intro-to-python/08_mappings_02_exercises.ipynb
Alexander Hess 86e59b847a Restructure *.ipynb files
- rename *_content.ipynb into *_lecture.ipynb
- adjust links in README.md
2020-02-02 17:29:59 +01:00

388 lines
11 KiB
Text

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"# Chapter 8: Mappings & Sets"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Coding Exercises"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Read [Chapter 8](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/master/08_mappings_00_lecture.ipynb) of the book. Then, work through the exercises below."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Working with Nested Data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's write some code to analyze the historic soccer game [Brazil vs. Germany](https://en.wikipedia.org/wiki/Brazil_v_Germany_%282014_FIFA_World_Cup%29) during the 2014 World Cup.\n",
"\n",
"Below, `players` consists of two nested `dict` objects, one for each team, that hold `tuple` objects (i.e., records) with information on the players. Besides the jersey number, name, and position, each `tuple` objects contains a `list` object with the times when the player scored."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"players = {\n",
" \"Brazil\": [\n",
" (12, \"Júlio César\", \"Goalkeeper\", []),\n",
" (4, \"David Luiz\", \"Defender\", []),\n",
" (6, \"Marcelo\", \"Defender\", []),\n",
" (13, \"Dante\", \"Defender\", []),\n",
" (23, \"Maicon\", \"Defender\", []),\n",
" (5, \"Fernandinho\", \"Midfielder\", []),\n",
" (7, \"Hulk\", \"Midfielder\", []),\n",
" (8, \"Paulinho\", \"Midfielder\", []),\n",
" (11, \"Oscar\", \"Midfielder\", [90]),\n",
" (16, \"Ramires\", \"Midfielder\", []),\n",
" (17, \"Luiz Gustavo\", \"Midfielder\", []),\n",
" (19, \"Willian\", \"Midfielder\", []),\n",
" (9, \"Fred\", \"Striker\", []),\n",
" ],\n",
" \"Germany\": [\n",
" (1, \"Manuel Neuer\", \"Goalkeeper\", []),\n",
" (4, \"Benedikt Höwedes\", \"Defender\", []),\n",
" (5, \"Mats Hummels\", \"Defender\", []),\n",
" (16, \"Philipp Lahm\", \"Defender\", []),\n",
" (17, \"Per Mertesacker\", \"Defender\", []),\n",
" (20, \"Jérôme Boateng\", \"Defender\", []),\n",
" (6, \"Sami Khedira\", \"Midfielder\", [29]),\n",
" (7, \"Bastian Schweinsteiger\", \"Midfielder\", []),\n",
" (8, \"Mesut Özil\", \"Midfielder\", []),\n",
" (13, \"Thomas Müller\", \"Midfielder\", [11]),\n",
" (14, \"Julian Draxler\", \"Midfielder\", []),\n",
" (18, \"Toni Kroos\", \"Midfielder\", [24, 26]),\n",
" (9, \"André Schürrle\", \"Striker\", [69, 79]),\n",
" (11, \"Miroslav Klose\", \"Striker\", [23]),\n",
" ],\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q1.1**: Write a dictionary comprehension to derive a new `dict` object, called `brazilian_players`, that maps a Brazilian player's name to his position!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"brazilian_players = {...}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"brazilian_players"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q1.2**: Generalize the code fragment into a `get_players()` function: Passed a `team` name, it returns a `dict` object like `brazilian_players`. Verify that the function works for the German team!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def get_players(team):\n",
" ..."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"get_players(\"Germany\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Often, we are given a `dict` object like the one returned from `get_players()`: It is characterized by the observation that a large set of unique keys (i.e., the players' names) is mapped onto a smaller set of non-unique values (i.e., the positions).\n",
"\n",
"**Q1.3**: Create a generic `invert()` function that swaps the keys and values of a `mapping` argument passed to it and returns them in a *new* `dict` object! Ensure that *no* key gets lost. Verify your implementation with the `brazilian_players` dictionary!\n",
"\n",
"Hints: Think of this as a grouping operation. The *new* values are `list` or `tuple` objects that hold the original keys. You may want to use either the the [defaultdict](https://docs.python.org/3/library/collections.html#collections.defaultdict) type from the [collections](https://docs.python.org/3/library/collections.html) module in the [standard library](https://docs.python.org/3/library/index.html) or the [setdefault()](https://docs.python.org/3/library/stdtypes.html#dict.setdefault) method of the ordinary `dict` type."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def invert(mapping):\n",
" ..."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"invert(brazilian_players)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q1.4**: Write a `score_at_minute()` function: It takes two arguments, `team` and `minute`, and returns the number of goals the `team` has scored up until this time in the game.\n",
"\n",
"Hints: The function may reference the global `players` for simplicity. Earn bonus points if you can write this in a one-line expression using some *reduction* function and a *generator expression*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def score_at_minute(team, minute):\n",
" ..."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The score at half time was:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"score_at_minute(\"Brazil\", 45)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"score_at_minute(\"Germany\", 45)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The final score was:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"score_at_minute(\"Brazil\", 90)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"score_at_minute(\"Germany\", 90)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q1.5**: Write a `goals_by_player()` function: It takes an argument like the global `players`, and returns a `dict` object mapping the players to the number of goals they scored.\n",
"\n",
"Hints: Do *not* \"hard code\" the names of the teams! Earn bonus points if you can solve it in a single dictionary comprehension."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def goals_by_player(players):\n",
" ..."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"goals_by_player(players)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q1.6**: Write a *dictionary comprehension* to filter out the players who did *not* score from the preceding result. Then, write a *set comprehension* that does the same but discards the number of goals scored.\n",
"\n",
"Hints: Reference the `goals_by_player()` function from before."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"{...}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"{...}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q1.7**: Write a `all_goals()` function: It takes one argument like the global `players` and returns a `list` object containing $2$-element `tuple` objects, where the first element is the minute a player scored and the second his name. The list should be sorted by the time.\n",
"\n",
"Hints: You may want to use either the built-in [sorted()](https://docs.python.org/3/library/functions.html#sorted) function or the `list` type's [sort()](https://docs.python.org/3/library/stdtypes.html#list.sort) method. Earn bonus points if you can write a one-line expression with a *generator expression*."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def all_goals(players):\n",
" ..."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"all_goals(players)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q1.8**: Lastly, write a `summary()` function: It takes one argument like the global `players` and prints out a concise report of the goals, the score at the half, and the final result.\n",
"\n",
"Hints: Use the `all_goals()` and `score_at_minute()` functions from before.\n",
"\n",
"The output should look similar to this:\n",
"```\n",
"12' Gerd Müller scores\n",
"...\n",
"HALFTIME: TeamA 1 TeamB 2\n",
"77' Ronaldo scores\n",
"...\n",
"FINAL: TeamA 1 TeamB 3\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def summary(players):\n",
" ..."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"summary(players)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": false,
"sideBar": true,
"skip_h1_title": true,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": false,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 4
}