Merge branch 'release-0.3.0' into main
This commit is contained in:
commit
241e7ed81f
93 changed files with 12395 additions and 2176 deletions
24
.github/workflows/tests.yml
vendored
24
.github/workflows/tests.yml
vendored
|
@ -1,7 +1,8 @@
|
|||
name: CI
|
||||
on: push
|
||||
jobs:
|
||||
tests:
|
||||
fast-tests:
|
||||
name: fast (without R)
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
|
@ -10,5 +11,22 @@ jobs:
|
|||
python-version: 3.8
|
||||
architecture: x64
|
||||
- run: pip install nox==2020.5.24
|
||||
- run: pip install poetry==1.0.10
|
||||
- run: nox
|
||||
- run: pip install poetry==1.1.4
|
||||
- run: nox -s format lint ci-tests-fast safety docs
|
||||
slow-tests:
|
||||
name: slow (with R)
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
R_LIBS: .r_libs
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- uses: actions/setup-python@v1
|
||||
with:
|
||||
python-version: 3.8
|
||||
architecture: x64
|
||||
- run: mkdir .r_libs
|
||||
- run: sudo apt-get install r-base r-base-dev libcurl4-openssl-dev libxml2-dev patchelf
|
||||
- run: R -e "install.packages('forecast')"
|
||||
- run: pip install nox==2020.5.24
|
||||
- run: pip install poetry==1.1.4
|
||||
- run: nox -s ci-tests-slow
|
||||
|
|
3
.gitmodules
vendored
Normal file
3
.gitmodules
vendored
Normal file
|
@ -0,0 +1,3 @@
|
|||
[submodule "research/papers/demand-forecasting"]
|
||||
path = research/papers/demand-forecasting
|
||||
url = git@github.com:webartifex/urban-meal-delivery-demand-forecasting.git
|
12
README.md
12
README.md
|
@ -16,16 +16,16 @@ that iteratively build on each other.
|
|||
### Data Cleaning
|
||||
|
||||
The UDP provided its raw data as a PostgreSQL dump.
|
||||
This [notebook](https://nbviewer.jupyter.org/github/webartifex/urban-meal-delivery/blob/main/notebooks/00_clean_data.ipynb)
|
||||
This [notebook](https://nbviewer.jupyter.org/github/webartifex/urban-meal-delivery/blob/develop/research/clean_data.ipynb)
|
||||
cleans the data extensively
|
||||
and maps them onto the [ORM models](https://github.com/webartifex/urban-meal-delivery/tree/main/src/urban_meal_delivery/db)
|
||||
and maps them onto the [ORM models](https://github.com/webartifex/urban-meal-delivery/tree/develop/src/urban_meal_delivery/db)
|
||||
defined in the `urban-meal-delivery` package
|
||||
that is developed in the [src/](https://github.com/webartifex/urban-meal-delivery/tree/main/src) folder
|
||||
that is developed in the [src/](https://github.com/webartifex/urban-meal-delivery/tree/develop/src) folder
|
||||
and contains all source code to drive the analyses.
|
||||
|
||||
Due to a non-disclosure agreement with the UDP,
|
||||
neither the raw nor the cleaned data are published as of now.
|
||||
However, previews of the data can be seen throughout the [notebooks/](https://github.com/webartifex/urban-meal-delivery/tree/main/notebooks) folders.
|
||||
However, previews of the data can be seen throughout the [research/](https://github.com/webartifex/urban-meal-delivery/tree/develop/research) folder.
|
||||
|
||||
|
||||
### Real-time Demand Forecasting
|
||||
|
@ -51,11 +51,11 @@ and
|
|||
`poetry install --extras research`
|
||||
|
||||
The `--extras` option is necessary as the non-develop dependencies
|
||||
are structured in the [pyproject.toml](https://github.com/webartifex/urban-meal-delivery/blob/main/pyproject.toml) file
|
||||
are structured in the [pyproject.toml](https://github.com/webartifex/urban-meal-delivery/blob/develop/pyproject.toml) file
|
||||
into dependencies related to only the `urban-meal-delivery` source code package
|
||||
and dependencies used to run the [Jupyter](https://jupyter.org/) environment
|
||||
with the analyses.
|
||||
|
||||
Contributions are welcome.
|
||||
Use the [issues](https://github.com/webartifex/urban-meal-delivery/issues) tab.
|
||||
The project is licensed under the [MIT license](https://github.com/webartifex/urban-meal-delivery/blob/main/LICENSE.txt).
|
||||
The project is licensed under the [MIT license](https://github.com/webartifex/urban-meal-delivery/blob/develop/LICENSE.txt).
|
||||
|
|
|
@ -5,7 +5,7 @@ import urban_meal_delivery as umd
|
|||
|
||||
project = umd.__pkg_name__
|
||||
author = umd.__author__
|
||||
copyright = f'2020, {author}' # pylint:disable=redefined-builtin
|
||||
copyright = f'2020, {author}'
|
||||
version = release = umd.__version__
|
||||
|
||||
extensions = [
|
||||
|
|
|
@ -21,7 +21,11 @@ log_config.fileConfig(context.config.config_file_name)
|
|||
|
||||
def include_object(obj, _name, type_, _reflected, _compare_to):
|
||||
"""Only include the clean schema into --autogenerate migrations."""
|
||||
if type_ in {'table', 'column'} and obj.schema != umd_config.DATABASE_SCHEMA:
|
||||
if ( # noqa:WPS337
|
||||
type_ in {'table', 'column'}
|
||||
and hasattr(obj, 'schema') # noqa:WPS421 => fix for rare edge case
|
||||
and obj.schema != umd_config.CLEAN_SCHEMA
|
||||
):
|
||||
return False
|
||||
|
||||
return True
|
||||
|
|
|
@ -107,13 +107,13 @@ def upgrade():
|
|||
sa.Column('id', sa.Integer(), autoincrement=False, nullable=False),
|
||||
sa.Column('primary_id', sa.Integer(), nullable=False),
|
||||
sa.Column('created_at', sa.DateTime(), nullable=False),
|
||||
sa.Column('place_id', sa.Unicode(length=120), nullable=False), # noqa:WPS432
|
||||
sa.Column('place_id', sa.Unicode(length=120), nullable=False),
|
||||
sa.Column('latitude', postgresql.DOUBLE_PRECISION(), nullable=False),
|
||||
sa.Column('longitude', postgresql.DOUBLE_PRECISION(), nullable=False),
|
||||
sa.Column('city_id', sa.SmallInteger(), nullable=False),
|
||||
sa.Column('city', sa.Unicode(length=25), nullable=False), # noqa:WPS432
|
||||
sa.Column('city', sa.Unicode(length=25), nullable=False),
|
||||
sa.Column('zip_code', sa.Integer(), nullable=False),
|
||||
sa.Column('street', sa.Unicode(length=80), nullable=False), # noqa:WPS432
|
||||
sa.Column('street', sa.Unicode(length=80), nullable=False),
|
||||
sa.Column('floor', sa.SmallInteger(), nullable=True),
|
||||
sa.CheckConstraint(
|
||||
'-180 <= longitude AND longitude <= 180',
|
||||
|
@ -192,7 +192,7 @@ def upgrade():
|
|||
'restaurants',
|
||||
sa.Column('id', sa.SmallInteger(), autoincrement=False, nullable=False),
|
||||
sa.Column('created_at', sa.DateTime(), nullable=False),
|
||||
sa.Column('name', sa.Unicode(length=45), nullable=False), # noqa:WPS432
|
||||
sa.Column('name', sa.Unicode(length=45), nullable=False),
|
||||
sa.Column('address_id', sa.Integer(), nullable=False),
|
||||
sa.Column('estimated_prep_duration', sa.SmallInteger(), nullable=False),
|
||||
sa.CheckConstraint(
|
||||
|
|
|
@ -0,0 +1,167 @@
|
|||
"""Add pixel grid.
|
||||
|
||||
Revision: #888e352d7526 at 2021-01-02 18:11:02
|
||||
Revises: #f11cd76d2f45
|
||||
"""
|
||||
|
||||
import os
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
from urban_meal_delivery import configuration
|
||||
|
||||
|
||||
revision = '888e352d7526'
|
||||
down_revision = 'f11cd76d2f45'
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
config = configuration.make_config('testing' if os.getenv('TESTING') else 'production')
|
||||
|
||||
|
||||
def upgrade():
|
||||
"""Upgrade to revision 888e352d7526."""
|
||||
op.create_table(
|
||||
'grids',
|
||||
sa.Column('id', sa.SmallInteger(), autoincrement=True, nullable=False),
|
||||
sa.Column('city_id', sa.SmallInteger(), nullable=False),
|
||||
sa.Column('side_length', sa.SmallInteger(), nullable=True),
|
||||
sa.PrimaryKeyConstraint('id', name=op.f('pk_grids')),
|
||||
sa.ForeignKeyConstraint(
|
||||
['city_id'],
|
||||
[f'{config.CLEAN_SCHEMA}.cities.id'],
|
||||
name=op.f('fk_grids_to_cities_via_city_id'),
|
||||
onupdate='RESTRICT',
|
||||
ondelete='RESTRICT',
|
||||
),
|
||||
sa.UniqueConstraint(
|
||||
'city_id', 'side_length', name=op.f('uq_grids_on_city_id_side_length'),
|
||||
),
|
||||
# This `UniqueConstraint` is needed by the `addresses_pixels` table below.
|
||||
sa.UniqueConstraint('id', 'city_id', name=op.f('uq_grids_on_id_city_id')),
|
||||
schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
|
||||
op.create_table(
|
||||
'pixels',
|
||||
sa.Column('id', sa.Integer(), autoincrement=True, nullable=False),
|
||||
sa.Column('grid_id', sa.SmallInteger(), nullable=False),
|
||||
sa.Column('n_x', sa.SmallInteger(), nullable=False),
|
||||
sa.Column('n_y', sa.SmallInteger(), nullable=False),
|
||||
sa.CheckConstraint('0 <= n_x', name=op.f('ck_pixels_on_n_x_is_positive')),
|
||||
sa.CheckConstraint('0 <= n_y', name=op.f('ck_pixels_on_n_y_is_positive')),
|
||||
sa.ForeignKeyConstraint(
|
||||
['grid_id'],
|
||||
[f'{config.CLEAN_SCHEMA}.grids.id'],
|
||||
name=op.f('fk_pixels_to_grids_via_grid_id'),
|
||||
onupdate='RESTRICT',
|
||||
ondelete='RESTRICT',
|
||||
),
|
||||
sa.PrimaryKeyConstraint('id', name=op.f('pk_pixels')),
|
||||
sa.UniqueConstraint(
|
||||
'grid_id', 'n_x', 'n_y', name=op.f('uq_pixels_on_grid_id_n_x_n_y'),
|
||||
),
|
||||
sa.UniqueConstraint('id', 'grid_id', name=op.f('uq_pixels_on_id_grid_id')),
|
||||
schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
|
||||
op.create_index(
|
||||
op.f('ix_pixels_on_grid_id'),
|
||||
'pixels',
|
||||
['grid_id'],
|
||||
unique=False,
|
||||
schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
op.create_index(
|
||||
op.f('ix_pixels_on_n_x'),
|
||||
'pixels',
|
||||
['n_x'],
|
||||
unique=False,
|
||||
schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
op.create_index(
|
||||
op.f('ix_pixels_on_n_y'),
|
||||
'pixels',
|
||||
['n_y'],
|
||||
unique=False,
|
||||
schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
|
||||
# This `UniqueConstraint` is needed by the `addresses_pixels` table below.
|
||||
op.create_unique_constraint(
|
||||
'uq_addresses_on_id_city_id',
|
||||
'addresses',
|
||||
['id', 'city_id'],
|
||||
schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
|
||||
op.create_table(
|
||||
'addresses_pixels',
|
||||
sa.Column('address_id', sa.Integer(), nullable=False),
|
||||
sa.Column('city_id', sa.SmallInteger(), nullable=False),
|
||||
sa.Column('grid_id', sa.SmallInteger(), nullable=False),
|
||||
sa.Column('pixel_id', sa.Integer(), nullable=False),
|
||||
sa.ForeignKeyConstraint(
|
||||
['address_id', 'city_id'],
|
||||
[
|
||||
f'{config.CLEAN_SCHEMA}.addresses.id',
|
||||
f'{config.CLEAN_SCHEMA}.addresses.city_id',
|
||||
],
|
||||
name=op.f('fk_addresses_pixels_to_addresses_via_address_id_city_id'),
|
||||
onupdate='RESTRICT',
|
||||
ondelete='RESTRICT',
|
||||
),
|
||||
sa.ForeignKeyConstraint(
|
||||
['grid_id', 'city_id'],
|
||||
[
|
||||
f'{config.CLEAN_SCHEMA}.grids.id',
|
||||
f'{config.CLEAN_SCHEMA}.grids.city_id',
|
||||
],
|
||||
name=op.f('fk_addresses_pixels_to_grids_via_grid_id_city_id'),
|
||||
onupdate='RESTRICT',
|
||||
ondelete='RESTRICT',
|
||||
),
|
||||
sa.ForeignKeyConstraint(
|
||||
['pixel_id', 'grid_id'],
|
||||
[
|
||||
f'{config.CLEAN_SCHEMA}.pixels.id',
|
||||
f'{config.CLEAN_SCHEMA}.pixels.grid_id',
|
||||
],
|
||||
name=op.f('fk_addresses_pixels_to_pixels_via_pixel_id_grid_id'),
|
||||
onupdate='RESTRICT',
|
||||
ondelete='RESTRICT',
|
||||
),
|
||||
sa.PrimaryKeyConstraint(
|
||||
'address_id', 'pixel_id', name=op.f('pk_addresses_pixels'),
|
||||
),
|
||||
sa.UniqueConstraint(
|
||||
'address_id',
|
||||
'grid_id',
|
||||
name=op.f('uq_addresses_pixels_on_address_id_grid_id'),
|
||||
),
|
||||
schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
|
||||
|
||||
def downgrade():
|
||||
"""Downgrade to revision f11cd76d2f45."""
|
||||
op.drop_table('addresses_pixels', schema=config.CLEAN_SCHEMA)
|
||||
op.drop_constraint(
|
||||
'uq_addresses_on_id_city_id',
|
||||
'addresses',
|
||||
type_=None,
|
||||
schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
op.drop_index(
|
||||
op.f('ix_pixels_on_n_y'), table_name='pixels', schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
op.drop_index(
|
||||
op.f('ix_pixels_on_n_x'), table_name='pixels', schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
op.drop_index(
|
||||
op.f('ix_pixels_on_grid_id'), table_name='pixels', schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
op.drop_table('pixels', schema=config.CLEAN_SCHEMA)
|
||||
op.drop_table('grids', schema=config.CLEAN_SCHEMA)
|
|
@ -0,0 +1,96 @@
|
|||
"""Add demand forecasting.
|
||||
|
||||
Revision: #e40623e10405 at 2021-01-06 19:55:56
|
||||
Revises: #888e352d7526
|
||||
"""
|
||||
|
||||
import os
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
from sqlalchemy.dialects import postgresql
|
||||
|
||||
from urban_meal_delivery import configuration
|
||||
|
||||
|
||||
revision = 'e40623e10405'
|
||||
down_revision = '888e352d7526'
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
config = configuration.make_config('testing' if os.getenv('TESTING') else 'production')
|
||||
|
||||
|
||||
def upgrade():
|
||||
"""Upgrade to revision e40623e10405."""
|
||||
op.create_table(
|
||||
'forecasts',
|
||||
sa.Column('id', sa.Integer(), autoincrement=True, nullable=False),
|
||||
sa.Column('pixel_id', sa.Integer(), nullable=False),
|
||||
sa.Column('start_at', sa.DateTime(), nullable=False),
|
||||
sa.Column('time_step', sa.SmallInteger(), nullable=False),
|
||||
sa.Column('training_horizon', sa.SmallInteger(), nullable=False),
|
||||
sa.Column('method', sa.Unicode(length=20), nullable=False),
|
||||
sa.Column('prediction', postgresql.DOUBLE_PRECISION(), nullable=False),
|
||||
sa.PrimaryKeyConstraint('id', name=op.f('pk_forecasts')),
|
||||
sa.ForeignKeyConstraint(
|
||||
['pixel_id'],
|
||||
[f'{config.CLEAN_SCHEMA}.pixels.id'],
|
||||
name=op.f('fk_forecasts_to_pixels_via_pixel_id'),
|
||||
onupdate='RESTRICT',
|
||||
ondelete='RESTRICT',
|
||||
),
|
||||
sa.CheckConstraint(
|
||||
"""
|
||||
NOT (
|
||||
EXTRACT(HOUR FROM start_at) < 11
|
||||
OR
|
||||
EXTRACT(HOUR FROM start_at) > 22
|
||||
)
|
||||
""",
|
||||
name=op.f('ck_forecasts_on_start_at_must_be_within_operating_hours'),
|
||||
),
|
||||
sa.CheckConstraint(
|
||||
'CAST(EXTRACT(MINUTES FROM start_at) AS INTEGER) % 15 = 0',
|
||||
name=op.f('ck_forecasts_on_start_at_minutes_must_be_quarters_of_the_hour'),
|
||||
),
|
||||
sa.CheckConstraint(
|
||||
'CAST(EXTRACT(MICROSECONDS FROM start_at) AS INTEGER) % 1000000 = 0',
|
||||
name=op.f('ck_forecasts_on_start_at_allows_no_microseconds'),
|
||||
),
|
||||
sa.CheckConstraint(
|
||||
'EXTRACT(SECONDS FROM start_at) = 0',
|
||||
name=op.f('ck_forecasts_on_start_at_allows_no_seconds'),
|
||||
),
|
||||
sa.CheckConstraint(
|
||||
'time_step > 0', name=op.f('ck_forecasts_on_time_step_must_be_positive'),
|
||||
),
|
||||
sa.CheckConstraint(
|
||||
'training_horizon > 0',
|
||||
name=op.f('ck_forecasts_on_training_horizon_must_be_positive'),
|
||||
),
|
||||
sa.UniqueConstraint(
|
||||
'pixel_id',
|
||||
'start_at',
|
||||
'time_step',
|
||||
'training_horizon',
|
||||
'method',
|
||||
name=op.f(
|
||||
'uq_forecasts_on_pixel_id_start_at_time_step_training_horizon_method',
|
||||
),
|
||||
),
|
||||
schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
op.create_index(
|
||||
op.f('ix_forecasts_on_pixel_id'),
|
||||
'forecasts',
|
||||
['pixel_id'],
|
||||
unique=False,
|
||||
schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
|
||||
|
||||
def downgrade():
|
||||
"""Downgrade to revision 888e352d7526."""
|
||||
op.drop_table('forecasts', schema=config.CLEAN_SCHEMA)
|
|
@ -0,0 +1,124 @@
|
|||
"""Add confidence intervals to forecasts.
|
||||
|
||||
Revision: #26711cd3f9b9 at 2021-01-20 16:08:21
|
||||
Revises: #e40623e10405
|
||||
"""
|
||||
|
||||
import os
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
from sqlalchemy.dialects import postgresql
|
||||
|
||||
from urban_meal_delivery import configuration
|
||||
|
||||
|
||||
revision = '26711cd3f9b9'
|
||||
down_revision = 'e40623e10405'
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
config = configuration.make_config('testing' if os.getenv('TESTING') else 'production')
|
||||
|
||||
|
||||
def upgrade():
|
||||
"""Upgrade to revision 26711cd3f9b9."""
|
||||
op.alter_column(
|
||||
'forecasts', 'method', new_column_name='model', schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
op.add_column(
|
||||
'forecasts',
|
||||
sa.Column('low80', postgresql.DOUBLE_PRECISION(), nullable=True),
|
||||
schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
op.add_column(
|
||||
'forecasts',
|
||||
sa.Column('high80', postgresql.DOUBLE_PRECISION(), nullable=True),
|
||||
schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
op.add_column(
|
||||
'forecasts',
|
||||
sa.Column('low95', postgresql.DOUBLE_PRECISION(), nullable=True),
|
||||
schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
op.add_column(
|
||||
'forecasts',
|
||||
sa.Column('high95', postgresql.DOUBLE_PRECISION(), nullable=True),
|
||||
schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
op.create_check_constraint(
|
||||
op.f('ck_forecasts_on_ci_upper_and_lower_bounds'),
|
||||
'forecasts',
|
||||
"""
|
||||
NOT (
|
||||
low80 IS NULL AND high80 IS NOT NULL
|
||||
OR
|
||||
low80 IS NOT NULL AND high80 IS NULL
|
||||
OR
|
||||
low95 IS NULL AND high95 IS NOT NULL
|
||||
OR
|
||||
low95 IS NOT NULL AND high95 IS NULL
|
||||
)
|
||||
""",
|
||||
schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
op.create_check_constraint(
|
||||
op.f('prediction_must_be_within_ci'),
|
||||
'forecasts',
|
||||
"""
|
||||
NOT (
|
||||
prediction < low80
|
||||
OR
|
||||
prediction < low95
|
||||
OR
|
||||
prediction > high80
|
||||
OR
|
||||
prediction > high95
|
||||
)
|
||||
""",
|
||||
schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
op.create_check_constraint(
|
||||
op.f('ci_upper_bound_greater_than_lower_bound'),
|
||||
'forecasts',
|
||||
"""
|
||||
NOT (
|
||||
low80 > high80
|
||||
OR
|
||||
low95 > high95
|
||||
)
|
||||
""",
|
||||
schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
op.create_check_constraint(
|
||||
op.f('ci95_must_be_wider_than_ci80'),
|
||||
'forecasts',
|
||||
"""
|
||||
NOT (
|
||||
low80 < low95
|
||||
OR
|
||||
high80 > high95
|
||||
)
|
||||
""",
|
||||
schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
|
||||
|
||||
def downgrade():
|
||||
"""Downgrade to revision e40623e10405."""
|
||||
op.alter_column(
|
||||
'forecasts', 'model', new_column_name='method', schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
op.drop_column(
|
||||
'forecasts', 'low80', schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
op.drop_column(
|
||||
'forecasts', 'high80', schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
op.drop_column(
|
||||
'forecasts', 'low95', schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
op.drop_column(
|
||||
'forecasts', 'high95', schema=config.CLEAN_SCHEMA,
|
||||
)
|
|
@ -0,0 +1,398 @@
|
|||
"""Remove orders from restaurants with invalid location ...
|
||||
|
||||
... and also de-duplicate a couple of redundant addresses.
|
||||
|
||||
Revision: #e86290e7305e at 2021-01-23 15:56:59
|
||||
Revises: #26711cd3f9b9
|
||||
|
||||
1) Remove orders
|
||||
|
||||
Some restaurants have orders to be picked up at an address that
|
||||
not their primary address. That is ok if that address is the location
|
||||
of a second franchise. However, for a small number of restaurants
|
||||
there is only exactly one order at that other address that often is
|
||||
located far away from the restaurant's primary location. It looks
|
||||
like a restaurant signed up with some invalid location that was then
|
||||
corrected into the primary one.
|
||||
|
||||
Use the following SQL statement to obtain a list of these locations
|
||||
before this migration is run:
|
||||
|
||||
SELECT
|
||||
orders.pickup_address_id,
|
||||
COUNT(*) AS n_orders,
|
||||
MIN(placed_at) as first_order_at,
|
||||
MAX(placed_at) as last_order_at
|
||||
FROM
|
||||
{config.CLEAN_SCHEMA}.orders
|
||||
LEFT OUTER JOIN
|
||||
{config.CLEAN_SCHEMA}.restaurants
|
||||
ON orders.restaurant_id = restaurants.id
|
||||
WHERE
|
||||
orders.pickup_address_id <> restaurants.address_id
|
||||
GROUP BY
|
||||
pickup_address_id;
|
||||
|
||||
50 orders with such weird pickup addresses are removed with this migration.
|
||||
|
||||
|
||||
2) De-duplicate addresses
|
||||
|
||||
Five restaurants have two pickup addresses that are actually the same location.
|
||||
|
||||
The following SQL statement shows them before this migration is run:
|
||||
|
||||
SELECT
|
||||
orders.restaurant_id,
|
||||
restaurants.name,
|
||||
restaurants.address_id AS primary_address_id,
|
||||
addresses.id AS address_id,
|
||||
addresses.street,
|
||||
COUNT(*) AS n_orders
|
||||
FROM
|
||||
{config.CLEAN_SCHEMA}.orders
|
||||
LEFT OUTER JOIN
|
||||
{config.CLEAN_SCHEMA}.addresses ON orders.pickup_address_id = addresses.id
|
||||
LEFT OUTER JOIN
|
||||
{config.CLEAN_SCHEMA}.restaurants ON orders.restaurant_id = restaurants.id
|
||||
WHERE
|
||||
orders.restaurant_id IN (
|
||||
SELECT
|
||||
restaurant_id
|
||||
FROM (
|
||||
SELECT DISTINCT
|
||||
restaurant_id,
|
||||
pickup_address_id
|
||||
FROM
|
||||
{config.CLEAN_SCHEMA}.orders
|
||||
) AS restaurant_locations
|
||||
GROUP BY
|
||||
restaurant_id
|
||||
HAVING
|
||||
COUNT(pickup_address_id) > 1
|
||||
)
|
||||
GROUP BY
|
||||
orders.restaurant_id,
|
||||
restaurants.name,
|
||||
restaurants.address_id,
|
||||
addresses.id,
|
||||
addresses.street
|
||||
ORDER BY
|
||||
orders.restaurant_id,
|
||||
restaurants.name,
|
||||
restaurants.address_id,
|
||||
addresses.id,
|
||||
addresses.street;
|
||||
|
||||
|
||||
3) Remove addresses without any association
|
||||
|
||||
After steps 1) and 2) some addresses are not associated with a restaurant any more.
|
||||
|
||||
The following SQL statement lists them before this migration is run:
|
||||
|
||||
SELECT
|
||||
id,
|
||||
street,
|
||||
zip_code,
|
||||
city
|
||||
FROM
|
||||
{config.CLEAN_SCHEMA}.addresses
|
||||
WHERE
|
||||
id NOT IN (
|
||||
SELECT DISTINCT
|
||||
pickup_address_id AS id
|
||||
FROM
|
||||
{config.CLEAN_SCHEMA}.orders
|
||||
UNION
|
||||
SELECT DISTINCT
|
||||
delivery_address_id AS id
|
||||
FROM
|
||||
{config.CLEAN_SCHEMA}.orders
|
||||
UNION
|
||||
SELECT DISTINCT
|
||||
address_id AS id
|
||||
FROM
|
||||
{config.CLEAN_SCHEMA}.restaurants
|
||||
);
|
||||
|
||||
4) Ensure every `Restaurant` has exactly one `Address`.
|
||||
|
||||
Replace the current `ForeignKeyConstraint` to from `Order` to `Restaurant`
|
||||
with one that also includes the `Order.pickup_address_id`.
