lalib/tests/fields/test_galois.py
Alexander Hess 153094eef5
Add Q, R, C, and GF2 fields
- add `lalib.fields.base.Field`, a blueprint for all concrete fields,
  providing a unified interface to be used outside of the
  `lalib.fields` sub-package
- implement `lalib.fields.complex_.ComplexField`, or `C` for short,
  the field over the complex numbers (modeled as `complex` numbers)
- implement `lalib.fields.galois.GaloisField2`, or `GF2` for short,
  the (finite) field over the two elements `one` and `zero`
  + adapt `lalib.elements.galois.GF2Element.__eq__()` to return
    `NotImplemented` instead of `False` for non-castable `other`s
    => this fixes a minor issue with `pytest.approx()`
- implement `lalib.fields.rational.RationalField`, or `Q` for short,
  the field over the rational numbers (modeled as `fractions.Fraction`s)
- implement `lalib.fields.real.RealField`, or `R` for short,
  the field over the real numbers (modeled as `float`s)
- organize top-level imports for `lalib.fields`,
  making `Q`, `R`, `C`, and `GF2` importable with
  `from lalib.fields import *`
- provide extensive unit and integration tests for the new objects:
  + test generic and common behavior in `tests.fields.test_base`
  + test specific behavior is other modules
  + test the well-known math axioms for all fields (integration tests)
  + test the new objects' docstrings
  + add "pytest-repeat" to run randomized tests many times
2024-10-14 15:17:42 +02:00

100 lines
3.2 KiB
Python

"""Tests for the `lalib.fields.galois.GaloisField2` only."""
import itertools
import pytest
from lalib import fields
from tests.fields import utils
GF2 = fields.GF2
class TestCastAndValidateFieldElements:
"""Test specifics for `GF2.cast()` and `GF2.validate()`."""
@pytest.mark.parametrize("value", utils.NUMBERS)
def test_number_is_field_element(self, value):
"""Common numbers are always `GF2` elements in non-`strict` mode."""
left = GF2.cast(value, strict=False)
right = bool(value)
assert left == right
assert GF2.validate(value, strict=False)
@pytest.mark.parametrize("value", utils.ONES_N_ZEROS)
def test_one_and_zero_number_is_field_element(self, value):
"""`1`-like and `0`-like `value`s are `GF2` elements."""
utils.is_field_element(GF2, value)
@pytest.mark.parametrize("pre_value", [1, 0])
def test_complex_number_is_field_element(self, pre_value):
"""By design, `GF2` can process `complex` numbers."""
value = complex(pre_value, 0)
utils.is_field_element(GF2, value)
@pytest.mark.parametrize("pre_value", [+42, -42])
def test_complex_number_is_not_field_element(self, pre_value):
"""By design, `GF2` can process `complex` numbers ...
... but they must be `one`-like or `zero`-like
to become a `GF2` element.
"""
value = complex(pre_value, 0)
utils.is_not_field_element(GF2, value)
@pytest.mark.parametrize("pre_value", ["NaN", "+inf", "-inf"])
def test_non_finite_complex_number_is_not_field_element(self, pre_value):
"""For now, we only allow finite numbers as field elements.
This also holds true for `complex` numbers
with a non-finite `.real` part.
"""
value = complex(pre_value)
utils.is_not_field_element(GF2, value)
class TestIsZero:
"""Test specifics for `GF2.zero` and `GF2.is_zero()`."""
def test_is_slightly_not_zero(self):
"""`value` is not within an acceptable threshold of `GF2.zero`."""
value = 0.0 + utils.NOT_WITHIN_THRESHOLD
assert GF2.zero != value
with pytest.raises(ValueError, match="not an element of the field"):
GF2.is_zero(value)
class TestIsOne:
"""Test specifics for `GF2.one` and `GF2.is_one()`."""
def test_is_slightly_not_one(self):
"""`value` is not within an acceptable threshold of `GF2.one`."""
value = 1.0 + utils.NOT_WITHIN_THRESHOLD
assert GF2.one != value
with pytest.raises(ValueError, match="not an element of the field"):
GF2.is_one(value)
@pytest.mark.repeat(utils.N_RANDOM_DRAWS)
class TestDrawRandomFieldElement:
"""Test specifics for `GF2.random()`."""
@pytest.mark.parametrize("bounds", itertools.product([0, 1], repeat=2))
def test_draw_element_with_custom_bounds(self, bounds):
"""Draw a random element from `GF2` in non-`strict` mode ...
... within the bounds passed in as arguments.
"""
lower, upper = bounds
element = GF2.random(lower=lower, upper=upper)
if upper < lower:
lower, upper = upper, lower
assert lower <= element <= upper