
Real-time Demand Forecasting for an Urban Delivery Platform

Alexander Hessa,1, Stefan Spinlera,1, Matthias Winkenbachb,1

a WHU - Otto Beisheim School of Management, Burgplatz 2, 56179 Vallendar, Germany
b Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States

Abstract

Meal delivery platforms like Uber Eats shape the landscape in cities around the world. This

paper addresses forecasting demand into the short-term future. We propose an approach

incorporating both classical forecasting and machine learning methods. Model evaluation and

selection is adapted to demand typical for such a platform (i.e., intermittent with a double-

seasonal pattern). The results of an empirical study with a European meal delivery service

show that machine learning models become competitive once the average daily demand passes

a threshold. As a main contribution, the paper explains how a forecasting system must be

set up to enable predictive routing.

Keywords: demand forecasting, intermittent demand, machine learning, urban delivery

platform

1Emails: alexander.hess@whu.edu, stefan.spinler@whu.edu, mwinkenb@mit.edu

Preprint submitted to Transportation Research Part E October 4, 2020

1. Introduction

In recent years, many meal delivery platform providers (e.g., Uber Eats, GrubHub, Do-

orDash, Deliveroo) with different kinds of business models have entered the markets in cities

around the world. A study by [24] estimates the global market size to surpass 20 billion

Dollars by 2025. A common feature of these platforms is that they do not operate kitchens

but focus on marketing their partner restaurants’ meals, unifying all order related processes

in simple smartphone apps, and managing the delivery via a fleet of either employees or

crowd-sourced sub-contractors.

Various kind of urban delivery platforms (UDP) have received attention in recent scholarly

publications. [27] look into heuristics to simultaneously optimize courier scheduling and

routing in general, while [35] do so for the popular dial-a-ride problem and [47] investigate

the effect of different fulfillment strategies in the context of urban meal delivery. [19] and [1]

focus their research on the routing aspect, which is commonly modeled as a so-called vehicle

routing problem (VRP).

Not covered in the recent literature is research focusing on the demand forecasting prob-

lem a UDP faces. Due to the customers’ fragmented locations and the majority of the orders

occurring ad-hoc for immediate delivery in the case of a meal delivery platform, forecasting

demand for the near future (i.e., several hours) and distinct locations of the city in real-time

is an essential factor in achieving timely fulfillment. In general, demand forecasting is a

well-researched discipline with a decades-long history in scholarly journals as summarized,

for example, by [17]. Even some meal delivery platforms themselves publish their practices:

For example, [4] provide a general overview of supply and demand forecasting at Uber and

benchmarks of the methods used while [34] investigate how extreme events can be incorpo-

rated.

The conditions such platforms face are not limited to meal delivery: Any entity that

performs ad-hoc requested point-to-point transportation at scale in an urban area benefits

from a robust forecasting system. Examples include ride-hailing, such as the original Uber

offering, or bicycle courier services. The common characteristics are:

� Geospatial Slicing: Forecasts for distinct parts of a city in parallel

2

� Temporal Slicing: Forecasts on a sub-daily basis (e.g., 60-minute windows)

� Order Sparsity: The historical order time series exhibit an intermittent pattern

� Double Seasonality: Demand varies with the day of the week and the time of day

Whereas the first two points can be assumed to vary with the concrete application’s require-

ments, it is the last two that pose challenges for forecasting a platform’s demand: Intermittent

demand (i.e., many observations in the historic order time series exhibit no demand at all)

renders most of the commonly applied error metrics useless. Moreover, many of the estab-

lished forecasting methods can only handle a single and often low seasonality (i.e., repeated

regular pattern), if at all.