|
||||
"""
|
||||
|
||||
import os
|
||||
|
||||
from alembic import op
|
||||
|
||||
from urban_meal_delivery import configuration
|
||||
|
||||
|
||||
revision = 'e86290e7305e'
|
||||
down_revision = '26711cd3f9b9'
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
config = configuration.make_config('testing' if os.getenv('TESTING') else 'production')
|
||||
|
||||
|
||||
def upgrade():
|
||||
"""Upgrade to revision e86290e7305e."""
|
||||
# 1) Remove orders
|
||||
op.execute(
|
||||
f"""
|
||||
DELETE
|
||||
FROM
|
||||
{config.CLEAN_SCHEMA}.orders
|
||||
WHERE pickup_address_id IN (
|
||||
SELECT
|
||||
orders.pickup_address_id
|
||||
FROM
|
||||
{config.CLEAN_SCHEMA}.orders
|
||||
LEFT OUTER JOIN
|
||||
{config.CLEAN_SCHEMA}.restaurants
|
||||
ON orders.restaurant_id = restaurants.id
|
||||
WHERE
|
||||
orders.pickup_address_id <> restaurants.address_id
|
||||
GROUP BY
|
||||
orders.pickup_address_id
|
||||
HAVING
|
||||
COUNT(*) = 1
|
||||
);
|
||||
""",
|
||||
)
|
||||
|
||||
# 2) De-duplicate addresses
|
||||
op.execute(
|
||||
f"""
|
||||
UPDATE
|
||||
{config.CLEAN_SCHEMA}.orders
|
||||
SET
|
||||
pickup_address_id = 353
|
||||
WHERE
|
||||
pickup_address_id = 548916;
|
||||
""",
|
||||
)
|
||||
op.execute(
|
||||
f"""
|
||||
UPDATE
|
||||
{config.CLEAN_SCHEMA}.orders
|
||||
SET
|
||||
pickup_address_id = 4850
|
||||
WHERE
|
||||
pickup_address_id = 6415;
|
||||
""",
|
||||
)
|
||||
op.execute(
|
||||
f"""
|
||||
UPDATE
|
||||
{config.CLEAN_SCHEMA}.orders
|
||||
SET
|
||||
pickup_address_id = 16227
|
||||
WHERE
|
||||
pickup_address_id = 44627;
|
||||
""",
|
||||
)
|
||||
op.execute(
|
||||
f"""
|
||||
UPDATE
|
||||
{config.CLEAN_SCHEMA}.orders
|
||||
SET
|
||||
pickup_address_id = 44458
|
||||
WHERE
|
||||
pickup_address_id = 534543;
|
||||
""",
|
||||
)
|
||||
op.execute(
|
||||
f"""
|
||||
UPDATE
|
||||
{config.CLEAN_SCHEMA}.orders
|
||||
SET
|
||||
pickup_address_id = 289997
|
||||
WHERE
|
||||
pickup_address_id = 309525;
|
||||
""",
|
||||
)
|
||||
|
||||
# 3) Remove addresses
|
||||
op.execute(
|
||||
f"""
|
||||
DELETE
|
||||
FROM
|
||||
{config.CLEAN_SCHEMA}.addresses_pixels
|
||||
WHERE
|
||||
address_id NOT IN (
|
||||
SELECT DISTINCT
|
||||
pickup_address_id AS id
|
||||
FROM
|
||||
{config.CLEAN_SCHEMA}.orders
|
||||
UNION
|
||||
SELECT DISTINCT
|
||||
delivery_address_id AS id
|
||||
FROM
|
||||
{config.CLEAN_SCHEMA}.orders
|
||||
UNION
|
||||
SELECT DISTINCT
|
||||
address_id AS id
|
||||
FROM
|
||||
{config.CLEAN_SCHEMA}.restaurants
|
||||
);
|
||||
""",
|
||||
)
|
||||
op.execute(
|
||||
f"""
|
||||
UPDATE
|
||||
{config.CLEAN_SCHEMA}.addresses
|
||||
SET
|
||||
primary_id = 302883
|
||||
WHERE
|
||||
primary_id = 43526;
|
||||
""",
|
||||
)
|
||||
op.execute(
|
||||
f"""
|
||||
UPDATE
|
||||
{config.CLEAN_SCHEMA}.addresses
|
||||
SET
|
||||
primary_id = 47597
|
||||
WHERE
|
||||
primary_id = 43728;
|
||||
""",
|
||||
)
|
||||
op.execute(
|
||||
f"""
|
||||
UPDATE
|
||||
{config.CLEAN_SCHEMA}.addresses
|
||||
SET
|
||||
primary_id = 159631
|
||||
WHERE
|
||||
primary_id = 43942;
|
||||
""",
|
||||
)
|
||||
op.execute(
|
||||
f"""
|
||||
UPDATE
|
||||
{config.CLEAN_SCHEMA}.addresses
|
||||
SET
|
||||
primary_id = 275651
|
||||
WHERE
|
||||
primary_id = 44759;
|
||||
""",
|
||||
)
|
||||
op.execute(
|
||||
f"""
|
||||
UPDATE
|
||||
{config.CLEAN_SCHEMA}.addresses
|
||||
SET
|
||||
primary_id = 156685
|
||||
WHERE
|
||||
primary_id = 50599;
|
||||
""",
|
||||
)
|
||||
op.execute(
|
||||
f"""
|
||||
UPDATE
|
||||
{config.CLEAN_SCHEMA}.addresses
|
||||
SET
|
||||
primary_id = 480206
|
||||
WHERE
|
||||
primary_id = 51774;
|
||||
""",
|
||||
)
|
||||
op.execute(
|
||||
f"""
|
||||
DELETE
|
||||
FROM
|
||||
{config.CLEAN_SCHEMA}.addresses
|
||||
WHERE
|
||||
id NOT IN (
|
||||
SELECT DISTINCT
|
||||
pickup_address_id AS id
|
||||
FROM
|
||||
{config.CLEAN_SCHEMA}.orders
|
||||
UNION
|
||||
SELECT DISTINCT
|
||||
delivery_address_id AS id
|
||||
FROM
|
||||
{config.CLEAN_SCHEMA}.orders
|
||||
UNION
|
||||
SELECT DISTINCT
|
||||
address_id AS id
|
||||
FROM
|
||||
{config.CLEAN_SCHEMA}.restaurants
|
||||
);
|
||||
""",
|
||||
)
|
||||
|
||||
# 4) Ensure every `Restaurant` has only one `Order.pickup_address`.
|
||||
op.execute(
|
||||
f"""
|
||||
UPDATE
|
||||
{config.CLEAN_SCHEMA}.orders
|
||||
SET
|
||||
pickup_address_id = 53733
|
||||
WHERE
|
||||
pickup_address_id = 54892;
|
||||
""",
|
||||
)
|
||||
op.execute(
|
||||
f"""
|
||||
DELETE
|
||||
FROM
|
||||
{config.CLEAN_SCHEMA}.addresses
|
||||
WHERE
|
||||
id = 54892;
|
||||
""",
|
||||
)
|
||||
op.create_unique_constraint(
|
||||
'uq_restaurants_on_id_address_id',
|
||||
'restaurants',
|
||||
['id', 'address_id'],
|
||||
schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
op.create_foreign_key(
|
||||
op.f('fk_orders_to_restaurants_via_restaurant_id_pickup_address_id'),
|
||||
'orders',
|
||||
'restaurants',
|
||||
['restaurant_id', 'pickup_address_id'],
|
||||
['id', 'address_id'],
|
||||
source_schema=config.CLEAN_SCHEMA,
|
||||
referent_schema=config.CLEAN_SCHEMA,
|
||||
onupdate='RESTRICT',
|
||||
ondelete='RESTRICT',
|
||||
)
|
||||
op.drop_constraint(
|
||||
'fk_orders_to_restaurants_via_restaurant_id',
|
||||
'orders',
|
||||
type_='foreignkey',
|
||||
schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
|
||||
|
||||
def downgrade():
|
||||
"""Downgrade to revision 26711cd3f9b9."""
|
||||
op.create_foreign_key(
|
||||
op.f('fk_orders_to_restaurants_via_restaurant_id'),
|
||||
'orders',
|
||||
'restaurants',
|
||||
['restaurant_id'],
|
||||
['id'],
|
||||
source_schema=config.CLEAN_SCHEMA,
|
||||
referent_schema=config.CLEAN_SCHEMA,
|
||||
onupdate='RESTRICT',
|
||||
ondelete='RESTRICT',
|
||||
)
|
||||
op.drop_constraint(
|
||||
'fk_orders_to_restaurants_via_restaurant_id_pickup_address_id',
|
||||
'orders',
|
||||
type_='foreignkey',
|
||||
schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
op.drop_constraint(
|
||||
'uq_restaurants_on_id_address_id',
|
||||
'restaurants',
|
||||
type_='unique',
|
||||
schema=config.CLEAN_SCHEMA,
|
||||
)
|
|
@ -0,0 +1,41 @@
|
|||
"""Store actuals with forecast.
|
||||
|
||||
Revision: #c2af85bada01 at 2021-01-29 11:13:15
|
||||
Revises: #e86290e7305e
|
||||
"""
|
||||
|
||||
import os
|
||||
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
from urban_meal_delivery import configuration
|
||||
|
||||
|
||||
revision = 'c2af85bada01'
|
||||
down_revision = 'e86290e7305e'
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
config = configuration.make_config('testing' if os.getenv('TESTING') else 'production')
|
||||
|
||||
|
||||
def upgrade():
|
||||
"""Upgrade to revision c2af85bada01."""
|
||||
op.add_column(
|
||||
'forecasts',
|
||||
sa.Column('actual', sa.SmallInteger(), nullable=False),
|
||||
schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
op.create_check_constraint(
|
||||
op.f('ck_forecasts_on_actuals_must_be_non_negative'),
|
||||
'forecasts',
|
||||
'actual >= 0',
|
||||
schema=config.CLEAN_SCHEMA,
|
||||
)
|
||||
|
||||
|
||||
def downgrade():
|
||||
"""Downgrade to revision e86290e7305e."""
|
||||
op.drop_column('forecasts', 'actual', schema=config.CLEAN_SCHEMA)
|
|
@ -0,0 +1,48 @@
|
|||
"""Rename `Forecast.training_horizon` into `.train_horizon`.
|
||||
|
||||
Revision: #8bfb928a31f8 at 2021-02-02 12:55:09
|
||||
Revises: #c2af85bada01
|
||||
"""
|
||||
|
||||
import os
|
||||
|
||||
from alembic import op
|
||||
|
||||
from urban_meal_delivery import configuration
|
||||
|
||||
|
||||
revision = '8bfb928a31f8'
|
||||
down_revision = 'c2af85bada01'
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
config = configuration.make_config('testing' if os.getenv('TESTING') else 'production')
|
||||
|
||||
|
||||
def upgrade():
|
||||
"""Upgrade to revision 8bfb928a31f8."""
|
||||
op.execute(
|
||||
f"""
|
||||
ALTER TABLE
|
||||
{config.CLEAN_SCHEMA}.forecasts
|
||||
RENAME COLUMN
|
||||
training_horizon
|
||||
TO
|
||||
train_horizon;
|
||||
""",
|
||||
) # noqa:WPS355
|
||||
|
||||
|
||||
def downgrade():
|
||||
"""Downgrade to revision c2af85bada01."""
|
||||
op.execute(
|
||||
f"""
|
||||
ALTER TABLE
|
||||
{config.CLEAN_SCHEMA}.forecasts
|
||||
RENAME COLUMN
|
||||
train_horizon
|
||||
TO
|
||||
training_horizon;
|
||||
""",
|
||||
) # noqa:WPS355
|
191
noxfile.py
191
noxfile.py
|
@ -17,7 +17,7 @@ as unified tasks to assure the quality of the source code:
|
|||
that are then interpreted as the paths the formatters and linters work
|
||||
on recursively
|
||||
|
||||
- "lint" (flake8, mypy, pylint): same as "format"
|
||||
- "lint" (flake8, mypy): same as "format"
|
||||
|
||||
- "test" (pytest, xdoctest):
|
||||
|
||||
|
@ -25,26 +25,6 @@ as unified tasks to assure the quality of the source code:
|
|||
+ accepts extra arguments, e.g., `poetry run nox -s test -- --no-cov`,
|
||||
that are passed on to `pytest` and `xdoctest` with no changes
|
||||
=> may be paths or options
|
||||
|
||||
|
||||
GitHub Actions implements the following CI workflow:
|
||||
|
||||
- "format", "lint", and "test" as above
|
||||
|
||||
- "safety": check if dependencies contain known security vulnerabilites
|
||||
|
||||
- "docs": build the documentation with sphinx
|
||||
|
||||
|
||||
The pre-commit framework invokes the following tasks:
|
||||
|
||||
- before any commit:
|
||||
|
||||
+ "format" and "lint" as above
|
||||
+ "fix-branch-references": replace branch references with the current one
|
||||
|
||||
- before merges: run the entire "test-suite" independent of the file changes
|
||||
|
||||
"""
|
||||
|
||||
import contextlib
|
||||
|
@ -92,7 +72,7 @@ nox.options.envdir = '.cache/nox'
|
|||
# Avoid accidental successes if the environment is not set up properly.
|
||||
nox.options.error_on_external_run = True
|
||||
|
||||
# Run only CI related checks by default.
|
||||
# Run only local checks by default.
|
||||
nox.options.sessions = (
|
||||
'format',
|
||||
'lint',
|
||||
|
@ -141,7 +121,7 @@ def format_(session):
|
|||
|
||||
@nox.session(python=PYTHON)
|
||||
def lint(session):
|
||||
"""Lint source files with flake8, mypy, and pylint.
|
||||
"""Lint source files with flake8 and mypy.
|
||||
|
||||
If no extra arguments are provided, all source files are linted.
|
||||
Otherwise, they are interpreted as paths the linters work on recursively.
|
||||
|
@ -158,7 +138,6 @@ def lint(session):
|
|||
'flake8-expression-complexity',
|
||||
'flake8-pytest-style',
|
||||
'mypy',
|
||||
'pylint',
|
||||
'wemake-python-styleguide',
|
||||
)
|
||||
|
||||
|
@ -182,18 +161,6 @@ def lint(session):
|
|||
else:
|
||||
session.log('No paths to be checked with mypy')
|
||||
|
||||
# Ignore errors where pylint cannot import a third-party package due its
|
||||
# being run in an isolated environment. For the same reason, pylint is
|
||||
# also not able to determine the correct order of imports.
|
||||
# One way to fix this is to install all develop dependencies in this nox
|
||||
# session, which we do not do. The whole point of static linting tools is
|
||||
# to not rely on any package be importable at runtime. Instead, these
|
||||
# imports are validated implicitly when the test suite is run.
|
||||
session.run('pylint', '--version')
|
||||
session.run(
|
||||
'pylint', '--disable=import-error', '--disable=wrong-import-order', *locations,
|
||||
)
|
||||
|
||||
|
||||
@nox.session(python=PYTHON)
|
||||
def test(session):
|
||||
|
@ -222,33 +189,71 @@ def test(session):
|
|||
session.run('poetry', 'install', '--no-dev', external=True)
|
||||
_install_packages(
|
||||
session,
|
||||
'Faker',
|
||||
'factory-boy',
|
||||
'geopy',
|
||||
'packaging',
|
||||
'pytest',
|
||||
'pytest-cov',
|
||||
'pytest-env',
|
||||
'pytest-mock',
|
||||
'pytest-randomly',
|
||||
'xdoctest[optional]',
|
||||
)
|
||||
|
||||
session.run('pytest', '--version')
|
||||
|
||||
# When the CI server runs the slow tests, we only execute the R related
|
||||
# test cases that require the slow installation of R and some packages.
|
||||
if session.env.get('_slow_ci_tests'):
|
||||
session.run(
|
||||
'pytest', '--randomly-seed=4287', '-m', 'r and not db', PYTEST_LOCATION,
|
||||
)
|
||||
|
||||
# In the "ci-tests-slow" session, we do not run any test tool
|
||||
# other than pytest. So, xdoctest, for example, is only run
|
||||
# locally or in the "ci-tests-fast" session.
|
||||
return
|
||||
|
||||
# When the CI server executes pytest, no database is available.
|
||||
# Therefore, the CI server does not measure coverage.
|
||||
elif session.env.get('_fast_ci_tests'):
|
||||
pytest_args = (
|
||||
'--randomly-seed=4287',
|
||||
'-m',
|
||||
'not (db or r)',
|
||||
PYTEST_LOCATION,
|
||||
)
|
||||
|
||||
# When pytest is executed in the local develop environment,
|
||||
# both R and a database are available.
|
||||
# Therefore, we require 100% coverage.
|
||||
else:
|
||||
pytest_args = (
|
||||
'--cov',
|
||||
'--no-cov-on-fail',
|
||||
'--cov-branch',
|
||||
'--cov-fail-under=100',
|
||||
'--cov-report=term-missing:skip-covered',
|
||||
'--randomly-seed=4287',
|
||||
PYTEST_LOCATION,
|
||||
)
|
||||
|
||||
# Interpret extra arguments as options for pytest.
|
||||
# They are "dropped" by the hack in the pre_merge() function
|
||||
# if this function is run within the "pre-merge" session.
|
||||
# They are "dropped" by the hack in the test_suite() function
|
||||
# if this function is run within the "test-suite" session.
|
||||
posargs = () if session.env.get('_drop_posargs') else session.posargs
|
||||
|
||||
args = posargs or (
|
||||
'--cov',
|
||||
'--no-cov-on-fail',
|
||||
'--cov-branch',
|
||||
'--cov-fail-under=100',
|
||||
'--cov-report=term-missing:skip-covered',
|
||||
'-k',
|
||||
'not e2e',
|
||||
PYTEST_LOCATION,
|
||||
)
|
||||
session.run('pytest', '--version')
|
||||
session.run('pytest', *args)
|
||||
session.run('pytest', *(posargs or pytest_args))
|
||||
|
||||
# For xdoctest, the default arguments are different from pytest.
|
||||
args = posargs or [PACKAGE_IMPORT_NAME]
|
||||
|
||||
# The "TESTING" environment variable forces the global `engine`, `connection`,
|
||||
# and `session` objects to be set to `None` and avoid any database connection.
|
||||
# For pytest above this is not necessary as pytest sets this variable itself.
|
||||
session.env['TESTING'] = 'true'
|
||||
|
||||
session.run('xdoctest', '--version')
|
||||
session.run('xdoctest', '--quiet', *args) # --quiet => less verbose output
|
||||
|
||||
|
@ -292,6 +297,10 @@ def docs(session):
|
|||
session.run('poetry', 'install', '--no-dev', external=True)
|
||||
_install_packages(session, 'sphinx', 'sphinx-autodoc-typehints')
|
||||
|
||||
# The "TESTING" environment variable forces the global `engine`, `connection`,
|
||||
# and `session` objects to be set to `None` and avoid any database connection.
|
||||
session.env['TESTING'] = 'true'
|
||||
|
||||
session.run('sphinx-build', DOCS_SRC, DOCS_BUILD)
|
||||
# Verify all external links return 200 OK.
|
||||
session.run('sphinx-build', '-b', 'linkcheck', DOCS_SRC, DOCS_BUILD)
|
||||
|
@ -299,11 +308,63 @@ def docs(session):
|
|||
print(f'Docs are available at {os.getcwd()}/{DOCS_BUILD}index.html') # noqa:WPS421
|
||||
|
||||
|
||||
@nox.session(name='ci-tests-fast', python=PYTHON)
|
||||
def fast_ci_tests(session):
|
||||
"""Fast tests run by the GitHub Actions CI server.
|
||||
|
||||
These regards all test cases NOT involving R via `rpy2`.
|
||||
|
||||
Also, coverage is not measured as full coverage can only be
|
||||
achieved by running the tests in the local develop environment
|
||||
that has access to a database.
|
||||
"""
|
||||
# Re-using an old environment is not so easy here as the "test" session
|
||||
# runs `poetry install --no-dev`, which removes previously installed packages.
|
||||
if session.virtualenv.reuse_existing:
|
||||
raise RuntimeError(
|
||||
'The "ci-tests-fast" session must be run without the "-r" option',
|
||||
)
|
||||
|
||||
# Little hack to pass arguments to the "test" session.
|
||||
session.env['_fast_ci_tests'] = 'true'
|
||||
|
||||
# Cannot use session.notify() to trigger the "test" session
|
||||
# as that would create a new Session object without the flag
|
||||
# in the env(ironment).
|
||||
test(session)
|
||||
|
||||
|
||||
@nox.session(name='ci-tests-slow', python=PYTHON)
|
||||
def slow_ci_tests(session):
|
||||
"""Slow tests run by the GitHub Actions CI server.
|
||||
|
||||
These regards all test cases involving R via `rpy2`.
|
||||
They are slow as the CI server needs to install R and some packages
|
||||
first, which takes a couple of minutes.
|
||||
|
||||
Also, coverage is not measured as full coverage can only be
|
||||
achieved by running the tests in the local develop environment
|
||||
that has access to a database.
|
||||
"""
|
||||
# Re-using an old environment is not so easy here as the "test" session
|
||||
# runs `poetry install --no-dev`, which removes previously installed packages.
|
||||
if session.virtualenv.reuse_existing:
|
||||
raise RuntimeError(
|
||||
'The "ci-tests-slow" session must be run without the "-r" option',
|
||||
)
|
||||
|
||||
# Little hack to pass arguments to the "test" session.
|
||||
session.env['_slow_ci_tests'] = 'true'
|
||||
|
||||
# Cannot use session.notify() to trigger the "test" session
|
||||
# as that would create a new Session object without the flag
|
||||
# in the env(ironment).
|
||||
test(session)
|
||||
|
||||
|
||||
@nox.session(name='test-suite', python=PYTHON)
|
||||
def test_suite(session):
|
||||
"""Run the entire test suite.
|
||||
|
||||
Intended to be run as a pre-commit hook.
|
||||
"""Run the entire test suite as a pre-commit hook.
|
||||
|
||||
Ignores the paths passed in by the pre-commit framework
|
||||
and runs the entire test suite.
|
||||
|
@ -322,13 +383,12 @@ def test_suite(session):
|
|||
|
||||
# Cannot use session.notify() to trigger the "test" session
|
||||
# as that would create a new Session object without the flag
|
||||
# in the env(ironment). Instead, run the test() function within
|
||||
# the "pre-merge" session.
|
||||
# in the env(ironment).
|
||||
test(session)
|
||||
|
||||
|
||||
@nox.session(name='fix-branch-references', python=PYTHON, venv_backend='none')
|
||||
def fix_branch_references(session): # noqa:WPS210
|
||||
def fix_branch_references(session): # noqa:WPS210,WPS231
|
||||
"""Replace branch references with the current branch.
|
||||
|
||||
Intended to be run as a pre-commit hook.
|
||||
|
@ -336,9 +396,15 @@ def fix_branch_references(session): # noqa:WPS210
|
|||
Many files in the project (e.g., README.md) contain links to resources
|
||||
on github.com or nbviewer.jupyter.org that contain branch labels.
|
||||
|
||||
This task rewrites these links such that they contain the branch reference
|
||||
of the current branch. If the branch is only a temporary one that is to be
|
||||
merged into the 'main' branch, all references are adjusted to 'main' as well.
|
||||
This task rewrites these links such that they contain branch references
|
||||
that make sense given the context:
|
||||
|
||||
- If the branch is only a temporary one that is to be merged into
|
||||
the 'main' branch, all references are adjusted to 'main' as well.
|
||||
|
||||
- If the branch is not named after a default branch in the GitFlow
|
||||
model, it is interpreted as a feature branch and the references
|
||||
are adjusted into 'develop'.
|
||||
|
||||
This task may be called with one positional argument that is interpreted
|
||||
as the branch to which all references are changed into.
|
||||
|
@ -362,6 +428,10 @@ def fix_branch_references(session): # noqa:WPS210
|
|||
# into 'main', we adjust all branch references to 'main' as well.
|
||||
if branch.startswith('release') or branch.startswith('research'):
|
||||
branch = 'main'
|
||||
# If the current branch appears to be a feature branch, we adjust
|
||||
# all branch references to 'develop'.
|
||||
elif branch != 'main':
|
||||
branch = 'develop'
|
||||
# If a "--branch=BRANCH_NAME" argument is passed in
|
||||
# as the only positional argument, we use BRANCH_NAME.
|
||||
# Note: The --branch is required as session.posargs contains
|
||||
|
@ -445,7 +515,7 @@ def init_project(session):
|
|||
|
||||
|
||||
@nox.session(name='clean-pwd', python=PYTHON, venv_backend='none')
|
||||
def clean_pwd(session): # noqa:WPS210,WPS231
|
||||
def clean_pwd(session): # noqa:WPS231
|
||||
"""Remove (almost) all glob patterns listed in .gitignore.
