Add OrderHistory.make_real_time_time_series()

- the method slices out a real-time time series from the data within
  an `OrderHistory` object
This commit is contained in:
Alexander Hess 2021-01-09 17:30:00 +01:00
commit 100fac659a
Signed by: alexander
GPG key ID: 344EA5AB10D868E0
3 changed files with 257 additions and 3 deletions

View file

@ -1,4 +1,8 @@
"""Test the time series related code."""
"""Test the code generating time series with the order totals.
Unless otherwise noted, each `time_step` is 60 minutes long implying
12 time steps per day (i.e., we use `LONG_TIME_STEP` by default).
"""
# pylint:disable=no-self-use,unused-argument
import datetime
@ -63,7 +67,11 @@ def good_predict_at():
or `train_horizon=2` works.
"""
return datetime.datetime(
test_config.END.year, test_config.END.month, test_config.END.day, 12, 0,
test_config.END.year,
test_config.END.month,
test_config.END.day,
test_config.NOON,
0,
)
@ -76,7 +84,7 @@ def bad_predict_at():
"""
predict_day = test_config.END - datetime.timedelta(weeks=1, days=1)
return datetime.datetime(
predict_day.year, predict_day.month, predict_day.day, 12, 0,
predict_day.year, predict_day.month, predict_day.day, test_config.NOON, 0,
)
@ -282,3 +290,156 @@ class TestMakeVerticalTimeSeries:
predict_day=good_predict_at.date(),
train_horizon=999,
)
class TestMakeRealTimeTimeSeries:
"""Test the `OrderHistory.make_real_time_time_series()` method."""
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
def test_wrong_pixel(self, order_history, good_predict_at, train_horizon):
"""A `pixel_id` that is not in the `grid`."""
with pytest.raises(LookupError):
order_history.make_real_time_time_series(
pixel_id=999_999,
predict_at=good_predict_at,
train_horizon=train_horizon,
)
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
def test_time_series_are_dataframes(
self, order_history, good_pixel_id, good_predict_at, train_horizon,
):
"""The time series come in a one-column `pd.DataFrame`."""
result = order_history.make_real_time_time_series(
pixel_id=good_pixel_id,
predict_at=good_predict_at,
train_horizon=train_horizon,
)
training_df, _, actual_df = result
assert isinstance(training_df, pd.DataFrame)
assert training_df.columns == ['total_orders']
assert isinstance(actual_df, pd.DataFrame)
assert actual_df.columns == ['total_orders']
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
def test_time_series_have_correct_length1(
self, order_history, good_pixel_id, good_predict_at, train_horizon,
):
"""The length of a training time series is the product of the ...
... weekly time steps (i.e., product of `7` and the number of daily time steps)
and the `train_horizon` in weeks; however, this assertion only holds if
we predict the first `time_step` of the day.
The time series with the actual order counts always holds `1` value.
"""
predict_at = datetime.datetime(
good_predict_at.year,
good_predict_at.month,
good_predict_at.day,
config.SERVICE_START,
0,
)
result = order_history.make_real_time_time_series(
pixel_id=good_pixel_id, predict_at=predict_at, train_horizon=train_horizon,
)
training_df, _, actual_df = result
n_daily_time_steps = (
60
* (config.SERVICE_END - config.SERVICE_START)
// test_config.LONG_TIME_STEP
)
assert len(training_df) == 7 * n_daily_time_steps * train_horizon
assert len(actual_df) == 1
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
def test_time_series_have_correct_length2(
self, order_history, good_pixel_id, good_predict_at, train_horizon,
):
"""The length of a training time series is the product of the ...
... weekly time steps (i.e., product of `7` and the number of daily time steps)
and the `train_horizon` in weeks; however, this assertion only holds if
we predict the first `time_step` of the day. Predicting any other `time_step`
means that the training time series becomes longer by the number of time steps
before the one being predicted.
The time series with the actual order counts always holds `1` value.
"""
assert good_predict_at.hour == test_config.NOON
result = order_history.make_real_time_time_series(
pixel_id=good_pixel_id,
predict_at=good_predict_at,
train_horizon=train_horizon,
)
training_df, _, actual_df = result
n_daily_time_steps = (
60
* (config.SERVICE_END - config.SERVICE_START)
// test_config.LONG_TIME_STEP
)
n_time_steps_before = (
60 * (test_config.NOON - config.SERVICE_START) // test_config.LONG_TIME_STEP
)
assert (
len(training_df)
== 7 * n_daily_time_steps * train_horizon + n_time_steps_before
)
assert len(actual_df) == 1
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
def test_frequency_is_number_number_of_weekly_time_steps(
self, order_history, good_pixel_id, good_predict_at, train_horizon,
):
"""The `frequency` is the number of weekly time steps."""
result = order_history.make_real_time_time_series(
pixel_id=good_pixel_id,
predict_at=good_predict_at,
train_horizon=train_horizon,
)
_, frequency, _ = result # noqa:WPS434
n_daily_time_steps = (
60
* (config.SERVICE_END - config.SERVICE_START)
// test_config.LONG_TIME_STEP
)
assert frequency == 7 * n_daily_time_steps
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
def test_no_long_enough_history1(
self, order_history, good_pixel_id, bad_predict_at, train_horizon,
):
"""If the `predict_at` day is too early in the `START`-`END` horizon ...
... the history of order totals is not long enough.
"""
with pytest.raises(RuntimeError):
order_history.make_real_time_time_series(
pixel_id=good_pixel_id,
predict_at=bad_predict_at,
train_horizon=train_horizon,
)
def test_no_long_enough_history2(
self, order_history, good_pixel_id, good_predict_at,
):
"""If the `train_horizon` is longer than the `START`-`END` horizon ...
... the history of order totals can never be long enough.
"""
with pytest.raises(RuntimeError):
order_history.make_real_time_time_series(
pixel_id=good_pixel_id, predict_at=good_predict_at, train_horizon=999,
)