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Abstract
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selection is adapted to demand typical for such a platform (i.e., intermittent with a double-

seasonal pattern). The results of an empirical study with a European meal delivery service
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1. Introduction

In recent years, many meal delivery platform providers (e.g., Uber Eats, GrubHub, Do-

orDash, Deliveroo) with different kinds of business models have entered the markets in cities

around the world. A study by [26] estimates the global market size to surpass 20 billion

Dollars by 2025. A common feature of these platforms is that they do not operate kitchens

but focus on marketing their partner restaurants’ meals, unifying all order related processes

in simple smartphone apps, and managing the delivery via a fleet of either employees or

crowd-sourced sub-contractors.

Various kind of urban delivery platforms (UDP) have received attention in recent scholarly

publications. [29] look into heuristics to simultaneously optimize courier scheduling and

routing in general, while [40] do so for the popular dial-a-ride problem and [56] investigate

the effect of different fulfillment strategies in the context of urban meal delivery. [21] and [1]

focus their research on the routing aspect, which is commonly modeled as a so-called vehicle

routing problem (VRP).

Not covered in the recent literature is research focusing on the demand forecasting prob-

lem a UDP faces. Due to the customers’ fragmented locations and the majority of the orders

occurring ad-hoc for immediate delivery in the case of a meal delivery platform, forecasting

demand for the near future (i.e., several hours) and distinct locations of the city in real-time

is an essential factor in achieving timely fulfillment. In general, demand forecasting is a

well-researched discipline with a decades-long history in scholarly journals as summarized,

for example, by [19]. Even some meal delivery platforms themselves publish their practices:

For example, [5] provide a general overview of supply and demand forecasting at Uber and

benchmarks of the methods used while [38] investigate how extreme events can be incorpo-

rated.

The conditions such platforms face are not limited to meal delivery: Any entity that

performs ad-hoc requested point-to-point transportation at scale in an urban area benefits

from a robust forecasting system. Examples include ride-hailing, such as the original Uber

offering, or bicycle courier services. The common characteristics are:

� Geospatial Slicing: Forecasts for distinct parts of a city in parallel
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� Temporal Slicing: Forecasts on a sub-daily basis (e.g., 60-minute windows)

� Order Sparsity: The historical order time series exhibit an intermittent pattern

� Double Seasonality: Demand varies with the day of the week and the time of day

Whereas the first two points can be assumed to vary with the concrete application’s require-

ments, it is the last two that pose challenges for forecasting a platform’s demand: Intermittent

demand (i.e., many observations in the historic order time series exhibit no demand at all)

renders most of the commonly applied error metrics useless. Moreover, many of the estab-

lished forecasting methods can only handle a single and often low seasonality (i.e., repeated

regular pattern), if at all.

In this paper, we develop a rigorous methodology as to how to build and evaluate a robust

forecasting system for an urban delivery platform (UDP) that offers ad-hoc point-to-point

transportation of any kind. We implement such a system with a broad set of commonly used

forecasting methods. We not only apply established (i.e., “classical”) time series methods

but also machine learning (ML) models that have gained traction in recent years due to

advancements in computing power and availability of larger amounts of data. In that regard,

the classical methods serve as benchmarks for the ML methods. Our system is trained on

and evaluated with a dataset obtained from an undisclosed industry partner that, during

the timeframe of our study, was active in several European countries and, in particular, in

France. Its primary business strategy is the delivery of meals from upper-class restaurants

to customers in their home or work places via bicycles. In this empirical study, we identify

the best-performing methods. Thus, we answer the following research questions:

Q1: Which forecasting methods work best under what circumstances?

Q2: How do classical forecasting methods compare with ML models?

Q3: How does the forecast accuracy change with more historic data available?

Q4: Can real-time information on demand be exploited?

Q5: Can external data (e.g., weather data) improve the forecast accuracy?

To the best of our knowledge, no such study has yet been published in a scholarly journal.

The subsequent Section 2 reviews the literature on the forecasting methods included in

the system. Section 3 introduces our forecasting system, and Section 4 discusses the results
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obtained in the empirical study. Lastly, Section 5 summarizes our findings and concludes

with an outlook on further research opportunities.

2. Literature Review

In this section, we review the specific forecasting methods that make up our forecasting

system. We group them into classical statistics and ML models. The two groups differ mainly

in how they represent the input data and how accuracy is evaluated.

A time series is a finite and ordered sequence of equally spaced observations. Thus, time

is regarded as discrete and a time step as a short period. Formally, a time series Y is defined

as Y = {yt : t ∈ I}, or yt for short, where I is an index set of positive integers. Besides

its length T = |Y |, another property is the a priori fixed and non-negative periodicity k of

a seasonal pattern in demand: k is the number of time steps after which a pattern repeats

itself (e.g., k = 12 for monthly sales data).

2.1. Demand Forecasting with Classical Forecasting Methods

Forecasting became a formal discipline starting in the 1950s and has its origins in the

broader field of statistics. [30] provide a thorough overview of the concepts and methods

established, and [44] indicate business-related applications such as demand forecasting. These

“classical” forecasting methods share the characteristic that they are trained over the entire

Y first. Then, for prediction, the forecaster specifies the number of time steps for which he

wants to generate forecasts. That is different for ML models.

2.1.1. Näıve Methods, Moving Averages, and Exponential Smoothing.

Simple forecasting methods are often employed as a benchmark for more sophisticated

ones. The so-called näıve and seasonal näıve methods forecast the next time step in a time

series, yT+1, with the last observation, yT , and, if a seasonal pattern is present, with the

observation k steps before, yT+1−k. As variants, both methods can be generalized to include

drift terms in the presence of a trend or changing seasonal amplitude.

If a time series exhibits no trend, a simple moving average (SMA) is a generalization of

the näıve method that is more robust to outliers. It is defined as follows: ŷT+1 = 1
h

∑T
i=T−h yi
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where h is the horizon over which the average is calculated. If a time series exhibits a seasonal

pattern, setting h to a multiple of the periodicity k suffices that the forecast is unbiased.

Starting in the 1950s, another popular family of forecasting methods, so-called exponential

smoothing methods, was introduced by [13], [28], and [58]. The idea is that forecasts ŷT+1

are a weighted average of past observations where the weights decay over time; in the case

of the simple exponential smoothing (SES) method we obtain: ŷT+1 = αyT +α(1−α)yT−1 +

α(1− α)2yT−2 + · · ·+ α(1− α)T−1y1 where α (with 0 ≤ α ≤ 1) is a smoothing parameter.

Exponential smoothing methods are often expressed in an alternative component form

that consists of a forecast equation and one or more smoothing equations for unobservable

components. Below, we present a generalization of SES, the so-called Holt-Winters’ seasonal

method, in an additive formulation. `t, bt, and st represent the unobservable level, trend, and

seasonal components inherent in yt, and β and γ complement α as smoothing parameters:

ŷt+1 = `t + bt + st+1−k

`t = α(yt − st−k) + (1− α)(`t−1 + bt−1)

bt = β(`t − `t−1) + (1− β)bt−1

st = γ(yt − `t−1 − bt−1) + (1− γ)st−k

With bt, st, β, and γ removed, this formulation reduces to SES. Distinct variations exist:

Besides the three components, [22] add dampening for the trend, [45] provides multiplicative

formulations, and [52] adds dampening to the latter. The accuracy measure commonly

employed is the sum of squared errors between the observations and their forecasts.

Originally introduced by [2], [31] show how the Theta method can be regarded as an

equivalent to SES with a drift term. We mention this method here only because [5] emphasize

that it performs well at Uber. However, in our empirical study, we find that this is not true

in general.

[35] introduce statistical processes, so-called innovations state-space models, to generalize

the methods in this sub-section. They call this family of models ETS as they capture error,

5



trend, and seasonal terms. Linear and additive ETS models have a structure like so:

yt = ~w · ~xt−1 + εt

~xt = F~xt−1 + ~gεt

yt denote the observations as before while ~xt is a state vector of unobserved components. εt is

a white noise series and the matrix F and the vectors ~g and ~w contain a model’s coefficients.

Just as the models in the next sub-section, ETS models are commonly fitted with maximum

likelihood and evaluated using information theoretical criteria against historical data. We

refer to [34] for a thorough summary.

2.1.2. Autoregressive Integrated Moving Averages.

[7], [8], and more papers by the same authors in the 1960s introduce a type of model where

observations correlate with their neighbors and refer to them as autoregressive integrated

moving average (ARIMA) models for stationary time series. For a thorough overview, we

refer to [9] and [12].

A time series yt is stationary if its moments are independent of the point in time where

it is observed. A typical example is a white noise εt series. Therefore, a trend or seasonality

implies non-stationarity. [37] provide a test to check the null hypothesis of stationary data.

To obtain a stationary time series, one chooses from several techniques: First, to stabilize a

changing variance (i.e., heteroscedasticity), one applies a Box-Cox transformation (e.g., log)

as first suggested by [6]. Second, to factor out a trend (or seasonal) pattern, one computes

differences of consecutive (or of lag k) observations or even differences thereof. Third, it is also

common to pre-process yt with one of the decomposition methods mentioned in Sub-section

2.1.3 below with an ARIMA model then trained on an adjusted yt.

