average%20%3D%20sum%28evens%29%20/%20len%28evens%29%0A%20%20%20%20return%20average%0A%0Aresult%20%3D%20average_wrong%28%5B123,%20456,%20789%5D%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false) is again helpful at visualizing the error interactively: Creating the `list` object `evens` eventually references takes *16* computational steps, namely two for managing the list comprehension, one for setting up an empty `list` object, *twelve* for filling it with elements derived from `numbers` in the global scope (i.e., that is the error), and one to make `evens` reference it (cf., steps 6-21).\n",
"\n",
"The frames logic shown by PythonTutor is the mechanism with which Python not only manages the names inside *one* function call but also for *many* potentially *simultaneous* calls, as revealed in [Chapter 4 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/04_iteration/00_content.ipynb#Trivial-Example:-Countdown). It is the reason why we may reuse the same names for the parameters and variables inside both `average_evens()` and `average_wrong()` without Python mixing them up. So, as we already read in the [Zen of Python <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://www.python.org/dev/peps/pep-0020/), \"namespaces are one honking great idea\" (cf., `import this`), and a frame is just a special kind of namespace."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Shadowing"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Code gets even more confusing when variables by the *same* name from *different* scopes collide. In particular, what should we expect to happen if a function \"changes\" a globally defined variable in its body?\n",
"\n",
"`average_evens()` below works like `average_evens()` above except that it rounds the numbers in `integers` with the built-in [round() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#round) function before filtering and averaging them. [round() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#round) returns `int` objects independent of its argument being an `int` or a `float` object. On the first line in its body, `average_evens()` introduces a *local* variable `numbers` whose name collides with the one defined in the global scope."
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"def average_evens(integers):\n",
" \"\"\"Calculate the average of all even numbers in a list.\n",
"\n",
" Args:\n",
" integers (list of int's/float's): numbers to be averaged;\n",
" if non-whole numbers are provided, they are rounded\n",
"\n",
" Returns:\n",
" average (float)\n",
" \"\"\"\n",
" numbers = [round(n) for n in integers]\n",
" evens = [n for n in numbers if n % 2 == 0]\n",
" average = sum(evens) / len(evens)\n",
" return average"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"As a good practice, let's first \"verify\" that `average_evens()` is \"correct\" by calling it with inputs for which we can calculate the answer in our heads. Treating a function as a \"black box\" (i.e., input-output specification) when testing is also called [unit testing <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Unit_testing) and plays an important role in modern software engineering."
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"42.0"
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"average_evens([40.0, 41.1, 42.2, 43.3, 44.4])"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Such tests are often and conveniently expressed with the `assert` statement (cf., [reference <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement)): If the expression following `assert` evaluates to `True`, nothing happens."
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [],
"source": [
"assert average_evens([40.0, 41.1, 42.2, 43.3, 44.4]) == 42.0"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"However, if the expression evaluates to `False`, an `AssertionError` is raised."
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"ename": "AssertionError",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mAssertionError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-51-f47586a118b9>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32massert\u001b[0m \u001b[0maverage_evens\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m40.0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m41.1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m42.2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m43.3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m44.4\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m87.0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mAssertionError\u001b[0m: "
]
}
],
"source": [
"assert average_evens([40.0, 41.1, 42.2, 43.3, 44.4]) == 87.0"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Calling `average_evens()` leaves `numbers` in the global scope unchanged."
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"[7, 11, 8, 5, 3, 12, 2, 6, 9, 10, 1, 4]"
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"numbers"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"To add to the confusion, let's also pass the global `numbers` list as an argument to `average_evens()`. The return value is the same as before."
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/plain": [
"7.0"
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"average_evens(numbers)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"In summary, Python is smart enough to keep all the involved `numbers` variables apart. So, the global `numbers` variable is still referencing the *same* `list` object as before."