|
||||
|
||||
The difference compared to `git clean -X` is that this task
|
||||
|
@ -519,6 +589,7 @@ def _install_packages(session: Session, *packages_or_pip_args: str, **kwargs) ->
|
|||
'--dev',
|
||||
'--format=requirements.txt',
|
||||
f'--output={requirements_txt.name}',
|
||||
'--without-hashes',
|
||||
external=True,
|
||||
)
|
||||
session.install(
|
||||
|
|
2633
poetry.lock
generated
2633
poetry.lock
generated
File diff suppressed because it is too large
Load diff
|
@ -9,7 +9,7 @@ target-version = ["py38"]
|
|||
|
||||
[tool.poetry]
|
||||
name = "urban-meal-delivery"
|
||||
version = "0.2.0"
|
||||
version = "0.3.0"
|
||||
|
||||
authors = ["Alexander Hess <alexander@webartifex.biz>"]
|
||||
description = "Optimizing an urban meal delivery platform"
|
||||
|
@ -28,18 +28,23 @@ repository = "https://github.com/webartifex/urban-meal-delivery"
|
|||
python = "^3.8"
|
||||
|
||||
# Package => code developed in *.py files and packaged under src/urban_meal_delivery
|
||||
Shapely = "^1.7.1"
|
||||
alembic = "^1.4.2"
|
||||
click = "^7.1.2"
|
||||
folium = "^0.12.1"
|
||||
matplotlib = "^3.3.3"
|
||||
pandas = "^1.1.0"
|
||||
psycopg2 = "^2.8.5" # adapter for PostgreSQL
|
||||
python-dotenv = "^0.14.0"
|
||||
rpy2 = "^3.4.1"
|
||||
sqlalchemy = "^1.3.18"
|
||||
statsmodels = "^0.12.1"
|
||||
utm = "^0.7.0"
|
||||
|
||||
# Jupyter Lab => notebooks with analyses using the developed package
|
||||
# IMPORTANT: must be kept in sync with the "research" extra below
|
||||
jupyterlab = { version="^2.2.2", optional=true }
|
||||
nb_black = { version="^1.0.7", optional=true }
|
||||
numpy = { version="^1.19.1", optional=true }
|
||||
pandas = { version="^1.1.0", optional=true }
|
||||
pytz = { version="^2020.1", optional=true }
|
||||
|
||||
[tool.poetry.extras]
|
||||
|
@ -47,7 +52,6 @@ research = [
|
|||
"jupyterlab",
|
||||
"nb_black",
|
||||
"numpy",
|
||||
"pandas",
|
||||
"pytz",
|
||||
]
|
||||
|
||||
|
@ -68,14 +72,18 @@ flake8-black = "^0.2.1"
|
|||
flake8-expression-complexity = "^0.0.8"
|
||||
flake8-pytest-style = "^1.2.2"
|
||||
mypy = "^0.782"
|
||||
pylint = "^2.5.3"
|
||||
wemake-python-styleguide = "^0.14.1" # flake8 plug-in
|
||||
|
||||
# Test Suite
|
||||
Faker = "^5.0.1"
|
||||
factory-boy = "^3.1.0"
|
||||
geopy = "^2.1.0"
|
||||
packaging = "^20.4" # used to test the packaged version
|
||||
pytest = "^6.0.1"
|
||||
pytest-cov = "^2.10.0"
|
||||
pytest-env = "^0.6.2"
|
||||
pytest-mock = "^3.5.1"
|
||||
pytest-randomly = "^3.5.0"
|
||||
xdoctest = { version="^0.13.0", extras=["optional"] }
|
||||
|
||||
# Documentation
|
||||
|
@ -83,4 +91,4 @@ sphinx = "^3.1.2"
|
|||
sphinx-autodoc-typehints = "^1.11.0"
|
||||
|
||||
[tool.poetry.scripts]
|
||||
umd = "urban_meal_delivery.console:main"
|
||||
umd = "urban_meal_delivery.console:cli"
|
||||
|
|
|
@ -19,7 +19,7 @@
|
|||
"- numeric columns are checked for plausibility\n",
|
||||
"- foreign key relationships are strictly enforced\n",
|
||||
"\n",
|
||||
"The structure of the data can be viewed at the [ORM layer](https://github.com/webartifex/urban-meal-delivery/tree/main/src/urban_meal_delivery/db) in the package."
|
||||
"The structure of the data can be viewed at the [ORM layer](https://github.com/webartifex/urban-meal-delivery/tree/develop/src/urban_meal_delivery/db) in the package."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -103,8 +103,7 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"_engine = db.make_engine()\n",
|
||||
"connection = _engine.connect()"
|
||||
"connection = db.connection"
|
||||
]
|
||||
},
|
||||
{
|
1
research/papers/demand-forecasting
Submodule
1
research/papers/demand-forecasting
Submodule
|
@ -0,0 +1 @@
|
|||
Subproject commit 9ee3396a24ce20c9886b4cde5cfe2665fd5a8102
|
1868
research/r_dependencies.ipynb
Normal file
1868
research/r_dependencies.ipynb
Normal file
File diff suppressed because it is too large
Load diff
141
setup.cfg
141
setup.cfg
|
@ -89,16 +89,33 @@ extend-ignore =
|
|||
# Comply with black's style.
|
||||
# Source: https://github.com/psf/black/blob/master/docs/compatible_configs.md#flake8
|
||||
E203, W503, WPS348,
|
||||
# Google's Python Style Guide is not reStructuredText
|
||||
# until after being processed by Sphinx Napoleon.
|
||||
# Source: https://github.com/peterjc/flake8-rst-docstrings/issues/17
|
||||
RST201,RST203,RST210,RST213,RST301,
|
||||
# String constant over-use is checked visually by the programmer.
|
||||
WPS226,
|
||||
# Allow underscores in numbers.
|
||||
WPS303,
|
||||
# f-strings are ok.
|
||||
WPS305,
|
||||
# Classes should not have to specify a base class.
|
||||
WPS306,
|
||||
# Let's be modern: The Walrus is ok.
|
||||
WPS332,
|
||||
# Let's not worry about the number of noqa's.
|
||||
WPS402,
|
||||
# Putting logic into __init__.py files may be justified.
|
||||
WPS412,
|
||||
# Allow multiple assignment, e.g., x = y = 123
|
||||
WPS429,
|
||||
# There are no magic numbers.
|
||||
WPS432,
|
||||
|
||||
per-file-ignores =
|
||||
# Top-levels of a sub-packages are intended to import a lot.
|
||||
**/__init__.py:
|
||||
F401,WPS201,
|
||||
docs/conf.py:
|
||||
# Allow shadowing built-ins and reading __*__ variables.
|
||||
WPS125,WPS609,
|
||||
|
@ -108,14 +125,12 @@ per-file-ignores =
|
|||
migrations/versions/*.py:
|
||||
# Type annotations are not strictly enforced.
|
||||
ANN0, ANN2,
|
||||
# Do not worry about SQL injection here.
|
||||
S608,
|
||||
# File names of revisions are ok.
|
||||
WPS114,WPS118,
|
||||
# Revisions may have too many expressions.
|
||||
WPS204,WPS213,
|
||||
# No overuse of string constants (e.g., 'RESTRICT').
|
||||
WPS226,
|
||||
# Too many noqa's are ok.
|
||||
WPS402,
|
||||
noxfile.py:
|
||||
# Type annotations are not strictly enforced.
|
||||
ANN0, ANN2,
|
||||
|
@ -123,38 +138,70 @@ per-file-ignores =
|
|||
WPS202,
|
||||
# TODO (isort): Remove after simplifying the nox session "lint".
|
||||
WPS213,
|
||||
# No overuse of string constants (e.g., '--version').
|
||||
WPS226,
|
||||
# The noxfile is rather long => allow many noqa's.
|
||||
WPS402,
|
||||
src/urban_meal_delivery/configuration.py:
|
||||
# Allow upper case class variables within classes.
|
||||
WPS115,
|
||||
# Numbers are normal in config files.
|
||||
WPS432,
|
||||
src/urban_meal_delivery/db/addresses.py:
|
||||
WPS226,
|
||||
src/urban_meal_delivery/db/orders.py:
|
||||
WPS226,
|
||||
src/urban_meal_delivery/console/forecasts.py:
|
||||
# The module is not too complex.
|
||||
WPS232,
|
||||
src/urban_meal_delivery/db/customers.py:
|
||||
# The module is not too complex.
|
||||
WPS232,
|
||||
src/urban_meal_delivery/db/restaurants.py:
|
||||
# The module is not too complex.
|
||||
WPS232,
|
||||
src/urban_meal_delivery/forecasts/methods/decomposition.py:
|
||||
# The module is not too complex.
|
||||
WPS232,
|
||||
src/urban_meal_delivery/forecasts/methods/extrapolate_season.py:
|
||||
# The module is not too complex.
|
||||
WPS232,
|
||||
src/urban_meal_delivery/forecasts/models/tactical/horizontal.py:
|
||||
# The many noqa's are ok.
|
||||
WPS403,
|
||||
src/urban_meal_delivery/forecasts/timify.py:
|
||||
# No SQL injection as the inputs come from a safe source.
|
||||
S608,
|
||||
# The many noqa's are ok.
|
||||
WPS403,
|
||||
tests/*.py:
|
||||
# Type annotations are not strictly enforced.
|
||||
ANN0, ANN2,
|
||||
# The `Meta` class inside the factory_boy models do not need a docstring.
|
||||
D106,
|
||||
# `assert` statements are ok in the test suite.
|
||||
S101,
|
||||
# The `random` module is not used for cryptography.
|
||||
S311,
|
||||
# Shadowing outer scopes occurs naturally with mocks.
|
||||
WPS442,
|
||||
# Test names may be longer than 40 characters.
|
||||
WPS118,
|
||||
# Modules may have many test cases.
|
||||
WPS202,WPS204,WPS214,
|
||||
# No overuse of string constants (e.g., '__version__').
|
||||
WPS226,
|
||||
# Numbers are normal in test cases as expected results.
|
||||
WPS432,
|
||||
# Do not check for Jones complexity in the test suite.
|
||||
WPS221,
|
||||
# "Private" methods are really just a convention for
|
||||
# fixtures without a return value.
|
||||
WPS338,
|
||||
# We do not care about the number of "# noqa"s in the test suite.
|
||||
WPS402,
|
||||
# Allow closures.
|
||||
WPS430,
|
||||
# When testing, it is normal to use implementation details.
|
||||
WPS437,
|
||||
|
||||
# Explicitly set mccabe's maximum complexity to 10 as recommended by
|
||||
# Thomas McCabe, the inventor of the McCabe complexity, and the NIST.
|
||||
# Source: https://en.wikipedia.org/wiki/Cyclomatic_complexity#Limiting_complexity_during_development
|
||||
max-complexity = 10
|
||||
|
||||
# Allow more than wemake-python-styleguide's 5 local variables per function.
|
||||
max-local-variables = 8
|
||||
|
||||
# Allow more than wemake-python-styleguide's 7 methods per class.
|
||||
max-methods = 12
|
||||
|
||||
# Comply with black's style.
|
||||
# Source: https://github.com/psf/black/blob/master/docs/the_black_code_style.md#line-length
|
||||
max-line-length = 88
|
||||
|
@ -166,6 +213,7 @@ show-source = true
|
|||
# wemake-python-styleguide's settings
|
||||
# ===================================
|
||||
allowed-domain-names =
|
||||
data,
|
||||
obj,
|
||||
param,
|
||||
result,
|
||||
|
@ -217,53 +265,28 @@ single_line_exclusions = typing
|
|||
[mypy]
|
||||
cache_dir = .cache/mypy
|
||||
|
||||
[mypy-dotenv]
|
||||
[mypy-folium.*]
|
||||
ignore_missing_imports = true
|
||||
[mypy-matplotlib.*]
|
||||
ignore_missing_imports = true
|
||||
[mypy-nox.*]
|
||||
ignore_missing_imports = true
|
||||
[mypy-numpy.*]
|
||||
ignore_missing_imports = true
|
||||
[mypy-packaging]
|
||||
ignore_missing_imports = true
|
||||
[mypy-pandas]
|
||||
ignore_missing_imports = true
|
||||
[mypy-pytest]
|
||||
ignore_missing_imports = true
|
||||
[mypy-rpy2.*]
|
||||
ignore_missing_imports = true
|
||||
[mypy-sqlalchemy.*]
|
||||
ignore_missing_imports = true
|
||||
|
||||
|
||||
[pylint.FORMAT]
|
||||
# Comply with black's style.
|
||||
max-line-length = 88
|
||||
|
||||
[pylint.MESSAGES CONTROL]
|
||||
disable =
|
||||
# We use TODO's to indicate locations in the source base
|
||||
# that must be worked on in the near future.
|
||||
fixme,
|
||||
# Too many false positives and cannot be disabled within a file.
|
||||
# Source: https://github.com/PyCQA/pylint/issues/214
|
||||
duplicate-code,
|
||||
# Comply with black's style.
|
||||
bad-continuation, bad-whitespace,
|
||||
# =====================
|
||||
# flake8 de-duplication
|
||||
# Source: https://pylint.pycqa.org/en/latest/faq.html#i-am-using-another-popular-linter-alongside-pylint-which-messages-should-i-disable-to-avoid-duplicates
|
||||
# =====================
|
||||
# mccabe
|
||||
too-many-branches,
|
||||
# pep8-naming
|
||||
bad-classmethod-argument, bad-mcs-classmethod-argument,
|
||||
invalid-name, no-self-argument,
|
||||
# pycodestyle
|
||||
bad-indentation, bare-except, line-too-long, missing-final-newline,
|
||||
multiple-statements, trailing-whitespace, unnecessary-semicolon, unneeded-not,
|
||||
# pydocstyle
|
||||
missing-class-docstring, missing-function-docstring, missing-module-docstring,
|
||||
# pyflakes
|
||||
undefined-variable, unused-import, unused-variable,
|
||||
# wemake-python-styleguide
|
||||
redefined-outer-name,
|
||||
|
||||
[pylint.REPORTS]
|
||||
score = no
|
||||
[mypy-statsmodels.*]
|
||||
ignore_missing_imports = true
|
||||
[mypy-utm.*]
|
||||
ignore_missing_imports = true
|
||||
|
||||
|
||||
[tool:pytest]
|
||||
|
@ -273,5 +296,9 @@ cache_dir = .cache/pytest
|
|||
console_output_style = count
|
||||
env =
|
||||
TESTING=true
|
||||
filterwarnings =
|
||||
ignore:::patsy.*
|
||||
markers =
|
||||
e2e: integration tests, inlc., for example, tests touching a database
|
||||
db: (integration) tests touching the database
|
||||
e2e: non-db and non-r integration tests
|
||||
r: (integration) tests using rpy2
|
||||
|
|
|
@ -5,11 +5,13 @@ Example:
|
|||
>>> umd.__version__ != '0.0.0'
|
||||
True
|
||||
"""
|
||||
# The config object must come before all other project-internal imports.
|
||||
from urban_meal_delivery.configuration import config # isort:skip
|
||||
|
||||
import os as _os
|
||||
from importlib import metadata as _metadata
|
||||
|
||||
from urban_meal_delivery import configuration as _configuration
|
||||
from urban_meal_delivery import db
|
||||
from urban_meal_delivery import forecasts
|
||||
|
||||
|
||||
try:
|
||||
|
@ -24,14 +26,3 @@ else:
|
|||
__author__ = _pkg_info['author']
|
||||
__pkg_name__ = _pkg_info['name']
|
||||
__version__ = _pkg_info['version']
|
||||
|
||||
|
||||
# Global `config` object to be used in the package.
|
||||
config: _configuration.Config = _configuration.make_config(
|
||||
'testing' if _os.getenv('TESTING') else 'production',
|
||||
)
|
||||
|
||||
|
||||
# Import `db` down here as it depends on `config`.
|
||||
# pylint:disable=wrong-import-position
|
||||
from urban_meal_delivery import db # noqa:E402,F401 isort:skip
|
||||
|
|
|
@ -13,11 +13,6 @@ import random
|
|||
import string
|
||||
import warnings
|
||||
|
||||
import dotenv
|
||||
|
||||
|
||||
dotenv.load_dotenv()
|
||||
|
||||
|
||||
def random_schema_name() -> str:
|
||||
"""Generate a random PostgreSQL schema name for testing."""
|
||||
|
@ -31,14 +26,43 @@ def random_schema_name() -> str:
|
|||
class Config:
|
||||
"""Configuration that applies in all situations."""
|
||||
|
||||
# pylint:disable=too-few-public-methods
|
||||
# Application-specific settings
|
||||
# -----------------------------
|
||||
|
||||
# Date after which the real-life data is discarded.
|
||||
CUTOFF_DAY = datetime.datetime(2017, 2, 1)
|
||||
|
||||
# If a scheduled pre-order is made within this
|
||||
# time horizon, we treat it as an ad-hoc order.
|
||||
QUASI_AD_HOC_LIMIT = datetime.timedelta(minutes=45)
|
||||
|
||||
# Operating hours of the platform.
|
||||
SERVICE_START = 11
|
||||
SERVICE_END = 23
|
||||
|
||||
# Side lengths (in meters) for which pixel grids are created.
|
||||
# They are the basis for the aggregated demand forecasts.
|
||||
GRID_SIDE_LENGTHS = [707, 1000, 1414]
|
||||
|
||||
# Time steps (in minutes) used to aggregate the
|
||||
# individual orders into time series.
|
||||
TIME_STEPS = [60]
|
||||
|
||||
# Training horizons (in full weeks) used to train the forecasting models.
|
||||
# For now, we only use 8 weeks as that was the best performing in
|
||||
# a previous study (note:4f79e8fa).
|
||||
TRAIN_HORIZONS = [8]
|
||||
|
||||
# The demand forecasting methods used in the simulations.
|
||||
FORECASTING_METHODS = ['hets', 'rtarima']
|
||||
|
||||
# Colors for the visualizations ins `folium`.
|
||||
RESTAURANT_COLOR = 'red'
|
||||
CUSTOMER_COLOR = 'blue'
|
||||
|
||||
# Implementation-specific settings
|
||||
# --------------------------------
|
||||
|
||||
DATABASE_URI = os.getenv('DATABASE_URI')
|
||||
|
||||
# The PostgreSQL schema that holds the tables with the original data.
|
||||
|
@ -50,6 +74,8 @@ class Config:
|
|||
ALEMBIC_TABLE = 'alembic_version'
|
||||
ALEMBIC_TABLE_SCHEMA = 'public'
|
||||
|
||||
R_LIBS_PATH = os.getenv('R_LIBS')
|
||||
|
||||
def __repr__(self) -> str:
|
||||
"""Non-literal text representation."""
|
||||
return '<configuration>'
|
||||
|
@ -58,16 +84,12 @@ class Config:
|
|||
class ProductionConfig(Config):
|
||||
"""Configuration for the real dataset."""
|
||||
|
||||
# pylint:disable=too-few-public-methods
|
||||
|
||||
TESTING = False
|
||||
|
||||
|
||||
class TestingConfig(Config):
|
||||
"""Configuration for the test suite."""
|
||||
|
||||
# pylint:disable=too-few-public-methods
|
||||
|
||||
TESTING = True
|
||||
|
||||
DATABASE_URI = os.getenv('DATABASE_URI_TESTING') or Config.DATABASE_URI
|
||||
|
@ -78,7 +100,7 @@ def make_config(env: str = 'production') -> Config:
|
|||
"""Create a new `Config` object.
|
||||
|
||||
Args:
|
||||
env: either 'production' or 'testing'; defaults to the first
|
||||
env: either 'production' or 'testing'
|
||||
|
||||
Returns:
|
||||
config: a namespace with all configurations
|
||||
|
@ -86,7 +108,8 @@ def make_config(env: str = 'production') -> Config:
|
|||
Raises:
|
||||
ValueError: if `env` is not as specified
|
||||
""" # noqa:DAR203
|
||||
config: Config
|
||||
config: Config # otherwise mypy is confused
|
||||
|
||||
if env.strip().lower() == 'production':
|
||||
config = ProductionConfig()
|
||||
elif env.strip().lower() == 'testing':
|
||||
|
@ -95,7 +118,19 @@ def make_config(env: str = 'production') -> Config:
|
|||
raise ValueError("Must be either 'production' or 'testing'")
|
||||
|
||||
# Without a PostgreSQL database the package cannot work.
|
||||
if config.DATABASE_URI is None:
|
||||
# As pytest sets the "TESTING" environment variable explicitly,
|
||||
# the warning is only emitted if the code is not run by pytest.
|
||||
# We see the bad configuration immediately as all "db" tests fail.
|
||||
if config.DATABASE_URI is None and not os.getenv('TESTING'):
|
||||
warnings.warn('Bad configurartion: no DATABASE_URI set in the environment')
|
||||
|
||||
# Some functionalities require R and some packages installed.
|
||||
# To ensure isolation and reproducibility, the projects keeps the R dependencies
|
||||
# in a project-local folder that must be set in the environment.
|
||||
if config.R_LIBS_PATH is None and not os.getenv('TESTING'):
|
||||
warnings.warn('Bad configuration: no R_LIBS set in the environment')
|
||||
|
||||
return config
|
||||
|
||||
|
||||
config = make_config('testing' if os.getenv('TESTING') else 'production')
|
||||
|
|
11
src/urban_meal_delivery/console/__init__.py
Normal file
11
src/urban_meal_delivery/console/__init__.py
Normal file
|
@ -0,0 +1,11 @@
|
|||
"""Provide CLI scripts for the project."""
|
||||
|
||||
from urban_meal_delivery.console import forecasts
|
||||
from urban_meal_delivery.console import gridify
|
||||
from urban_meal_delivery.console import main
|
||||
|
||||
|
||||
cli = main.entry_point
|
||||
|
||||
cli.add_command(forecasts.tactical_heuristic, name='tactical-forecasts')
|
||||
cli.add_command(gridify.gridify)
|
37
src/urban_meal_delivery/console/decorators.py
Normal file
37
src/urban_meal_delivery/console/decorators.py
Normal file
|
@ -0,0 +1,37 @@
|
|||
"""Utils for the CLI scripts."""
|
||||
|
||||
import functools
|
||||
import os
|
||||
import subprocess # noqa:S404
|
||||
import sys
|
||||
from typing import Any, Callable
|
||||
|
||||
import click
|
||||
|
||||
|
||||
def db_revision(rev: str) -> Callable: # pragma: no cover -> easy to check visually
|
||||
"""A decorator ensuring the database is at a given revision."""
|
||||
|
||||
def decorator(func: Callable) -> Callable:
|
||||
@functools.wraps(func)
|
||||
def ensure(*args: Any, **kwargs: Any) -> Any: # noqa:WPS430
|
||||
"""Do not execute the `func` if the revision does not match."""
|
||||
if not os.getenv('TESTING'):
|
||||
result = subprocess.run( # noqa:S603,S607
|
||||
['alembic', 'current'],
|
||||
capture_output=True,
|
||||
check=False,
|
||||
encoding='utf8',
|
||||
)
|
||||
|
||||
if not result.stdout.startswith(rev):
|
||||
click.echo(
|
||||
click.style(f'Database is not at revision {rev}', fg='red'),
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
return func(*args, **kwargs)
|
||||
|
||||
return ensure
|
||||
|
||||
return decorator
|
144
src/urban_meal_delivery/console/forecasts.py
Normal file
144
src/urban_meal_delivery/console/forecasts.py
Normal file
|
@ -0,0 +1,144 @@
|
|||
"""CLI script to forecast demand.
|
||||
|
||||
The main purpose of this script is to pre-populate the `db.Forecast` table
|
||||
with demand predictions such that they can readily be used by the
|
||||
predictive routing algorithms.
|
||||
"""
|
||||
|
||||
import datetime as dt
|
||||
import sys
|
||||
|
||||
import click
|
||||
from sqlalchemy import func
|
||||
from sqlalchemy.orm import exc as orm_exc
|
||||
|
||||
from urban_meal_delivery import config
|
||||
from urban_meal_delivery import db
|
||||
from urban_meal_delivery.console import decorators
|
||||
from urban_meal_delivery.forecasts import timify
|
||||
|
||||
|
||||
@click.command()
|
||||
@click.argument('city', default='Paris', type=str)
|
||||
@click.argument('side_length', default=1000, type=int)
|
||||
@click.argument('time_step', default=60, type=int)
|
||||
@click.argument('train_horizon', default=8, type=int)
|
||||
@decorators.db_revision('8bfb928a31f8')
|
||||
def tactical_heuristic( # noqa:C901,WPS213,WPS216,WPS231
|
||||
city: str, side_length: int, time_step: int, train_horizon: int,
|
||||
) -> None: # pragma: no cover
|
||||
"""Predict demand for all pixels and days in a city.
|
||||
|
||||
This command makes demand `Forecast`s for all `Pixel`s and days
|
||||
for tactical purposes with the heuristic specified in
|
||||
`urban_meal_delivery.forecasts.timify.OrderHistory.choose_tactical_model()`.
|
||||
|
||||
According to this heuristic, there is exactly one `Forecast` per
|
||||
`Pixel` and time step (e.g., hour of the day with 60-minute time steps)
|
||||
given the lengths of the training horizon and a time step. That is so
|
||||
as the heuristic chooses the most promising forecasting `*Model`.
|
||||
|
||||
All `Forecast`s are persisted to the database so that they can be readily
|
||||
used by the predictive routing algorithms.
|
||||
|
||||
This command first checks, which `Forecast`s still need to be made
|
||||
and then does its work. So, it can be interrupted at any point in
|
||||
time and then simply continues where it left off the next time it
|
||||
is executed.
|
||||
|
||||
Important: In a future revision, this command may need to be adapted such
|
||||
that is does not simply obtain the last time step for which a `Forecast`
|
||||
was made and continues from there. The reason is that another future command
|
||||
may make predictions using all available forecasting `*Model`s per `Pixel`
|
||||
and time step.
|
||||
|
||||
Arguments:
|
||||
|
||||
CITY: one of "Bordeaux", "Lyon", or "Paris" (=default)
|
||||
|
||||
SIDE_LENGTH: of a pixel in the grid; defaults to `1000`
|
||||
|
||||
TIME_STEP: length of one time step in minutes; defaults to `60`
|
||||
|
||||
TRAIN_HORIZON: length of the training horizon; defaults to `8`
|
||||
""" # noqa:D412,D417,RST215
|
||||
# Input validation.
|
||||
|
||||
try:
|
||||
city_obj = (
|
||||
db.session.query(db.City).filter_by(name=city.title()).one() # noqa:WPS221
|
||||
)
|
||||
except orm_exc.NoResultFound:
|
||||
click.echo('NAME must be one of "Paris", "Lyon", or "Bordeaux"')
|
||||
sys.exit(1)
|
||||
|
||||
for grid in city_obj.grids:
|
||||
if grid.side_length == side_length:
|
||||
break
|
||||
else:
|
||||
click.echo(f'SIDE_LENGTH must be in {config.GRID_SIDE_LENGTHS}')
|
||||
sys.exit(1)
|
||||
|
||||
if time_step not in config.TIME_STEPS:
|
||||
click.echo(f'TIME_STEP must be in {config.TIME_STEPS}')
|
||||
sys.exit(1)
|
||||
|
||||
if train_horizon not in config.TRAIN_HORIZONS:
|
||||
click.echo(f'TRAIN_HORIZON must be in {config.TRAIN_HORIZONS}')
|
||||
sys.exit(1)
|
||||
|
||||
click.echo(
|
||||
'Parameters: '
|
||||
+ f'city="{city}", grid.side_length={side_length}, '
|
||||
+ f'time_step={time_step}, train_horizon={train_horizon}',
|
||||
)
|
||||
|
||||
# Load the historic order data.
|
||||
order_history = timify.OrderHistory(grid=grid, time_step=time_step) # noqa:WPS441
|
||||
order_history.aggregate_orders()
|
||||
|
||||
# Run the tactical heuristic.
|
||||
|
||||
for pixel in grid.pixels: # noqa:WPS441
|
||||
# Important: this check may need to be adapted once further
|
||||
# commands are added the make `Forecast`s without the heuristic!
|
||||
# Continue with forecasting on the day the last prediction was made ...
|
||||
last_predict_at = ( # noqa:ECE001
|
||||
db.session.query(func.max(db.Forecast.start_at))
|
||||
.filter(db.Forecast.pixel == pixel)
|
||||
.first()
|
||||
)[0]
|
||||
# ... or start `train_horizon` weeks after the first `Order`
|
||||
# if no `Forecast`s are in the database yet.
|
||||
if last_predict_at is None:
|
||||
predict_day = order_history.first_order_at(pixel_id=pixel.id).date()
|
||||
predict_day += dt.timedelta(weeks=train_horizon)
|
||||
else:
|
||||
predict_day = last_predict_at.date()
|
||||
|
||||
# Go over all days in chronological order ...
|
||||
while predict_day <= order_history.last_order_at(pixel_id=pixel.id).date():
|
||||
# ... and choose the most promising `*Model` for that day.
|
||||
model = order_history.choose_tactical_model(
|
||||
pixel_id=pixel.id, predict_day=predict_day, train_horizon=train_horizon,
|
||||
)
|
||||
click.echo(
|
||||
f'Predicting pixel #{pixel.id} in {city} '
|
||||
+ f'for {predict_day} with {model.name}',
|
||||
)
|
||||
|
||||
# Only loop over the time steps corresponding to working hours.
|
||||
predict_at = dt.datetime(
|
||||
predict_day.year,
|
||||
predict_day.month,
|
||||
predict_day.day,
|
||||
config.SERVICE_START,
|
||||
)
|
||||
while predict_at.hour < config.SERVICE_END:
|
||||
model.make_forecast(
|
||||
pixel=pixel, predict_at=predict_at, train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
predict_at += dt.timedelta(minutes=time_step)
|
||||
|
||||
predict_day += dt.timedelta(days=1)
|
48
src/urban_meal_delivery/console/gridify.py
Normal file
48
src/urban_meal_delivery/console/gridify.py
Normal file
|
@ -0,0 +1,48 @@
|
|||
"""CLI script to create pixel grids."""