In the autoregressive part, observations are modeled as linear combinations of its pre-

decessors. Formally, an AR(p) model is defined with a drift term c, coefficients φi to be

estimated (where i is an index with 0 < i ≤ p), and white noise εt like so: AR(p) :

yt = c + φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εt. The moving average part considers ob-

servations to be regressing towards a linear combination of past forecasting errors. For-

mally, a MA(q) model is defined with a drift term c, coefficients θj to be estimated, and

white noise terms εt (where j is an index with 0 < j ≤ q) as follows: MA(q) : yt =
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c+εt +θ1εt−1 +θ2εt−2 + · · ·+θqεt−q. Finally, an ARIMA(p, d, q) model unifies both parts and

adds differencing where d is the degree of differences and the ′ indicates differenced values:

ARIMA(p, d, q) : y′t = c+ φ1y
′
t−1 + · · ·+ φpy

′
t−p + θ1εt−1 + · · ·+ θqεt−q + εt.

ARIMA(p, d, q) models are commonly fitted with maximum likelihood estimation. To

find an optimal combination of the parameters p, d, and q, the literature suggests calculating

an information theoretical criterion (e.g., Akaike’s Information Criterion) that evaluates the

fit on historical data. [32] provide a step-wise heuristic to choose p, d, and q, that also decides

if a Box-Cox transformation is to be applied, and if so, which one. To obtain a one-step-ahead

forecast, the above equation is reordered such that t is substituted with T + 1. For forecasts

further into the future, the actual observations are subsequently replaced by their forecasts.

Seasonal ARIMA variants exist; however, the high frequency k in the kind of demand a UDP

faces typically renders them impractical as too many coefficients must be estimated.

2.1.3. Seasonal and Trend Decomposition using Loess.

A time series yt may exhibit different types of patterns; to fully capture each of them,

the series must be decomposed. Then, each component is forecast with a distinct model.

Most commonly, the components are the trend tt, seasonality st, and remainder rt. They

are themselves time series, where only st exhibits a periodicity k. A decomposition may be

additive (i.e., yt = st + tt + rt) or multiplicative (i.e., yt = st ∗ tt ∗ rt); the former assumes

that the effect of the seasonal component is independent of the overall level of yt and vice

versa. The seasonal component is centered around 0 in both cases such that its removal does

not affect the level of yt. Often, it is sufficient to only seasonally adjust the time series, and

model the trend and remainder together, for example, as at = yt − st in the additive case.

Early approaches employed moving averages (cf., Sub-section 2.1.1) to calculate a trend

component, and, after removing that from yt, averaged all observations of the same seasonal

lag to obtain the seasonal component. The downsides of this are the subjectivity in choosing

the window lengths for the moving average and the seasonal averaging, the incapability of

the seasonal component to vary its amplitude over time, and the missing handling of outliers.

The X11 method developed at the U.S. Census Bureau and described in detail by [18]

overcomes these disadvantages. However, due to its background in economics, it is designed
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primarily for quarterly or monthly data, and the change in amplitude over time cannot be

controlled. Variants of this method are the SEATS decomposition by the Bank of Spain and

the newer X13-SEATS-ARIMA method by the U.S. Census Bureau. Their main advantages

stem from the fact that the models calibrate themselves according to statistical criteria

without manual work for a statistician and that the fitting process is robust to outliers.

[16] introduce a seasonal and trend decomposition using a repeated locally weighted re-

gression - the so-called Loess procedure - to smoothen the trend and seasonal components,

which can be viewed as a generalization of the methods above and is denoted by the acronym

STL. In contrast to the X11, X13, and SEATS methods, the STL supports seasonalities of

any lag k that must, however, be determined with additional statistical tests or set with

out-of-band knowledge by the forecaster (e.g., hourly demand data implies k = 24 ∗ 7 = 168

assuming customer behavior differs on each day of the week). Moreover, the seasonal com-

ponent’s rate of change, represented by the ns parameter and explained in detail with Figure

4 in Section 3.5, must be set by the forecaster as well, while the trend’s smoothness may be

controlled via setting a non-default window size. Outliers are handled by assignment to the

remainder such that they do not affect the trend and seasonal components. In particular,

the manual input needed to calibrate the STL explains why only the X11, X13, and SEATS

methods are widely used by practitioners. However, the widespread adoption of concepts like

cross-validation (cf., Sub-section 2.2.2) in recent years enables the usage of an automated grid

search to optimize the parameters. The STL’s usage within a grid search is facilitated even

further by its being computationally cheaper than the other methods discussed.

2.2. Demand Forecasting with Machine Learning Methods

ML methods have been employed in all kinds of prediction tasks in recent years. In

this section, we restrict ourselves to the models that performed well in our study: Random

Forest (RF) and Support Vector Regression (SVR). RFs are in general well-suited for datasets

without a priori knowledge about the patterns, while SVR is known to perform well on time

series data, as shown by [23] in general and [3] specifically for intermittent demand. Gradient

Boosting, another popular ML method, was consistently outperformed by RFs, and artificial

neural networks require an amount of data exceeding what our industry partner has by far.
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2.2.1. Supervised Learning.

A conceptual difference between classical and ML methods is the format for the model

inputs. In ML models, a time series Y is interpreted as labeled data. Labels are collected

into a vector ~y while the corresponding predictors are aligned in an (T − n)× n matrix X:

~y =


yT

yT−1

. . .

yn+1

 X =


yT−1 yT−2 . . . yT−n

yT−2 yT−3 . . . yT−(n+1)

. . . . . . . . . . . .

yn yn−1 . . . y1


The m = T − n rows are referred to as samples and the n columns as features. Each row in

X is “labeled” by the corresponding entry in ~y, and ML models are trained to fit the rows to

their labels. Conceptually, we model a functional relationship f between X and ~y such that

the difference between the predicted ~̂y = f(X) and the true ~y are minimized according to

some error measure L(~̂y, ~y), where L summarizes the goodness of the fit into a scalar value

(e.g., the well-known mean squared error [MSE]; cf., Section 3.4). X and ~y show the ordinal

character of time series data: Not only overlap the entries of X and ~y, but the rows of X are

shifted versions of each other. That does not hold for ML applications in general (e.g., the

classical example of predicting spam vs. no spam emails, where the features model properties

of individual emails), and most of the common error measures presented in introductory texts

on ML, are only applicable in cases without such a structure in X and ~y. n, the number of

past time steps required to predict a yt, is an exogenous model parameter. For prediction,

the forecaster supplies the trained ML model an input vector in the same format as a row

~xi in X. For example, to predict yT+1, the model takes the vector (yT , yT−1, ..., yT−n+1) as

input. That is in contrast to the classical methods, where we only supply the number of time

steps to be predicted as a scalar integer.

2.2.2. Cross-Validation.

Because ML models are trained by minimizing a loss function L, the resulting value of L

underestimates the true error we see when predicting into the actual future by design. To

counter that, one popular and model-agnostic approach is cross-validation (CV), as summa-

rized, for example, by [24]. CV is a resampling technique, which ranomdly splits the samples
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into a training and a test set. Trained on the former, an ML model makes forecasts on the

latter. Then, the value of L calculated only on the test set gives a realistic and unbiased

estimate of the true forecasting error, and may be used for one of two distinct aspects: First,

it assesses the quality of a fit and provides an idea as to how the model would perform in

production when predicting into the actual future. Second, the errors of models of either

different methods or the same method with different parameters may be compared with each

other to select the best model. In order to first select the best model and then assess its qual-

ity, one must apply two chained CVs: The samples are divided into training, validation, and

test sets, and all models are trained on the training set and compared on the validation set.

Then, the winner is retrained on the union of the training and validation sets and assessed

on the test set.

Regarding the splitting, there are various approaches, and we choose the so-called k-fold

CV, where the samples are randomly divided into k folds of the same size. Each fold is used

as a test set once and the remaining k − 1 folds become the corresponding training set. The

resulting k error measures are averaged. A k-fold CV with k = 5 or k = 10 is a compromise

between the two extreme cases of having only one split and the so-called leave-one-out CV

where k = m: Computation is still relatively fast and each sample is part of several training

sets maximizing the learning from the data. We adapt the k-fold CV to the ordinal stucture

in X and ~y in Sub-section 3.3.

2.2.3. Random Forest Regression.

[11] introduce the classification and regression tree (CART) model that is built around the

idea that a single binary decision tree maps learned combinations of intervals of the feature

columns to a label. Thus, each sample in the training set is associated with one leaf node

that is reached by following the tree from its root and branching along the arcs according

to some learned splitting rule per intermediate node that compares the sample’s realization

for the feature specified by the rule to the learned decision rule. While such models are

computationally fast and offer a high degree of interpretability, they tend to overfit strongly

to the training set as the splitting rules are not limited to any functional form (e.g., linear)

in the relationship between the features and the labels. In the regression case, it is common
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to maximize the variance reduction IV from a parent node N to its two children, C1 and C2,

as the splitting rule. [11] formulate this as follows:

IV (N) =
1

|SN |2
∑
i∈SN

∑
j∈SN

1

2
(yi−yj)2−

(
1

|SC1|2
∑
i∈SC1

∑
j∈SC1

1

2
(yi − yj)2 +

1

|SC2|2
∑
i∈SC2

∑
j∈SC2

1

2
(yi − yj)2

)
SN , SC1, and SC2 are the index sets of the samples in N , C1, and C2.