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/plain": [
"[7, 11, 8, 5, 3, 12, 2, 6, 9, 10, 1, 4]"
]
},
"execution_count": 54,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"numbers"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The reason why everything works is that *every* time we (re-)assign an object to a variable *inside* a function's body with the `=` statement, this is done in the *local* scope by default. There are ways to change variables existing in an outer scope from within a function, but this is a rather advanced topic.\n",
"\n",
"[PythonTutor <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](http://pythontutor.com/visualize.html#code=numbers%20%3D%20%5B7,%2011,%208,%205,%203,%2012,%202,%206,%209,%2010,%201,%204%5D%0A%0Adef%20average_evens%28integers%29%3A%0A%20%20%20%20numbers%20%3D%20%5Bround%28n%29%20for%20n%20in%20integers%5D%0A%20%20%20%20evens%20%3D%20%5Bn%20for%20n%20in%20numbers%20if%20n%20%25%202%20%3D%3D%200%5D%0A%20%20%20%20average%20%3D%20sum%28evens%29%20/%20len%28evens%29%0A%20%20%20%20return%20average%0A%0Aresult%20%3D%20average_evens%28%5B40.0,%2041.1,%2042.2,%2043.3,%2044.4%5D%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false) shows how *two* `numbers` variables exist in *different* scopes referencing *different* objects (cf., steps 14-25) when we execute `average_evens([40.0, 41.1, 42.2, 43.3, 44.4])`.\n",
"\n",
"Variables whose names collide with the ones of variables in enclosing scopes - and the global scope is just the most enclosing scope - are said to **shadow** them.\n",
"\n",
"While this is not a problem for Python, it may lead to less readable code for humans and should be avoided if possible. But, as the software engineering wisdom goes, \"[naming things](https://skeptics.stackexchange.com/questions/19836/has-phil-karlton-ever-said-there-are-only-two-hard-things-in-computer-science)\" is often considered a hard problem as well, and we have to be prepared to encounter shadowing variables.\n",
"\n",
"Shadowing also occurs if a parameter in the function definition goes by the same name as a variable in an outer scope. Below, `average_evens()` is identical to the first version in this chapter except that the parameter `integers` is now called `numbers` as well."
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"def average_evens(numbers):\n",
" \"\"\"Calculate the average of all even numbers in a list.\n",
"\n",
" Args:\n",
" numbers (list of int's): whole numbers to be averaged\n",
"\n",
" Returns:\n",
" average (float)\n",
" \"\"\"\n",
" evens = [n for n in numbers if n % 2 == 0]\n",
" average = sum(evens) / len(evens)\n",
" return average"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"7.0"
]
},
"execution_count": 56,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"average_evens(numbers)"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"[7, 11, 8, 5, 3, 12, 2, 6, 9, 10, 1, 4]"
]
},
"execution_count": 57,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"numbers"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"[PythonTutor <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](http://pythontutor.com/visualize.html#code=numbers%20%3D%20%5B7,%2011,%208,%205,%203,%2012,%202,%206,%209,%2010,%201,%204%5D%0A%0Adef%20average_evens%28numbers%29%3A%0A%20%20%20%20evens%20%3D%20%5Bn%20for%20n%20in%20numbers%20if%20n%20%25%202%20%3D%3D%200%5D%0A%20%20%20%20average%20%3D%20sum%28evens%29%20/%20len%28evens%29%0A%20%20%20%20return%20average%0A%0Aresult%20%3D%20average_evens%28numbers%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false) reveals that in this example there are *two* `numbers` variables in *different* scope referencing the *same* `list` object in memory (cf., steps 4-23)."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Positional vs. Keyword Arguments"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"So far, we have specified only one parameter in each of our user-defined functions. In [Chapter 1 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/01_elements/00_content.ipynb#%28Arithmetic%29-Operators), however, we saw the built-in [divmod() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#divmod) function take two arguments. And, the order in which they are passed in matters! Whenever we call a function and list its arguments in a comma separated manner, we say that we pass in the arguments *by position* or refer to them as **positional arguments**."
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"(4, 2)"
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"divmod(42, 10)"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"(0, 10)"
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"divmod(10, 42)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"For many functions, there is a natural order to the arguments: For example, for any kind of division passing the dividend first and the divisor second seems intuitive. But what if that is not the case in another setting? For example, let's create a close relative of the above `average_evens()` function that also scales the resulting average by a factor. What is more natural? Passing in `numbers` first? Or `scalar`? There is no obvious way and we continue with the first alternative for no concrete reason."
