67 lines
2.4 KiB
Python
67 lines
2.4 KiB
Python
|
"""Provide the ORM's `Forecast` model."""
|
||
|
|
||
|
import sqlalchemy as sa
|
||
|
from sqlalchemy import orm
|
||
|
from sqlalchemy.dialects import postgresql
|
||
|
|
||
|
from urban_meal_delivery.db import meta
|
||
|
|
||
|
|
||
|
class Forecast(meta.Base):
|
||
|
"""A demand forecast for a `.pixel` and `.time_step` pair.
|
||
|
|
||
|
This table is denormalized on purpose to keep things simple.
|
||
|
"""
|
||
|
|
||
|
__tablename__ = 'forecasts'
|
||
|
|
||
|
# Columns
|
||
|
id = sa.Column(sa.Integer, primary_key=True, autoincrement=True) # noqa:WPS125
|
||
|
pixel_id = sa.Column(sa.Integer, nullable=False, index=True)
|
||
|
start_at = sa.Column(sa.DateTime, nullable=False)
|
||
|
time_step = sa.Column(sa.SmallInteger, nullable=False)
|
||
|
training_horizon = sa.Column(sa.SmallInteger, nullable=False)
|
||
|
method = sa.Column(sa.Unicode(length=20), nullable=False) # noqa:WPS432
|
||
|
# Raw `.prediction`s are stored as `float`s (possibly negative).
|
||
|
# The rounding is then done on the fly if required.
|
||
|
prediction = sa.Column(postgresql.DOUBLE_PRECISION, nullable=False)
|
||
|
|
||
|
# Constraints
|
||
|
__table_args__ = (
|
||
|
sa.ForeignKeyConstraint(
|
||
|
['pixel_id'], ['pixels.id'], onupdate='RESTRICT', ondelete='RESTRICT',
|
||
|
),
|
||
|
sa.CheckConstraint(
|
||
|
"""
|
||
|
NOT (
|
||
|
EXTRACT(HOUR FROM start_at) < 11
|
||
|
OR
|
||
|
EXTRACT(HOUR FROM start_at) > 22
|
||
|
)
|
||
|
""",
|
||
|
name='start_at_must_be_within_operating_hours',
|
||
|
),
|
||
|
sa.CheckConstraint(
|
||
|
'CAST(EXTRACT(MINUTES FROM start_at) AS INTEGER) % 15 = 0',
|
||
|
name='start_at_minutes_must_be_quarters_of_the_hour',
|
||
|
),
|
||
|
sa.CheckConstraint(
|
||
|
'EXTRACT(SECONDS FROM start_at) = 0', name='start_at_allows_no_seconds',
|
||
|
),
|
||
|
sa.CheckConstraint(
|
||
|
'CAST(EXTRACT(MICROSECONDS FROM start_at) AS INTEGER) % 1000000 = 0',
|
||
|
name='start_at_allows_no_microseconds',
|
||
|
),
|
||
|
sa.CheckConstraint('time_step > 0', name='time_step_must_be_positive'),
|
||
|
sa.CheckConstraint(
|
||
|
'training_horizon > 0', name='training_horizon_must_be_positive',
|
||
|
),
|
||
|
# There can be only one prediction per forecasting setting.
|
||
|
sa.UniqueConstraint(
|
||
|
'pixel_id', 'start_at', 'time_step', 'training_horizon', 'method',
|
||
|
),
|
||
|
)
|
||
|
|
||
|
# Relationships
|
||
|
pixel = orm.relationship('Pixel', back_populates='forecasts')
|