[27] and then [10] generalize this method by combining many CART models into one

forest of trees where every single tree is a randomized variant of the others. Randomization

is achieved at two steps in the training process: First, each tree receives a distinct training

set resampled with replacement from the original training set, an idea also called bootstrap

aggregation. Second, at each node a random subset of the features is used to grow the

tree. Trees can be fitted in parallel speeding up the training significantly. For prediction

at the tree level, the average of all the samples at a particular leaf node is used. Then, the

individual values are combined into one value by averaging again across the trees. Due to

the randomization, the trees are decorrelated offsetting the overfitting. Another measure to

counter overfitting is pruning the tree, either by specifying the maximum depth of a tree or

the minimum number of samples at leaf nodes.

The forecaster must tune the structure of the forest. Parameters include the number of

trees in the forest, the size of the random subset of features, and the pruning criteria. The

parameters are optimized via grid search: We train many models with parameters chosen

from a pre-defined list of values and select the best one by CV. RFs are a convenient ML

method for any dataset as decision trees do not make any assumptions about the relationship

between features and labels. [25] use RFs to predict the hourly demand for water in an urban

context, a similar application as the one in this paper, and find that RFs work well with time

series type of data.

2.2.4. Support Vector Regression.

[55] and [54] introduce the so-called support vector machine (SVM) model, and [53]

summarizes the research conducted since then. In its basic version, SVMs are linear classifiers,

modeling a binary decision, that fit a hyperplane into the feature space of X to maximize the

margin around the hyperplane seperating the two groups of labels. SVMs were popularized

in the 1990s in the context of optical character recognition, as shown in [47].
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[20] and [50] adapt SVMs to the regression case, and [49] provide a comprehensive intro-

duction thereof. [42] and [43] focus on SVRs in the context of time series data and find that

they tend to outperform classical methods. [14] and [15] apply SVRs to predict the hourly

demand for water in cities, an application similar to the UDP case.

In the SVR case, a linear function ŷi = f(~xi) = 〈~w, ~xi〉 + b is fitted so that the actual

labels yi have a deviation of at most ε from their predictions ŷi (cf., the constraints below).

SVRs are commonly formulated as quadratic optimization problems as follows:

minimize
1

2
‖~w‖2 + C

m∑
i=1

(ξi + ξ∗i ) subject to

yi − 〈~w, ~xi〉 − b ≤ ε+ ξi,

〈~w, ~xi〉+ b− yi ≤ ε+ ξ∗i

~w are the fitted weights in the row space of X, b is a bias term in the column space of X,

and 〈·, ·〉 denotes the dot product. By minimizing the norm of ~w, the fitted function is flat

and not prone to overfitting strongly. To allow individual samples outside the otherwise hard

ε bounds, non-negative slack variables ξi and ξ∗i are included. A non-negative parameter C

regulates how many samples may violate the ε bounds and by how much. To model non-

linear relationships, one could use a mapping Φ(·) for the ~xi from the row space of X to

some higher dimensional space; however, as the optimization problem only depends on the

dot product 〈·, ·〉 and not the actual entries of ~xi, it suffices to use a kernel function k such

that k(~xi, ~xj) = 〈Φ(~xi),Φ(~xj)〉. Such kernels must fulfill certain mathematical properties,

and, besides polynomial kernels, radial basis functions with k(~xi, ~xj) = exp(γ ‖~xi − ~xj‖2) are

a popular candidate where γ is a parameter controlling for how the distances between any

two samples influence the final model. SVRs work well with sparse data in high dimensional

spaces, such as intermittent demand data, as they minimize the risk of misclassification or

predicting a significantly far off value by maximizing the error margin, as also noted by [3].

3. Model Formulation

In this section, we describe how the platform’s raw data are pre-processed into model

inputs and how the forecasting models are built and benchmarked against each other.
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3.1. Overall Approach

On a conceptual level, there are three distinct aspects of the model development process.

First, a pre-processing step transforms the platform’s tabular order data into either time

series in Sub-section 3.2 or feature matrices in Sub-section 3.6.4. Second, a benchmark

methodology is developed in Sub-section 3.3 that compares all models on the same scale, in

particular, classical models with ML ones. Concretely, the CV approach is adapted to the

peculiar requirements of sub-daily and ordinal time series data. This is done to maximize

the predictive power of all models into the future and to compare them on the same scale.

Third, the forecasting models are described with respect to their assumptions and training

requirements. Four classification dimensions are introduced:

1. Timeliness of the Information: whole-day-ahead vs. real-time forecasts

2. Time Series Decomposition: raw vs. decomposed

3. Algorithm Type: “classical” statistics vs. ML

4. Data Sources: pure vs. enhanced (i.e., with external data)

Not all of the possible eight combinations are implemented; instead, the models are varied

along these dimensions to show different effects and answer the research questions.

3.2. Gridification, Time Tables, and Time Series Generation

The platform’s tabular order data are sliced with respect to both location and time and

then aggregated into time series where an observation tells the number of orders in an area

for a time step/interval. Figure 1 shows how the orders’ delivery locations are each matched

to a square-shaped cell, referred to as a pixel, on a grid covering the entire service area

within a city. This gridification step is also applied to the pickup locations separately. The

lower-left corner is chosen at random. [57] apply the same gridification idea and slice an

urban area to model a location-routing problem, and [48] portray it as a standard method in

the field of urban analytics. With increasing pixel sizes, the time series exhibit more order

aggregation with a possibly stronger demand pattern. On the other hand, the larger the

pixels, the less valuable become the generated forecasts as, for example, a courier sent to a

pixel preemptively then faces a longer average distance to a restaurant in the pixel.
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Figure 1: Gridification for delivery locations in Paris with a pixel size of 1 km2

After gridification, the ad-hoc orders within a pixel are aggregated by their placement

timestamps into sub-daily time steps of pre-defined lengths to obtain a time table as exem-

plified in Figure 2 with one-hour intervals.

Figure 2: Aggregation into a time table with hourly time steps

HH
HHH

HHHH
Time

Day
. . . Mon Tue Wed Thu Fri Sat Sun . . .

11:00 . . . y11,Mon y11,Tue y11,Wed y11,Thu y11,F ri y11,Sat y11,Sun . . .

12:00 . . . y12,Mon y12,Tue y12,Wed y12,Thu y12,F ri y12,Sat y12,Sun . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20:00 . . . y20,Mon y20,Tue y20,Wed y20,Thu y20,F ri y20,Sat y20,Sun . . .

21:00 . . . y21,Mon y21,Tue y21,Wed y21,Thu y21,F ri y21,Sat y21,Sun . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Consequently, each yt,d in Figure 2 is the number of all orders within the pixel for the time

of day t and day of week d (yt and yt,d are the same but differ in that the latter acknowledges
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a 2D view). The same trade-off as with gridification applies: The shorter the interval, the

weaker is the demand pattern to be expected in the time series due to less aggregation while

longer intervals lead to less usable forecasts. We refer to time steps by their start time, and

their number per day, H, is constant. Given a time table as in Figure 2 there are two ways

to generate a time series by slicing:

1. Horizontal View: Take only the order counts for a given time of the day

2. Vertical View: Take all order counts and remove the double-seasonal pattern induced

by the weekday and time of the day with decomposition

Distinct time series are retrieved by iterating through the time tables either horizontally or

vertically in increments of a single time step. Another property of a generated time series

is its length, which, following the next sub-section, can be interpreted as the sum of the

production training set and the test day. In summary, a distinct time series is generated

from the tabular order data based on a configuration of parameters for the dimensions pixel

size, number of daily time steps H, shape (horizontal vs. vertical), length, and the time step

to be predicted.

3.3. Unified Cross-Validation and Training, Validation, and Test Sets

The standard k-fold CV, which assumes no structure in the individual features of the

samples, as shown in X above, is adapted to the ordinal character of time series data: A

model must be evaluated on observations that occurred strictly after the ones used for training

as, otherwise, the model knows about the future. Furthermore, some models predict only a

single to a few time steps before being retrained, while others predict an entire day without

retraining (cf., Sub-section 3.6.4). Consequently, we must use a unified time interval wherein

all forecasts are made first before the entire interval is evaluated. As whole days are the

longest prediction interval for models without retraining, we choose that as the unified time

interval. In summary, our CV methodology yields a distinct best model per pixel and day to

be forecast. Whole days are also practical for managers who commonly monitor, for example,

the routing and thus the forecasting performance on a day-to-day basis. Our methodology

assumes that the models are trained at least once per day. As we create operational forecasts
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into the near future in this paper, retraining all models with the latest available data is a

logical step.