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"def scaled_average_evens(numbers, scalar):\n",
" \"\"\"Calculate the scaled average of all even numbers in a list.\n",
"\n",
" Args:\n",
" numbers (list of int's/float's): numbers to be averaged;\n",
" if non-whole numbers are provided, they are rounded\n",
" scalar (float): multiplies the average\n",
"\n",
" Returns:\n",
" scaled_average (float)\n",
" \"\"\"\n",
" numbers = [round(n) for n in numbers]\n",
" evens = [n for n in numbers if n % 2 == 0]\n",
" average = sum(evens) / len(evens)\n",
" return scalar * average"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"As with [divmod() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#divmod), we may pass in the arguments by position."
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"14.0"
]
},
"execution_count": 61,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"scaled_average_evens(numbers, 2)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Now, this function call is a bit harder to understand as we always need to remember what the `2` means. This becomes even harder with more parameters.\n",
"\n",
"Luckily, we may also pass in arguments *by name*. Then, we refer to them as **keyword arguments**."
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"14.0"
]
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"scaled_average_evens(numbers=numbers, scalar=2)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"When passing all arguments by name, we may do so in any order."
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"14.0"
]
},
"execution_count": 63,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"scaled_average_evens(scalar=2, numbers=numbers)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"We may even combine positional and keyword arguments in the same function call."
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"14.0"
]
},
"execution_count": 64,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"scaled_average_evens(numbers, scalar=2)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Unfortunately, there are ways to screw this up with a `SyntaxError`: If positional and keyword arguments are mixed, the keyword arguments *must* come last."
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"ename": "SyntaxError",
"evalue": "positional argument follows keyword argument (<ipython-input-65-b00eb6f72e84>, line 1)",
"output_type": "error",
"traceback": [
"\u001b[0;36m File \u001b[0;32m\"<ipython-input-65-b00eb6f72e84>\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m scaled_average_evens(numbers=numbers, 2)\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m positional argument follows keyword argument\n"
]
}
],
"source": [
"scaled_average_evens(numbers=numbers, 2)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Similarly, we must always pass in the right number of arguments. Otherwise, a `TypeError` is raised."
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"ename": "TypeError",
"evalue": "scaled_average_evens() missing 1 required positional argument: 'scalar'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-66-d910518345ec>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mscaled_average_evens\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnumbers\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m: scaled_average_evens() missing 1 required positional argument: 'scalar'"
]
}
],
"source": [
"scaled_average_evens(numbers)"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"ename": "TypeError",
"evalue": "scaled_average_evens() takes 2 positional arguments but 3 were given",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-67-2e7ca1d2a555>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mscaled_average_evens\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnumbers\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m: scaled_average_evens() takes 2 positional arguments but 3 were given"
]
}
],
"source": [
"scaled_average_evens(numbers, 2, 3)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Modularization"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Defining `average_evens()` and `scaled_average_evens()` as above leads to a repetition of most of their code. That is *not* good as such a redundancy makes a code base hard to maintain in the long run: Whenever we change the logic in one function, we must *not* forget to do so for the other function as well. And, most likely, we forget about such issues in larger projects.\n",
"\n",
"Below, three of four lines in the functions' bodies are identical!"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"def average_evens(numbers):\n",
" \"\"\" ... ... ... \"\"\"\n",
" numbers = [round(n) for n in numbers]\n",
" evens = [n for n in numbers if n % 2 == 0]\n",
" average = sum(evens) / len(evens)\n",
" return average"
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"def scaled_average_evens(numbers, scalar):\n",
" \"\"\" ... ... ... \"\"\"\n",
" numbers = [round(n) for n in numbers]\n",
" evens = [n for n in numbers if n % 2 == 0]\n",
" average = sum(evens) / len(evens)\n",
" return scalar * average"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"A better way is to design related functions in a **modular** fashion such that they reuse each other's code.\n",
"\n",
"For example, as not scaling an average is just a special case of scaling it with `1`, we could redefine the two functions like below: In this version, the function resembling the *special* case, `average_evens()`, **forwards** the call to the more *general* function, `scaled_average_evens()`, passing a `scalar` argument of `1`. As the name `scaled_average_evens` within the body of `average_evens()` is looked up each time the function is *being* executed, we may define `average_evens()` before `scaled_average_evens()`."