In this paper, we develop a rigorous methodology as to how to build and evaluate a robust

forecasting system for an urban delivery platform (UDP) that offers ad-hoc point-to-point

transportation of any kind. We implement such a system with a broad set of commonly used

forecasting methods. We not only apply established (i.e., “classical”) time series methods

but also machine learning (ML) models that have gained traction in recent years due to

advancements in computing power and availability of larger amounts of data. In that regard,

the classical methods serve as benchmarks for the ML methods. Our system is trained on

and evaluated with a dataset obtained from an undisclosed industry partner that, during

the timeframe of our study, was active in several European countries and, in particular, in

France. Its primary business strategy is the delivery of meals from upper-class restaurants

to customers in their home or work places via bicycles. In this empirical study, we identify

the best-performing methods. Thus, we answer the following research questions:

Q1: Which forecasting methods work best under what circumstances?

Q2: How do classical forecasting methods compare with ML models?

Q3: How does the forecast accuracy change with more historic data available?

Q4: Can real-time information on demand be exploited?

Q5: Can external data (e.g., weather data) improve the forecast accuracy?

To the best of our knowledge, no such study has yet been published in a scholarly journal.

The subsequent Section 2 reviews the literature on the forecasting methods included in

the system. Section 3 introduces our forecasting system, and Section 4 discusses the results

3

obtained in the empirical study. Lastly, Section 5 summarizes our findings and concludes

with an outlook on further research opportunities.

2. Literature Review

In this section, we review the specific forecasting methods that make up our forecasting

system. We group them into classical statistics and ML models. The two groups differ mainly

in how they represent the input data and how accuracy is evaluated.

A time series is a finite and ordered sequence of equally spaced observations. Thus, time

is regarded as discrete and a time step as a short period. Formally, a time series Y is defined

as Y = {yt : t ∈ I}, or yt for short, where I is an index set of positive integers. Besides

its length T = |Y |, another property is the a priori fixed and non-negative periodicity k of

a seasonal pattern in demand: k is the number of time steps after which a pattern repeats

itself (e.g., k = 12 for monthly sales data).

2.1. Demand Forecasting with Classical Forecasting Methods

Forecasting became a formal discipline starting in the 1950s and has its origins in the

broader field of statistics. [28] provide a thorough overview of the concepts and methods

established, and [38] indicate business-related applications such as demand forecasting. These

“classical” forecasting methods share the characteristic that they are trained over the entire

Y first. Then, for prediction, the forecaster specifies the number of time steps for which he

wants to generate forecasts. That is different for ML models.

2.1.1. Näıve Methods, Moving Averages, and Exponential Smoothing.

Simple forecasting methods are often employed as a benchmark for more sophisticated

ones. The so-called näıve and seasonal näıve methods forecast the next time step in a time

series, yT+1, with the last observation, yT , and, if a seasonal pattern is present, with the

observation k steps before, yT+1−k. As variants, both methods can be generalized to include

drift terms in the presence of a trend or changing seasonal amplitude.

If a time series exhibits no trend, a simple moving average (SMA) is a generalization of

the näıve method that is more robust to outliers. It is defined as follows: ŷT+1 = 1
h

∑T
i=T−h yi

4

where h is the horizon over which the average is calculated. If a time series exhibits a seasonal

pattern, setting h to a multiple of the periodicity k suffices that the forecast is unbiased.

Starting in the 1950s, another popular family of forecasting methods, so-called exponential

smoothing methods, was introduced by [12], [26], and [48]. The idea is that forecasts ŷT+1

are a weighted average of past observations where the weights decay over time; in the case

of the simple exponential smoothing (SES) method we obtain: ŷT+1 = αyT +α(1−α)yT−1 +

α(1− α)2yT−2 + · · ·+ α(1− α)T−1y1 where α (with 0 ≤ α ≤ 1) is a smoothing parameter.

Exponential smoothing methods are often expressed in an alternative component form

that consists of a forecast equation and one or more smoothing equations for unobservable

components. Below, we present a generalization of SES, the so-called Holt-Winters’ seasonal

method, in an additive formulation. `t, bt, and st represent the unobservable level, trend, and

seasonal components inherent in yt, and β and γ complement α as smoothing parameters:

ŷt+1 = `t + bt + st+1−k

`t = α(yt − st−k) + (1− α)(`t−1 + bt−1)

bt = β(`t − `t−1) + (1− β)bt−1

st = γ(yt − `t−1 − bt−1) + (1− γ)st−k

With bt, st, β, and γ removed, this formulation reduces to SES. Distinct variations exist:

Besides the three components, [20] add dampening for the trend, [39] provides multiplicative

formulations, and [43] adds dampening to the latter. The accuracy measure commonly

employed is the sum of squared errors between the observations and their forecasts.

