79 lines
2.8 KiB
Text
79 lines
2.8 KiB
Text
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"slideshow": {
|
|
"slide_type": "slide"
|
|
}
|
|
},
|
|
"source": [
|
|
"# Chapter 4: Recursion & Looping (TL;DR)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"slideshow": {
|
|
"slide_type": "skip"
|
|
}
|
|
},
|
|
"source": [
|
|
"**Iteration** is about **running blocks of code repeatedly**.\n",
|
|
"\n",
|
|
"There are two redundant approaches to achieving that.\n",
|
|
"\n",
|
|
"First, we combine functions that call themselves with conditional statements. This concept is known as **recursion** and suffices to control the flow of execution in *every* way we desire. For a beginner, this approach of **backward** reasoning might not be intuitive, but it turns out to be a handy tool to have in one's toolbox.\n",
|
|
"\n",
|
|
"Second, the `while` and `for` statements are alternative and potentially more intuitive ways to express iteration as they correspond to a **forward** reasoning. The `for` statement is **syntactic sugar** that allows rewriting common occurrences of the `while` statement concisely. Python provides the `break` and `continue` statements as well as an optional `else`-clause that make working with the `for` and `while` statements even more convenient.\n",
|
|
"\n",
|
|
"**Iterables** are any **concrete data types** that support being looped over, for example, with the `for` statement. The idea behind iterables is an **abstract concept** that may or may not be implemented by any given concrete data type. For example, both `list` and `range` objects can be looped over. The `list` type is also a **container** as any given `list` objects \"contains\" references to other objects in memory. On the contrary, the `range` type does not reference any other object but instead creates *new* `int` objects \"on the fly\" (i.e., when being looped over)."
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.6"
|
|
},
|
|
"livereveal": {
|
|
"auto_select": "code",
|
|
"auto_select_fragment": true,
|
|
"scroll": true,
|
|
"theme": "serif"
|
|
},
|
|
"toc": {
|
|
"base_numbering": 1,
|
|
"nav_menu": {},
|
|
"number_sections": false,
|
|
"sideBar": true,
|
|
"skip_h1_title": true,
|
|
"title_cell": "Table of Contents",
|
|
"title_sidebar": "Contents",
|
|
"toc_cell": false,
|
|
"toc_position": {
|
|
"height": "calc(100% - 180px)",
|
|
"left": "10px",
|
|
"top": "150px",
|
|
"width": "384px"
|
|
},
|
|
"toc_section_display": false,
|
|
"toc_window_display": false
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|