]
},
{
"cell_type": "code",
"execution_count": 70,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"def average_evens(numbers):\n",
" \"\"\" ... ... ... \"\"\"\n",
" return scaled_average_evens(numbers, scalar=1)"
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"def scaled_average_evens(numbers, scalar):\n",
" \"\"\" ... ... ... \"\"\"\n",
" numbers = [round(n) for n in numbers]\n",
" evens = [n for n in numbers if n % 2 == 0]\n",
" average = sum(evens) / len(evens)\n",
" return scalar * average"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"After **refactoring** the functions, it is a good idea to test them again."
]
},
{
"cell_type": "code",
"execution_count": 72,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [],
"source": [
"assert average_evens(numbers) == 7.0"
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [],
"source": [
"assert scaled_average_evens(numbers, 2) == 14.0"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Default Arguments"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"*Assuming* that scaling the average occurs rarely, it may be a good idea to handle both cases in *one* function definition by providing a **default argument** of `1` for the `scalar` parameter."
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"def average_evens(numbers, scalar=1):\n",
" \"\"\"Calculate the average of all even numbers in a list.\n",
"\n",
" Args:\n",
" numbers (list of int's/float's): numbers to be averaged;\n",
" if non-whole numbers are provided, they are rounded\n",
" scalar (float, optional): multiplies the average; defaults to 1\n",
"\n",
" Returns:\n",
" scaled_average (float)\n",
" \"\"\"\n",
" numbers = [round(n) for n in numbers]\n",
" evens = [n for n in numbers if n % 2 == 0]\n",
" average = sum(evens) / len(evens)\n",
" return scalar * average"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Now, we call the function with or without passing a `scalar` argument.\n",
"\n",
"If `scalar` is *not* passed in, it automatically takes the value `1`."
]
},
{
"cell_type": "code",
"execution_count": 75,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"7.0"
]
},
"execution_count": 75,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"average_evens(numbers)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"If `scalar` is passed in, this may be done as either a positional or a keyword argument. Which of the two calls where `scalar` is `2` is faster to understand in a larger program?"
]
},
{
"cell_type": "code",
"execution_count": 76,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"14.0"
]
},
"execution_count": 76,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"average_evens(numbers, 2)"
]
},
{
"cell_type": "code",
"execution_count": 77,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"14.0"
]
},
"execution_count": 77,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"average_evens(numbers, scalar=2)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Keyword-only Arguments"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Because we *assumed* that scaling occurs rarely, we would prefer that our new version of `average_evens()` be called with a *keyword argument* whenever `scalar` is passed in. Then, a function call is never ambiguous when reading the source code.\n",
"\n",
"Python offers a **keyword-only** syntax when defining a function that *forces* a caller to pass the `scalar` argument *by name* if it is passed in at all: To do so, we place an asterisk `*` before the arguments that may only be passed in by name. Note that the keyword-only syntax also works *without* a default argument."
]
},
{
"cell_type": "code",
"execution_count": 78,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"def average_evens(numbers, *, scalar=1):\n",
" \"\"\"Calculate the average of all even numbers in a list.\n",
"\n",
" Args:\n",
" numbers (list of int's/float's): numbers to be averaged;\n",
" if non-whole numbers are provided, they are rounded\n",
" scalar (float, optional): multiplies the average; defaults to 1\n",
"\n",
" Returns:\n",
" scaled_average (float)\n",
" \"\"\"\n",
" numbers = [round(n) for n in numbers]\n",
" evens = [n for n in numbers if n % 2 == 0]\n",
" average = sum(evens) / len(evens)\n",
" return scalar * average"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"As before, we may call `average_evens()` without passing in an argument for the `scalar` parameter."
]
},
{
"cell_type": "code",
"execution_count": 79,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [
{
"data": {
"text/plain": [
"7.0"
]
},
"execution_count": 79,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"average_evens(numbers)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"If we call `average_evens()` with a `scalar` argument, we *must* use keyword notation."
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"14.0"
]
},
"execution_count": 80,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"average_evens(numbers, scalar=2)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"If instead we pass in `scalar` as a positional argument, we get a `TypeError`."