Originally introduced by [2], [29] show how the Theta method can be regarded as an

equivalent to SES with a drift term. We mention this method here only because [4] emphasize

that it performs well at Uber. However, in our empirical study, we find that this is not true

in general.

[32] introduce statistical processes, so-called innovations state-space models, to generalize

the methods in this sub-section. They call this family of models ETS as they capture error,

5

trend, and seasonal terms. Linear and additive ETS models have a structure like so:

yt = ~w · ~xt−1 + εt

~xt = F~xt−1 + ~gεt

yt denote the observations as before while ~xt is a state vector of unobserved components. εt is

a white noise series and the matrix F and the vectors ~g and ~w contain a model’s coefficients.

Just as the models in the next sub-section, ETS models are commonly fitted with maximum

likelihood and evaluated using information theoretical criteria against historical data. We

refer to [31] for a thorough summary.

2.1.2. Autoregressive Integrated Moving Averages.

[6], [7], and more papers by the same authors in the 1960s introduce a type of model where

observations correlate with their neighbors and refer to them as autoregressive integrated

moving average (ARIMA) models for stationary time series. For a thorough overview, we

refer to [8] and [11].

A time series yt is stationary if its moments are independent of the point in time where

it is observed. A typical example is a white noise εt series. Therefore, a trend or seasonality

implies non-stationarity. [33] provide a test to check the null hypothesis of stationary data.

To obtain a stationary time series, one chooses from several techniques: First, to stabilize a

changing variance (i.e., heteroscedasticity), one applies a Box-Cox transformation (e.g., log)

as first suggested by [5]. Second, to factor out a trend (or seasonal) pattern, one computes

differences of consecutive (or of lag k) observations or even differences thereof. Third, it is also

common to pre-process yt with one of the decomposition methods mentioned in Sub-section

2.1.3 below with an ARIMA model then trained on an adjusted yt.

In the autoregressive part, observations are modeled as linear combinations of its pre-

decessors. Formally, an AR(p) model is defined with a drift term c, coefficients φi to be

estimated (where i is an index with 0 < i ≤ p), and white noise εt like so: AR(p) :

yt = c + φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εt. The moving average part considers ob-

servations to be regressing towards a linear combination of past forecasting errors. For-

mally, a MA(q) model is defined with a drift term c, coefficients θj to be estimated, and

white noise terms εt (where j is an index with 0 < j ≤ q) as follows: MA(q) : yt =

6

c+εt +θ1εt−1 +θ2εt−2 + · · ·+θqεt−q. Finally, an ARIMA(p, d, q) model unifies both parts and

adds differencing where d is the degree of differences and the ′ indicates differenced values:

ARIMA(p, d, q) : y′t = c+ φ1y
′
t−1 + · · ·+ φpy

′
t−p + θ1εt−1 + · · ·+ θqεt−q + εt.

ARIMA(p, d, q) models are commonly fitted with maximum likelihood estimation. To

find an optimal combination of the parameters p, d, and q, the literature suggests calculating

an information theoretical criterion (e.g., Akaike’s Information Criterion) that evaluates the

fit on historical data. [30] provide a step-wise heuristic to choose p, d, and q, that also decides

if a Box-Cox transformation is to be applied, and if so, which one. To obtain a one-step-ahead

forecast, the above equation is reordered such that t is substituted with T + 1. For forecasts

further into the future, the actual observations are subsequently replaced by their forecasts.

Seasonal ARIMA variants exist; however, the high frequency k in the kind of demand a UDP

faces typically renders them impractical as too many coefficients must be estimated.

2.1.3. Seasonal and Trend Decomposition using Loess.

A time series yt may exhibit different types of patterns; to fully capture each of them,

the series must be decomposed. Then, each component is forecast with a distinct model.