|
||||
|
||||
import click
|
||||
|
||||
from urban_meal_delivery import config
|
||||
from urban_meal_delivery import db
|
||||
from urban_meal_delivery.console import decorators
|
||||
|
||||
|
||||
@click.command()
|
||||
@decorators.db_revision('e86290e7305e')
|
||||
def gridify() -> None: # pragma: no cover note:b1f68d24
|
||||
"""Create grids for all cities.
|
||||
|
||||
This command creates grids with pixels of various
|
||||
side lengths (specified in `urban_meal_delivery.config`).
|
||||
|
||||
Pixels are only generated if they contain at least one
|
||||
(pickup or delivery) address.
|
||||
|
||||
All data are persisted to the database.
|
||||
"""
|
||||
cities = db.session.query(db.City).all()
|
||||
click.echo(f'{len(cities)} cities retrieved from the database')
|
||||
|
||||
for city in cities:
|
||||
click.echo(f'\nCreating grids for {city.name}')
|
||||
|
||||
for side_length in config.GRID_SIDE_LENGTHS:
|
||||
click.echo(f'Creating grid with a side length of {side_length} meters')
|
||||
|
||||
grid = db.Grid.gridify(city=city, side_length=side_length)
|
||||
db.session.add(grid)
|
||||
|
||||
click.echo(f' -> created {len(grid.pixels)} pixels')
|
||||
|
||||
# The number of assigned addresses is the same across different `side_length`s.
|
||||
db.session.flush() # necessary for the query to work
|
||||
n_assigned = (
|
||||
db.session.query(db.AddressPixelAssociation)
|
||||
.filter(db.AddressPixelAssociation.grid_id == grid.id)
|
||||
.count()
|
||||
)
|
||||
click.echo(
|
||||
f'=> assigned {n_assigned} out of {len(city.addresses)} addresses in {city.name}', # noqa:E501
|
||||
)
|
||||
|
||||
db.session.commit()
|
|
@ -1,14 +1,14 @@
|
|||
"""Provide CLI scripts for the project."""
|
||||
"""The entry point for all CLI scripts in the project."""
|
||||
|
||||
from typing import Any
|
||||
|
||||
import click
|
||||
from click.core import Context
|
||||
from click import core as cli_core
|
||||
|
||||
import urban_meal_delivery
|
||||
|
||||
|
||||
def show_version(ctx: Context, _param: Any, value: bool) -> None:
|
||||
def show_version(ctx: cli_core.Context, _param: Any, value: bool) -> None:
|
||||
"""Show the package's version."""
|
||||
# If --version / -V is NOT passed in,
|
||||
# continue with the command.
|
||||
|
@ -24,7 +24,7 @@ def show_version(ctx: Context, _param: Any, value: bool) -> None:
|
|||
ctx.exit()
|
||||
|
||||
|
||||
@click.command()
|
||||
@click.group()
|
||||
@click.option(
|
||||
'--version',
|
||||
'-V',
|
||||
|
@ -33,5 +33,5 @@ def show_version(ctx: Context, _param: Any, value: bool) -> None:
|
|||
is_eager=True,
|
||||
expose_value=False,
|
||||
)
|
||||
def main() -> None:
|
||||
def entry_point() -> None:
|
||||
"""The urban-meal-delivery research project."""
|
|
@ -1,11 +1,16 @@
|
|||
"""Provide the ORM models and a connection to the database."""
|
||||
|
||||
from urban_meal_delivery.db.addresses import Address # noqa:F401
|
||||
from urban_meal_delivery.db.cities import City # noqa:F401
|
||||
from urban_meal_delivery.db.connection import make_engine # noqa:F401
|
||||
from urban_meal_delivery.db.connection import make_session_factory # noqa:F401
|
||||
from urban_meal_delivery.db.couriers import Courier # noqa:F401
|
||||
from urban_meal_delivery.db.customers import Customer # noqa:F401
|
||||
from urban_meal_delivery.db.meta import Base # noqa:F401
|
||||
from urban_meal_delivery.db.orders import Order # noqa:F401
|
||||
from urban_meal_delivery.db.restaurants import Restaurant # noqa:F401
|
||||
from urban_meal_delivery.db.addresses import Address
|
||||
from urban_meal_delivery.db.addresses_pixels import AddressPixelAssociation
|
||||
from urban_meal_delivery.db.cities import City
|
||||
from urban_meal_delivery.db.connection import connection
|
||||
from urban_meal_delivery.db.connection import engine
|
||||
from urban_meal_delivery.db.connection import session
|
||||
from urban_meal_delivery.db.couriers import Courier
|
||||
from urban_meal_delivery.db.customers import Customer
|
||||
from urban_meal_delivery.db.forecasts import Forecast
|
||||
from urban_meal_delivery.db.grids import Grid
|
||||
from urban_meal_delivery.db.meta import Base
|
||||
from urban_meal_delivery.db.orders import Order
|
||||
from urban_meal_delivery.db.pixels import Pixel
|
||||
from urban_meal_delivery.db.restaurants import Restaurant
|
||||
|
|
|
@ -1,31 +1,35 @@
|
|||
"""Provide the ORM's Address model."""
|
||||
"""Provide the ORM's `Address` model."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Any
|
||||
|
||||
import folium
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy import orm
|
||||
from sqlalchemy.dialects import postgresql
|
||||
from sqlalchemy.ext import hybrid
|
||||
|
||||
from urban_meal_delivery.db import meta
|
||||
from urban_meal_delivery.db import utils
|
||||
|
||||
|
||||
class Address(meta.Base):
|
||||
"""An Address of a Customer or a Restaurant on the UDP."""
|
||||
"""An address of a `Customer` or a `Restaurant` on the UDP."""
|
||||
|
||||
__tablename__ = 'addresses'
|
||||
|
||||
# Columns
|
||||
id = sa.Column(sa.Integer, primary_key=True, autoincrement=False) # noqa:WPS125
|
||||
_primary_id = sa.Column('primary_id', sa.Integer, nullable=False, index=True)
|
||||
primary_id = sa.Column(sa.Integer, nullable=False, index=True)
|
||||
created_at = sa.Column(sa.DateTime, nullable=False)
|
||||
place_id = sa.Column(
|
||||
sa.Unicode(length=120), nullable=False, index=True, # noqa:WPS432
|
||||
)
|
||||
place_id = sa.Column(sa.Unicode(length=120), nullable=False, index=True)
|
||||
latitude = sa.Column(postgresql.DOUBLE_PRECISION, nullable=False)
|
||||
longitude = sa.Column(postgresql.DOUBLE_PRECISION, nullable=False)
|
||||
_city_id = sa.Column('city_id', sa.SmallInteger, nullable=False, index=True)
|
||||
city_name = sa.Column('city', sa.Unicode(length=25), nullable=False) # noqa:WPS432
|
||||
city_id = sa.Column(sa.SmallInteger, nullable=False, index=True)
|
||||
city_name = sa.Column('city', sa.Unicode(length=25), nullable=False)
|
||||
zip_code = sa.Column(sa.Integer, nullable=False, index=True)
|
||||
street = sa.Column(sa.Unicode(length=80), nullable=False) # noqa:WPS432
|
||||
street = sa.Column(sa.Unicode(length=80), nullable=False)
|
||||
floor = sa.Column(sa.SmallInteger)
|
||||
|
||||
# Constraints
|
||||
|
@ -43,6 +47,8 @@ class Address(meta.Base):
|
|||
'-180 <= longitude AND longitude <= 180',
|
||||
name='longitude_between_180_degrees',
|
||||
),
|
||||
# Needed by a `ForeignKeyConstraint` in `AddressPixelAssociation`.
|
||||
sa.UniqueConstraint('id', 'city_id'),
|
||||
sa.CheckConstraint(
|
||||
'30000 <= zip_code AND zip_code <= 99999', name='valid_zip_code',
|
||||
),
|
||||
|
@ -51,18 +57,21 @@ class Address(meta.Base):
|
|||
|
||||
# Relationships
|
||||
city = orm.relationship('City', back_populates='addresses')
|
||||
restaurant = orm.relationship('Restaurant', back_populates='address', uselist=False)
|
||||
restaurants = orm.relationship('Restaurant', back_populates='address')
|
||||
orders_picked_up = orm.relationship(
|
||||
'Order',
|
||||
back_populates='pickup_address',
|
||||
foreign_keys='[Order._pickup_address_id]',
|
||||
foreign_keys='[Order.pickup_address_id]',
|
||||
)
|
||||
|
||||
orders_delivered = orm.relationship(
|
||||
'Order',
|
||||
back_populates='delivery_address',
|
||||
foreign_keys='[Order._delivery_address_id]',
|
||||
foreign_keys='[Order.delivery_address_id]',
|
||||
)
|
||||
pixels = orm.relationship('AddressPixelAssociation', back_populates='address')
|
||||
|
||||
# We do not implement a `.__init__()` method and leave that to SQLAlchemy.
|
||||
# Instead, we use `hasattr()` to check for uninitialized attributes. grep:b1f68d24
|
||||
|
||||
def __repr__(self) -> str:
|
||||
"""Non-literal text representation."""
|
||||
|
@ -72,11 +81,85 @@ class Address(meta.Base):
|
|||
|
||||
@hybrid.hybrid_property
|
||||
def is_primary(self) -> bool:
|
||||
"""If an Address object is the earliest one entered at its location.
|
||||
"""If an `Address` object is the earliest one entered at its location.
|
||||
|
||||
Street addresses may have been entered several times with different
|
||||
versions/spellings of the street name and/or different floors.
|
||||
|
||||
`is_primary` indicates the first in a group of addresses.
|
||||
`.is_primary` indicates the first in a group of `Address` objects.
|
||||
"""
|
||||
return self.id == self._primary_id
|
||||
return self.id == self.primary_id
|
||||
|
||||
@property
|
||||
def location(self) -> utils.Location:
|
||||
"""The location of the address.
|
||||
|
||||
The returned `Location` object relates to `.city.southwest`.
|
||||
|
||||
See also the `.x` and `.y` properties that are shortcuts for
|
||||
`.location.x` and `.location.y`.
|
||||
|
||||
Implementation detail: This property is cached as none of the
|
||||
underlying attributes to calculate the value are to be changed.
|
||||
"""
|
||||
if not hasattr(self, '_location'): # noqa:WPS421 note:b1f68d24
|
||||
self._location = utils.Location(self.latitude, self.longitude)
|
||||
self._location.relate_to(self.city.southwest)
|
||||
return self._location
|
||||
|
||||
@property
|
||||
def x(self) -> int: # noqa=WPS111
|
||||
"""The relative x-coordinate within the `.city` in meters.
|
||||
|
||||
On the implied x-y plane, the `.city`'s southwest corner is the origin.
|
||||
|
||||
Shortcut for `.location.x`.
|
||||
"""
|
||||
return self.location.x
|
||||
|
||||
@property
|
||||
def y(self) -> int: # noqa=WPS111
|
||||
"""The relative y-coordinate within the `.city` in meters.
|
||||
|
||||
On the implied x-y plane, the `.city`'s southwest corner is the origin.
|
||||
|
||||
Shortcut for `.location.y`.
|
||||
"""
|
||||
return self.location.y
|
||||
|
||||
def clear_map(self) -> Address: # pragma: no cover
|
||||
"""Shortcut to the `.city.clear_map()` method.
|
||||
|
||||
Returns:
|
||||
self: enabling method chaining
|
||||
""" # noqa:D402,DAR203
|
||||
self.city.clear_map()
|
||||
return self
|
||||
|
||||
@property # pragma: no cover
|
||||
def map(self) -> folium.Map: # noqa:WPS125
|
||||
"""Shortcut to the `.city.map` object."""
|
||||
return self.city.map
|
||||
|
||||
def draw(self, **kwargs: Any) -> folium.Map: # pragma: no cover
|
||||
"""Draw the address on the `.city.map`.
|
||||
|
||||
By default, addresses are shown as black dots.
|
||||
Use `**kwargs` to overwrite that.
|
||||
|
||||
Args:
|
||||
**kwargs: passed on to `folium.Circle()`; overwrite default settings
|
||||
|
||||
Returns:
|
||||
`.city.map` for convenience in interactive usage
|
||||
"""
|
||||
defaults = {
|
||||
'color': 'black',
|
||||
'popup': f'{self.street}, {self.zip_code} {self.city_name}',
|
||||
}
|
||||
defaults.update(kwargs)
|
||||
|
||||
marker = folium.Circle((self.latitude, self.longitude), **defaults)
|
||||
marker.add_to(self.city.map)
|
||||
|
||||
return self.map
|
||||
|
|
56
src/urban_meal_delivery/db/addresses_pixels.py
Normal file
56
src/urban_meal_delivery/db/addresses_pixels.py
Normal file
|
@ -0,0 +1,56 @@
|
|||
"""Model for the many-to-many relationship between `Address` and `Pixel` objects."""
|
||||
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy import orm
|
||||
|
||||
from urban_meal_delivery.db import meta
|
||||
|
||||
|
||||
class AddressPixelAssociation(meta.Base):
|
||||
"""Association pattern between `Address` and `Pixel`.
|
||||
|
||||
This approach is needed here mainly because it implicitly
|
||||
updates the `_city_id` and `_grid_id` columns.
|
||||
|
||||
Further info:
|
||||
https://docs.sqlalchemy.org/en/stable/orm/basic_relationships.html#association-object # noqa:E501
|
||||
"""
|
||||
|
||||
__tablename__ = 'addresses_pixels'
|
||||
|
||||
# Columns
|
||||
address_id = sa.Column(sa.Integer, primary_key=True)
|
||||
city_id = sa.Column(sa.SmallInteger, nullable=False)
|
||||
grid_id = sa.Column(sa.SmallInteger, nullable=False)
|
||||
pixel_id = sa.Column(sa.Integer, primary_key=True)
|
||||
|
||||
# Constraints
|
||||
__table_args__ = (
|
||||
# An `Address` can only be on a `Grid` ...
|
||||
sa.ForeignKeyConstraint(
|
||||
['address_id', 'city_id'],
|
||||
['addresses.id', 'addresses.city_id'],
|
||||
onupdate='RESTRICT',
|
||||
ondelete='RESTRICT',
|
||||
),
|
||||
# ... if their `.city` attributes match.
|
||||
sa.ForeignKeyConstraint(
|
||||
['grid_id', 'city_id'],
|
||||
['grids.id', 'grids.city_id'],
|
||||
onupdate='RESTRICT',
|
||||
ondelete='RESTRICT',
|
||||
),
|
||||
# Each `Address` can only be on a `Grid` once.
|
||||
sa.UniqueConstraint('address_id', 'grid_id'),
|
||||
# An association must reference an existing `Grid`-`Pixel` pair.
|
||||
sa.ForeignKeyConstraint(
|
||||
['pixel_id', 'grid_id'],
|
||||
['pixels.id', 'pixels.grid_id'],
|
||||
onupdate='RESTRICT',
|
||||
ondelete='RESTRICT',
|
||||
),
|
||||
)
|
||||
|
||||
# Relationships
|
||||
address = orm.relationship('Address', back_populates='pixels')
|
||||
pixel = orm.relationship('Pixel', back_populates='addresses')
|
|
@ -1,16 +1,20 @@
|
|||
"""Provide the ORM's City model."""
|
||||
"""Provide the ORM's `City` model."""
|
||||
|
||||
from typing import Dict
|
||||
from __future__ import annotations
|
||||
|
||||
import folium
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy import orm
|
||||
from sqlalchemy.dialects import postgresql
|
||||
|
||||
from urban_meal_delivery import config
|
||||
from urban_meal_delivery import db
|
||||
from urban_meal_delivery.db import meta
|
||||
from urban_meal_delivery.db import utils
|
||||
|
||||
|
||||
class City(meta.Base):
|
||||
"""A City where the UDP operates in."""
|
||||
"""A city where the UDP operates in."""
|
||||
|
||||
__tablename__ = 'cities'
|
||||
|
||||
|
@ -22,62 +26,227 @@ class City(meta.Base):
|
|||
kml = sa.Column(sa.UnicodeText, nullable=False)
|
||||
|
||||
# Google Maps related columns
|
||||
_center_latitude = sa.Column(
|
||||
'center_latitude', postgresql.DOUBLE_PRECISION, nullable=False,
|
||||
)
|
||||
_center_longitude = sa.Column(
|
||||
'center_longitude', postgresql.DOUBLE_PRECISION, nullable=False,
|
||||
)
|
||||
_northeast_latitude = sa.Column(
|
||||
'northeast_latitude', postgresql.DOUBLE_PRECISION, nullable=False,
|
||||
)
|
||||
_northeast_longitude = sa.Column(
|
||||
'northeast_longitude', postgresql.DOUBLE_PRECISION, nullable=False,
|
||||
)
|
||||
_southwest_latitude = sa.Column(
|
||||
'southwest_latitude', postgresql.DOUBLE_PRECISION, nullable=False,
|
||||
)
|
||||
_southwest_longitude = sa.Column(
|
||||
'southwest_longitude', postgresql.DOUBLE_PRECISION, nullable=False,
|
||||
)
|
||||
center_latitude = sa.Column(postgresql.DOUBLE_PRECISION, nullable=False)
|
||||
center_longitude = sa.Column(postgresql.DOUBLE_PRECISION, nullable=False)
|
||||
northeast_latitude = sa.Column(postgresql.DOUBLE_PRECISION, nullable=False)
|
||||
northeast_longitude = sa.Column(postgresql.DOUBLE_PRECISION, nullable=False)
|
||||
southwest_latitude = sa.Column(postgresql.DOUBLE_PRECISION, nullable=False)
|
||||
southwest_longitude = sa.Column(postgresql.DOUBLE_PRECISION, nullable=False)
|
||||
initial_zoom = sa.Column(sa.SmallInteger, nullable=False)
|
||||
|
||||
# Relationships
|
||||
addresses = orm.relationship('Address', back_populates='city')
|
||||
grids = orm.relationship('Grid', back_populates='city')
|
||||
|
||||
# We do not implement a `.__init__()` method and leave that to SQLAlchemy.
|
||||
# Instead, we use `hasattr()` to check for uninitialized attributes. grep:d334120e
|
||||
|
||||
def __repr__(self) -> str:
|
||||
"""Non-literal text representation."""
|
||||
return '<{cls}({name})>'.format(cls=self.__class__.__name__, name=self.name)
|
||||
|
||||
@property
|
||||
def location(self) -> Dict[str, float]:
|
||||
"""GPS location of the city's center.
|
||||
def center(self) -> utils.Location:
|
||||
"""Location of the city's center.
|
||||
|
||||
Example:
|
||||
{"latitude": 48.856614, "longitude": 2.3522219}
|
||||
Implementation detail: This property is cached as none of the
|
||||
underlying attributes to calculate the value are to be changed.
|
||||
"""
|
||||
return {
|
||||
'latitude': self._center_latitude,
|
||||
'longitude': self._center_longitude,
|
||||
}
|
||||
if not hasattr(self, '_center'): # noqa:WPS421 note:d334120e
|
||||
self._center = utils.Location(self.center_latitude, self.center_longitude)
|
||||
return self._center
|
||||
|
||||
@property
|
||||
def viewport(self) -> Dict[str, Dict[str, float]]:
|
||||
"""Google Maps viewport of the city.
|
||||
def northeast(self) -> utils.Location:
|
||||
"""The city's northeast corner of the Google Maps viewport.
|
||||
|
||||
Example:
|
||||
{
|
||||
'northeast': {'latitude': 48.9021449, 'longitude': 2.4699208},
|
||||
'southwest': {'latitude': 48.815573, 'longitude': 2.225193},
|
||||
}
|
||||
""" # noqa:RST203
|
||||
return {
|
||||
'northeast': {
|
||||
'latitude': self._northeast_latitude,
|
||||
'longitude': self._northeast_longitude,
|
||||
},
|
||||
'southwest': {
|
||||
'latitude': self._southwest_latitude,
|
||||
'longitude': self._southwest_longitude,
|
||||
},
|
||||
Implementation detail: This property is cached as none of the
|
||||
underlying attributes to calculate the value are to be changed.
|
||||
"""
|
||||
if not hasattr(self, '_northeast'): # noqa:WPS421 note:d334120e
|
||||
self._northeast = utils.Location(
|
||||
self.northeast_latitude, self.northeast_longitude,
|
||||
)
|
||||
|
||||
return self._northeast
|
||||
|
||||
@property
|
||||
def southwest(self) -> utils.Location:
|
||||
"""The city's southwest corner of the Google Maps viewport.
|
||||
|
||||
Implementation detail: This property is cached as none of the
|
||||
underlying attributes to calculate the value are to be changed.
|
||||
"""
|
||||
if not hasattr(self, '_southwest'): # noqa:WPS421 note:d334120e
|
||||
self._southwest = utils.Location(
|
||||
self.southwest_latitude, self.southwest_longitude,
|
||||
)
|
||||
|
||||
return self._southwest
|
||||
|
||||
@property
|
||||
def total_x(self) -> int:
|
||||
"""The horizontal distance from the city's west to east end in meters.
|
||||
|
||||
The city borders refer to the Google Maps viewport.
|
||||
"""
|
||||
return self.northeast.easting - self.southwest.easting
|
||||
|
||||
@property
|
||||
def total_y(self) -> int:
|
||||
"""The vertical distance from the city's south to north end in meters.
|
||||
|
||||
The city borders refer to the Google Maps viewport.
|
||||
"""
|
||||
return self.northeast.northing - self.southwest.northing
|
||||
|
||||
def clear_map(self) -> City: # pragma: no cover
|
||||
"""Create a new `folium.Map` object aligned with the city's viewport.
|
||||
|
||||
The map is available via the `.map` property. Note that it is a
|
||||
mutable objects that is changed from various locations in the code base.
|
||||
|
||||
Returns:
|
||||
self: enabling method chaining
|
||||
""" # noqa:DAR203
|
||||
self._map = folium.Map(
|
||||
location=[self.center_latitude, self.center_longitude],
|
||||
zoom_start=self.initial_zoom,
|
||||
)
|
||||
return self
|
||||
|
||||
@property # pragma: no cover
|
||||
def map(self) -> folium.Map: # noqa:WPS125
|
||||
"""A `folium.Map` object aligned with the city's viewport.
|
||||
|
||||
See docstring for `.clear_map()` for further info.
|
||||
"""
|
||||
if not hasattr(self, '_map'): # noqa:WPS421 note:d334120e
|
||||
self.clear_map()
|
||||
|
||||
return self._map
|
||||
|
||||
def draw_restaurants( # noqa:WPS231
|
||||
self, order_counts: bool = False, # pragma: no cover
|
||||
) -> folium.Map:
|
||||
"""Draw all restaurants on the`.map`.
|
||||
|
||||
Args:
|
||||
order_counts: show the number of orders
|
||||
|
||||
Returns:
|
||||
`.map` for convenience in interactive usage
|
||||
"""
|
||||
# Obtain all primary `Address`es in the city that host `Restaurant`s.
|
||||
addresses = ( # noqa:ECE001
|
||||
db.session.query(db.Address)
|
||||
.filter(
|
||||
db.Address.id.in_(
|
||||
db.session.query(db.Address.primary_id) # noqa:WPS221
|
||||
.join(db.Restaurant, db.Address.id == db.Restaurant.address_id)
|
||||
.filter(db.Address.city == self)
|
||||
.distinct()
|
||||
.all(),
|
||||
),
|
||||
)
|
||||
.all()
|
||||
)
|
||||
|
||||
for address in addresses:
|
||||
# Show the restaurant's name if there is only one.
|
||||
# Otherwise, list all the restaurants' ID's.
|
||||
restaurants = ( # noqa:ECE001
|
||||
db.session.query(db.Restaurant)
|
||||
.join(db.Address, db.Restaurant.address_id == db.Address.id)
|
||||
.filter(db.Address.primary_id == address.id)
|
||||
.all()
|
||||
)
|
||||
if len(restaurants) == 1:
|
||||
tooltip = f'{restaurants[0].name} (#{restaurants[0].id})' # noqa:WPS221
|
||||
else:
|
||||
tooltip = 'Restaurants ' + ', '.join( # noqa:WPS336
|
||||
f'#{restaurant.id}' for restaurant in restaurants
|
||||
)
|
||||
|
||||
if order_counts:
|
||||
# Calculate the number of orders for ALL restaurants ...
|
||||
n_orders = ( # noqa:ECE001
|
||||
db.session.query(db.Order.id)
|
||||
.join(db.Address, db.Order.pickup_address_id == db.Address.id)
|
||||
.filter(db.Address.primary_id == address.id)
|
||||
.count()
|
||||
)
|
||||
# ... and adjust the size of the red dot on the `.map`.
|
||||
if n_orders >= 1000:
|
||||
radius = 20 # noqa:WPS220
|
||||
elif n_orders >= 500:
|
||||
radius = 15 # noqa:WPS220
|
||||
elif n_orders >= 100:
|
||||
radius = 10 # noqa:WPS220
|
||||
elif n_orders >= 10:
|
||||
radius = 5 # noqa:WPS220
|
||||
else:
|
||||
radius = 1 # noqa:WPS220
|
||||
|
||||
tooltip += f' | n_orders={n_orders}' # noqa:WPS336
|
||||
|
||||
address.draw(
|
||||
radius=radius,
|
||||
color=config.RESTAURANT_COLOR,
|
||||
fill_color=config.RESTAURANT_COLOR,
|
||||
fill_opacity=0.3,
|
||||
tooltip=tooltip,
|
||||
)
|
||||
|
||||
else:
|
||||
address.draw(
|
||||
radius=1, color=config.RESTAURANT_COLOR, tooltip=tooltip,
|
||||
)
|
||||
|
||||
return self.map
|
||||
|
||||
def draw_zip_codes(self) -> folium.Map: # pragma: no cover
|
||||
"""Draw all addresses on the `.map`, colorized by their `.zip_code`.