Figure 3: Training, validation, and test sets during cross validation

The training, validation, and test sets are defined as follows. To exemplify the logic, we

refer to Figure 3 that shows the calendar setup (i.e., weekdays on the x-axis) for three days

T1, T2, and T3 (shown in dark gray) for which we generate forecasts. Each of these days is, by

definition, a test day, and the test set comprises all time series, horizontal or vertical, whose

last observation lies on that day. With an assumed training horizon of three weeks, the 21

days before each of the test days constitute the corresponding training sets (shown in lighter

gray on the same rows as T1, T2, and T3). There are two kinds of validation sets, depending on

the decision to be made. First, if a forecasting method needs parameter tuning, the original

training set is divided into as many equally long series as validation days are needed to find

stable parameters. The example shows three validation days per test day named Vn (shown

in darker gray below each test day). The 21− 3 = 18 preceding days constitute the training

set corresponding to a validation day. To obtain the overall validation error, the three errors

are averaged. We call these inner validation sets because they must be repeated each day to

re-tune the parameters and because the involved time series are true subsets of the original

series. Second, to find the best method per day and pixel, the same averaging logic is applied

on the outer level. For example, if we used two validation days to find the best method for

T3, we would average the errors of T1 and T2 for each method and select the winner; then,

T1 and T2 constitute an outer validation set. Whereas the number of inner validation days
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is method-specific and must be chosen before generating any test day forecasts in the first

place, the number of outer validation days may be varied after the fact and is determined

empirically as we show in Section 4.

Our unified CV approach is also optimized for large-scale production settings, for example,

at companies like Uber. As [5] note, there is a trade-off as to when each of the inner time

series in the example begins. While the forecasting accuracy likely increases with more

training days, supporting inner series with increasing lengths, cutting the series to the same

length allows caching the forecasts and errors. In the example, V3, V5, and V7, as well as

V6 and V8 are identical despite belonging to different inner validation sets. Caching is also

possible on the outer level when searching for an optimal number of validation days for model

selection. We achieved up to 80% cache hit ratios in our implementation in the empirical

study, thereby saving computational resources by the same amount. Lastly, we assert that

our suggested CV, because of its being unified around whole test days and usage of fix-

sized time series, is also suitable for creating consistent learning curves and, thus, answering

Q3 on the relationship between forecast accuracy and amount of historic data: We simply

increase the length of the outer training set holding the test day fixed. Thus, independent of

a method’s need for parameter tuning, all methods have the same demand history available

for each test day forecast.

3.4. Accuracy Measures

Choosing an error measure for both model selection and evaluation is not straightforward

when working with intermittent demand, as shown, for example, by [51], and one should

understand the trade-offs between measures. [33] provide a study of measures with real-

life data taken from the popular M3-competition and find that most standard measures

degenerate under many scenarios. They also provide a classification scheme for which we

summarize the main points as they apply to the UDP case:

1. Scale-dependent Errors: The error is reported in the same unit as the raw data.

Two popular examples are the root mean square error (RMSE) and mean absolute

error (MAE). They may be used for model selection and evaluation within a pixel,

and are intuitively interpretable; however, they may not be used to compare errors of,
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for example, a low-demand pixel (e.g., at the UDP’s service boundary) with that of a

high-demand pixel (e.g., downtown).

2. Percentage Errors: The error is derived from the percentage errors of individual

forecasts per time step, and is also intuitively interpretable. A popular example is

the mean absolute percentage error (MAPE) that is the primary measure in most

forecasting competitions. Whereas such errors could be applied both within and across

pixels, they cannot be calculated reliably for intermittent demand. If only one time

step exhibits no demand, the result is a divide-by-zero error. This often occurs even in

high-demand pixels due to the slicing.

3. Relative Errors: A workaround is to calculate a scale-dependent error for the test

day and divide it by the same measure calculated with forecasts of a simple benchmark

method (e.g., näıve method). An example could be RelMAE = MAE/MAEbm. Never-

theless, even simple methods create (near-)perfect forecasts, and then MAEbm becomes

(close to) 0. These numerical instabilities occurred so often in our studies that we argue

against using such measures.

4. Scaled Errors: [33] contribute this category and introduce the mean absolute scaled

error (MASE). It is defined as the MAE from the actual forecasting method on the test

day (i.e., “out-of-sample”) divided by the MAE from the (seasonal) näıve method on

the entire training set (i.e., “in-sample”). A MASE of 1 indicates that a forecasting

method has the same accuracy on the test day as the (seasonal) näıve method applied on

a longer horizon, and lower values imply higher accuracy. Within a pixel, its results are

identical to the ones obtained with MAE. Also, we acknowledge recent publications,

for example, [46] or [36], showing other ways of tackling the difficulties mentioned.

However, only the MASE provided numerically stable results for all forecasts in our

study.

Consequently, we use the MASE with a seasonal näıve benchmark as the primary measure

in this paper. With the previously introduced notation, it is defined as follows:

MASE :=
MAEout-of-sample

MAEin-sample

=
MAEforecasts

MAEtraining

=
1
H

∑H
h=1 |yT+h − ŷT+h|

1
T−k

∑T
t=k+1 |yt − yt−k|

The denominator can only become 0 if the seasonal näıve benchmark makes a perfect forecast
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on each day in the training set except the first seven days, which never happened in our case

study involving hundreds of thousands of individual model trainings. Further, as per the

discussion in the subsequent Section 3.5, we also calculate peak-MASEs where we leave out

the time steps of non-peak times from the calculations. For this analysis, we define all time

steps that occur at lunch (i.e., noon to 2 pm) and dinner time (i.e., 6 pm to 8 pm) as peak.

As time steps in non-peak times typically average no or very low order counts, a UDP may

choose to not actively forecast these at all and be rather interested in the accuracies of

forecasting methods during peaks only.

We conjecture that percentage error measures may be usable for UDPs facing a higher

overall demand with no intra-day down-times in between but have to leave that to a future

study. Yet, even with high and steady demand, divide-by-zero errors are likely to occur.

3.5. Time Series Decomposition

Concerning the time table in Figure 2, a seasonal demand pattern is inherent to both

horizontal and vertical time series. First, the weekday influences if people eat out or order in

with our partner receiving more orders on Thursday through Saturday than the other four

days. This pattern is part of both types of time series. Second, on any given day, demand

peaks occur around lunch and dinner times. This only regards vertical series. Statistical

analyses show that horizontally sliced time series indeed exhibit a periodicity of k = 7, and

vertically sliced series only yield a seasonal component with a regular pattern if the periodicity

is set to the product of the number of weekdays and the daily time steps indicating a distinct

intra-day pattern per weekday.

Figure 4 shows three exemplary STL decompositions for a 1 km2 pixel and a vertical

time series with 60-minute time steps (on the x-axis) covering four weeks: With the noisy

raw data yt on the left, the seasonal and trend components, st and tt, are depicted in light

and dark gray for increasing ns parameters. The plots include (seasonal) näıve forecasts for

the subsequent test day as dotted lines. The remainder components rt are not shown for

conciseness. The periodicity is set to k = 7 ∗ 12 = 84 as our industry partner has 12 opening

hours per day.
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Figure 4: STL decompositions for a medium-demand pixel with hourly time steps and peri-

odicity k = 84

As described in Sub-section 2.1.3, with k being implied by the application, at the very

least, the length of the seasonal smoothing window, represented by the ns parameter, must be

calibrated by the forecaster: It controls how many past observations go into each smoothened

st. Many practitioners, however, skip this step and set ns to a big number, for example, 999,

then referred to as “periodic.” For the other parameters, it is common to use the default

values as specified in [16]. The goal is to find a decomposition with a regular pattern in st. In

Figure 4, this is not true for ns = 7 where, for example, the four largest bars corresponding

to the same time of day a week apart cannot be connected by an approximately straight line.

On the contrary, a regular pattern in the most extreme way exists for ns = 999, where the

same four largest bars are of the same height. This observation holds for each time step of

the day. For ns = 11, st exhibits a regular pattern whose bars adapt over time: The pattern

is regular as bars corresponding to the same time of day can be connected by approximately

straight lines, and it is adaptive as these lines are not horizontal. The trade-off between

small and large values for ns can thus be interpreted as allowing the average demand during

peak times to change over time: If demand is intermittent at non-peak times, it is reasonable

to expect the bars to change over time as only the relative differences between peak and

non-peak times impact the bars’ heights with the seasonal component being centered around

0. To confirm the goodness of a decomposition statistically, one way is to verify that rt can
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be modeled as a typical error process like white noise εt.

However, we suggest an alternative way of calibrating the STL method in an automated

fashion based on our unified CV approach. As hinted at in Figure 4, we interpret an STL

decomposition as a forecasting method on its own by just adding the (seasonal) näıve forecasts

for st and tt and predicting 0 for rt. Then, the ns parameter is tuned just like a parameter

for an ML model. To the best of our knowledge, this has not yet been proposed before.

Conceptually, forecasting with the STL method can be viewed as a näıve method with built-

in smoothing, and it outperformed all other benchmark methods in all cases.

3.6. Forecasting Models

This sub-section describes the concrete models in our study. Figure 5 shows how we

classify them into four families with regard to the type of the time series, horizontal or vertical,

and the moment at which a model is trained: Solid lines indicate that the corresponding time

steps lie before the training, and dotted lines show the time horizon predicted by a model.