Most commonly, the components are the trend tt, seasonality st, and remainder rt. They

are themselves time series, where only st exhibits a periodicity k. A decomposition may be

additive (i.e., yt = st + tt + rt) or multiplicative (i.e., yt = st ∗ tt ∗ rt); the former assumes

that the effect of the seasonal component is independent of the overall level of yt and vice

versa. The seasonal component is centered around 0 in both cases such that its removal does

not affect the level of yt. Often, it is sufficient to only seasonally adjust the time series, and

model the trend and remainder together, for example, as at = yt − st in the additive case.

Early approaches employed moving averages (cf., Sub-section 2.1.1) to calculate a trend

component, and, after removing that from yt, averaged all observations of the same seasonal

lag to obtain the seasonal component. The downsides of this are the subjectivity in choosing

the window lengths for the moving average and the seasonal averaging, the incapability of

the seasonal component to vary its amplitude over time, and the missing handling of outliers.

The X11 method developed at the U.S. Census Bureau and described in detail by [16]

overcomes these disadvantages. However, due to its background in economics, it is designed

7

primarily for quarterly or monthly data, and the change in amplitude over time cannot be

controlled. Variants of this method are the SEATS decomposition by the Bank of Spain and

the newer X13-SEATS-ARIMA method by the U.S. Census Bureau. Their main advantages

stem from the fact that the models calibrate themselves according to statistical criteria

without manual work for a statistician and that the fitting process is robust to outliers.

[15] introduce a seasonal and trend decomposition using a repeated locally weighted re-

gression - the so-called Loess procedure - to smoothen the trend and seasonal components,

which can be viewed as a generalization of the methods above and is denoted by the acronym

STL. In contrast to the X11, X13, and SEATS methods, the STL supports seasonalities of

any lag k that must, however, be determined with additional statistical tests or set with

out-of-band knowledge by the forecaster (e.g., hourly demand data implies k = 24 ∗ 7 = 168

assuming customer behavior differs on each day of the week). Moreover, the seasonal com-

ponent’s rate of change, represented by the ns parameter and explained in detail with Figure

3 in Section 3, must be set by the forecaster as well, while the trend’s smoothness may be

controlled via setting a non-default window size. Outliers are handled by assignment to the

remainder such that they do not affect the trend and seasonal components. In particular,

the manual input needed to calibrate the STL explains why only the X11, X13, and SEATS

methods are widely used by practitioners. However, the widespread adoption of concepts like

cross-validation (cf., Sub-section 2.2.2) in recent years enables the usage of an automated grid

search to optimize the parameters. The STL’s usage within a grid search is facilitated even

further by its being computationally cheaper than the other methods discussed.

2.2. Demand Forecasting with Machine Learning Methods

ML methods have been employed in all kinds of prediction tasks in recent years. In

this section, we restrict ourselves to the models that performed well in our study: Random

Forest (RF) and Support Vector Regression (SVR). RFs are in general well-suited for datasets

without a priori knowledge about the patterns, while SVR is known to perform well on time

series data, as shown by [21] in general and [3] specifically for intermittent demand. Gradient

Boosting, another popular ML method, was consistently outperformed by RFs, and artificial

neural networks require an amount of data exceeding what our industry partner has by far.

8

2.2.1. Supervised Learning.

A conceptual difference between classical and ML methods is the format for the model

inputs. In ML models, a time series Y is interpreted as labeled data. Labels are collected

into a vector ~y while the corresponding predictors are aligned in an (T − n)× n matrix X:

~y =


yT

yT−1

. . .

yn+1

 X =


yT−1 yT−2 . . . yT−n

yT−2 yT−3 . . . yT−(n+1)

.

yn yn−1 . . . y1


The m = T − n rows are referred to as samples and the n columns as features. Each row in

X is “labeled” by the corresponding entry in ~y, and ML models are trained to fit the rows to

their labels. Conceptually, we model a functional relationship f between X and ~y such that

the difference between the predicted ~̂y = f(X) and the true ~y are minimized according to

some error measure L(~̂y, ~y), where L summarizes the goodness of the fit into a scalar value