|
||||
|
||||
This does not make a distinction between restaurant and customer addresses.
|
||||
Also, due to the high memory usage, the number of orders is not calculated.
|
||||
|
||||
Returns:
|
||||
`.map` for convenience in interactive usage
|
||||
"""
|
||||
# First, create a color map with distinct colors for each zip code.
|
||||
all_zip_codes = sorted(
|
||||
row[0]
|
||||
for row in db.session.execute(
|
||||
sa.text(
|
||||
f""" -- # noqa:S608
|
||||
SELECT DISTINCT
|
||||
zip_code
|
||||
FROM
|
||||
{config.CLEAN_SCHEMA}.addresses
|
||||
WHERE
|
||||
city_id = {self.id};
|
||||
""",
|
||||
),
|
||||
)
|
||||
)
|
||||
cmap = utils.make_random_cmap(len(all_zip_codes), bright=False)
|
||||
colors = {
|
||||
code: utils.rgb_to_hex(*cmap(index))
|
||||
for index, code in enumerate(all_zip_codes)
|
||||
}
|
||||
|
||||
# Second, draw every address on the `.map.
|
||||
for address in self.addresses:
|
||||
# Non-primary addresses are covered by primary ones anyway.
|
||||
if not address.is_primary:
|
||||
continue
|
||||
|
||||
marker = folium.Circle( # noqa:WPS317
|
||||
(address.latitude, address.longitude),
|
||||
color=colors[address.zip_code],
|
||||
radius=1,
|
||||
)
|
||||
marker.add_to(self.map)
|
||||
|
||||
return self.map
|
||||
|
|
|
@ -1,17 +1,28 @@
|
|||
"""Provide connection utils for the ORM layer."""
|
||||
"""Provide connection utils for the ORM layer.
|
||||
|
||||
This module defines fully configured `engine`, `connection`, and `session`
|
||||
objects to be used as globals within the `urban_meal_delivery` package.
|
||||
|
||||
If a database is not guaranteed to be available, they are set to `None`.
|
||||
That is the case on the CI server.
|
||||
"""
|
||||
|
||||
import os
|
||||
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy import engine
|
||||
from sqlalchemy import engine as engine_mod
|
||||
from sqlalchemy import orm
|
||||
|
||||
import urban_meal_delivery
|
||||
|
||||
|
||||
def make_engine() -> engine.Engine: # pragma: no cover
|
||||
"""Provide a configured Engine object."""
|
||||
return sa.create_engine(urban_meal_delivery.config.DATABASE_URI)
|
||||
if os.getenv('TESTING'):
|
||||
# Specify the types explicitly to make mypy happy.
|
||||
engine: engine_mod.Engine = None
|
||||
connection: engine_mod.Connection = None
|
||||
session: orm.Session = None
|
||||
|
||||
|
||||
def make_session_factory() -> orm.Session: # pragma: no cover
|
||||
"""Provide a configured Session factory."""
|
||||
return orm.sessionmaker(bind=make_engine())
|
||||
else: # pragma: no cover
|
||||
engine = sa.create_engine(urban_meal_delivery.config.DATABASE_URI)
|
||||
connection = engine.connect()
|
||||
session = orm.sessionmaker(bind=connection)()
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
"""Provide the ORM's Courier model."""
|
||||
"""Provide the ORM's `Courier` model."""
|
||||
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy import orm
|
||||
|
@ -8,9 +8,7 @@ from urban_meal_delivery.db import meta
|
|||
|
||||
|
||||
class Courier(meta.Base):
|
||||
"""A Courier working for the UDP."""
|
||||
|
||||
# pylint:disable=too-few-public-methods
|
||||
"""A courier working for the UDP."""
|
||||
|
||||
__tablename__ = 'couriers'
|
||||
|
||||
|
|
|
@ -1,15 +1,18 @@
|
|||
"""Provide the ORM's Customer model."""
|
||||
"""Provide the ORM's `Customer` model."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import folium
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy import orm
|
||||
|
||||
from urban_meal_delivery import config
|
||||
from urban_meal_delivery import db
|
||||
from urban_meal_delivery.db import meta
|
||||
|
||||
|
||||
class Customer(meta.Base):
|
||||
"""A Customer of the UDP."""
|
||||
|
||||
# pylint:disable=too-few-public-methods
|
||||
"""A customer of the UDP."""
|
||||
|
||||
__tablename__ = 'customers'
|
||||
|
||||
|
@ -24,3 +27,155 @@ class Customer(meta.Base):
|
|||
|
||||
# Relationships
|
||||
orders = orm.relationship('Order', back_populates='customer')
|
||||
|
||||
def clear_map(self) -> Customer: # pragma: no cover
|
||||
"""Shortcut to the `...city.clear_map()` method.
|
||||
|
||||
Returns:
|
||||
self: enabling method chaining
|
||||
""" # noqa:D402,DAR203
|
||||
self.orders[0].pickup_address.city.clear_map() # noqa:WPS219
|
||||
return self
|
||||
|
||||
@property # pragma: no cover
|
||||
def map(self) -> folium.Map: # noqa:WPS125
|
||||
"""Shortcut to the `...city.map` object."""
|
||||
return self.orders[0].pickup_address.city.map # noqa:WPS219
|
||||
|
||||
def draw( # noqa:C901,WPS210,WPS231
|
||||
self, restaurants: bool = True, order_counts: bool = False, # pragma: no cover
|
||||
) -> folium.Map:
|
||||
"""Draw all the customer's delivery addresses on the `...city.map`.
|
||||
|
||||
By default, the pickup locations (= restaurants) are also shown.
|
||||
|
||||
Args:
|
||||
restaurants: show the pickup locations
|
||||
order_counts: show both the number of pickups at the restaurants
|
||||
and the number of deliveries at the customer's delivery addresses;
|
||||
the former is only shown if `restaurants=True`
|
||||
|
||||
Returns:
|
||||
`...city.map` for convenience in interactive usage
|
||||
"""
|
||||
# Note: a `Customer` may have more than one delivery `Address`es.
|
||||
# That is not true for `Restaurant`s after the data cleaning.
|
||||
|
||||
# Obtain all primary `Address`es where
|
||||
# at least one delivery was made to `self`.
|
||||
delivery_addresses = ( # noqa:ECE001
|
||||
db.session.query(db.Address)
|
||||
.filter(
|
||||
db.Address.id.in_(
|
||||
db.session.query(db.Address.primary_id) # noqa:WPS221
|
||||
.join(db.Order, db.Address.id == db.Order.delivery_address_id)
|
||||
.filter(db.Order.customer_id == self.id)
|
||||
.distinct()
|
||||
.all(),
|
||||
),
|
||||
)
|
||||
.all()
|
||||
)
|
||||
|
||||
for address in delivery_addresses:
|
||||
if order_counts:
|
||||
n_orders = ( # noqa:ECE001
|
||||
db.session.query(db.Order)
|
||||
.join(db.Address, db.Order.delivery_address_id == db.Address.id)
|
||||
.filter(db.Order.customer_id == self.id)
|
||||
.filter(db.Address.primary_id == address.id)
|
||||
.count()
|
||||
)
|
||||
if n_orders >= 25:
|
||||
radius = 20 # noqa:WPS220
|
||||
elif n_orders >= 10:
|
||||
radius = 15 # noqa:WPS220
|
||||
elif n_orders >= 5:
|
||||
radius = 10 # noqa:WPS220
|
||||
elif n_orders > 1:
|
||||
radius = 5 # noqa:WPS220
|
||||
else:
|
||||
radius = 1 # noqa:WPS220
|
||||
|
||||
address.draw(
|
||||
radius=radius,
|
||||
color=config.CUSTOMER_COLOR,
|
||||
fill_color=config.CUSTOMER_COLOR,
|
||||
fill_opacity=0.3,
|
||||
tooltip=f'n_orders={n_orders}',
|
||||
)
|
||||
|
||||
else:
|
||||
address.draw(
|
||||
radius=1, color=config.CUSTOMER_COLOR,
|
||||
)
|
||||
|
||||
if restaurants:
|
||||
pickup_addresses = ( # noqa:ECE001
|
||||
db.session.query(db.Address)
|
||||
.filter(
|
||||
db.Address.id.in_(
|
||||
db.session.query(db.Address.primary_id) # noqa:WPS221
|
||||
.join(db.Order, db.Address.id == db.Order.pickup_address_id)
|
||||
.filter(db.Order.customer_id == self.id)
|
||||
.distinct()
|
||||
.all(),
|
||||
),
|
||||
)
|
||||
.all()
|
||||
)
|
||||
|
||||
for address in pickup_addresses: # noqa:WPS440
|
||||
# Show the restaurant's name if there is only one.
|
||||
# Otherwise, list all the restaurants' ID's.
|
||||
# We cannot show the `Order.restaurant.name` due to the aggregation.
|
||||
restaurants = ( # noqa:ECE001
|
||||
db.session.query(db.Restaurant)
|
||||
.join(db.Address, db.Restaurant.address_id == db.Address.id)
|
||||
.filter(db.Address.primary_id == address.id) # noqa:WPS441
|
||||
.all()
|
||||
)
|
||||
if len(restaurants) == 1: # type:ignore
|
||||
tooltip = (
|
||||
f'{restaurants[0].name} (#{restaurants[0].id})' # type:ignore
|
||||
)
|
||||
else:
|
||||
tooltip = 'Restaurants ' + ', '.join( # noqa:WPS336
|
||||
f'#{restaurant.id}' for restaurant in restaurants # type:ignore
|
||||
)
|
||||
|
||||
if order_counts:
|
||||
n_orders = ( # noqa:ECE001
|
||||
db.session.query(db.Order)
|
||||
.join(db.Address, db.Order.pickup_address_id == db.Address.id)
|
||||
.filter(db.Order.customer_id == self.id)
|
||||
.filter(db.Address.primary_id == address.id) # noqa:WPS441
|
||||
.count()
|
||||
)
|
||||
if n_orders >= 25:
|
||||
radius = 20 # noqa:WPS220
|
||||
elif n_orders >= 10:
|
||||
radius = 15 # noqa:WPS220
|
||||
elif n_orders >= 5:
|
||||
radius = 10 # noqa:WPS220
|
||||
elif n_orders > 1:
|
||||
radius = 5 # noqa:WPS220
|
||||
else:
|
||||
radius = 1 # noqa:WPS220
|
||||
|
||||
tooltip += f' | n_orders={n_orders}' # noqa:WPS336
|
||||
|
||||
address.draw( # noqa:WPS441
|
||||
radius=radius,
|
||||
color=config.RESTAURANT_COLOR,
|
||||
fill_color=config.RESTAURANT_COLOR,
|
||||
fill_opacity=0.3,
|
||||
tooltip=tooltip,
|
||||
)
|
||||
|
||||
else:
|
||||
address.draw( # noqa:WPS441
|
||||
radius=1, color=config.RESTAURANT_COLOR, tooltip=tooltip,
|
||||
)
|
||||
|
||||
return self.map
|
||||
|
|
231
src/urban_meal_delivery/db/forecasts.py
Normal file
231
src/urban_meal_delivery/db/forecasts.py
Normal file
|
@ -0,0 +1,231 @@
|
|||
"""Provide the ORM's `Forecast` model."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
from typing import List
|
||||
|
||||
import pandas as pd
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy import orm
|
||||
from sqlalchemy.dialects import postgresql
|
||||
|
||||
from urban_meal_delivery.db import meta
|
||||
|
||||
|
||||
class Forecast(meta.Base):
|
||||
"""A demand forecast for a `.pixel` and `.time_step` pair.
|
||||
|
||||
This table is denormalized on purpose to keep things simple. In particular,
|
||||
the `.model` and `.actual` hold redundant values.
|
||||
"""
|
||||
|
||||
__tablename__ = 'forecasts'
|
||||
|
||||
# Columns
|
||||
id = sa.Column(sa.Integer, primary_key=True, autoincrement=True) # noqa:WPS125
|
||||
pixel_id = sa.Column(sa.Integer, nullable=False, index=True)
|
||||
start_at = sa.Column(sa.DateTime, nullable=False)
|
||||
time_step = sa.Column(sa.SmallInteger, nullable=False)
|
||||
train_horizon = sa.Column(sa.SmallInteger, nullable=False)
|
||||
model = sa.Column(sa.Unicode(length=20), nullable=False)
|
||||
# We also store the actual order counts for convenient retrieval.
|
||||
# A `UniqueConstraint` below ensures that redundant values that
|
||||
# are to be expected are consistend across rows.
|
||||
actual = sa.Column(sa.SmallInteger, nullable=False)
|
||||
# Raw `.prediction`s are stored as `float`s (possibly negative).
|
||||
# The rounding is then done on the fly if required.
|
||||
prediction = sa.Column(postgresql.DOUBLE_PRECISION, nullable=False)
|
||||
# The confidence intervals are treated like the `.prediction`s
|
||||
# but they may be nullable as some methods do not calculate them.
|
||||
low80 = sa.Column(postgresql.DOUBLE_PRECISION, nullable=True)
|
||||
high80 = sa.Column(postgresql.DOUBLE_PRECISION, nullable=True)
|
||||
low95 = sa.Column(postgresql.DOUBLE_PRECISION, nullable=True)
|
||||
high95 = sa.Column(postgresql.DOUBLE_PRECISION, nullable=True)
|
||||
|
||||
# Constraints
|
||||
__table_args__ = (
|
||||
sa.ForeignKeyConstraint(
|
||||
['pixel_id'], ['pixels.id'], onupdate='RESTRICT', ondelete='RESTRICT',
|
||||
),
|
||||
sa.CheckConstraint(
|
||||
"""
|
||||
NOT (
|
||||
EXTRACT(HOUR FROM start_at) < 11
|
||||
OR
|
||||
EXTRACT(HOUR FROM start_at) > 22
|
||||
)
|
||||
""",
|
||||
name='start_at_must_be_within_operating_hours',
|
||||
),
|
||||
sa.CheckConstraint(
|
||||
'CAST(EXTRACT(MINUTES FROM start_at) AS INTEGER) % 15 = 0',
|
||||
name='start_at_minutes_must_be_quarters_of_the_hour',
|
||||
),
|
||||
sa.CheckConstraint(
|
||||
'EXTRACT(SECONDS FROM start_at) = 0', name='start_at_allows_no_seconds',
|
||||
),
|
||||
sa.CheckConstraint(
|
||||
'CAST(EXTRACT(MICROSECONDS FROM start_at) AS INTEGER) % 1000000 = 0',
|
||||
name='start_at_allows_no_microseconds',
|
||||
),
|
||||
sa.CheckConstraint('time_step > 0', name='time_step_must_be_positive'),
|
||||
sa.CheckConstraint(
|
||||
'train_horizon > 0', name='training_horizon_must_be_positive',
|
||||
),
|
||||
sa.CheckConstraint('actual >= 0', name='actuals_must_be_non_negative'),
|
||||
sa.CheckConstraint(
|
||||
"""
|
||||
NOT (
|
||||
low80 IS NULL AND high80 IS NOT NULL
|
||||
OR
|
||||
low80 IS NOT NULL AND high80 IS NULL
|
||||
OR
|
||||
low95 IS NULL AND high95 IS NOT NULL
|
||||
OR
|
||||
low95 IS NOT NULL AND high95 IS NULL
|
||||
)
|
||||
""",
|
||||
name='ci_upper_and_lower_bounds',
|
||||
),
|
||||
sa.CheckConstraint(
|
||||
"""
|
||||
NOT (
|
||||
prediction < low80
|
||||
OR
|
||||
prediction < low95
|
||||
OR
|
||||
prediction > high80
|
||||
OR
|
||||
prediction > high95
|
||||
)
|
||||
""",
|
||||
name='prediction_must_be_within_ci',
|
||||
),
|
||||
sa.CheckConstraint(
|
||||
"""
|
||||
NOT (
|
||||
low80 > high80
|
||||
OR
|
||||
low95 > high95
|
||||
)
|
||||
""",
|
||||
name='ci_upper_bound_greater_than_lower_bound',
|
||||
),
|
||||
sa.CheckConstraint(
|
||||
"""
|
||||
NOT (
|
||||
low80 < low95
|
||||
OR
|
||||
high80 > high95
|
||||
)
|
||||
""",
|
||||
name='ci95_must_be_wider_than_ci80',
|
||||
),
|
||||
# There can be only one prediction per forecasting setting.
|
||||
sa.UniqueConstraint(
|
||||
'pixel_id', 'start_at', 'time_step', 'train_horizon', 'model',
|
||||
),
|
||||
)
|
||||
|
||||
# Relationships
|
||||
pixel = orm.relationship('Pixel', back_populates='forecasts')
|
||||
|
||||
def __repr__(self) -> str:
|
||||
"""Non-literal text representation."""
|
||||
return '<{cls}: {prediction} for pixel ({n_x}|{n_y}) at {start_at}>'.format(
|
||||
cls=self.__class__.__name__,
|
||||
prediction=self.prediction,
|
||||
n_x=self.pixel.n_x,
|
||||
n_y=self.pixel.n_y,
|
||||
start_at=self.start_at,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_dataframe( # noqa:WPS210,WPS211
|
||||
cls,
|
||||
pixel: db.Pixel,
|
||||
time_step: int,
|
||||
train_horizon: int,
|
||||
model: str,
|
||||
data: pd.Dataframe,
|
||||
) -> List[db.Forecast]:
|
||||
"""Convert results from the forecasting `*Model`s into `Forecast` objects.
|
||||
|
||||
This is an alternative constructor method.
|
||||
|
||||
Background: The functions in `urban_meal_delivery.forecasts.methods`
|
||||
return `pd.Dataframe`s with "start_at" (i.e., `pd.Timestamp` objects)
|
||||
values in the index and five columns "prediction", "low80", "high80",
|
||||
"low95", and "high95" with `np.float` values. The `*Model.predic()`
|
||||
methods in `urban_meal_delivery.forecasts.models` then add an "actual"
|
||||
column. This constructor converts these results into ORM models.
|
||||
Also, the `np.float` values are cast as plain `float` ones as
|
||||
otherwise SQLAlchemy and the database would complain.
|
||||
|
||||
Args:
|
||||
pixel: in which the forecast is made
|
||||
time_step: length of one time step in minutes
|
||||
train_horizon: length of the training horizon in weeks
|
||||
model: name of the forecasting model
|
||||
data: a `pd.Dataframe` as described above (i.e.,
|
||||
with the six columns holding `float`s)
|
||||
|
||||
Returns:
|
||||
forecasts: the `data` as `Forecast` objects
|
||||
""" # noqa:RST215
|
||||
forecasts = []
|
||||
|
||||
for timestamp_idx in data.index:
|
||||
start_at = timestamp_idx.to_pydatetime()
|
||||
actual = int(data.loc[timestamp_idx, 'actual'])
|
||||
prediction = round(data.loc[timestamp_idx, 'prediction'], 5)
|
||||
|
||||
# Explicit type casting. SQLAlchemy does not convert
|
||||
# `float('NaN')`s into plain `None`s.
|
||||
|
||||
low80 = data.loc[timestamp_idx, 'low80']
|
||||
high80 = data.loc[timestamp_idx, 'high80']
|
||||
low95 = data.loc[timestamp_idx, 'low95']
|
||||
high95 = data.loc[timestamp_idx, 'high95']
|
||||
|
||||
if math.isnan(low80):
|
||||
low80 = None
|
||||
else:
|
||||
low80 = round(low80, 5)
|
||||
|
||||
if math.isnan(high80):
|
||||
high80 = None
|
||||
else:
|
||||
high80 = round(high80, 5)
|
||||
|
||||
if math.isnan(low95):
|
||||
low95 = None
|
||||
else:
|
||||
low95 = round(low95, 5)
|
||||
|
||||
if math.isnan(high95):
|
||||
high95 = None
|
||||
else:
|
||||
high95 = round(high95, 5)
|
||||
|
||||
forecasts.append(
|
||||
cls(
|
||||
pixel=pixel,
|
||||
start_at=start_at,
|
||||
time_step=time_step,
|
||||
train_horizon=train_horizon,
|
||||
model=model,
|
||||
actual=actual,
|
||||
prediction=prediction,
|
||||
low80=low80,
|
||||
high80=high80,
|
||||
low95=low95,
|
||||
high95=high95,
|
||||
),
|
||||
)
|
||||
|
||||
return forecasts
|
||||
|
||||
|
||||
from urban_meal_delivery import db # noqa:E402 isort:skip
|
137
src/urban_meal_delivery/db/grids.py
Normal file
137
src/urban_meal_delivery/db/grids.py
Normal file
|
@ -0,0 +1,137 @@
|
|||
"""Provide the ORM's `Grid` model."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Any
|
||||
|
||||
import folium
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy import orm
|
||||
|
||||
from urban_meal_delivery import db
|
||||
from urban_meal_delivery.db import meta
|
||||
|
||||
|
||||
class Grid(meta.Base):
|
||||
"""A grid of `Pixel`s to partition a `City`.
|
||||
|
||||
A grid is characterized by the uniform size of the `Pixel`s it contains.
|
||||
That is configures via the `Grid.side_length` attribute.
|
||||
"""
|
||||
|
||||
__tablename__ = 'grids'
|
||||
|
||||
# Columns
|
||||
id = sa.Column( # noqa:WPS125
|
||||
sa.SmallInteger, primary_key=True, autoincrement=True,
|
||||
)
|
||||
city_id = sa.Column(sa.SmallInteger, nullable=False)
|
||||
side_length = sa.Column(sa.SmallInteger, nullable=False, unique=True)
|
||||
|
||||
# Constraints
|
||||
__table_args__ = (
|
||||
sa.ForeignKeyConstraint(
|
||||
['city_id'], ['cities.id'], onupdate='RESTRICT', ondelete='RESTRICT',
|
||||
),
|
||||
# Each `Grid`, characterized by its `.side_length`,
|
||||
# may only exists once for a given `.city`.
|
||||
sa.UniqueConstraint('city_id', 'side_length'),
|
||||
# Needed by a `ForeignKeyConstraint` in `address_pixel_association`.
|
||||
sa.UniqueConstraint('id', 'city_id'),
|
||||
)
|
||||
|
||||
# Relationships
|
||||
city = orm.relationship('City', back_populates='grids')
|
||||
pixels = orm.relationship('Pixel', back_populates='grid')
|
||||
|
||||
def __repr__(self) -> str:
|
||||
"""Non-literal text representation."""
|
||||
return '<{cls}: {area} sqr. km>'.format(
|
||||
cls=self.__class__.__name__, area=self.pixel_area,
|
||||
)
|
||||
|
||||
# Convenience properties
|
||||
@property
|
||||
def pixel_area(self) -> float:
|
||||
"""The area of a `Pixel` on the grid in square kilometers."""
|
||||
return round((self.side_length ** 2) / 1_000_000, 1)
|
||||
|
||||
@classmethod
|
||||
def gridify(cls, city: db.City, side_length: int) -> db.Grid: # noqa:WPS210
|
||||
"""Create a fully populated `Grid` for a `city`.
|
||||
|
||||
The `Grid` contains only `Pixel`s that have at least one
|
||||
`Order.pickup_address`. `Address` objects outside the `.city`'s
|
||||
viewport are discarded.
|
||||
|
||||
Args:
|
||||
city: city for which the grid is created
|
||||
side_length: the length of a square `Pixel`'s side
|
||||
|
||||
Returns:
|
||||
grid: including `grid.pixels` with the associated `city.addresses`
|
||||
"""
|
||||
grid = cls(city=city, side_length=side_length)
|
||||
|
||||
# `Pixel`s grouped by `.n_x`-`.n_y` coordinates.
|
||||
pixels = {}
|
||||
|
||||
pickup_addresses = ( # noqa:ECE:001
|
||||
db.session.query(db.Address)
|
||||
.join(db.Order, db.Address.id == db.Order.pickup_address_id)
|
||||
.filter(db.Address.city == city)
|
||||
.all()
|
||||
)
|
||||
|
||||
for address in pickup_addresses:
|
||||
# Check if an `address` is not within the `city`'s viewport, ...
|
||||
not_within_city_viewport = (
|
||||
address.x < 0
|
||||
or address.x > city.total_x
|
||||
or address.y < 0
|
||||
or address.y > city.total_y
|
||||
)
|
||||
# ... and, if so, the `address` does not belong to any `Pixel`.
|
||||
if not_within_city_viewport:
|
||||
continue
|
||||
|
||||
# Determine which `pixel` the `address` belongs to ...
|
||||
n_x, n_y = address.x // side_length, address.y // side_length
|
||||
# ... and create a new `Pixel` object if necessary.
|
||||
if (n_x, n_y) not in pixels:
|
||||
pixels[(n_x, n_y)] = db.Pixel(grid=grid, n_x=n_x, n_y=n_y)
|
||||
pixel = pixels[(n_x, n_y)]
|
||||
|
||||
# Create an association between the `address` and `pixel`.
|
||||
assoc = db.AddressPixelAssociation(address=address, pixel=pixel)
|
||||
pixel.addresses.append(assoc)
|
||||
|
||||
return grid
|
||||
|
||||
def clear_map(self) -> Grid: # pragma: no cover
|
||||
"""Shortcut to the `.city.clear_map()` method.
|
||||
|
||||
Returns:
|
||||
self: enabling method chaining
|
||||
""" # noqa:D402,DAR203
|
||||
self.city.clear_map()
|
||||
return self
|
||||
|
||||
@property # pragma: no cover
|
||||
def map(self) -> folium.Map: # noqa:WPS125
|
||||
"""Shortcut to the `.city.map` object."""
|
||||
return self.city.map
|
||||
|
||||
def draw(self, **kwargs: Any) -> folium.Map: # pragma: no cover
|
||||
"""Draw all pixels in the grid.
|
||||
|
||||
Args:
|
||||
**kwargs: passed on to `Pixel.draw()`
|
||||
|
||||
Returns:
|
||||
`.city.map` for convenience in interactive usage
|
||||
"""
|
||||
for pixel in self.pixels:
|
||||
pixel.draw(**kwargs)
|
||||
|
||||
return self.map
|
|
@ -1,4 +1,4 @@
|
|||
"""Provide the ORM's Order model."""
|
||||
"""Provide the ORM's `Order` model."""
|
||||
|
||||
import datetime
|
||||
|
||||
|
@ -10,14 +10,14 @@ from urban_meal_delivery.db import meta
|
|||
|
||||
|
||||
class Order(meta.Base): # noqa:WPS214
|
||||
"""An Order by a Customer of the UDP."""
|
||||
"""An order by a `Customer` of the UDP."""