For conciseness, we only show the forecasts for one test day. The setup is the same for each

inner validation day.

Figure 5: Classification of the models by input type and training moment
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3.6.1. Horizontal and Whole-day-ahead Forecasts.

The upper-left in Figure 5 illustrates the simplest way to generate forecasts for a test day

before it has started: For each time of the day, the corresponding horizontal slice becomes the

input for a model. With whole days being the unified time interval, each model is trained H

times, providing a one-step-ahead forecast. While it is possible to have models of a different

type be selected per time step, that did not improve the accuracy in the empirical study. As

the models in this family do not include the test day’s demand data in their training sets, we

see them as benchmarks to answer Q4, checking if a UDP can take advantage of real-time

information. The models in this family are as follows; we use prefixes, such as “h” here, when

methods are applied in other families as well:

1. naive: Observation from the same time step one week prior

2. trivial : Predict 0 for all time steps

3. hcroston: Intermittent demand method introduced by [17]

4. hholt, hhwinters, hses, hsma, and htheta: Exponential smoothing without calibration

5. hets : ETS calibrated as described by [34]

6. harima: ARIMA calibrated as described by [32]

naive and trivial provide an absolute benchmark for the actual forecasting methods. hcroston

is often mentioned in the context of intermittent demand; however, the method did not

perform well at all. Besides hhwinters that always fits a seasonal component, the calibration

heuristics behind hets and harima may do so as well. With k = 7, an STL decomposition is

unnecessary here.

3.6.2. Vertical and Whole-day-ahead Forecasts without Retraining.

The upper-right in Figure 5 shows an alternative way to generate forecasts for a test day

before it has started: First, a seasonally-adjusted time series at is obtained from a vertical

time series by STL decomposition. Then, the actual forecasting model, trained on at, makes

an H-step-ahead prediction. Lastly, we add the H seasonal näıve forecasts for the seasonal

component st to them to obtain the actual predictions for the test day. Thus, only one

training is required per model type, and no real-time data is used. By decomposing the

raw time series, all long-term patterns are assumed to be in the seasonal component st, and
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at only contains the level with a potential trend and auto-correlations. The models in this

family are:

1. fnaive, pnaive: Sum of STL’s trend and seasonal components’ näıve forecasts

2. vholt, vses, and vtheta: Exponential smoothing without calibration and seasonal fit

3. vets : ETS calibrated as described by [34]

4. varima: ARIMA calibrated as described by [32]

As mentioned in Sub-section 3.3, we include the sum of the (seasonal) näıve forecasts of the

STL’s trend and seasonal components as forecasts on their own: For fnaive, we tune the

“flexible” ns parameter, and for pnaive, we set it to a “periodic” value. Thus, we implicitly

assume that there is no signal in the remainder rt, and predict 0 for it. fnaive and pnaive

are two more simple benchmarks.

3.6.3. Vertical and Real-time Forecasts with Retraining.

The lower-left in Figure 5 shows how models trained on vertical time series are extended

with real-time order data as it becomes available during a test day: Instead of obtaining an

H-step-ahead forecast, we retrain a model after every time step and only predict one step.

The remainder is as in the previous sub-section, and the models are:

1. rtholt, rtses, and rttheta: Exponential smoothing without calibration and seasonal fit

2. rtets : ETS calibrated as described by [34]

3. rtarima: ARIMA calibrated as described by [32]

Retraining fnaive and pnaive did not increase accuracy, and thus we left them out. A

downside of this family is the significant increase in computing costs.

3.6.4. Vertical and Real-time Forecasts without Retraining.

The lower-right in Figure 5 shows how ML models take real-time order data into account

without retraining. Based on the seasonally-adjusted time series at, we employ the feature

matrix and label vector representations from Sub-section 2.2.1 and set n to the number of

daily time steps, H, to cover all potential auto-correlations. The ML models are trained once

before a test day starts. For training, the matrix and vector are populated such that yT is

set to the last time step of the day before the forecasts, aT . As the splitting during CV is
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done with whole days, the ML models are trained with training sets consisting of samples

from all times of a day in an equal manner. Thus, the ML models learn to predict each time

of the day. For prediction on a test day, the H observations preceding the time step to be

forecast are used as the input vector after seasonal adjustment. As a result, real-time data

are included. The models in this family are:

1. vrfr : RF trained on the matrix as described

2. vsvr : SVR trained on the matrix as described

We tried other ML models such as gradient boosting machines but found only RFs and SVRs

to perform well in our study. In the case of gradient boosting machines, this is to be expected

as they are known not to perform well in the presence of high noise - as is natural with low

count data - as shown, for example, by [39] or [41]. Also, deep learning methods are not

applicable as the feature matrices only consist of several hundred to thousands of rows (cf.,

Sub-section 4.2). In Appendix A, we provide an alternative feature matrix representation

that exploits the two-dimensional structure of time tables without decomposing the time

series. In Appendix B, we show how feature matrices are extended to include predictors

other than historical order data. However, to answer Q5 already here, none of the external

data sources improves the results in our study. Due to the high number of time series in

our study, to investigate why no external sources improve the forecasts, we must us some

automated approach to analyzing individual time series. [4] provide a spectral density es-

timation approach, called the Shannon entropy, that measures the signal-to-noise ratio in a

database with a number normalized between 0 and 1 where lower values indicate a higher

signal-to-noise ratio. We then looked at averages of the estimates on a daily level per pixel

and find that including any of the external data sources from Appendix B always leads to

significantly lower signal-to-noise ratios. Thus, we conclude that at least for the demand

faced by our industry partner the historical data contains all of the signal.

4. Empirical Study: A Meal Delivery Platform in Europe

In the following, we first give a brief overview of the case study dataset and the parameters

we applied to calibrate the time series generation. Then, we discuss the overall results.
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4.1. Case Study Dataset

The studied dataset consists of a meal delivery platform’s entire transactional data cov-

ering the French market from launch in February of 2016 to January of 2017. The platform

operated in five cities throughout this period and received a total of 686,385 orders. The

forecasting models were developed based on the data from Lyon and Paris in the period from

August through December; this ensures comparability across cities and avoids irregularities

in demand assumed for a new service within the first operating weeks. The data exhibit a

steady-state as the UDP’s service area remained unchanged, and the numbers of orders and

of couriers grew in lock-step and organically. This does not mean that no new restaurants

were openend: If that happened, the new restaurant did not attract new customers, but de-

mand was shifted from other member restaurants. Results are similar in both cities, and we

only report them for Paris for greater conciseness. Lastly, the platform recorded all incoming

orders, and lost demand does not exist. See Appendix C for details on the raw data.

4.2. Calibration of the Time Series Generation Process

Independent of the concrete forecasting models, the time series generation must be cali-

brated. We concentrate our forecasts on the pickup side for two reasons. First, the restaurants

come in a significantly lower number than the customers resulting in more aggregation in

the order counts and thus a better pattern recognition. Second, from an operational point of

view, forecasts for the pickups are more valuable because of the waiting times due to meal

preparation. We choose pixel sizes of 0.5 km2, 1 km2, 2 km2, and 4 km2, and time steps

covering 60, 90, and 120 minute windows resulting in H60 = 12, H90 = 9, and H120 = 6 time

steps per day with the platform operating between 11 a.m. and 11 p.m. and corresponding

frequencies k60 = 7 ∗ 12 = 84, k90 = 7 ∗ 9 = 63, and k120 = 7 ∗ 6 = 42 for the vertical

time series. Smaller pixels and shorter time steps yield no recognizable patterns, yet would

have been more beneficial for tactical routing. 90 and 120 minute time steps are most likely

not desirable for routing; however, we keep them for comparison and note that a UDP may

employ such forecasts to activate more couriers at short notice if a (too) high demand is

forecasted in an hour from now. This could, for example, be implemented by paying couriers

a premium if they show up for work at short notice. Discrete lengths of 3, 4, 5, 6, 7, and 8
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weeks are chosen as training horizons. We do so as the structure within the pixels (i.e., num-

ber and kind of restaurants) is not stable for more than two months in a row in the covered

horizon. That is confirmed by the empirical finding that forecasting accuracy improves with

longer training horizon but this effect starts to level off after about six to seven weeks. So,

the demand patterns of more than two months ago do not resemble more recent ones.

In total, 100,000s of distinct time series are forecast in the study.

4.3. Overall Results

Table 1 summarizes the overall best-performing models grouped by training horizon and

a pixel’s average daily demand (ADD) for a pixel size of 1 km2 and 60-minute time steps.

Each combination of pixel and test day counts as one case, and the total number of cases is

denoted as n. Clustering the individual results revealed that a pixel’s ADD over the training

horizon is the primary indicator of similarity and three to four clusters suffice to obtain

cohesive clusters: We labeled them “no”, “low”, “medium”, and “high” demand pixels with

increasing ADD, and present the average MASE per cluster. The n do not vary significantly

across the training horizons, which confirms that the platform did not grow area-wise and is

indeed in a steady-state. We use this table to answer Q1 regarding the overall best methods

under different ADDs. All result tables in the main text report MASEs calculated with all

time steps of a day. In contrast, Appendix D shows the same tables with MASEs calculated

with time steps within peak times only (i.e., lunch from 12 pm to 2 pm and dinner from 6 pm

to 8 pm). The differences lie mainly in the decimals of the individual MASE averages while

the ranks of the forecasting methods do not change except in rare cases. That shows that

the presented accuracies are driven by the forecasting methods’ accuracies at peak times.