(e.g., the well-known mean squared error [MSE]; cf., Section 3). X and ~y show the ordinal

character of time series data: Not only overlap the entries of X and ~y, but the rows of X are

shifted versions of each other. That does not hold for ML applications in general (e.g., the

classical example of predicting spam vs. no spam emails, where the features model properties

of individual emails), and most of the common error measures presented in introductory texts

on ML, are only applicable in cases without such a structure in X and ~y. n, the number of

past time steps required to predict a yt, is an exogenous model parameter. For prediction,

the forecaster supplies the trained ML model an input vector in the same format as a row

~xi in X. For example, to predict yT+1, the model takes the vector (yT , yT−1, ..., yT−n+1) as

input. That is in contrast to the classical methods, where we only supply the number of time

steps to be predicted as a scalar integer.

2.2.2. Cross-Validation.

Because ML models are trained by minimizing a loss function L, the resulting value of L

underestimates the true error we see when predicting into the actual future by design. To

counter that, one popular and model-agnostic approach is cross-validation (CV), as summa-

rized, for example, by [22]. CV is a resampling technique, which ranomdly splits the samples

9

into a training and a test set. Trained on the former, an ML model makes forecasts on the

latter. Then, the value of L calculated only on the test set gives a realistic and unbiased

estimate of the true forecasting error, and may be used for one of two distinct aspects: First,

it assesses the quality of a fit and provides an idea as to how the model would perform in

production when predicting into the actual future. Second, the errors of models of either

different methods or the same method with different parameters may be compared with each

other to select the best model. In order to first select the best model and then assess its qual-

ity, one must apply two chained CVs: The samples are divided into training, validation, and

test sets, and all models are trained on the training set and compared on the validation set.

Then, the winner is retrained on the union of the training and validation sets and assessed

on the test set.

Regarding the splitting, there are various approaches, and we choose the so-called k-fold

CV, where the samples are randomly divided into k folds of the same size. Each fold is used

as a test set once and the remaining k − 1 folds become the corresponding training set. The

resulting k error measures are averaged. A k-fold CV with k = 5 or k = 10 is a compromise

between the two extreme cases of having only one split and the so-called leave-one-out CV

where k = m: Computation is still relatively fast and each sample is part of several training

sets maximizing the learning from the data. We adapt the k-fold CV to the ordinal stucture

in X and ~y in Sub-section 3.

2.2.3. Random Forest Regression.

[10] introduce the classification and regression tree (CART) model that is built around the

idea that a single binary decision tree maps learned combinations of intervals of the feature

columns to a label. Thus, each sample in the training set is associated with one leaf node

that is reached by following the tree from its root and branching along the arcs according

to some learned splitting rule per intermediate node that compares the sample’s realization

for the feature specified by the rule to the learned decision rule. While such models are

computationally fast and offer a high degree of interpretability, they tend to overfit strongly

to the training set as the splitting rules are not limited to any functional form (e.g., linear)

in the relationship between the features and the labels. In the regression case, it is common

10

to maximize the variance reduction IV from a parent node N to its two children, C1 and C2,

as the splitting rule. [10] formulate this as follows:

IV (N) =
1

|SN |2
∑
i∈SN

∑
j∈SN

1

2
(yi−yj)2−

(
1

|SC1|2
∑
i∈SC1

∑
j∈SC1

1

2
(yi − yj)2 +

1

|SC2|2
∑
i∈SC2

∑
j∈SC2

1

2
(yi − yj)2

)
SN , SC1, and SC2 are the index sets of the samples in N , C1, and C2.

[25] and then [9] generalize this method by combining many CART models into one forest

of trees where every single tree is a randomized variant of the others. Randomization is

achieved at two steps in the training process: First, each tree receives a distinct training

set resampled with replacement from the original training set, an idea also called bootstrap

aggregation. Second, at each node a random subset of the features is used to grow the

tree. Trees can be fitted in parallel speeding up the training significantly. For prediction

at the tree level, the average of all the samples at a particular leaf node is used. Then, the

individual values are combined into one value by averaging again across the trees. Due to

the randomization, the trees are decorrelated offsetting the overfitting. Another measure to

counter overfitting is pruning the tree, either by specifying the maximum depth of a tree or

the minimum number of samples at leaf nodes.