]
},
{
"cell_type": "code",
"execution_count": 81,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"ename": "TypeError",
"evalue": "average_evens() takes 1 positional argument but 2 were given",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-81-12eb635366db>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0maverage_evens\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnumbers\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m: average_evens() takes 1 positional argument but 2 were given"
]
}
],
"source": [
"average_evens(numbers, 2)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"## Anonymous Functions"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The `def` statement is a statement because of its *side effect* of creating a *new* name that references a *new* `function` object in memory.\n",
"\n",
"We can thus think of it as doing *two* things **atomically** (i.e., either both of them happen or none). First, a `function` object is created that contains the concrete $0$s and $1$s that resemble the instructions we put into the function's body. In the context of a function, these $0$s and $1$s are also called **[byte code <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_wiki.png\">](https://en.wikipedia.org/wiki/Bytecode)**. Then, a name referencing the new `function` object is created.\n",
"\n",
"Only this second aspect makes `def` a statement: Merely creating a new object in memory without making it accessible for later reference does *not* constitute a side effect because the state the program is *not* changed. After all, if we cannot reference an object, how do we know it exists in the first place?\n",
"\n",
"Python provides a `lambda` expression syntax that allows us to *only* create a `function` object in memory *without* making a name reference it (cf., [reference <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/reference/expressions.html#lambda)). It starts with the keyword `lambda` followed by an optional listing of comma separated parameters, a mandatory colon, and *one* expression that serves as the return value of the resulting `function` object. Because it does *not* create a name referencing the object, we effectively create \"anonymous\" functions with it.\n",
"\n",
"In the example, we create a `function` object that adds `3` to the only argument passed in as the parameter `x` and returns that sum."
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/plain": [
"<function __main__.<lambda>(x)>"
]
},
"execution_count": 82,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"lambda x: x + 3"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"If you think this is rather pointless to do, you are absolutely correct!\n",
"\n",
"We created a `function` object, dit *not* call it, and Python immediately forgot about it. So what's the point?\n",
"\n",
"To inspect the object created by a `lambda` expression, we use the simple `=` statement and assign it to the variable `add_three`, which is really `add_three()` as per our convention from above."
]
},
{
"cell_type": "code",
"execution_count": 83,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [],
"source": [
"add_three = lambda x: x + 3 # we could and should use def instead"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"[type() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#type) and [callable() <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_py.png\">](https://docs.python.org/3/library/functions.html#callable) confirm that `add_three` is indeed a callable `function` object."
]
},
{
"cell_type": "code",
"execution_count": 84,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/plain": [
"function"
]
},
"execution_count": 84,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(add_three)"
]
},
{
"cell_type": "code",
"execution_count": 85,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 85,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"callable(add_three)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Now we may call `add_three()` as if we defined it with the `def` statement."
]
},
{
"cell_type": "code",
"execution_count": 86,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/plain": [
"42"
]
},
"execution_count": 86,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"add_three(39)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Alternatively, we could call an `function` object created with a `lambda` expression right away (i.e., without assigning it to a variable), which looks quite weird for now as we need *two* pairs of parentheses: The first one serves as a delimiter whereas the second represents the call operator."
]
},
{
"cell_type": "code",
"execution_count": 87,
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [
{
"data": {
"text/plain": [
"42"
]
},
"execution_count": 87,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"(lambda x: x + 3)(39)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"The main point of having functions without a reference to them is to use them in a situation where we know ahead of time that we use the function only *once*.\n",
"\n",
"Popular applications of lambda expressions occur in combination with the **map-filter-reduce** paradigm (cf., [Chapter 8 <img height=\"12\" style=\"display: inline-block\" src=\"../static/link/to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/develop/08_mfr/00_content.ipynb#Lambda-Expressions))."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.6"
},
"livereveal": {
"auto_select": "code",
"auto_select_fragment": true,
"scroll": true,
"theme": "serif"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": false,
"sideBar": true,
"skip_h1_title": true,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {
"height": "calc(100% - 180px)",
"left": "10px",
"top": "150px",
"width": "384px"
},
"toc_section_display": false,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 4
}