141 lines
No EOL
4.6 KiB
TeX
141 lines
No EOL
4.6 KiB
TeX
% Abbreviations for technical terms.
|
|
\newglossaryentry{add}{
|
|
name=ADD, description={Average Daily Demand}
|
|
}
|
|
\newglossaryentry{cart}{
|
|
name=CART, description={Classification and Regression Trees}
|
|
}
|
|
\newglossaryentry{cv}{
|
|
name=CV, description={Cross Validation}
|
|
}
|
|
\newglossaryentry{mase}{
|
|
name=MASE, description={Mean Absolute Scaled Error}
|
|
}
|
|
\newglossaryentry{mdrp}{
|
|
name=MDRP, description={Meal Delivery Routing Proplem}
|
|
}
|
|
\newglossaryentry{ml}{
|
|
name=ML, description={Machine Learning}
|
|
}
|
|
\newglossaryentry{pdp}{
|
|
name=PDP, description={Pickup and Delivery Problem}
|
|
}
|
|
\newglossaryentry{rf}{
|
|
name=RF, description={Random Forest}
|
|
}
|
|
\newglossaryentry{stl}{
|
|
name=STL, description={Seasonal and Trend Decomposition using Loess}
|
|
}
|
|
\newglossaryentry{svm}{
|
|
name=SVM, description={Support Vector Machine}
|
|
}
|
|
\newglossaryentry{svr}{
|
|
name=SVR, description={Support Vector Regression}
|
|
}
|
|
\newglossaryentry{udp}{
|
|
name=UDP, description={Urban Delivery Platform}
|
|
}
|
|
\newglossaryentry{vrp}{
|
|
name=VRP, description={Vehicle Routing Problem}
|
|
}
|
|
|
|
% Model names.
|
|
\newglossaryentry{naive}{
|
|
name=naive, description={(Seasonal) Na\"{i}ve Method}
|
|
}
|
|
\newglossaryentry{fnaive}{
|
|
name=fnaive, description={"Flexible" STL Decomposition,
|
|
with tuned ns parameter}
|
|
}
|
|
\newglossaryentry{pnaive}{
|
|
name=pnaive, description={"Periodic" STL Decomposition,
|
|
with ns parameter set to large number}
|
|
}
|
|
\newglossaryentry{trivial}{
|
|
name=trivial, description={Trivial Method}
|
|
}
|
|
\newglossaryentry{hcroston}{
|
|
name=hcroston, description={Croston's Method,
|
|
trained on horizontal time series}
|
|
}
|
|
\newglossaryentry{hholt}{
|
|
name=hholt, description={Holt's Linear Trend Method,
|
|
trained on horizontal time series}
|
|
}
|
|
\newglossaryentry{vholt}{
|
|
name=vholt, description={Holt's Linear Trend Method,
|
|
trained on vertical time series}
|
|
}
|
|
\newglossaryentry{rtholt}{
|
|
name=rtholt, description={Holt's Linear Trend Method,
|
|
(re)trained on vertical time series}
|
|
}
|
|
\newglossaryentry{hhwinters}{
|
|
name=hhwinters, description={Holt-Winter's Seasonal Method,
|
|
trained on horizontal time series}
|
|
}
|
|
\newglossaryentry{hses}{
|
|
name=hses, description={Simple Exponential Smoothing Method,
|
|
trained on horizontal time series}
|
|
}
|
|
\newglossaryentry{vses}{
|
|
name=vses, description={Simple Exponential Smoothing Method,
|
|
trained on vertical time series}
|
|
}
|
|
\newglossaryentry{rtses}{
|
|
name=rtses, description={Simple Exponential Smoothing Method,
|
|
(re)trained on vertical time series}
|
|
}
|
|
\newglossaryentry{hsma}{
|
|
name=hsma, description={Simple Moving Average Method,
|
|
trained on horizontal time series}
|
|
}
|
|
\newglossaryentry{htheta}{
|
|
name=htheta, description={Theta Method,
|
|
trained on horizontal time series}
|
|
}
|
|
\newglossaryentry{vtheta}{
|
|
name=vtheta, description={Theta Method,
|
|
trained on vertical time series}
|
|
}
|
|
\newglossaryentry{rttheta}{
|
|
name=rttheta, description={Theta Method,
|
|
(re)trained on vertical time series}
|
|
}
|
|
\newglossaryentry{hets}{
|
|
name=hets, description={ETS State Space Method,
|
|
trained on horizontal time series}
|
|
}
|
|
\newglossaryentry{vets}{
|
|
name=vets, description={ETS State Space Method,
|
|
trained on vertical time series}
|
|
}
|
|
\newglossaryentry{rtets}{
|
|
name=rtets, description={ETS State Space Method,
|
|
(re)trained on vertical time series}
|
|
}
|
|
\newglossaryentry{harima}{
|
|
name=harima, description={Autoregressive Integrated Moving Average
|
|
Method,
|
|
trained on horizontal time series}
|
|
}
|
|
\newglossaryentry{varima}{
|
|
name=varima, description={Autoregressive Integrated Moving Average
|
|
Method,
|
|
trained on vertical time series}
|
|
}
|
|
\newglossaryentry{rtarima}{
|
|
name=rtarima, description={Autoregressive Integrated Moving Average
|
|
Method,
|
|
(re)trained on vertical time series}
|
|
}
|
|
\newglossaryentry{vrfr}{
|
|
name=vrfr, description={Random Forest Regression Method,
|
|
trained on vertical time series}
|
|
}
|
|
\newglossaryentry{vsvr}{
|
|
name=vsvr, description={Support Vector Regression Method,
|
|
trained on vertical time series}
|
|
}
|
|
|
|
\printglossaries |