The forecaster must tune the structure of the forest. Parameters include the number of

trees in the forest, the size of the random subset of features, and the pruning criteria. The

parameters are optimized via grid search: We train many models with parameters chosen

from a pre-defined list of values and select the best one by CV. RFs are a convenient ML

method for any dataset as decision trees do not make any assumptions about the relationship

between features and labels. [23] use RFs to predict the hourly demand for water in an urban

context, a similar application as the one in this paper, and find that RFs work well with time

series type of data.

2.2.4. Support Vector Regression.

[46] and [45] introduce the so-called support vector machine (SVM) model, and [44]

summarizes the research conducted since then. In its basic version, SVMs are linear classifiers,

modeling a binary decision, that fit a hyperplane into the feature space of X to maximize the

margin around the hyperplane seperating the two groups of labels. SVMs were popularized

in the 1990s in the context of optical character recognition, as shown in [40].

11

[18] and [42] adapt SVMs to the regression case, and [41] provide a comprehensive intro-

duction thereof. [36] and [37] focus on SVRs in the context of time series data and find that

they tend to outperform classical methods. [13] and [14] apply SVRs to predict the hourly

demand for water in cities, an application similar to the UDP case.

In the SVR case, a linear function ŷi = f(~xi) = 〈~w, ~xi〉 + b is fitted so that the actual

labels yi have a deviation of at most ε from their predictions ŷi (cf., the constraints below).

SVRs are commonly formulated as quadratic optimization problems as follows:

minimize
1

2
‖~w‖2 + C

m∑
i=1

(ξi + ξ∗i) subject to

yi − 〈~w, ~xi〉 − b ≤ ε+ ξi,

〈~w, ~xi〉+ b− yi ≤ ε+ ξ∗i

~w are the fitted weights in the row space of X, b is a bias term in the column space of X,

and 〈·, ·〉 denotes the dot product. By minimizing the norm of ~w, the fitted function is flat

and not prone to overfitting strongly. To allow individual samples outside the otherwise hard

ε bounds, non-negative slack variables ξi and ξ∗i are included. A non-negative parameter C

regulates how many samples may violate the ε bounds and by how much. To model non-

linear relationships, one could use a mapping Φ(·) for the ~xi from the row space of X to

some higher dimensional space; however, as the optimization problem only depends on the

dot product 〈·, ·〉 and not the actual entries of ~xi, it suffices to use a kernel function k such

that k(~xi, ~xj) = 〈Φ(~xi),Φ(~xj)〉. Such kernels must fulfill certain mathematical properties,

and, besides polynomial kernels, radial basis functions with k(~xi, ~xj) = exp(γ ‖~xi − ~xj‖2) are

a popular candidate where γ is a parameter controlling for how the distances between any

two samples influence the final model. SVRs work well with sparse data in high dimensional

spaces, such as intermittent demand data, as they minimize the risk of misclassification or

predicting a significantly far off value by maximizing the error margin, as also noted by [3].

3. Model Formulation

4. Empirical Study: A Meal Delivery Platform in Europe

5. Conclusion

12

Glossary

CART Classification and Regression Trees. 10

CV Cross Validation. 9

ML Machine Learning. 3

RF Random Forest. 8

STL Seasonal and Trend Decomposition using Loess. 8

SVM Support Vector Machine. 11

SVR Support Vector Regression. 8

UDP Urban Delivery Platform. 3

VRP Vehicle Routing Problem. 2

13

References

[1] Alcaraz, J.J., Caballero-Arnaldos, L., Vales-Alonso, J., 2019. Rich vehicle routing prob-

lem with last-mile outsourcing decisions. Transportation Research Part E: Logistics and

Transportation Review 129, 263–286.

[2] Assimakopoulos, V., Nikolopoulos, K., 2000. The theta model: a decomposition ap-

proach to forecasting. International Journal of Forecasting 16, 521–530.