Intuitively, they all correctly predict zero demand for non-peak times.

Unsurprisingly, the best model for pixels without demand (i.e., 0 < ADD < 2.5) is trivial.

Whereas hsma also adapts well, its performance is worse. None of the more sophisticated

models reaches a similar accuracy. The intuition behind is that trivial is the least distorted

by the relatively large proportion of noise given the low-count nature of the time series.

For low demand (i.e., 2.5 < ADD < 10), there is also a clear best-performing model,

namely hsma. As the non-seasonal hses reaches a similar accuracy as its potentially seasonal

generalization, the hets, we conclude that the seasonal pattern from weekdays is not yet
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strong enough to be recognized in low demand pixels. So, in the absence of seasonality,

models that only model a trend part are the least susceptible to the noise.

For medium demand (i.e., 10 < ADD < 25) and training horizons up to six weeks, the

best-performing models are the same as for low demand. For longer horizons, hets provides

the highest accuracy. Thus, to fit a seasonal pattern, longer training horizons are needed.

While vsvr enters the top three, hets has the edge as they neither require parameter tuning

nor real-time data.

Table 1: Top-3 models by training weeks and average demand (1 km2 pixel size, 60-minute

time steps)
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T
ra

in
in
g

R
a
n
k No Demand Low Demand Medium Demand High Demand

(0 - 2.5) (2.5 - 10) (10 - 25) (25 - ∞)

Method MASE n Method MASE n Method MASE n Method MASE n

3

1 trivial 0.785

45
86

hsma 0.819

29
75

hsma 0.839

27
43

rtarima 0.872

20
18

2 hsma 0.809 hses 0.844 hses 0.858 rtses 0.873

3 pnaive 0.958 hets 0.846 hets 0.859 rtets 0.877

4

1 trivial 0.770
45

32
hsma 0.825

30
33

hsma 0.837

26
87

vrfr 0.855

20
16

2 hsma 0.788 hses 0.848 hses 0.850 rtarima 0.855

3 pnaive 0.917 hets 0.851 hets 0.854 rtses 0.860

5

1 trivial 0.780

45
27

hsma 0.841

30
55

hsma 0.837

26
62

vrfr 0.850

20
19

2 hsma 0.803 hses 0.859 hets 0.845 rtarima 0.852

3 pnaive 0.889 hets 0.861 hses 0.845 vsvr 0.854

6

1 trivial 0.741

44
70

hsma 0.847
30

86
hsma 0.840

26
25

vrfr 0.842

20
25

2 hsma 0.766 hses 0.863 hets 0.842 hets 0.847

3 pnaive 0.837 hets 0.865 hses 0.848 vsvr 0.848

7

1 trivial 0.730

44
54

hsma 0.858

31
32

hets 0.845

25
97

hets 0.840

20
07

2 hsma 0.754 hses 0.871 hsma 0.847 vrfr 0.845

3 pnaive 0.813 hets 0.872 vsvr 0.850 vsvr 0.847

8

1 trivial 0.735

44
02

hsma 0.867

31
59

hets 0.846

25
75

hets 0.836

20
02

2 hsma 0.758 hets 0.877 vsvr 0.850 vrfr 0.842

3 pnaive 0.811 hses 0.880 hsma 0.851 vsvr 0.849

In summary, except for high demand, simple models trained on horizontal time series

work best. By contrast, high demand (i.e., 25 < ADD < ∞) and less than six training

weeks is the only situation where classical models trained on vertical time series work well.

Then, rtarima outperforms their siblings from Sub-sections 3.6.2 and 3.6.3. We conjecture

that intra-day auto-correlations as caused, for example, by weather, are the reason for that.

Intuitively, a certain amount of demand (i.e., a high enough signal-to-noise ratio) is required

such that models with auto-correlations can see them through all the noise. That idea is

supported by vrfr reaching a similar accuracy under high demand as their tree-structure

allows them to fit auto-correlations. As both rtarima and vrfr incorporate recent demand,
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real-time information can indeed improve accuracy. However, once models are trained on

longer horizons, hets is more accurate than vrfr. Thus, to answer Q4, we conclude that

real-time information only improves accuracy if three or four weeks of training material are

available.

In addition to looking at the results in tables covering the entire one-year horizon, we also

created sub-analyses on the distinct seasons spring, summer (incl. the long holiday season

in France), and fall. Yet, none of the results portrayed in this and the subsequent sections

change is significant ways. We conjecture that there could be differences if the overall demand

of the UDP increased to a scale beyond the one this case study covers and leave that up to

a follow-up study with a bigger UDP.

4.4. Impact of the Training Horizon

Whereas it is reasonable to assume that forecasts become more accurate as the training

horizon expands, our study reveals some interesting findings. First, without demand, trivial

indeed performs better with more training material, but improved pattern recognition cannot

be the cause here. Instead, we argue that the reason for this is that the longer there has

been no steady demand, the higher the chance that this will not change soon. Further, if we

focus on shorter training horizons, the sample will necessarily contain cases where a pixel is

initiated after a popular-to-be restaurant joined the platform: Demand grows fast making

trivial less accurate, and the pixel moves to another cluster soon.

Second, with low demand, the best-performing hsma becomes less accurate with more

training material. While one could argue that this is due to hsma not fitting a trend, the less

accurate hses and hets do fit a trend. Instead, we argue that any low-demand time series

naturally exhibits a high noise-to-signal ratio, and hsma is the least susceptible to noise.

Then, to counter the missing trend term, the training horizon must be shorter.

With medium demand, a similar argument can be made; however, the signal already

becomes more apparent favoring hets with more training data.

Lastly, with high demand, the signal becomes so clear that more sophisticated models

can exploit longer training horizons.
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4.5. Results by Model Families

Besides the overall results, we provide an in-depth comparison of models within a family.

Instead of reporting the MASE per model, we rank the models holding the training horizon

fixed to make comparison easier. Table 2 presents the models trained on horizontal time

series. In addition to naive, we include fnaive and pnaive already here as more competitive

benchmarks. The tables in this section report two rankings simultaneously: The first number

is the rank resulting from lumping the low and medium clusters together, which yields almost

the same rankings when analyzed individually. The ranks from only high demand pixels are

in parentheses if they differ.

Table 2: Ranking of benchmark and horizontal models (1 km2 pixel size, 60-minute time

steps): the table shows the ranks for cases with 2.5 < ADD < 25 (and 25 < ADD < ∞ in

parentheses if they differ)

T
r
a
in

in
g

Benchmarks Horizontal (whole-day-ahead)

naive fnaive paive harima hcroston hets hholt hhwinters hses hsma htheta

3 11 7 (2) 8 (5) 5 (7) 4 3 9 (10) 10 (9) 2 (6) 1 6 (8)

4 11 7 (2) 8 (3) 5 (6) 4 (5) 3 (1) 9 (10) 10 (9) 2 (7) 1 (4) 6 (8)

5 11 7 (2) 8 (4) 5 (3) 4 (9) 3 (1) 9 (10) 10 (5) 2 (8) 1 (6) 6 (7)

6 11 8 (5) 9 (6) 5 (4) 4 (7) 2 (1) 10 7 (2) 3 (8) 1 (9) 6 (3)

7 11 8 (5) 10 (6) 5 (4) 4 (7) 2 (1) 9 (10) 7 (2) 3 (8) 1 (9) 6 (3)

8 11 9 (5) 10 (6) 5 (4) 4 (7) 2 (1) 8 (10) 7 (2) 3 (8) 1 (9) 6 (3)

A first insight is that fnaive is the best benchmark in all scenarios: Decomposing flexibly

by tuning the ns parameter is worth the computational cost. Further, if one is limited in the

number of non-näıve methods, hets is the best compromise and works well across all demand

levels. It is also the best model independent of the training horizon for high demand. With

low or medium demand, hsma is the clear overall winner; yet, with high demand, models

with a seasonal fit (i.e., harima, hets, and hhwinters) are more accurate, in particular, for

longer training horizons. This is due to demand patterns in the weekdays becoming stronger

with higher overall demand.
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Table 3: Ranking of classical models on vertical time series (1 km2 pixel size, 60-minute time

steps): the table shows the ranks for cases with 2.5 < ADD < 25 (and 25 < ADD < ∞ in

parentheses if they differ)

T
r
a
in

in
g

Benchmarks Vertical (whole-day-ahead) Vertical (real-time)

hets hsma varima vets vholt vses vtheta rtarima rtets rtholt rtses rttheta

3 2 (10) 1 (7) 6 (4) 8 (6) 10 (9) 7 (5) 11 (12) 4 (1) 5 (3) 9 (8) 3 (2) 12 (11)

4 2 (8) 1 (10) 6 (4) 8 (6) 10 (9) 7 (5) 12 (11) 3 (1) 5 (3) 9 (7) 4 (2) 11 (12)

5 2 (3) 1 (10) 7 (5) 8 (7) 10 (9) 6 11 4 (1) 5 (4) 9 (8) 3 (2) 12

6 2 (1) 1 (10) 6 (5) 8 (7) 10 (9) 7 (6) 11 (12) 3 (2) 5 (4) 9 (8) 4 (3) 12 (11)

7 2 (1) 1 (10) 8 (5) 7 10 (9) 6 11 (12) 5 (2) 4 9 (8) 3 12 (11)

8 2 (1) 1 (9) 8 (5) 7 (6) 10 (8) 6 12 (10) 5 (2) 4 9 (7) 3 11

Table 3 extends the previous analysis to classical models trained on vertical time series.