|
||||
|
||||
__tablename__ = 'orders'
|
||||
|
||||
# Generic columns
|
||||
id = sa.Column(sa.Integer, primary_key=True, autoincrement=False) # noqa:WPS125
|
||||
_delivery_id = sa.Column('delivery_id', sa.Integer, index=True, unique=True)
|
||||
_customer_id = sa.Column('customer_id', sa.Integer, nullable=False, index=True)
|
||||
customer_id = sa.Column(sa.Integer, nullable=False, index=True)
|
||||
placed_at = sa.Column(sa.DateTime, nullable=False, index=True)
|
||||
ad_hoc = sa.Column(sa.Boolean, nullable=False)
|
||||
scheduled_delivery_at = sa.Column(sa.DateTime, index=True)
|
||||
|
@ -33,9 +33,7 @@ class Order(meta.Base): # noqa:WPS214
|
|||
total = sa.Column(sa.Integer, nullable=False)
|
||||
|
||||
# Restaurant-related columns
|
||||
_restaurant_id = sa.Column(
|
||||
'restaurant_id', sa.SmallInteger, nullable=False, index=True,
|
||||
)
|
||||
restaurant_id = sa.Column(sa.SmallInteger, nullable=False, index=True)
|
||||
restaurant_notified_at = sa.Column(sa.DateTime)
|
||||
restaurant_notified_at_corrected = sa.Column(sa.Boolean, index=True)
|
||||
restaurant_confirmed_at = sa.Column(sa.DateTime)
|
||||
|
@ -45,7 +43,7 @@ class Order(meta.Base): # noqa:WPS214
|
|||
estimated_prep_buffer = sa.Column(sa.Integer, nullable=False, index=True)
|
||||
|
||||
# Dispatch-related columns
|
||||
_courier_id = sa.Column('courier_id', sa.Integer, index=True)
|
||||
courier_id = sa.Column(sa.Integer, index=True)
|
||||
dispatch_at = sa.Column(sa.DateTime)
|
||||
dispatch_at_corrected = sa.Column(sa.Boolean, index=True)
|
||||
courier_notified_at = sa.Column(sa.DateTime)
|
||||
|
@ -55,9 +53,7 @@ class Order(meta.Base): # noqa:WPS214
|
|||
utilization = sa.Column(sa.SmallInteger, nullable=False)
|
||||
|
||||
# Pickup-related columns
|
||||
_pickup_address_id = sa.Column(
|
||||
'pickup_address_id', sa.Integer, nullable=False, index=True,
|
||||
)
|
||||
pickup_address_id = sa.Column(sa.Integer, nullable=False, index=True)
|
||||
reached_pickup_at = sa.Column(sa.DateTime)
|
||||
pickup_at = sa.Column(sa.DateTime)
|
||||
pickup_at_corrected = sa.Column(sa.Boolean, index=True)
|
||||
|
@ -66,9 +62,7 @@ class Order(meta.Base): # noqa:WPS214
|
|||
left_pickup_at_corrected = sa.Column(sa.Boolean, index=True)
|
||||
|
||||
# Delivery-related columns
|
||||
_delivery_address_id = sa.Column(
|
||||
'delivery_address_id', sa.Integer, nullable=False, index=True,
|
||||
)
|
||||
delivery_address_id = sa.Column(sa.Integer, nullable=False, index=True)
|
||||
reached_delivery_at = sa.Column(sa.DateTime)
|
||||
delivery_at = sa.Column(sa.DateTime)
|
||||
delivery_at_corrected = sa.Column(sa.Boolean, index=True)
|
||||
|
@ -85,12 +79,6 @@ class Order(meta.Base): # noqa:WPS214
|
|||
sa.ForeignKeyConstraint(
|
||||
['customer_id'], ['customers.id'], onupdate='RESTRICT', ondelete='RESTRICT',
|
||||
),
|
||||
sa.ForeignKeyConstraint(
|
||||
['restaurant_id'],
|
||||
['restaurants.id'],
|
||||
onupdate='RESTRICT',
|
||||
ondelete='RESTRICT',
|
||||
),
|
||||
sa.ForeignKeyConstraint(
|
||||
['courier_id'], ['couriers.id'], onupdate='RESTRICT', ondelete='RESTRICT',
|
||||
),
|
||||
|
@ -100,6 +88,14 @@ class Order(meta.Base): # noqa:WPS214
|
|||
onupdate='RESTRICT',
|
||||
ondelete='RESTRICT',
|
||||
),
|
||||
sa.ForeignKeyConstraint(
|
||||
# This foreign key ensures that there is only
|
||||
# one `.pickup_address` per `.restaurant`
|
||||
['restaurant_id', 'pickup_address_id'],
|
||||
['restaurants.id', 'restaurants.address_id'],
|
||||
onupdate='RESTRICT',
|
||||
ondelete='RESTRICT',
|
||||
),
|
||||
sa.ForeignKeyConstraint(
|
||||
['delivery_address_id'],
|
||||
['addresses.id'],
|
||||
|
@ -308,29 +304,33 @@ class Order(meta.Base): # noqa:WPS214
|
|||
|
||||
# Relationships
|
||||
customer = orm.relationship('Customer', back_populates='orders')
|
||||
restaurant = orm.relationship('Restaurant', back_populates='orders')
|
||||
restaurant = orm.relationship(
|
||||
'Restaurant',
|
||||
back_populates='orders',
|
||||
primaryjoin='Restaurant.id == Order.restaurant_id',
|
||||
)
|
||||
courier = orm.relationship('Courier', back_populates='orders')
|
||||
pickup_address = orm.relationship(
|
||||
'Address',
|
||||
back_populates='orders_picked_up',
|
||||
foreign_keys='[Order._pickup_address_id]',
|
||||
foreign_keys='[Order.pickup_address_id]',
|
||||
)
|
||||
delivery_address = orm.relationship(
|
||||
'Address',
|
||||
back_populates='orders_delivered',
|
||||
foreign_keys='[Order._delivery_address_id]',
|
||||
foreign_keys='[Order.delivery_address_id]',
|
||||
)
|
||||
|
||||
# Convenience properties
|
||||
|
||||
@property
|
||||
def scheduled(self) -> bool:
|
||||
"""Inverse of Order.ad_hoc."""
|
||||
"""Inverse of `.ad_hoc`."""
|
||||
return not self.ad_hoc
|
||||
|
||||
@property
|
||||
def completed(self) -> bool:
|
||||
"""Inverse of Order.cancelled."""
|
||||
"""Inverse of `.cancelled`."""
|
||||
return not self.cancelled
|
||||
|
||||
@property
|
||||
|
@ -353,9 +353,9 @@ class Order(meta.Base): # noqa:WPS214
|
|||
|
||||
@property
|
||||
def time_to_accept(self) -> datetime.timedelta:
|
||||
"""Time until a courier accepted an order.
|
||||
"""Time until the `.courier` accepted the order.
|
||||
|
||||
This adds the time it took the UDP to notify a courier.
|
||||
This measures the time it took the UDP to notify the `.courier` after dispatch.
|
||||
"""
|
||||
if not self.dispatch_at:
|
||||
raise RuntimeError('dispatch_at is not set')
|
||||
|
@ -365,9 +365,9 @@ class Order(meta.Base): # noqa:WPS214
|
|||
|
||||
@property
|
||||
def time_to_react(self) -> datetime.timedelta:
|
||||
"""Time a courier took to accept an order.
|
||||
"""Time the `.courier` took to accept an order.
|
||||
|
||||
This time is a subset of Order.time_to_accept.
|
||||
A subset of `.time_to_accept`.
|
||||
"""
|
||||
if not self.courier_notified_at:
|
||||
raise RuntimeError('courier_notified_at is not set')
|
||||
|
@ -377,7 +377,7 @@ class Order(meta.Base): # noqa:WPS214
|
|||
|
||||
@property
|
||||
def time_to_pickup(self) -> datetime.timedelta:
|
||||
"""Time from a courier's acceptance to arrival at the pickup location."""
|
||||
"""Time from the `.courier`'s acceptance to arrival at `.pickup_address`."""
|
||||
if not self.courier_accepted_at:
|
||||
raise RuntimeError('courier_accepted_at is not set')
|
||||
if not self.reached_pickup_at:
|
||||
|
@ -386,7 +386,7 @@ class Order(meta.Base): # noqa:WPS214
|
|||
|
||||
@property
|
||||
def time_at_pickup(self) -> datetime.timedelta:
|
||||
"""Time a courier stayed at the pickup location."""
|
||||
"""Time the `.courier` stayed at the `.pickup_address`."""
|
||||
if not self.reached_pickup_at:
|
||||
raise RuntimeError('reached_pickup_at is not set')
|
||||
if not self.pickup_at:
|
||||
|
@ -405,13 +405,13 @@ class Order(meta.Base): # noqa:WPS214
|
|||
|
||||
@property
|
||||
def courier_early(self) -> datetime.timedelta:
|
||||
"""Time by which a courier is early for pickup.
|
||||
"""Time by which the `.courier` is early for pickup.
|
||||
|
||||
Measured relative to Order.scheduled_pickup_at.
|
||||
Measured relative to `.scheduled_pickup_at`.
|
||||
|
||||
0 if the courier is on time or late.
|
||||
`datetime.timedelta(seconds=0)` if the `.courier` is on time or late.
|
||||
|
||||
Goes together with Order.courier_late.
|
||||
Goes together with `.courier_late`.
|
||||
"""
|
||||
return max(
|
||||
datetime.timedelta(), self.scheduled_pickup_at - self.reached_pickup_at,
|
||||
|
@ -419,13 +419,13 @@ class Order(meta.Base): # noqa:WPS214
|
|||
|
||||
@property
|
||||
def courier_late(self) -> datetime.timedelta:
|
||||
"""Time by which a courier is late for pickup.
|
||||
"""Time by which the `.courier` is late for pickup.
|
||||
|
||||
Measured relative to Order.scheduled_pickup_at.
|
||||
Measured relative to `.scheduled_pickup_at`.
|
||||
|
||||
0 if the courier is on time or early.
|
||||
`datetime.timedelta(seconds=0)` if the `.courier` is on time or early.
|
||||
|
||||
Goes together with Order.courier_early.
|
||||
Goes together with `.courier_early`.
|
||||
"""
|
||||
return max(
|
||||
datetime.timedelta(), self.reached_pickup_at - self.scheduled_pickup_at,
|
||||
|
@ -433,31 +433,31 @@ class Order(meta.Base): # noqa:WPS214
|
|||
|
||||
@property
|
||||
def restaurant_early(self) -> datetime.timedelta:
|
||||
"""Time by which a restaurant is early for pickup.
|
||||
"""Time by which the `.restaurant` is early for pickup.
|
||||
|
||||
Measured relative to Order.scheduled_pickup_at.
|
||||
Measured relative to `.scheduled_pickup_at`.
|
||||
|
||||
0 if the restaurant is on time or late.
|
||||
`datetime.timedelta(seconds=0)` if the `.restaurant` is on time or late.
|
||||
|
||||
Goes together with Order.restaurant_late.
|
||||
Goes together with `.restaurant_late`.
|
||||
"""
|
||||
return max(datetime.timedelta(), self.scheduled_pickup_at - self.pickup_at)
|
||||
|
||||
@property
|
||||
def restaurant_late(self) -> datetime.timedelta:
|
||||
"""Time by which a restaurant is late for pickup.
|
||||
"""Time by which the `.restaurant` is late for pickup.
|
||||
|
||||
Measured relative to Order.scheduled_pickup_at.
|
||||
Measured relative to `.scheduled_pickup_at`.
|
||||
|
||||
0 if the restaurant is on time or early.
|
||||
`datetime.timedelta(seconds=0)` if the `.restaurant` is on time or early.
|
||||
|
||||
Goes together with Order.restaurant_early.
|
||||
Goes together with `.restaurant_early`.
|
||||
"""
|
||||
return max(datetime.timedelta(), self.pickup_at - self.scheduled_pickup_at)
|
||||
|
||||
@property
|
||||
def time_to_delivery(self) -> datetime.timedelta:
|
||||
"""Time a courier took from pickup to delivery location."""
|
||||
"""Time the `.courier` took from `.pickup_address` to `.delivery_address`."""
|
||||
if not self.pickup_at:
|
||||
raise RuntimeError('pickup_at is not set')
|
||||
if not self.reached_delivery_at:
|
||||
|
@ -466,7 +466,7 @@ class Order(meta.Base): # noqa:WPS214
|
|||
|
||||
@property
|
||||
def time_at_delivery(self) -> datetime.timedelta:
|
||||
"""Time a courier stayed at the delivery location."""
|
||||
"""Time the `.courier` stayed at the `.delivery_address`."""
|
||||
if not self.reached_delivery_at:
|
||||
raise RuntimeError('reached_delivery_at is not set')
|
||||
if not self.delivery_at:
|
||||
|
@ -475,20 +475,20 @@ class Order(meta.Base): # noqa:WPS214
|
|||
|
||||
@property
|
||||
def courier_waited_at_delivery(self) -> datetime.timedelta:
|
||||
"""Time a courier waited at the delivery location."""
|
||||
"""Time the `.courier` waited at the `.delivery_address`."""
|
||||
if self._courier_waited_at_delivery:
|
||||
return self.time_at_delivery
|
||||
return datetime.timedelta()
|
||||
|
||||
@property
|
||||
def delivery_early(self) -> datetime.timedelta:
|
||||
"""Time by which a scheduled order was early.
|
||||
"""Time by which a `.scheduled` order was early.
|
||||
|
||||
Measured relative to Order.scheduled_delivery_at.
|
||||
Measured relative to `.scheduled_delivery_at`.
|
||||
|
||||
0 if the delivery is on time or late.
|
||||
`datetime.timedelta(seconds=0)` if the delivery is on time or late.
|
||||
|
||||
Goes together with Order.delivery_late.
|
||||
Goes together with `.delivery_late`.
|
||||
"""
|
||||
if not self.scheduled:
|
||||
raise AttributeError('Makes sense only for scheduled orders')
|
||||
|
@ -496,13 +496,13 @@ class Order(meta.Base): # noqa:WPS214
|
|||
|
||||
@property
|
||||
def delivery_late(self) -> datetime.timedelta:
|
||||
"""Time by which a scheduled order was late.
|
||||
"""Time by which a `.scheduled` order was late.
|
||||
|
||||
Measured relative to Order.scheduled_delivery_at.
|
||||
Measured relative to `.scheduled_delivery_at`.
|
||||
|
||||
0 if the delivery is on time or early.
|
||||
`datetime.timedelta(seconds=0)` if the delivery is on time or early.
|
||||
|
||||
Goes together with Order.delivery_early.
|
||||
Goes together with `.delivery_early`.
|
||||
"""
|
||||
if not self.scheduled:
|
||||
raise AttributeError('Makes sense only for scheduled orders')
|
||||
|
@ -510,7 +510,7 @@ class Order(meta.Base): # noqa:WPS214
|
|||
|
||||
@property
|
||||
def total_time(self) -> datetime.timedelta:
|
||||
"""Time from order placement to delivery for an ad-hoc order."""
|
||||
"""Time from order placement to delivery for an `.ad_hoc` order."""
|
||||
if self.scheduled:
|
||||
raise AttributeError('Scheduled orders have no total_time')
|
||||
if self.cancelled:
|
||||
|
|
261
src/urban_meal_delivery/db/pixels.py
Normal file
261
src/urban_meal_delivery/db/pixels.py
Normal file
|
@ -0,0 +1,261 @@
|
|||
"""Provide the ORM's `Pixel` model."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import List
|
||||
|
||||
import folium
|
||||
import sqlalchemy as sa
|
||||
import utm
|
||||
from sqlalchemy import orm
|
||||
|
||||
from urban_meal_delivery import config
|
||||
from urban_meal_delivery import db
|
||||
from urban_meal_delivery.db import meta
|
||||
from urban_meal_delivery.db import utils
|
||||
|
||||
|
||||
class Pixel(meta.Base):
|
||||
"""A pixel in a `Grid`.
|
||||
|
||||
Square pixels aggregate `Address` objects within a `City`.
|
||||
Every `Address` belongs to exactly one `Pixel` in a `Grid`.
|
||||
|
||||
Every `Pixel` has a unique `n_x`-`n_y` coordinate within the `Grid`.
|
||||
"""
|
||||
|
||||
__tablename__ = 'pixels'
|
||||
|
||||
# Columns
|
||||
id = sa.Column(sa.Integer, primary_key=True, autoincrement=True) # noqa:WPS125
|
||||
grid_id = sa.Column(sa.SmallInteger, nullable=False, index=True)
|
||||
n_x = sa.Column(sa.SmallInteger, nullable=False, index=True)
|
||||
n_y = sa.Column(sa.SmallInteger, nullable=False, index=True)
|
||||
|
||||
# Constraints
|
||||
__table_args__ = (
|
||||
sa.ForeignKeyConstraint(
|
||||
['grid_id'], ['grids.id'], onupdate='RESTRICT', ondelete='RESTRICT',
|
||||
),
|
||||
sa.CheckConstraint('0 <= n_x', name='n_x_is_positive'),
|
||||
sa.CheckConstraint('0 <= n_y', name='n_y_is_positive'),
|
||||
# Needed by a `ForeignKeyConstraint` in `AddressPixelAssociation`.
|
||||
sa.UniqueConstraint('id', 'grid_id'),
|
||||
# Each coordinate within the same `grid` is used at most once.
|
||||
sa.UniqueConstraint('grid_id', 'n_x', 'n_y'),
|
||||
)
|
||||
|
||||
# Relationships
|
||||
grid = orm.relationship('Grid', back_populates='pixels')
|
||||
addresses = orm.relationship('AddressPixelAssociation', back_populates='pixel')
|
||||
forecasts = orm.relationship('Forecast', back_populates='pixel')
|
||||
|
||||
def __repr__(self) -> str:
|
||||
"""Non-literal text representation."""
|
||||
return '<{cls}: ({x}|{y})>'.format(
|
||||
cls=self.__class__.__name__, x=self.n_x, y=self.n_y,
|
||||
)
|
||||
|
||||
# Convenience properties
|
||||
|
||||
@property
|
||||
def side_length(self) -> int:
|
||||
"""The length of one side of a pixel in meters."""
|
||||
return self.grid.side_length
|
||||
|
||||
@property
|
||||
def area(self) -> float:
|
||||
"""The area of a pixel in square kilometers."""
|
||||
return self.grid.pixel_area
|
||||
|
||||
@property
|
||||
def northeast(self) -> utils.Location:
|
||||
"""The pixel's northeast corner, relative to `.grid.city.southwest`.
|
||||
|
||||
Implementation detail: This property is cached as none of the
|
||||
underlying attributes to calculate the value are to be changed.
|
||||
"""
|
||||
if not hasattr(self, '_northeast'): # noqa:WPS421 note:d334120e
|
||||
# The origin is the southwest corner of the `.grid.city`'s viewport.
|
||||
easting_origin = self.grid.city.southwest.easting
|
||||
northing_origin = self.grid.city.southwest.northing
|
||||
|
||||
# `+1` as otherwise we get the pixel's `.southwest` corner.
|
||||
easting = easting_origin + ((self.n_x + 1) * self.side_length)
|
||||
northing = northing_origin + ((self.n_y + 1) * self.side_length)
|
||||
zone, band = self.grid.city.southwest.zone_details
|
||||
latitude, longitude = utm.to_latlon(easting, northing, zone, band)
|
||||
|
||||
self._northeast = utils.Location(latitude, longitude)
|
||||
self._northeast.relate_to(self.grid.city.southwest)
|
||||
|
||||
return self._northeast
|
||||
|
||||
@property
|
||||
def southwest(self) -> utils.Location:
|
||||
"""The pixel's northeast corner, relative to `.grid.city.southwest`.
|
||||
|
||||
Implementation detail: This property is cached as none of the
|
||||
underlying attributes to calculate the value are to be changed.
|
||||
"""
|
||||
if not hasattr(self, '_southwest'): # noqa:WPS421 note:d334120e
|
||||
# The origin is the southwest corner of the `.grid.city`'s viewport.
|
||||
easting_origin = self.grid.city.southwest.easting
|
||||
northing_origin = self.grid.city.southwest.northing
|
||||
|
||||
easting = easting_origin + (self.n_x * self.side_length)
|
||||
northing = northing_origin + (self.n_y * self.side_length)
|
||||
zone, band = self.grid.city.southwest.zone_details
|
||||
latitude, longitude = utm.to_latlon(easting, northing, zone, band)
|
||||
|
||||
self._southwest = utils.Location(latitude, longitude)
|
||||
self._southwest.relate_to(self.grid.city.southwest)
|
||||
|
||||
return self._southwest
|
||||
|
||||
@property
|
||||
def restaurants(self) -> List[db.Restaurant]: # pragma: no cover
|
||||
"""Obtain all `Restaurant`s in `self`."""
|
||||
if not hasattr(self, '_restaurants'): # noqa:WPS421 note:d334120e
|
||||
self._restaurants = ( # noqa:ECE001
|
||||
db.session.query(db.Restaurant)
|
||||
.join(
|
||||
db.AddressPixelAssociation,
|
||||
db.Restaurant.address_id == db.AddressPixelAssociation.address_id,
|
||||
)
|
||||
.filter(db.AddressPixelAssociation.pixel_id == self.id)
|
||||
.all()
|
||||
)
|
||||
|
||||
return self._restaurants
|
||||
|
||||
def clear_map(self) -> Pixel: # pragma: no cover
|
||||
"""Shortcut to the `.city.clear_map()` method.
|
||||
|
||||
Returns:
|
||||
self: enabling method chaining
|
||||
""" # noqa:D402,DAR203
|
||||
self.grid.city.clear_map()
|
||||
return self
|
||||
|
||||
@property # pragma: no cover
|
||||
def map(self) -> folium.Map: # noqa:WPS125
|
||||
"""Shortcut to the `.city.map` object."""
|
||||
return self.grid.city.map
|
||||
|
||||
def draw( # noqa:C901,WPS210,WPS231
|
||||
self, restaurants: bool = True, order_counts: bool = False, # pragma: no cover
|
||||
) -> folium.Map:
|
||||
"""Draw the pixel on the `.grid.city.map`.
|
||||
|
||||
Args:
|
||||
restaurants: include the restaurants
|
||||
order_counts: show the number of orders at a restaurant
|
||||
|
||||
Returns:
|
||||
`.grid.city.map` for convenience in interactive usage
|
||||
"""
|
||||
bounds = (
|
||||
(self.southwest.latitude, self.southwest.longitude),
|
||||
(self.northeast.latitude, self.northeast.longitude),
|
||||
)
|
||||
info_text = f'Pixel({self.n_x}|{self.n_y})'
|
||||
|
||||
# Make the `Pixel`s look like a checkerboard.
|
||||
if (self.n_x + self.n_y) % 2:
|
||||
color = '#808000'
|
||||
else:
|
||||
color = '#ff8c00'
|
||||
|
||||
marker = folium.Rectangle(
|
||||
bounds=bounds,
|
||||
color='gray',
|
||||
opacity=0.2,
|
||||
weight=5,
|
||||
fill_color=color,
|
||||
fill_opacity=0.2,
|
||||
popup=info_text,
|
||||
tooltip=info_text,
|
||||
)
|
||||
marker.add_to(self.grid.city.map)
|
||||
|
||||
if restaurants:
|
||||
# Obtain all primary `Address`es in the city that host `Restaurant`s
|
||||
# and are in the `self` `Pixel`.
|
||||
addresses = ( # noqa:ECE001
|
||||
db.session.query(db.Address)
|
||||
.filter(
|
||||
db.Address.id.in_(
|
||||
(
|
||||
db.session.query(db.Address.primary_id)
|
||||
.join(
|
||||
db.Restaurant,
|
||||
db.Address.id == db.Restaurant.address_id,
|
||||
)
|
||||
.join(
|
||||
db.AddressPixelAssociation,
|
||||
db.Address.id == db.AddressPixelAssociation.address_id,
|
||||
)
|
||||
.filter(db.AddressPixelAssociation.pixel_id == self.id)
|
||||
)
|
||||
.distinct()
|
||||
.all(),
|
||||
),
|
||||
)
|
||||
.all()
|
||||
)
|
||||
|
||||
for address in addresses:
|
||||
# Show the restaurant's name if there is only one.
|
||||
# Otherwise, list all the restaurants' ID's.
|
||||
restaurants = ( # noqa:ECE001
|
||||
db.session.query(db.Restaurant)
|
||||
.join(db.Address, db.Restaurant.address_id == db.Address.id)
|
||||
.filter(db.Address.primary_id == address.id)
|
||||
.all()
|
||||
)
|
||||
if len(restaurants) == 1: # type:ignore
|
||||
tooltip = (
|
||||
f'{restaurants[0].name} (#{restaurants[0].id})' # type:ignore
|
||||
)
|
||||
else:
|
||||
tooltip = 'Restaurants ' + ', '.join( # noqa:WPS336
|
||||
f'#{restaurant.id}' for restaurant in restaurants # type:ignore
|
||||
)
|
||||
|
||||
if order_counts:
|
||||
# Calculate the number of orders for ALL restaurants ...
|
||||
n_orders = ( # noqa:ECE001
|
||||
db.session.query(db.Order.id)
|
||||
.join(db.Address, db.Order.pickup_address_id == db.Address.id)
|
||||
.filter(db.Address.primary_id == address.id)
|
||||
.count()
|
||||
)
|
||||
# ... and adjust the size of the red dot on the `.map`.
|
||||
if n_orders >= 1000:
|
||||
radius = 20 # noqa:WPS220
|
||||
elif n_orders >= 500:
|
||||
radius = 15 # noqa:WPS220
|
||||
elif n_orders >= 100:
|
||||
radius = 10 # noqa:WPS220
|
||||
elif n_orders >= 10:
|
||||
radius = 5 # noqa:WPS220
|
||||
else:
|
||||
radius = 1 # noqa:WPS220
|
||||
|
||||
tooltip += f' | n_orders={n_orders}' # noqa:WPS336
|
||||
|
||||
address.draw(
|
||||
radius=radius,
|
||||
color=config.RESTAURANT_COLOR,
|
||||
fill_color=config.RESTAURANT_COLOR,
|
||||
fill_opacity=0.3,
|
||||
tooltip=tooltip,
|
||||
)
|
||||
|
||||
else:
|
||||
address.draw(
|
||||
radius=1, color=config.RESTAURANT_COLOR, tooltip=tooltip,
|
||||
)
|
||||
|
||||
return self.map
|
|
@ -1,15 +1,23 @@
|
|||
"""Provide the ORM's Restaurant model."""
|
||||
"""Provide the ORM's `Restaurant` model."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import folium
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy import orm
|
||||
|
||||
from urban_meal_delivery import config
|
||||
from urban_meal_delivery import db
|
||||
from urban_meal_delivery.db import meta
|
||||
|
||||
|
||||
class Restaurant(meta.Base):
|
||||
"""A Restaurant selling meals on the UDP."""
|
||||
"""A restaurant selling meals on the UDP.
|
||||
|
||||
# pylint:disable=too-few-public-methods
|
||||
In the historic dataset, a `Restaurant` may have changed its `Address`
|
||||
throughout its life time. The ORM model only stores the current one,
|
||||
which in most cases is also the only one.