[3] Bao, Y., Wang, W., Zhang, J., 2004. Forecasting intermittent demand by svms regres-

sion, in: 2004 IEEE International Conference on Systems, Man and Cybernetics, pp.

461–466.

[4] Bell, F., Smyl, S., 2018. Forecasting at uber: An introduction.

https://eng.uber.com/forecasting-introduction/. Accessed: 2020-10-01.

[5] Box, G., Cox, D., 1964. An analysis of transformations. Journal of the Royal Statistical

Society. Series B (Methodological) 26, 211–252.

[6] Box, G., Jenkins, G., 1962. Some statistical aspects of adaptive optimization and control.

Journal of the Royal Statistical Society. Series B (Methodological) 24, 297–343.

[7] Box, G., Jenkins, G., 1968. Some recent advances in forecasting and control. Journal of

the Royal Statistical Society. Series C (Applied Statistics) 17, 91–109.

[8] Box, G., Jenkins, G., Reinsel, G., Ljung, G., 2015. Time Series Analysis: Forecasting

and Control. Wiley Series in Probability and Statistics, Wiley.

[9] Breiman, L., 2001. Random forests. Machine Learning 45, 5–32.

[10] Breiman, L., Friedman, J., Olshen, R., Stone, C., 1984. Classification and Regression

Trees. Wadsworth.

[11] Brockwell, P., Davis, R., 2016. Introduction to Time Series and Forecasting. Springer

Texts in Statistics, Springer.

[12] Brown, R., 1959. Statistical Forecasting for Inventory Control. McGraw/Hill.

14

[13] Chen, L., Zhang, T.q., 2006a. Hourly water demand forecast model based on bayesian

least squares support vector machine. Journal of Tianjin University 39, 1037–1042.

[14] Chen, L., Zhang, T.q., 2006b. Hourly water demand forecast model based on least

squares support vector machine. Journal of Harbin Institute of Technology 38, 1528–

1530.

[15] Cleveland, R., Cleveland, W., McRae, J., Terpenning, I., 1990. Stl: A seasonal-trend

decomposition procedure based on loess. Journal of Official Statistics 6, 3–73.

[16] Dagum, E., Bianconcini, S., 2016. Seasonal Adjustment Methods and Real Time Trend-

Cycle Estimation. Statistics for Social and Behavioral Sciences, Springer.

[17] De Gooijer, J., Hyndman, R., 2006. 25 years of time series forecasting. International

Journal of Forecasting 22, 443–473.

[18] Drucker, H., Burges, C., Kaufman, L., Smola, A., Vapnik, V., 1997. Support vector

regression machines, in: Advances in Neural Information Processing Systems, Springer.

pp. 155–161.

[19] Ehmke, J.F., Campbell, A.M., Thomas, B.W., 2018. Optimizing for total costs in vehicle

routing in urban areas. Transportation Research Part E: Logistics and Transportation

Review 116, 242–265.

[20] Gardner, E., McKenzie, E., 1985. Forecasting trends in time series. Management Science

31, 1237–1246.

[21] Hansen, J., McDonald, J., Nelson, R., 2006. Some evidence on forecasting time-series

with support vector machines. Journal of the Operational Research Society 57, 1053–

1063.

[22] Hastie, T., Tibshirani, R., Friedman, J., 2013. The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. Springer.

[23] Herrera, M., Torgo, L., Izquierdo, J., Pérez-Garćıa, R., 2010. Predictive models for

forecasting hourly urban water demand. Journal of Hydrology 387, 141–150.

15

[24] Hirschberg, C., Rajko, A., Schumacher, T., Wrulich, M., 2016. Mckinsey: The chang-

ing market for food delivery. https://www.mckinsey.com/industries/high-tech/

our-insights/the-changing-market-for-food-delivery. Accessed: 2020-10-01.

[25] Ho, T.K., 1998. The random subspace method for constructing decision forests. IEEE

Transactions on Pattern Analysis and Machine Intelligence 20, 832–844.

