diff --git a/tex/2_lit/2_class/2_ets.tex b/tex/2_lit/2_class/2_ets.tex index 6db9781..53537da 100644 --- a/tex/2_lit/2_class/2_ets.tex +++ b/tex/2_lit/2_class/2_ets.tex @@ -1,4 +1,4 @@ -\subsubsection{Na\"{i}ve Methods, Moving Averages, and Exponential Smoothing.} +\subsubsection{Na\"{i}ve Methods, Moving Averages, and Exponential Smoothing} \label{ets} Simple forecasting methods are often employed as a benchmark for more diff --git a/tex/2_lit/2_class/3_arima.tex b/tex/2_lit/2_class/3_arima.tex index d55ffd8..3432b7e 100644 --- a/tex/2_lit/2_class/3_arima.tex +++ b/tex/2_lit/2_class/3_arima.tex @@ -1,4 +1,4 @@ -\subsubsection{Autoregressive Integrated Moving Averages.} +\subsubsection{Autoregressive Integrated Moving Averages} \label{arima} \cite{box1962}, \cite{box1968}, and more papers by the same authors in the diff --git a/tex/2_lit/2_class/4_stl.tex b/tex/2_lit/2_class/4_stl.tex index 127123c..39c987a 100644 --- a/tex/2_lit/2_class/4_stl.tex +++ b/tex/2_lit/2_class/4_stl.tex @@ -1,4 +1,4 @@ -\subsubsection{Seasonal and Trend Decomposition using Loess.} +\subsubsection{Seasonal and Trend Decomposition using Loess} \label{stl} A time series $y_t$ may exhibit different types of patterns; to fully capture diff --git a/tex/2_lit/3_ml/2_learning.tex b/tex/2_lit/3_ml/2_learning.tex index 86d157a..5e7c2bc 100644 --- a/tex/2_lit/3_ml/2_learning.tex +++ b/tex/2_lit/3_ml/2_learning.tex @@ -1,4 +1,4 @@ -\subsubsection{Supervised Learning.} +\subsubsection{Supervised Learning} \label{learning} A conceptual difference between classical and ML methods is the format diff --git a/tex/2_lit/3_ml/3_cv.tex b/tex/2_lit/3_ml/3_cv.tex index 1d5186b..abfdebc 100644 --- a/tex/2_lit/3_ml/3_cv.tex +++ b/tex/2_lit/3_ml/3_cv.tex @@ -1,4 +1,4 @@ -\subsubsection{Cross-Validation.} +\subsubsection{Cross-Validation} \label{cv} Because ML models are trained by minimizing a loss function $L$, the diff --git a/tex/2_lit/3_ml/4_rf.tex b/tex/2_lit/3_ml/4_rf.tex index 784d2a7..eeb7161 100644 --- a/tex/2_lit/3_ml/4_rf.tex +++ b/tex/2_lit/3_ml/4_rf.tex @@ -1,4 +1,4 @@ -\subsubsection{Random Forest Regression.} +\subsubsection{Random Forest Regression} \label{rf} \cite{breiman1984} introduce the classification and regression tree diff --git a/tex/2_lit/3_ml/5_svm.tex b/tex/2_lit/3_ml/5_svm.tex index 1c12af5..528fe9e 100644 --- a/tex/2_lit/3_ml/5_svm.tex +++ b/tex/2_lit/3_ml/5_svm.tex @@ -1,4 +1,4 @@ -\subsubsection{Support Vector Regression.} +\subsubsection{Support Vector Regression} \label{svm} \cite{vapnik1963} and \cite{vapnik1964} introduce the so-called support vector diff --git a/tex/3_mod/7_models/2_hori.tex b/tex/3_mod/7_models/2_hori.tex index 5d5959a..21cc627 100644 --- a/tex/3_mod/7_models/2_hori.tex +++ b/tex/3_mod/7_models/2_hori.tex @@ -1,4 +1,4 @@ -\subsubsection{Horizontal and Whole-day-ahead Forecasts.} +\subsubsection{Horizontal and Whole-day-ahead Forecasts} \label{hori} The upper-left in Figure \ref{f:inputs} illustrates the simplest way to diff --git a/tex/3_mod/7_models/3_vert.tex b/tex/3_mod/7_models/3_vert.tex index 5459b81..43aaaf1 100644 --- a/tex/3_mod/7_models/3_vert.tex +++ b/tex/3_mod/7_models/3_vert.tex @@ -1,4 +1,4 @@ -\subsubsection{Vertical and Whole-day-ahead Forecasts without Retraining.} +\subsubsection{Vertical and Whole-day-ahead Forecasts without Retraining} \label{vert} The upper-right in Figure \ref{f:inputs} shows an alternative way to diff --git a/tex/3_mod/7_models/4_rt.tex b/tex/3_mod/7_models/4_rt.tex index 75122cc..6fa038d 100644 --- a/tex/3_mod/7_models/4_rt.tex +++ b/tex/3_mod/7_models/4_rt.tex @@ -1,4 +1,4 @@ -\subsubsection{Vertical and Real-time Forecasts with Retraining.} +\subsubsection{Vertical and Real-time Forecasts with Retraining} \label{rt} The lower-left in Figure \ref{f:inputs} shows how models trained on vertical diff --git a/tex/3_mod/7_models/5_ml.tex b/tex/3_mod/7_models/5_ml.tex index 26f22a6..7ca00c4 100644 --- a/tex/3_mod/7_models/5_ml.tex +++ b/tex/3_mod/7_models/5_ml.tex @@ -1,4 +1,4 @@ -\subsubsection{Vertical and Real-time Forecasts without Retraining.} +\subsubsection{Vertical and Real-time Forecasts without Retraining} \label{ml_models} The lower-right in Figure \ref{f:inputs} shows how ML models take