Now, the winners from before, hets and hsma, serve as benchmarks. Whereas for low and

medium demand, no improvements can be obtained, rtarima and rtses are the most accurate

with high demand and short training horizons. For six or more training weeks, hets is still

optimal. Independent of retraining and the demand level, the models’ relative performances

are consistent: The *arima and *ses models are best, followed by *ets, *holt, and *theta.

Thus, models that can deal with auto-correlations and short-term forecasting errors, as ex-

pressed by moving averages, and that cannot be distracted by trend terms are optimal for

vertical series.

Finally, Table 4 compares the two ML-based models against the best-performing classical

models and answers Q2: With low and medium demand, no improvements can be obtained

again; however, with high demand, vrfr has the edge over rtarima for training horizons up

to six weeks. We conjecture that vrfr fits auto-correlations better than varima and is not

distracted by short-term noise as rtarima may be due to the retraining. With seven or eight

training weeks, hets remains the overall winner. Interestingly, vsvr is more accurate than

vrfr for low and medium demand. We assume that vrfr performs well only with strong
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auto-correlations, which are not present with low and medium demand.

Table 4: Ranking of ML models on vertical time series (1 km2 pixel size, 60-minute time

steps): the table shows the ranks for cases with 2.5 < ADD < 25 (and 25 < ADD < ∞ in

parentheses if they differ)

T
r
a
in

in
g

Benchmarks ML

fnaive hets hsma rtarima vrfr vsvr

3 6 2 (5) 1 (4) 3 (1) 5 (2) 4 (3)

4 6 (5) 2 (4) 1 (6) 3 (2) 5 (1) 4 (3)

5 6 (5) 2 (4) 1 (6) 4 (2) 5 (1) 3

6 6 (5) 2 1 (6) 4 5 (1) 3

7 6 (5) 2 (1) 1 (6) 4 5 (2) 3

8 6 (5) 2 (1) 1 (6) 4 5 (2) 3

Analogously, we created tables like Table 2 to 4 for the forecasts with time steps of 90 and

120 minutes and find that the relative rankings do not change significantly. The same holds

true for the rankings with changing pixel sizes. For conciseness reasons, we do not include

these additional tables in this article. In summary, the relative performances exhibited by

certain model families are shown to be rather stable in this case study.

4.6. Effects of the Pixel Size and Time Step Length

As elaborated in Sub-section 3.2, more order aggregation leads to a higher overall de-

mand level and an improved pattern recognition in the generated time series. Consequently,

individual cases tend to move to the right in tables equivalent to Table 1. With the same

ADD clusters, forecasts for pixel sizes of 2 km2 and 4 km2 or time intervals of 90 and 120

minutes or combinations thereof yield results similar to the best models as revealed in Tables

1, 2, 3, and 4 for high demand. By contrast, forecasts for 0.5 km2 pixels have most of the

cases (i.e., n) in the no or low demand clusters. In that case, the pixels are too small, and

pattern recognition becomes harder. While it is true, that trivial exhibits the overall lowest

MASE for no demand cases, these forecasts become effectively worthless for operations. In

the extreme, with even smaller pixels we would be forecasting 0 orders in all pixels for all
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time steps. In summary, the best model and its accuracy are determined primarily by the

ADD, and the pixel size and interval length are merely parameters to control that. The

forecaster’s goal is to create a grid with small enough pixels without losing a recognizable

pattern.

5. Conclusion
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Glossary

ADD Average Daily Demand. 26

CART Classification and Regression Trees. 10

CV Cross Validation. 9

fnaive ”Flexible” STL Decomposition, with tuned ns parameter. 23

harima Autoregressive Integrated Moving Average Method, trained on horizontal time se-

ries. 22

hcroston Croston’s Method, trained on horizontal time series. 22

hets ETS State Space Method, trained on horizontal time series. 22

hholt Holt’s Linear Trend Method, trained on horizontal time series. 22

hhwinters Holt-Winter’s Seasonal Method, trained on horizontal time series. 22

hses Simple Exponential Smoothing Method, trained on horizontal time series. 22

hsma Simple Moving Average Method, trained on horizontal time series. 22

htheta Theta Method, trained on horizontal time series. 22

MASE Mean Absolute Scaled Error. 18

ML Machine Learning. 3, 24

naive (Seasonal) Näıve Method. 22

pnaive ”Periodic” STL Decomposition, with ns parameter set to large number. 23

RF Random Forest. 8

rtarima Autoregressive Integrated Moving Average Method, (re)trained on vertical time

series. 23
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rtets ETS State Space Method, (re)trained on vertical time series. 23

rtholt Holt’s Linear Trend Method, (re)trained on vertical time series. 23

rtses Simple Exponential Smoothing Method, (re)trained on vertical time series. 23

rttheta Theta Method, (re)trained on vertical time series. 23

STL Seasonal and Trend Decomposition using Loess. 8

SVM Support Vector Machine. 11

SVR Support Vector Regression. 8

trivial Trivial Method. 22

UDP Urban Delivery Platform. 3

varima Autoregressive Integrated Moving Average Method, trained on vertical time series.

23

vets ETS State Space Method, trained on vertical time series. 23

vholt Holt’s Linear Trend Method, trained on vertical time series. 23

vrfr Random Forest Regression Method, trained on vertical time series. 24

VRP Vehicle Routing Problem. 2

vses Simple Exponential Smoothing Method, trained on vertical time series. 23

vsvr Support Vector Regression Method, trained on vertical time series. 24

vtheta Theta Method, trained on vertical time series. 23
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Appendix A. Tabular and Real-time Forecasts without Retraining

Regarding the structure of the feature matrix for the ML models in Sub-section 3.6.4, we

provide an alternative approach that works without the STL method. Instead of decomposing

a time series and arranging the resulting seasonally-adjusted time series at into a matrix X,

one can create a matrix with two types of feature columns mapped to the raw observations

in ~y: While the first group of columns takes all observations of the same time of day over a

horizon of, for example, one week (nh = 7), the second group takes all observations covering

a pre-defined time horizon, for example 3 hours (nr = 3 for 60-minute time steps), preceding

the time step to be fitted. Thus, we exploit the two-dimensional structure of time tables as

well, and conceptually model historical and recent demand. The alternative feature matrix

appears as follows where the first three columns are the historical and the last three the

recent demand features:

~y =


yT

yT−1

. . .

y1+nhH

 X =


yT−H yT−2H . . . yT−nhH yT−1 yT−2 . . . yT−nr

yT−1−H yT−1−2H . . . yT−1−nhH yT−2 yT−3 . . . yT−nr−1

. . . . . . . . . . . . . . . . . . . . . . . .

y1+(nh−1)H y1+(nh−2)H . . . y1 y∗1+nhH−1 y∗1+nhH−2 . . . y∗1+nhH−nr



Being a detail, we note that the recent demand features lying on the end of the pre-

vious day are set to 0, which is shown with the ∗ notation above. This alignment of the

undecomposed order data yt ensures that the ML models learn the two seasonal patterns

independently. The parameters nh and nr must be adapted to the data, but we found the

above values to work well.

As such matrices resemble time tables, we refer to them as tabular. However, we found

the ML models with vertical time series to outperform the tabular ML models, which is why

we disregarded them in the study. This tabular form could be beneficial for UDPs with a

demand that exhibits a weaker seasonality such as a meal delivery platform.
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Appendix B. Enhancing Forecasting Models with External Data

In this appendix, we show how the feature matrix in Sub-section 3.6.4 can be extended

with features other than historical order data. Then, we provide an overview of what external

data we tried out as predictors in our empirical study.

Appendix B.1. Enhanced Feature Matrices

Feature matrices can naturally be extended by appending new feature columns xt,f or

xf on the right where the former represent predictors changing throughout a day and the

latter being static either within a pixel or across a city. f refers to an external predictor

variable, such as one of the examples listed below. In the SVR case, the columns should

be standardized before fitting as external predictors are most likely on a different scale than

the historic order data. Thus, for a matrix with seasonally-adjusted order data at in it, an

enhanced matrix looks as follows:

~y =


aT

aT−1

. . .

aH+1

 X =


aT−1 aT−2 . . . aT−H xT,A . . . xB . . .

aT−2 aT−3 . . . aT−(H+1) xT−1,A . . . xB . . .