[26] Holt, C., 1957. Forecasting seasonals and trends by exponentially weighted moving

averages. ONR Memorandum 52.

[27] Hou, L., Li, D., Zhang, D., 2018. Ride-matching and routing optimisation: Models and

a large neighbourhood search heuristic. Transportation Research Part E: Logistics and

Transportation Review 118, 143–162.

[28] Hyndman, R., Athanasopoulos, G., 2018. Forecasting: Principles and Practice. OTexts.

[29] Hyndman, R., Billah, B., 2003. Unmasking the theta method. International Journal of

Forecasting 19, 287–290.

[30] Hyndman, R., Khandakar, Y., 2008. Automatic time series forecasting: The forecast

package for r. Journal of Statistical Software 26.

[31] Hyndman, R., Koehler, A., Ord, K., Snyder, R., 2008. Forecasting with Exponential

Smoothing: the State Space Approach. Springer.

[32] Hyndman, R., Koehler, A., Snyder, R., Grose, S., 2002. A state space framework for

automatic forecasting using exponential smoothing methods. International Journal of

Forecasting 18, 439–454.

[33] Kwiatkowski, D., Phillips, P., Schmidt, P., Shin, Y., 1992. Testing the null hypothesis

of stationarity against the alternative of a unit root: How sure are we that economic

time series have a unit root? Journal of Econometrics 54, 159–178.

[34] Laptev, N., Smyl, S., Shanmugam, S., 2017. Engineering extreme event forecasting

at uber with recurrent neural networks. https://eng.uber.com/neural-networks/.

Accessed: 2020-10-01.

16

[35] Masmoudi, M.A., Hosny, M., Demir, E., Genikomsakis, K.N., Cheikhrouhou, N., 2018.

The dial-a-ride problem with electric vehicles and battery swapping stations. Trans-

portation research part E: logistics and transportation review 118, 392–420.

[36] Müller, K.R., Smola, A., Rätsch, G., Schölkopf, B., Kohlmorgen, J., Vapnik, V., 1997.

Predicting time series with support vector machines, in: International Conference on

Artificial Neural Networks, Springer. pp. 999–1004.

[37] Müller, K.R., Smola, A., Rätsch, G., Schölkopf, B., Kohlmorgen, J., Vapnik, V., 1999.

Using support vector machines for time series prediction. Advances in Kernel Methods

— Support Vector Learning , 243–254.

[38] Ord, K., Fildes, R., Kourentzes, N., 2017. Principles of Business Forecasting. WESSEX

Press.

[39] Pegels, C., 1969. Exponential forecasting: Some new variations. Management Science

15, 311–315.

[40] Schölkopf, B., Knirsch, P., Smola, A., Burges, C., 1998. Fast approximation of support

vector kernel expansions, and an interpretation of clustering as approximation in feature

spaces, in: Mustererkennung 1998. Springer, pp. 125–132.

[41] Smola, A., Schölkopf, B., 2004. A tutorial on support vector regression. Statistics and

Computing 14, 199–222.

[42] Stitson, M., Gammerman, A., Vapnik, V., Vovk, V., Watkins, C., Weston, J., 1999. Sup-

port vector regression with anova decomposition kernels. Advances in Kernel Methods

— Support Vector Learning , 285–292.

[43] Taylor, J., 2003. Exponential smoothing with a damped multiplicative trend. Interna-

tional Journal of Forecasting 19, 715–725.

[44] Vapnik, V., 2013. The Nature of Statistical Learning Theory. Springer.

[45] Vapnik, V., Chervonenkis, A., 1964. A note on one class of perceptrons. Automation

and Remote Control 25.

17

[46] Vapnik, V., Lerner, A., 1963. Pattern recognition using generalized portrait method.

Automation and Remote Control 24, 774–780.

[47] Wang, Z., 2018. Delivering meals for multiple suppliers: Exclusive or sharing logistics

service. Transportation Research Part E: Logistics and Transportation Review 118,

496–512.

[48] Winters, P., 1960. Forecasting sales by exponentially weighted moving averages. Man-

agement Science 6, 324–342.

18