|
||||
"""
|
||||
|
||||
__tablename__ = 'restaurants'
|
||||
|
||||
|
@ -18,8 +26,8 @@ class Restaurant(meta.Base):
|
|||
sa.SmallInteger, primary_key=True, autoincrement=False,
|
||||
)
|
||||
created_at = sa.Column(sa.DateTime, nullable=False)
|
||||
name = sa.Column(sa.Unicode(length=45), nullable=False) # noqa:WPS432
|
||||
_address_id = sa.Column('address_id', sa.Integer, nullable=False, index=True)
|
||||
name = sa.Column(sa.Unicode(length=45), nullable=False)
|
||||
address_id = sa.Column(sa.Integer, nullable=False, index=True)
|
||||
estimated_prep_duration = sa.Column(sa.SmallInteger, nullable=False)
|
||||
|
||||
# Constraints
|
||||
|
@ -31,12 +39,103 @@ class Restaurant(meta.Base):
|
|||
'0 <= estimated_prep_duration AND estimated_prep_duration <= 2400',
|
||||
name='realistic_estimated_prep_duration',
|
||||
),
|
||||
# Needed by a `ForeignKeyConstraint` in `Order`.
|
||||
sa.UniqueConstraint('id', 'address_id'),
|
||||
)
|
||||
|
||||
# Relationships
|
||||
address = orm.relationship('Address', back_populates='restaurant')
|
||||
address = orm.relationship('Address', back_populates='restaurants')
|
||||
orders = orm.relationship('Order', back_populates='restaurant')
|
||||
|
||||
def __repr__(self) -> str:
|
||||
"""Non-literal text representation."""
|
||||
return '<{cls}({name})>'.format(cls=self.__class__.__name__, name=self.name)
|
||||
|
||||
def clear_map(self) -> Restaurant: # pragma: no cover
|
||||
"""Shortcut to the `.address.city.clear_map()` method.
|
||||
|
||||
Returns:
|
||||
self: enabling method chaining
|
||||
""" # noqa:D402,DAR203
|
||||
self.address.city.clear_map()
|
||||
return self
|
||||
|
||||
@property # pragma: no cover
|
||||
def map(self) -> folium.Map: # noqa:WPS125
|
||||
"""Shortcut to the `.address.city.map` object."""
|
||||
return self.address.city.map
|
||||
|
||||
def draw( # noqa:WPS231
|
||||
self, customers: bool = True, order_counts: bool = False, # pragma: no cover
|
||||
) -> folium.Map:
|
||||
"""Draw the restaurant on the `.address.city.map`.
|
||||
|
||||
By default, the restaurant's delivery locations are also shown.
|
||||
|
||||
Args:
|
||||
customers: show the restaurant's delivery locations
|
||||
order_counts: show the number of orders at the delivery locations;
|
||||
only useful if `customers=True`
|
||||
|
||||
Returns:
|
||||
`.address.city.map` for convenience in interactive usage
|
||||
"""
|
||||
if customers:
|
||||
# Obtain all primary `Address`es in the city that
|
||||
# received at least one delivery from `self`.
|
||||
delivery_addresses = ( # noqa:ECE001
|
||||
db.session.query(db.Address)
|
||||
.filter(
|
||||
db.Address.id.in_(
|
||||
db.session.query(db.Address.primary_id) # noqa:WPS221
|
||||
.join(db.Order, db.Address.id == db.Order.delivery_address_id)
|
||||
.filter(db.Order.restaurant_id == self.id)
|
||||
.distinct()
|
||||
.all(),
|
||||
),
|
||||
)
|
||||
.all()
|
||||
)
|
||||
|
||||
for address in delivery_addresses:
|
||||
if order_counts:
|
||||
n_orders = ( # noqa:ECE001
|
||||
db.session.query(db.Order)
|
||||
.join(db.Address, db.Order.delivery_address_id == db.Address.id)
|
||||
.filter(db.Order.restaurant_id == self.id)
|
||||
.filter(db.Address.primary_id == address.id)
|
||||
.count()
|
||||
)
|
||||
if n_orders >= 25:
|
||||
radius = 20 # noqa:WPS220
|
||||
elif n_orders >= 10:
|
||||
radius = 15 # noqa:WPS220
|
||||
elif n_orders >= 5:
|
||||
radius = 10 # noqa:WPS220
|
||||
elif n_orders > 1:
|
||||
radius = 5 # noqa:WPS220
|
||||
else:
|
||||
radius = 1 # noqa:WPS220
|
||||
|
||||
address.draw(
|
||||
radius=radius,
|
||||
color=config.CUSTOMER_COLOR,
|
||||
fill_color=config.CUSTOMER_COLOR,
|
||||
fill_opacity=0.3,
|
||||
tooltip=f'n_orders={n_orders}',
|
||||
)
|
||||
|
||||
else:
|
||||
address.draw(
|
||||
radius=1, color=config.CUSTOMER_COLOR,
|
||||
)
|
||||
|
||||
self.address.draw(
|
||||
radius=20,
|
||||
color=config.RESTAURANT_COLOR,
|
||||
fill_color=config.RESTAURANT_COLOR,
|
||||
fill_opacity=0.3,
|
||||
tooltip=f'{self.name} (#{self.id}) | n_orders={len(self.orders)}',
|
||||
)
|
||||
|
||||
return self.map
|
||||
|
|
5
src/urban_meal_delivery/db/utils/__init__.py
Normal file
5
src/urban_meal_delivery/db/utils/__init__.py
Normal file
|
@ -0,0 +1,5 @@
|
|||
"""Utilities used by the ORM models."""
|
||||
|
||||
from urban_meal_delivery.db.utils.colors import make_random_cmap
|
||||
from urban_meal_delivery.db.utils.colors import rgb_to_hex
|
||||
from urban_meal_delivery.db.utils.locations import Location
|
69
src/urban_meal_delivery/db/utils/colors.py
Normal file
69
src/urban_meal_delivery/db/utils/colors.py
Normal file
|
@ -0,0 +1,69 @@
|
|||
"""Utilities for drawing maps with `folium`."""
|
||||
|
||||
import colorsys
|
||||
|
||||
import numpy as np
|
||||
from matplotlib import colors
|
||||
|
||||
|
||||
def make_random_cmap(
|
||||
n_colors: int, bright: bool = True, # pragma: no cover
|
||||
) -> colors.LinearSegmentedColormap:
|
||||
"""Create a random `Colormap` with `n_colors` different colors.
|
||||
|
||||
Args:
|
||||
n_colors: number of of different colors; size of `Colormap`
|
||||
bright: `True` for strong colors, `False` for pastel colors
|
||||
|
||||
Returns:
|
||||
colormap
|
||||
"""
|
||||
np.random.seed(42)
|
||||
|
||||
if bright:
|
||||
hsv_colors = [
|
||||
(
|
||||
np.random.uniform(low=0.0, high=1),
|
||||
np.random.uniform(low=0.2, high=1),
|
||||
np.random.uniform(low=0.9, high=1),
|
||||
)
|
||||
for _ in range(n_colors)
|
||||
]
|
||||
|
||||
rgb_colors = []
|
||||
for color in hsv_colors:
|
||||
rgb_colors.append(colorsys.hsv_to_rgb(*color))
|
||||
|
||||
else:
|
||||
low = 0.0
|
||||
high = 0.66
|
||||
|
||||
rgb_colors = [
|
||||
(
|
||||
np.random.uniform(low=low, high=high),
|
||||
np.random.uniform(low=low, high=high),
|
||||
np.random.uniform(low=low, high=high),
|
||||
)
|
||||
for _ in range(n_colors)
|
||||
]
|
||||
|
||||
return colors.LinearSegmentedColormap.from_list(
|
||||
'random_color_map', rgb_colors, N=n_colors,
|
||||
)
|
||||
|
||||
|
||||
def rgb_to_hex(*args: float) -> str: # pragma: no cover
|
||||
"""Convert RGB colors into hexadecimal notation.
|
||||
|
||||
Args:
|
||||
*args: percentages (0% - 100%) for the RGB channels
|
||||
|
||||
Returns:
|
||||
hexadecimal_representation
|
||||
"""
|
||||
red, green, blue = (
|
||||
int(255 * args[0]),
|
||||
int(255 * args[1]),
|
||||
int(255 * args[2]),
|
||||
)
|
||||
return f'#{red:02x}{green:02x}{blue:02x}' # noqa:WPS221
|
142
src/urban_meal_delivery/db/utils/locations.py
Normal file
142
src/urban_meal_delivery/db/utils/locations.py
Normal file
|
@ -0,0 +1,142 @@
|
|||
"""A `Location` class to unify working with coordinates."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import utm
|
||||
|
||||
|
||||
class Location:
|
||||
"""A location represented in WGS84 and UTM coordinates.
|
||||
|
||||
WGS84:
|
||||
- "conventional" system with latitude-longitude pairs
|
||||
- assumes earth is a sphere and models the location in 3D
|
||||
|
||||
UTM:
|
||||
- the Universal Transverse Mercator sytem
|
||||
- projects WGS84 coordinates onto a 2D map
|
||||
- can be used for visualizations and calculations directly
|
||||
- distances are in meters
|
||||
|
||||
Further info how WGS84 and UTM are related:
|
||||
https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system
|
||||
"""
|
||||
|
||||
def __init__(self, latitude: float, longitude: float) -> None:
|
||||
"""Create a location from a WGS84-conforming `latitude`-`longitude` pair."""
|
||||
# The SQLAlchemy columns come as `Decimal`s due to the `DOUBLE_PRECISION`.
|
||||
self._latitude = float(latitude)
|
||||
self._longitude = float(longitude)
|
||||
|
||||
easting, northing, zone, band = utm.from_latlon(self._latitude, self._longitude)
|
||||
|
||||
# `.easting` and `.northing` as `int`s are precise enough.
|
||||
self._easting = int(easting)
|
||||
self._northing = int(northing)
|
||||
self._zone = zone
|
||||
self._band = band.upper()
|
||||
|
||||
self._normalized_easting: Optional[int] = None
|
||||
self._normalized_northing: Optional[int] = None
|
||||
|
||||
def __repr__(self) -> str:
|
||||
"""A non-literal text representation in the UTM system.
|
||||
|
||||
Convention is {ZONE} {EASTING} {NORTHING}.
|
||||
|
||||
Example:
|
||||
`<Location: 17T 630084 4833438>'`
|
||||
"""
|
||||
return f'<Location: {self.zone} {self.easting} {self.northing}>' # noqa:WPS221
|
||||
|
||||
@property
|
||||
def latitude(self) -> float:
|
||||
"""The latitude of the location in degrees (WGS84).
|
||||
|
||||
Between -90 and +90 degrees.
|
||||
"""
|
||||
return self._latitude
|
||||
|
||||
@property
|
||||
def longitude(self) -> float:
|
||||
"""The longitude of the location in degrees (WGS84).
|
||||
|
||||
Between -180 and +180 degrees.
|
||||
"""
|
||||
return self._longitude
|
||||
|
||||
@property
|
||||
def easting(self) -> int:
|
||||
"""The easting of the location in meters (UTM)."""
|
||||
return self._easting
|
||||
|
||||
@property
|
||||
def northing(self) -> int:
|
||||
"""The northing of the location in meters (UTM)."""
|
||||
return self._northing
|
||||
|
||||
@property
|
||||
def zone(self) -> str:
|
||||
"""The UTM zone of the location."""
|
||||
return f'{self._zone}{self._band}'
|
||||
|
||||
@property
|
||||
def zone_details(self) -> Tuple[int, str]:
|
||||
"""The UTM zone of the location as the zone number and the band."""
|
||||
return (self._zone, self._band)
|
||||
|
||||
def __eq__(self, other: object) -> bool:
|
||||
"""Check if two `Location` objects are the same location."""
|
||||
if not isinstance(other, Location):
|
||||
return NotImplemented
|
||||
|
||||
if self.zone != other.zone:
|
||||
raise ValueError('locations must be in the same zone, including the band')
|
||||
|
||||
return (self.easting, self.northing) == (other.easting, other.northing)
|
||||
|
||||
@property
|
||||
def x(self) -> int: # noqa:WPS111
|
||||
"""The `.easting` of the location in meters, relative to some origin.
|
||||
|
||||
The origin, which defines the `(0, 0)` coordinate, is set with `.relate_to()`.
|
||||
"""
|
||||
if self._normalized_easting is None:
|
||||
raise RuntimeError('an origin to relate to must be set first')
|
||||
|
||||
return self._normalized_easting
|
||||
|
||||
@property
|
||||
def y(self) -> int: # noqa:WPS111
|
||||
"""The `.northing` of the location in meters, relative to some origin.
|
||||
|
||||
The origin, which defines the `(0, 0)` coordinate, is set with `.relate_to()`.
|
||||
"""
|
||||
if self._normalized_northing is None:
|
||||
raise RuntimeError('an origin to relate to must be set first')
|
||||
|
||||
return self._normalized_northing
|
||||
|
||||
def relate_to(self, other: Location) -> None:
|
||||
"""Make the origin in the lower-left corner relative to `other`.
|
||||
|
||||
The `.x` and `.y` properties are the `.easting` and `.northing` values
|
||||
of `self` minus the ones from `other`. So, `.x` and `.y` make up a
|
||||
Cartesian coordinate system where the `other` origin is `(0, 0)`.
|
||||
|
||||
To prevent semantic errors in calculations based on the `.x` and `.y`
|
||||
properties, the `other` origin may only be set once!
|
||||
"""
|
||||
if self._normalized_easting is not None:
|
||||
raise RuntimeError('the `other` origin may only be set once')
|
||||
|
||||
if not isinstance(other, Location):
|
||||
raise TypeError('`other` is not a `Location` object')
|
||||
|
||||
if self.zone != other.zone:
|
||||
raise ValueError('`other` must be in the same zone, including the band')
|
||||
|
||||
self._normalized_easting = self.easting - other.easting
|
||||
self._normalized_northing = self.northing - other.northing
|
29
src/urban_meal_delivery/forecasts/__init__.py
Normal file
29
src/urban_meal_delivery/forecasts/__init__.py
Normal file
|
@ -0,0 +1,29 @@
|
|||
"""Demand forecasting utilities.
|
||||
|
||||
This sub-package is divided into further sub-packages and modules as follows:
|
||||
|
||||
`methods` contains various time series related statistical methods, implemented
|
||||
as plain `function` objects that are used to predict into the future given a
|
||||
time series of historic order counts. The methods are context-agnostic, meaning
|
||||
that they only take and return `pd.Series/DataFrame`s holding numbers and
|
||||
are not concerned with how these numbers were generated or what they mean.
|
||||
Some functions, like `arima.predict()` or `ets.predict()` wrap functions called
|
||||
in R using the `rpy2` library. Others, like `extrapolate_season.predict()`, are
|
||||
written in plain Python.
|
||||
|
||||
`timify` defines an `OrderHistory` class that abstracts away the communication
|
||||
with the database and provides `pd.Series` objects with the order counts that
|
||||
are fed into the `methods`. In particular, it uses SQL statements behind the
|
||||
scenes to calculate the historic order counts on a per-`Pixel` level. Once the
|
||||
data is loaded from the database, an `OrderHistory` instance provides various
|
||||
ways to slice out, or generate, different kinds of order time series (e.g.,
|
||||
"horizontal" vs. "vertical" time series).
|
||||
|
||||
`models` defines various forecasting `*Model`s that combine a given kind of
|
||||
time series with one of the forecasting `methods`. For example, the ETS method
|
||||
applied to a horizontal time series is implemented in the `HorizontalETSModel`.
|
||||
"""
|
||||
|
||||
from urban_meal_delivery.forecasts import methods
|
||||
from urban_meal_delivery.forecasts import models
|
||||
from urban_meal_delivery.forecasts import timify
|
6
src/urban_meal_delivery/forecasts/methods/__init__.py
Normal file
6
src/urban_meal_delivery/forecasts/methods/__init__.py
Normal file
|
@ -0,0 +1,6 @@
|
|||
"""Various forecasting methods implemented as functions."""
|
||||
|
||||
from urban_meal_delivery.forecasts.methods import arima
|
||||
from urban_meal_delivery.forecasts.methods import decomposition
|
||||
from urban_meal_delivery.forecasts.methods import ets
|
||||
from urban_meal_delivery.forecasts.methods import extrapolate_season
|
76
src/urban_meal_delivery/forecasts/methods/arima.py
Normal file
76
src/urban_meal_delivery/forecasts/methods/arima.py
Normal file
|
@ -0,0 +1,76 @@
|
|||
"""A wrapper around R's "auto.arima" function."""
|
||||
|
||||
import pandas as pd
|
||||
from rpy2 import robjects
|
||||
from rpy2.robjects import pandas2ri
|
||||
|
||||
|
||||
def predict(
|
||||
training_ts: pd.Series,
|
||||
forecast_interval: pd.DatetimeIndex,
|
||||
*,
|
||||
frequency: int,
|
||||
seasonal_fit: bool = False,
|
||||
) -> pd.DataFrame:
|
||||
"""Predict with an automatically chosen ARIMA model.
|
||||
|
||||
Note: The function does not check if the `forecast_interval`
|
||||
extends the `training_ts`'s interval without a gap!
|
||||
|
||||
Args:
|
||||
training_ts: past observations to be fitted
|
||||
forecast_interval: interval into which the `training_ts` is forecast;
|
||||
its length becomes the step size `h` in the forecasting model in R
|
||||
frequency: frequency of the observations in the `training_ts`
|
||||
seasonal_fit: if a seasonal ARIMA model should be fitted
|
||||
|
||||
Returns:
|
||||
predictions: point forecasts (i.e., the "prediction" column) and
|
||||
confidence intervals (i.e, the four "low/high80/95" columns)
|
||||
|
||||
Raises:
|
||||
ValueError: if `training_ts` contains `NaN` values
|
||||
"""
|
||||
# Initialize R only if necessary as it is tested only in nox's
|
||||
# "ci-tests-slow" session and "ci-tests-fast" should not fail.
|
||||
from urban_meal_delivery import init_r # noqa:F401,WPS433
|
||||
|
||||
# Re-seed R every time it is used to ensure reproducibility.
|
||||
robjects.r('set.seed(42)')
|
||||
|
||||
if training_ts.isnull().any():
|
||||
raise ValueError('`training_ts` must not contain `NaN` values')
|
||||
|
||||
# Copy the data from Python to R.
|
||||
robjects.globalenv['data'] = robjects.r['ts'](
|
||||
pandas2ri.py2rpy(training_ts), frequency=frequency,
|
||||
)
|
||||
|
||||
seasonal = 'TRUE' if bool(seasonal_fit) else 'FALSE'
|
||||
n_steps_ahead = len(forecast_interval)
|
||||
|
||||
# Make the predictions in R.
|
||||
result = robjects.r(
|
||||
f"""
|
||||
as.data.frame(
|
||||
forecast(
|
||||
auto.arima(data, approximation = TRUE, seasonal = {seasonal:s}),
|
||||
h = {n_steps_ahead:d}
|
||||
)
|
||||
)
|
||||
""",
|
||||
)
|
||||
|
||||
# Convert the results into a nice `pd.DataFrame` with the right `.index`.
|
||||
forecasts = pandas2ri.rpy2py(result)
|
||||
forecasts.index = forecast_interval
|
||||
|
||||
return forecasts.round(5).rename(
|
||||
columns={
|
||||
'Point Forecast': 'prediction',
|
||||
'Lo 80': 'low80',
|
||||
'Hi 80': 'high80',
|
||||
'Lo 95': 'low95',
|
||||
'Hi 95': 'high95',
|
||||
},
|
||||
)
|
181
src/urban_meal_delivery/forecasts/methods/decomposition.py
Normal file
181
src/urban_meal_delivery/forecasts/methods/decomposition.py
Normal file
|
@ -0,0 +1,181 @@
|
|||
"""Seasonal-trend decomposition procedure based on LOESS (STL).
|
||||
|
||||
This module defines a `stl()` function that wraps R's STL decomposition function
|
||||
using the `rpy2` library.
|
||||
"""
|
||||
|
||||
import math
|
||||
|
||||
import pandas as pd
|
||||
from rpy2 import robjects
|
||||
from rpy2.robjects import pandas2ri
|
||||
|
||||
|
||||
def stl( # noqa:C901,WPS210,WPS211,WPS231
|
||||
time_series: pd.Series,
|
||||
*,
|
||||
frequency: int,
|
||||
ns: int,
|
||||
nt: int = None,
|
||||
nl: int = None,
|
||||
ds: int = 0,
|
||||
dt: int = 1,
|
||||
dl: int = 1,
|
||||
js: int = None,
|
||||
jt: int = None,
|
||||
jl: int = None,
|
||||
ni: int = 2,
|
||||
no: int = 0, # noqa:WPS110
|
||||
) -> pd.DataFrame:
|
||||
"""Decompose a time series into seasonal, trend, and residual components.
|
||||
|
||||
This is a Python wrapper around the corresponding R function.
|
||||
|
||||
Further info on the STL method:
|
||||
https://www.nniiem.ru/file/news/2016/stl-statistical-model.pdf
|
||||
https://otexts.com/fpp2/stl.html
|
||||
|
||||
Further info on the R's "stl" function:
|
||||
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/stl
|
||||
|
||||
Args:
|
||||
time_series: time series with a `DateTime` based index;
|
||||
must not contain `NaN` values
|
||||
frequency: frequency of the observations in the `time_series`
|
||||
ns: smoothing parameter for the seasonal component
|
||||
(= window size of the seasonal smoother);
|
||||
must be odd and `>= 7` so that the seasonal component is smooth;
|
||||
the greater `ns`, the smoother the seasonal component;
|
||||
so, this is a hyper-parameter optimized in accordance with the application
|
||||
nt: smoothing parameter for the trend component
|
||||
(= window size of the trend smoother);
|
||||
must be odd and `>= (1.5 * frequency) / [1 - (1.5 / ns)]`;
|
||||
the latter threshold is the default value;
|
||||
the greater `nt`, the smoother the trend component
|
||||
nl: smoothing parameter for the low-pass filter;
|
||||
must be odd and `>= frequency`;
|
||||
the least odd number `>= frequency` is the default
|
||||
ds: degree of locally fitted polynomial in seasonal smoothing;
|
||||
must be `0` or `1`
|
||||
dt: degree of locally fitted polynomial in trend smoothing;
|
||||
must be `0` or `1`
|
||||
dl: degree of locally fitted polynomial in low-pass smoothing;
|
||||
must be `0` or `1`
|
||||
js: number of steps by which the seasonal smoother skips ahead
|
||||
and then linearly interpolates between observations;
|
||||
if set to `1`, the smoother is evaluated at all points;
|
||||
to make the STL decomposition faster, increase this value;
|
||||
by default, `js` is the smallest integer `>= 0.1 * ns`
|
||||
jt: number of steps by which the trend smoother skips ahead
|
||||
and then linearly interpolates between observations;
|
||||
if set to `1`, the smoother is evaluated at all points;
|
||||
to make the STL decomposition faster, increase this value;
|
||||
by default, `jt` is the smallest integer `>= 0.1 * nt`
|
||||
jl: number of steps by which the low-pass smoother skips ahead
|
||||
and then linearly interpolates between observations;
|
||||
if set to `1`, the smoother is evaluated at all points;
|
||||
to make the STL decomposition faster, increase this value;
|
||||
by default, `jl` is the smallest integer `>= 0.1 * nl`
|
||||
ni: number of iterations of the inner loop that updates the
|
||||
seasonal and trend components;
|
||||
usually, a low value (e.g., `2`) suffices
|
||||
no: number of iterations of the outer loop that handles outliers;
|
||||
also known as the "robustness" loop;
|
||||
if no outliers need to be handled, set `no=0`;
|
||||
otherwise, `no=5` or `no=10` combined with `ni=1` is a good choice
|
||||
|
||||
Returns:
|
||||
result: a DataFrame with three columns ("seasonal", "trend", and "residual")
|
||||
providing time series of the individual components
|
||||
|
||||
Raises:
|
||||
ValueError: some argument does not adhere to the specifications above
|
||||
"""
|
||||
# Validate all arguments and set default values.
|
||||
|
||||
if time_series.isnull().any():
|
||||
raise ValueError('`time_series` must not contain `NaN` values')
|
||||
|
||||
if ns % 2 == 0 or ns < 7:
|
||||
raise ValueError('`ns` must be odd and `>= 7`')
|
||||
|
||||
default_nt = math.ceil((1.5 * frequency) / (1 - (1.5 / ns)))
|
||||
if nt is not None:
|
||||
if nt % 2 == 0 or nt < default_nt:
|
||||
raise ValueError(
|
||||
'`nt` must be odd and `>= (1.5 * frequency) / [1 - (1.5 / ns)]`, '
|
||||
+ 'which is {0}'.format(default_nt),
|
||||
)
|
||||
else:
|
||||
nt = default_nt
|
||||
if nt % 2 == 0: # pragma: no cover => hard to construct edge case
|
||||
nt += 1
|
||||
|
||||
if nl is not None:
|
||||
if nl % 2 == 0 or nl < frequency:
|
||||
raise ValueError('`nl` must be odd and `>= frequency`')
|
||||
elif frequency % 2 == 0:
|
||||
nl = frequency + 1
|
||||
else: # pragma: no cover => hard to construct edge case
|
||||
nl = frequency
|
||||
|
||||
if ds not in {0, 1}:
|
||||
raise ValueError('`ds` must be either `0` or `1`')
|
||||
if dt not in {0, 1}:
|
||||
raise ValueError('`dt` must be either `0` or `1`')
|
||||
if dl not in {0, 1}:
|
||||
raise ValueError('`dl` must be either `0` or `1`')
|
||||
|
||||
if js is not None:
|
||||
if js <= 0:
|
||||
raise ValueError('`js` must be positive')
|
||||
else:
|
||||
js = math.ceil(ns / 10)
|
||||
|
||||
if jt is not None:
|
||||
if jt <= 0:
|
||||
raise ValueError('`jt` must be positive')
|
||||
else:
|
||||
jt = math.ceil(nt / 10)
|
||||
|
||||
if jl is not None:
|
||||
if jl <= 0:
|
||||
raise ValueError('`jl` must be positive')
|
||||
else:
|
||||
jl = math.ceil(nl / 10)
|
||||
|
||||
if ni <= 0:
|
||||
raise ValueError('`ni` must be positive')
|
||||
|
||||
if no < 0:
|
||||
raise ValueError('`no` must be non-negative')
|
||||
elif no > 0:
|
||||
robust = True
|
||||
else:
|
||||
robust = False
|
||||
|
||||
# Initialize R only if necessary as it is tested only in nox's
|
||||
# "ci-tests-slow" session and "ci-tests-fast" should not fail.
|
||||
from urban_meal_delivery import init_r # noqa:F401,WPS433
|
||||
|
||||
# Re-seed R every time it is used to ensure reproducibility.
|
||||
robjects.r('set.seed(42)')
|
||||
|
||||
# Call the STL function in R.
|
||||
ts = robjects.r['ts'](pandas2ri.py2rpy(time_series), frequency=frequency)
|
||||
result = robjects.r['stl'](
|
||||
ts, ns, ds, nt, dt, nl, dl, js, jt, jl, robust, ni, no, # noqa:WPS221
|
||||
)
|
||||
|
||||
# Unpack the result to a `pd.DataFrame`.
|
||||
result = pandas2ri.rpy2py(result[0])
|
||||
result = pd.DataFrame(
|
||||
data={
|
||||
'seasonal': result[:, 0],
|
||||
'trend': result[:, 1],
|
||||
'residual': result[:, 2],
|
||||
},
|
||||
index=time_series.index,
|
||||
)
|
||||
|
||||
return result.round(5)
|
77
src/urban_meal_delivery/forecasts/methods/ets.py
Normal file
77
src/urban_meal_delivery/forecasts/methods/ets.py
Normal file
|
@ -0,0 +1,77 @@
|
|||
"""A wrapper around R's "ets" function."""