. . . . . . . . . . . . . . . . . . . . . . . .

aH aH−1 . . . a1 xH+1,A . . . xB . . .



Similarly, we can also enhance the tabular matrices from Appendix A. The same com-

ments as for their pure equivalents in Sub-section 3.6.4 apply, in particular, that ML models

trained with an enhanced matrix can process real-time data without being retrained.

Appendix B.2. External Data in the Empirical Study

In the empirical study, we tested four groups of external features that we briefly describe

here.

Calendar Features:

� Time of day (as synthesized integers: e.g., 1,050 for 10:30 am, or 1,600 for 4 pm)

� Day of week (as one-hot encoded booleans)

37



� Work day or not (as booleans)

Features derived from the historical Order Data:

� Number of pre-orders for a time step (as integers)

� 7-day SMA of the percentages of discounted orders (as percentages): The platform

is known for running marketing campaigns aimed at first-time customers at irregular

intervals. Consequently, the order data show a wave-like pattern of coupons redeemed

when looking at the relative share of discounted orders per day.

Neighborhood Features:

� Ambient population (as integers) as obtained from the ORNL LandScan database

� Number of active platform restaurants (as integers)

� Number of overall restaurants, food outlets, retailers, and other businesses (as integers)

as obtained from the Google Maps and Yelp web services

Real-time Weather (raw data obtained from IBM’s Wunderground database):

� Absolute temperature, wind speed, and humidity (as decimals and percentages)

� Relative temperature with respect to 3-day and 7-day historical means (as decimals)

� Day vs. night defined by sunset (as booleans)

� Summarized description (as indicators −1, 0, and +1)

� Lags of the absolute temperature and the summaries covering the previous three hours

Unfortunately, we must report that none of the mentioned external data improved the

accuracy of the forecasts. Some led to models overfitting the data, which could not be

regulated. Manual tests revealed that real-time weather data are the most promising external

source. Nevertheless, the data provided by IBM’s Wunderground database originate from

weather stations close to airports, which implies that we only have the same aggregate weather

data for the entire city. If weather data is available on a more granular basis in the future,

we see some potential for exploitation.
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Appendix C. Raw Order Data in the Case Study

The raw data for the empirical study in Section 4 was provided by a meal delivery platform

operating in five cities in France in 2016. The platform received a total of 686,385 orders

distributed as follows:

City Launch Day Orders

Bordeaux July 18 64,012

Lille October 30 14,362

Lyon February 21 214,635

Nantes October 31 12,900

Paris March 7 380,476

The part of the database relevant for forecasting can be thought of as one table per city,

where each row represents one order and consists of the following groups of columns:

1. Restaurant Data

(a) unique ID and name

(b) pickup location as latitude-longitude pair

2. Customer Data

(a) unique ID, name, and phone number

(b) delivery location as latitude-longitude pair (mostly physical addresses but also

public spots)

3. Timestamps

(a) placement via the smartphone app

(b) fulfillment workflow (pickup, delivery, cancellation, re-deliveries)

4. Courier Data

(a) unique ID, name, and phone number

(b) shift data (begin, breaks, end)

(c) average speed

5. Order Details

(a) meals and drinks

(b) prices and discounts granted
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Appendix D. Forecasting Accuracies during Peak Times

This appendix shows all tables from the main text with the MASE averages calculated

from time steps within peak times that are defined to be from 12 pm to 2 pm (=lunch) or

from 6 pm to 8 pm (=dinner). While the exact decimals of the MASEs differ, the relative

ranks of the forecasting methods are the same except in rare cases.

Table D.5: Top-3 models by training weeks and average demand (1 km2 pixel size, 60-minute

time steps)

T
ra

in
in
g

R
a
n
k No Demand Low Demand Medium Demand High Demand

(0 - 2.5) (2.5 - 10) (10 - 25) (25 - ∞)

Method MASE n Method MASE n Method MASE n Method MASE n

3

1 trivial 0.794

45
86

hsma 0.817
29

75
hsma 0.838

27
43

rtarima 0.871

20
18

2 hsma 0.808 hses 0.847 hses 0.851 rtses 0.872

3 pnaive 0.938 hets 0.848 hets 0.853 rtets 0.874

4

1 trivial 0.791

45
32

hsma 0.833

30
33

hsma 0.839

26
87

vrfr 0.848

20
16

2 hsma 0.794 hses 0.838 hses 0.847 rtarima 0.851

3 pnaive 0.907 hets 0.841 hets 0.851 rtses 0.857

5

1 trivial 0.782

45
27

hsma 0.844

30
55

hsma 0.841

26
62

vrfr 0.849

20
19

2 hsma 0.802 hses 0.851 hets 0.844 rtarima 0.851

3 pnaive 0.888 hets 0.863 hses 0.845 vsvr 0.853

6

1 trivial 0.743

44
70

hsma 0.843

30
86

hsma 0.841

26
25

vrfr 0.844

20
25

2 hsma 0.765 hses 0.853 hses 0.844 hets 0.847

3 pnaive 0.836 hets 0.861 hets 0.844 vsvr 0.849

7

1 trivial 0.728

44
54

hsma 0.855

31
32

hets 0.843

25
97

hets 0.839

20
07

2 hsma 0.744 hses 0.862 hsma 0.845 vrfr 0.842

3 pnaive 0.812 hets 0.868 vsvr 0.849 vsvr 0.846

8

1 trivial 0.736

44
02

hsma 0.865

31
59

hets 0.843

25
75

hets 0.837

20
02

2 hsma 0.759 hets 0.874 vsvr 0.848 vrfr 0.841

3 pnaive 0.820 hses 0.879 hsma 0.850 vsvr 0.847
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Table D.6: Ranking of benchmark and horizontal models (1 km2 pixel size, 60-minute time

steps): the table shows the ranks for cases with 2.5 < ADD < 25 (and 25 < ADD < ∞ in

parentheses if they differ)

T
r
a
in

in
g

Benchmarks Horizontal (whole-day-ahead)

naive fnaive paive harima hcroston hets hholt hhwinters hses hsma htheta

3 11 7 (2) 8 (5) 5 (7) 4 3 9 (10) 10 (9) 2 (6) 1 6 (8)

4 11 7 (2) 8 (3) 5 (6) 4 (5) 3 (1) 9 (10) 10 (9) 2 (8) 1 (4) 6 (7)

5 11 7 (2) 8 (4) 5 (3) 4 (9) 3 (1) 9 (10) 10 (5) 2 (8) 1 (6) 6 (7)

6 11 8 (5) 9 (6) 5 (4) 4 (7) 2 (1) 10 7 (2) 3 (8) 1 (9) 6 (3)

7 11 8 (5) 10 (6) 5 (4) 4 (7) 2 (1) 9 (10) 7 (2) 3 (8) 1 (9) 6 (3)

8 11 9 (5) 10 (6) 5 (4) 4 (7) 2 (1) 8 (10) 7 (2) 3 (8) 1 (9) 6 (3)

Table D.7: Ranking of classical models on vertical time series (1 km2 pixel size, 60-minute

time steps): the table shows the ranks for cases with 2.5 < ADD < 25 (and 25 < ADD <∞

in parentheses if they differ)

T
r
a
in

in
g

Benchmarks Vertical (whole-day-ahead) Vertical (real-time)

hets hsma varima vets vholt vses vtheta rtarima rtets rtholt rtses rttheta

3 2 (10) 1 (7) 6 (4) 8 (6) 10 (9) 7 (5) 11 (12) 4 (1) 5 (3) 9 (8) 3 (2) 12 (11)

4 2 (7) 1 (10) 6 (4) 8 (6) 10 (9) 7 (5) 12 (11) 3 (1) 5 (3) 9 (8) 4 (2) 11 (12)

5 2 (3) 1 (10) 7 (5) 8 (7) 10 (9) 6 11 4 (1) 5 (4) 9 (8) 3 (2) 12

6 2 (1) 1 (10) 6 (5) 8 (7) 10 (9) 7 (6) 11 (12) 3 (2) 5 (4) 9 (8) 4 (3) 12 (11)

7 2 (1) 1 (10) 8 (5) 7 10 (9) 6 11 (12) 5 (2) 4 9 (8) 3 12 (11)

8 2 (1) 1 (9) 8 (5) 7 10 (8) 6 12 (10) 5 (2) 4 9 (6) 3 11

41



Table D.8: Ranking of ML models on vertical time series (1 km2 pixel size, 60-minute time

steps): the table shows the ranks for cases with 2.5 < ADD < 25 (and 25 < ADD < ∞ in

parentheses if they differ)

T
r
a
in

in
g

Benchmarks ML

fnaive hets hsma rtarima vrfr vsvr

3 6 2 (5) 1 (3) 3 (1) 5 (2) 4

4 6 (5) 2 (3) 1 (6) 3 (2) 5 (1) 4

5 6 (5) 2 (4) 1 (6) 4 (2) 5 (1) 3

6 6 (5) 2 1 (6) 4 5 (1) 3

7 6 (5) 2 (1) 1 (6) 4 5 (2) 3

8 6 (5) 2 (1) 1 (6) 4 5 (2) 3
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