|
||||
|
||||
import pandas as pd
|
||||
from rpy2 import robjects
|
||||
from rpy2.robjects import pandas2ri
|
||||
|
||||
|
||||
def predict(
|
||||
training_ts: pd.Series,
|
||||
forecast_interval: pd.DatetimeIndex,
|
||||
*,
|
||||
frequency: int,
|
||||
seasonal_fit: bool = False,
|
||||
) -> pd.DataFrame:
|
||||
"""Predict with an automatically calibrated ETS model.
|
||||
|
||||
Note: The function does not check if the `forecast_interval`
|
||||
extends the `training_ts`'s interval without a gap!
|
||||
|
||||
Args:
|
||||
training_ts: past observations to be fitted
|
||||
forecast_interval: interval into which the `training_ts` is forecast;
|
||||
its length becomes the step size `h` in the forecasting model in R
|
||||
frequency: frequency of the observations in the `training_ts`
|
||||
seasonal_fit: if a "ZZZ" (seasonal) or a "ZZN" (non-seasonal)
|
||||
type ETS model should be fitted
|
||||
|
||||
Returns:
|
||||
predictions: point forecasts (i.e., the "prediction" column) and
|
||||
confidence intervals (i.e, the four "low/high80/95" columns)
|
||||
|
||||
Raises:
|
||||
ValueError: if `training_ts` contains `NaN` values
|
||||
"""
|
||||
# Initialize R only if necessary as it is tested only in nox's
|
||||
# "ci-tests-slow" session and "ci-tests-fast" should not fail.
|
||||
from urban_meal_delivery import init_r # noqa:F401,WPS433
|
||||
|
||||
# Re-seed R every time it is used to ensure reproducibility.
|
||||
robjects.r('set.seed(42)')
|
||||
|
||||
if training_ts.isnull().any():
|
||||
raise ValueError('`training_ts` must not contain `NaN` values')
|
||||
|
||||
# Copy the data from Python to R.
|
||||
robjects.globalenv['data'] = robjects.r['ts'](
|
||||
pandas2ri.py2rpy(training_ts), frequency=frequency,
|
||||
)
|
||||
|
||||
model = 'ZZZ' if bool(seasonal_fit) else 'ZZN'
|
||||
n_steps_ahead = len(forecast_interval)
|
||||
|
||||
# Make the predictions in R.
|
||||
result = robjects.r(
|
||||
f"""
|
||||
as.data.frame(
|
||||
forecast(
|
||||
ets(data, model = "{model:s}"),
|
||||
h = {n_steps_ahead:d}
|
||||
)
|
||||
)
|
||||
""",
|
||||
)
|
||||
|
||||
# Convert the results into a nice `pd.DataFrame` with the right `.index`.
|
||||
forecasts = pandas2ri.rpy2py(result)
|
||||
forecasts.index = forecast_interval
|
||||
|
||||
return forecasts.round(5).rename(
|
||||
columns={
|
||||
'Point Forecast': 'prediction',
|
||||
'Lo 80': 'low80',
|
||||
'Hi 80': 'high80',
|
||||
'Lo 95': 'low95',
|
||||
'Hi 95': 'high95',
|
||||
},
|
||||
)
|
|
@ -0,0 +1,72 @@
|
|||
"""Forecast by linear extrapolation of a seasonal component."""
|
||||
|
||||
import pandas as pd
|
||||
from statsmodels.tsa import api as ts_stats
|
||||
|
||||
|
||||
def predict(
|
||||
training_ts: pd.Series, forecast_interval: pd.DatetimeIndex, *, frequency: int,
|
||||
) -> pd.DataFrame:
|
||||
"""Extrapolate a seasonal component with a linear model.
|
||||
|
||||
A naive forecast for each time unit of the day is calculated by linear
|
||||
extrapolation from all observations of the same time of day and on the same
|
||||
day of the week (i.e., same seasonal lag).
|
||||
|
||||
Note: The function does not check if the `forecast_interval`
|
||||
extends the `training_ts`'s interval without a gap!
|
||||
|
||||
Args:
|
||||
training_ts: past observations to be fitted;
|
||||
assumed to be a seasonal component after time series decomposition
|
||||
forecast_interval: interval into which the `training_ts` is forecast;
|
||||
its length becomes the numbers of time steps to be forecast
|
||||
frequency: frequency of the observations in the `training_ts`
|
||||
|
||||
Returns:
|
||||
predictions: point forecasts (i.e., the "prediction" column);
|
||||
includes the four "low/high80/95" columns for the confidence intervals
|
||||
that only contain `NaN` values as this method does not make
|
||||
any statistical assumptions about the time series process
|
||||
|
||||
Raises:
|
||||
ValueError: if `training_ts` contains `NaN` values or some predictions
|
||||
could not be made for time steps in the `forecast_interval`
|
||||
"""
|
||||
if training_ts.isnull().any():
|
||||
raise ValueError('`training_ts` must not contain `NaN` values')
|
||||
|
||||
extrapolated_ts = pd.Series(index=forecast_interval, dtype=float)
|
||||
seasonal_lag = frequency * (training_ts.index[1] - training_ts.index[0])
|
||||
|
||||
for lag in range(frequency):
|
||||
# Obtain all `observations` of the same seasonal lag and
|
||||
# fit a straight line through them (= `trend`).
|
||||
observations = training_ts[slice(lag, 999_999_999, frequency)]
|
||||
trend = observations - ts_stats.detrend(observations)
|
||||
|
||||
# Create a point forecast by linear extrapolation
|
||||
# for one or even more time steps ahead.
|
||||
slope = trend[-1] - trend[-2]
|
||||
prediction = trend[-1] + slope
|
||||
idx = observations.index.max() + seasonal_lag
|
||||
while idx <= forecast_interval.max():
|
||||
if idx in forecast_interval:
|
||||
extrapolated_ts.loc[idx] = prediction
|
||||
prediction += slope
|
||||
idx += seasonal_lag
|
||||
|
||||
# Sanity check.
|
||||
if extrapolated_ts.isnull().any(): # pragma: no cover
|
||||
raise ValueError('missing predictions in the `forecast_interval`')
|
||||
|
||||
return pd.DataFrame(
|
||||
data={
|
||||
'prediction': extrapolated_ts.round(5),
|
||||
'low80': float('NaN'),
|
||||
'high80': float('NaN'),
|
||||
'low95': float('NaN'),
|
||||
'high95': float('NaN'),
|
||||
},
|
||||
index=forecast_interval,
|
||||
)
|
37
src/urban_meal_delivery/forecasts/models/__init__.py
Normal file
37
src/urban_meal_delivery/forecasts/models/__init__.py
Normal file
|
@ -0,0 +1,37 @@
|
|||
"""Define the forecasting `*Model`s used in this project.
|
||||
|
||||
`*Model`s are different from plain forecasting `methods` in that they are tied
|
||||
to a given kind of historic order time series, as provided by the `OrderHistory`
|
||||
class in the `timify` module. For example, the ARIMA model applied to a vertical
|
||||
time series becomes the `VerticalARIMAModel`.
|
||||
|
||||
An overview of the `*Model`s used for tactical forecasting can be found in section
|
||||
"3.6 Forecasting Models" in the paper "Real-time Demand Forecasting for an Urban
|
||||
Delivery Platform" that is part of the `urban-meal-delivery` research project.
|
||||
|
||||
For the paper check:
|
||||
https://github.com/webartifex/urban-meal-delivery-demand-forecasting/blob/main/paper.pdf
|
||||
https://www.sciencedirect.com/science/article/pii/S1366554520307936
|
||||
|
||||
This sub-package is organized as follows. The `base` module defines an abstract
|
||||
`ForecastingModelABC` class that unifies how the concrete `*Model`s work.
|
||||
While the abstact `.predict()` method returns a `pd.DataFrame` (= basically,
|
||||
the result of one of the forecasting `methods`, the concrete `.make_forecast()`
|
||||
method converts the results into `Forecast` (=ORM) objects.
|
||||
Also, `.make_forecast()` implements a caching strategy where already made
|
||||
`Forecast`s are loaded from the database instead of calculating them again,
|
||||
which could be a heavier computation.
|
||||
|
||||
The `tactical` sub-package contains all the `*Model`s used to implement the
|
||||
UDP's predictive routing strategy.
|
||||
|
||||
A future `planning` sub-package will contain the `*Model`s used to plan the
|
||||
`Courier`'s shifts a week ahead.
|
||||
""" # noqa:RST215
|
||||
|
||||
from urban_meal_delivery.forecasts.models.base import ForecastingModelABC
|
||||
from urban_meal_delivery.forecasts.models.tactical.horizontal import HorizontalETSModel
|
||||
from urban_meal_delivery.forecasts.models.tactical.horizontal import HorizontalSMAModel
|
||||
from urban_meal_delivery.forecasts.models.tactical.other import TrivialModel
|
||||
from urban_meal_delivery.forecasts.models.tactical.realtime import RealtimeARIMAModel
|
||||
from urban_meal_delivery.forecasts.models.tactical.vertical import VerticalARIMAModel
|
116
src/urban_meal_delivery/forecasts/models/base.py
Normal file
116
src/urban_meal_delivery/forecasts/models/base.py
Normal file
|
@ -0,0 +1,116 @@
|
|||
"""The abstract blueprint for a forecasting `*Model`."""
|
||||
|
||||
import abc
|
||||
import datetime as dt
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from urban_meal_delivery import db
|
||||
from urban_meal_delivery.forecasts import timify
|
||||
|
||||
|
||||
class ForecastingModelABC(abc.ABC):
|
||||
"""An abstract interface of a forecasting `*Model`."""
|
||||
|
||||
def __init__(self, order_history: timify.OrderHistory) -> None:
|
||||
"""Initialize a new forecasting model.
|
||||
|
||||
Args:
|
||||
order_history: an abstraction providing the time series data
|
||||
"""
|
||||
self._order_history = order_history
|
||||
|
||||
@property
|
||||
@abc.abstractmethod
|
||||
def name(self) -> str:
|
||||
"""The name of the model.
|
||||
|
||||
Used to identify `Forecast`s of the same `*Model` in the database.
|
||||
So, these must be chosen carefully and must not be changed later on!
|
||||
|
||||
Example: "hets" or "varima" for tactical demand forecasting
|
||||
"""
|
||||
|
||||
@abc.abstractmethod
|
||||
def predict(
|
||||
self, pixel: db.Pixel, predict_at: dt.datetime, train_horizon: int,
|
||||
) -> pd.DataFrame:
|
||||
"""Concrete implementation of how a `*Model` makes a prediction.
|
||||
|
||||
This method is called by the unified `*Model.make_forecast()` method,
|
||||
which implements the caching logic with the database.
|
||||
|
||||
Args:
|
||||
pixel: pixel in which the prediction is made
|
||||
predict_at: time step (i.e., "start_at") to make the prediction for
|
||||
train_horizon: weeks of historic data used to predict `predict_at`
|
||||
|
||||
Returns:
|
||||
actuals, predictions, and possibly 80%/95% confidence intervals;
|
||||
includes a row for the time step starting at `predict_at` and
|
||||
may contain further rows for other time steps on the same day
|
||||
""" # noqa:DAR202
|
||||
|
||||
def make_forecast(
|
||||
self, pixel: db.Pixel, predict_at: dt.datetime, train_horizon: int,
|
||||
) -> db.Forecast:
|
||||
"""Make a forecast for the time step starting at `predict_at`.
|
||||
|
||||
Important: This method uses a unified `predict_at` argument.
|
||||
Some `*Model`s, in particular vertical ones, are only trained once per
|
||||
day and then make a prediction for all time steps on that day, and
|
||||
therefore, work with a `predict_day` argument instead of `predict_at`
|
||||
behind the scenes. Then, all `Forecast`s are stored into the database
|
||||
and only the one starting at `predict_at` is returned.
|
||||
|
||||
Args:
|
||||
pixel: pixel in which the `Forecast` is made
|
||||
predict_at: time step (i.e., "start_at") to make the `Forecast` for
|
||||
train_horizon: weeks of historic data used to forecast `predict_at`
|
||||
|
||||
Returns:
|
||||
actual, prediction, and possibly 80%/95% confidence intervals
|
||||
for the time step starting at `predict_at`
|
||||
|
||||
# noqa:DAR401 RuntimeError
|
||||
"""
|
||||
if ( # noqa:WPS337
|
||||
cached_forecast := db.session.query(db.Forecast) # noqa:ECE001,WPS221
|
||||
.filter_by(pixel=pixel)
|
||||
.filter_by(start_at=predict_at)
|
||||
.filter_by(time_step=self._order_history.time_step)
|
||||
.filter_by(train_horizon=train_horizon)
|
||||
.filter_by(model=self.name)
|
||||
.first()
|
||||
) :
|
||||
return cached_forecast
|
||||
|
||||
# Horizontal and real-time `*Model`s return a `pd.DataFrame` with one
|
||||
# row corresponding to the time step starting at `predict_at` whereas
|
||||
# vertical models return several rows, covering all time steps of a day.
|
||||
predictions = self.predict(pixel, predict_at, train_horizon)
|
||||
|
||||
# Convert the `predictions` into a `list` of `Forecast` objects.
|
||||
forecasts = db.Forecast.from_dataframe(
|
||||
pixel=pixel,
|
||||
time_step=self._order_history.time_step,
|
||||
train_horizon=train_horizon,
|
||||
model=self.name,
|
||||
data=predictions,
|
||||
)
|
||||
|
||||
# We persist all `Forecast`s into the database to
|
||||
# not have to run the same model training again.
|
||||
db.session.add_all(forecasts)
|
||||
db.session.commit()
|
||||
|
||||
# The one `Forecast` object asked for must be in `forecasts`
|
||||
# if the concrete `*Model.predict()` method works correctly; ...
|
||||
for forecast in forecasts:
|
||||
if forecast.start_at == predict_at:
|
||||
return forecast
|
||||
|
||||
# ..., however, we put in a loud error, just in case.
|
||||
raise RuntimeError( # pragma: no cover
|
||||
'`Forecast` for `predict_at` was not returned by `*Model.predict()`',
|
||||
)
|
|
@ -0,0 +1,16 @@
|
|||
"""Forecasting `*Model`s to predict demand for tactical purposes.
|
||||
|
||||
The `*Model`s in this module predict only a small number (e.g., one)
|
||||
of time steps into the near future and are used to implement the UDP's
|
||||
predictive routing strategies.
|
||||
|
||||
They are classified into "horizontal", "vertical", and "real-time" models
|
||||
with respect to what historic data they are trained on and how often they
|
||||
are re-trained on the day to be predicted. For the details, check section
|
||||
"3.6 Forecasting Models" in the paper "Real-time Demand Forecasting for an
|
||||
Urban Delivery Platform".
|
||||
|
||||
For the paper check:
|
||||
https://github.com/webartifex/urban-meal-delivery-demand-forecasting/blob/main/paper.pdf
|
||||
https://www.sciencedirect.com/science/article/pii/S1366554520307936
|
||||
""" # noqa:RST215
|
130
src/urban_meal_delivery/forecasts/models/tactical/horizontal.py
Normal file
130
src/urban_meal_delivery/forecasts/models/tactical/horizontal.py
Normal file
|
@ -0,0 +1,130 @@
|
|||
"""Horizontal forecasting `*Model`s to predict demand for tactical purposes.
|
||||
|
||||
Horizontal `*Model`s take the historic order counts only from time steps
|
||||
corresponding to the same time of day as the one to be predicted (i.e., the
|
||||
one starting at `predict_at`). Then, they make a prediction for only one day
|
||||
into the future. Thus, the training time series have a `frequency` of `7`, the
|
||||
number of days in a week.
|
||||
""" # noqa:RST215
|
||||
|
||||
import datetime as dt
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from urban_meal_delivery import db
|
||||
from urban_meal_delivery.forecasts import methods
|
||||
from urban_meal_delivery.forecasts.models import base
|
||||
|
||||
|
||||
class HorizontalETSModel(base.ForecastingModelABC):
|
||||
"""The ETS model applied on a horizontal time series."""
|
||||
|
||||
name = 'hets'
|
||||
|
||||
def predict(
|
||||
self, pixel: db.Pixel, predict_at: dt.datetime, train_horizon: int,
|
||||
) -> pd.DataFrame:
|
||||
"""Predict demand for a time step.
|
||||
|
||||
Args:
|
||||
pixel: pixel in which the prediction is made
|
||||
predict_at: time step (i.e., "start_at") to make the prediction for
|
||||
train_horizon: weeks of historic data used to predict `predict_at`
|
||||
|
||||
Returns:
|
||||
actual order counts (i.e., the "actual" column),
|
||||
point forecasts (i.e., the "prediction" column), and
|
||||
confidence intervals (i.e, the four "low/high/80/95" columns);
|
||||
contains one row for the `predict_at` time step
|
||||
|
||||
# noqa:DAR401 RuntimeError
|
||||
"""
|
||||
# Generate the historic (and horizontal) order time series.
|
||||
training_ts, frequency, actuals_ts = self._order_history.make_horizontal_ts(
|
||||
pixel_id=pixel.id, predict_at=predict_at, train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
# Sanity check.
|
||||
if frequency != 7: # pragma: no cover
|
||||
raise RuntimeError('`frequency` should be `7`')
|
||||
|
||||
# Make `predictions` with the seasonal ETS method ("ZZZ" model).
|
||||
predictions = methods.ets.predict(
|
||||
training_ts=training_ts,
|
||||
forecast_interval=actuals_ts.index,
|
||||
frequency=frequency, # `== 7`, the number of weekdays
|
||||
seasonal_fit=True, # because there was no decomposition before
|
||||
)
|
||||
|
||||
predictions.insert(loc=0, column='actual', value=actuals_ts)
|
||||
|
||||
# Sanity checks.
|
||||
if predictions.isnull().any().any(): # pragma: no cover
|
||||
raise RuntimeError('missing predictions in hets model')
|
||||
if predict_at not in predictions.index: # pragma: no cover
|
||||
raise RuntimeError('missing prediction for `predict_at`')
|
||||
|
||||
return predictions
|
||||
|
||||
|
||||
class HorizontalSMAModel(base.ForecastingModelABC):
|
||||
"""A simple moving average model applied on a horizontal time series."""
|
||||
|
||||
name = 'hsma'
|
||||
|
||||
def predict(
|
||||
self, pixel: db.Pixel, predict_at: dt.datetime, train_horizon: int,
|
||||
) -> pd.DataFrame:
|
||||
"""Predict demand for a time step.
|
||||
|
||||
Args:
|
||||
pixel: pixel in which the prediction is made
|
||||
predict_at: time step (i.e., "start_at") to make the prediction for
|
||||
train_horizon: weeks of historic data used to predict `predict_at`
|
||||
|
||||
Returns:
|
||||
actual order counts (i.e., the "actual" column) and
|
||||
point forecasts (i.e., the "prediction" column);
|
||||
this model does not support confidence intervals;
|
||||
contains one row for the `predict_at` time step
|
||||
|
||||
# noqa:DAR401 RuntimeError
|
||||
"""
|
||||
# Generate the historic (and horizontal) order time series.
|
||||
training_ts, frequency, actuals_ts = self._order_history.make_horizontal_ts(
|
||||
pixel_id=pixel.id, predict_at=predict_at, train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
# Sanity checks.
|
||||
if frequency != 7: # pragma: no cover
|
||||
raise RuntimeError('`frequency` should be `7`')
|
||||
if len(actuals_ts) != 1: # pragma: no cover
|
||||
raise RuntimeError(
|
||||
'the hsma model can only predict one step into the future',
|
||||
)
|
||||
|
||||
# The "prediction" is calculated as the `np.mean()`.
|
||||
# As the `training_ts` covers only full week horizons,
|
||||
# no adjustment regarding the weekly seasonality is needed.
|
||||
predictions = pd.DataFrame(
|
||||
data={
|
||||
'actual': actuals_ts,
|
||||
'prediction': training_ts.values.mean(),
|
||||
'low80': float('NaN'),
|
||||
'high80': float('NaN'),
|
||||
'low95': float('NaN'),
|
||||
'high95': float('NaN'),
|
||||
},
|
||||
index=actuals_ts.index,
|
||||
)
|
||||
|
||||
# Sanity checks.
|
||||
if ( # noqa:WPS337
|
||||
predictions[['actual', 'prediction']].isnull().any().any()
|
||||
): # pragma: no cover
|
||||
|
||||
raise RuntimeError('missing predictions in hsma model')
|
||||
if predict_at not in predictions.index: # pragma: no cover
|
||||
raise RuntimeError('missing prediction for `predict_at`')
|
||||
|
||||
return predictions
|
75
src/urban_meal_delivery/forecasts/models/tactical/other.py
Normal file
75
src/urban_meal_delivery/forecasts/models/tactical/other.py
Normal file
|
@ -0,0 +1,75 @@
|
|||
"""Forecasting `*Model`s to predict demand for tactical purposes ...
|
||||
|
||||
... that cannot be classified into either "horizontal", "vertical",
|
||||
or "real-time".
|
||||
""" # noqa:RST215
|
||||
|
||||
import datetime as dt
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from urban_meal_delivery import db
|
||||
from urban_meal_delivery.forecasts.models import base
|
||||
|
||||
|
||||
class TrivialModel(base.ForecastingModelABC):
|
||||
"""A trivial model predicting `0` demand.
|
||||
|
||||
No need to distinguish between a "horizontal", "vertical", or
|
||||
"real-time" model here as all give the same prediction for all time steps.
|
||||
"""
|
||||
|
||||
name = 'trivial'
|
||||
|
||||
def predict(
|
||||
self, pixel: db.Pixel, predict_at: dt.datetime, train_horizon: int,
|
||||
) -> pd.DataFrame:
|
||||
"""Predict demand for a time step.
|
||||
|
||||
Args:
|
||||
pixel: pixel in which the prediction is made
|
||||
predict_at: time step (i.e., "start_at") to make the prediction for
|
||||
train_horizon: weeks of historic data used to predict `predict_at`
|
||||
|
||||
Returns:
|
||||
actual order counts (i.e., the "actual" column) and
|
||||
point forecasts (i.e., the "prediction" column);
|
||||
this model does not support confidence intervals;
|
||||
contains one row for the `predict_at` time step
|
||||
|
||||
# noqa:DAR401 RuntimeError
|
||||
"""
|
||||
# Generate the historic order time series mainly to check if a valid
|
||||
# `training_ts` exists (i.e., the demand history is long enough).
|
||||
_, frequency, actuals_ts = self._order_history.make_horizontal_ts(
|
||||
pixel_id=pixel.id, predict_at=predict_at, train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
# Sanity checks.
|
||||
if frequency != 7: # pragma: no cover
|
||||
raise RuntimeError('`frequency` should be `7`')
|
||||
if len(actuals_ts) != 1: # pragma: no cover
|
||||
raise RuntimeError(
|
||||
'the trivial model can only predict one step into the future',
|
||||
)
|
||||
|
||||
# The "prediction" is simply `0.0`.
|
||||
predictions = pd.DataFrame(
|
||||
data={
|
||||
'actual': actuals_ts,
|
||||
'prediction': 0.0,
|
||||
'low80': float('NaN'),
|
||||
'high80': float('NaN'),
|
||||
'low95': float('NaN'),
|
||||
'high95': float('NaN'),
|
||||
},
|
||||
index=actuals_ts.index,
|
||||
)
|
||||
|
||||
# Sanity checks.
|
||||
if predictions['actual'].isnull().any(): # pragma: no cover
|
||||
raise RuntimeError('missing actuals in trivial model')
|
||||
if predict_at not in predictions.index: # pragma: no cover
|
||||
raise RuntimeError('missing prediction for `predict_at`')
|
||||
|
||||
return predictions
|
117
src/urban_meal_delivery/forecasts/models/tactical/realtime.py
Normal file
117
src/urban_meal_delivery/forecasts/models/tactical/realtime.py
Normal file
|
@ -0,0 +1,117 @@
|
|||
"""Real-time forecasting `*Model`s to predict demand for tactical purposes.
|
||||
|
||||
Real-time `*Model`s take order counts of all time steps in the training data
|
||||
and make a prediction for only one time step on the day to be predicted (i.e.,
|
||||
the one starting at `predict_at`). Thus, the training time series have a
|
||||
`frequency` of the number of weekdays, `7`, times the number of time steps on a
|
||||
day. For example, for 60-minute time steps, the `frequency` becomes `7 * 12`
|
||||
(= operating hours from 11 am to 11 pm), which is `84`. Real-time `*Model`s
|
||||
train the forecasting `methods` on a seasonally decomposed time series internally.
|
||||
""" # noqa:RST215
|
||||
|
||||
import datetime as dt
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from urban_meal_delivery import db
|
||||
from urban_meal_delivery.forecasts import methods
|
||||
from urban_meal_delivery.forecasts.models import base
|
||||
|
||||
|
||||
class RealtimeARIMAModel(base.ForecastingModelABC):
|
||||
"""The ARIMA model applied on a real-time time series."""
|
||||
|
||||
name = 'rtarima'
|
||||
|
||||
def predict(
|
||||
self, pixel: db.Pixel, predict_at: dt.datetime, train_horizon: int,
|
||||
) -> pd.DataFrame:
|
||||
"""Predict demand for a time step.
|
||||
|
||||
Args:
|
||||
pixel: pixel in which the prediction is made
|
||||
predict_at: time step (i.e., "start_at") to make the prediction for
|
||||
train_horizon: weeks of historic data used to predict `predict_at`
|
||||
|
||||
Returns:
|
||||
actual order counts (i.e., the "actual" column),
|
||||
point forecasts (i.e., the "prediction" column), and
|
||||
confidence intervals (i.e, the four "low/high/80/95" columns);
|
||||
contains one row for the `predict_at` time step
|
||||
|
||||
# noqa:DAR401 RuntimeError
|
||||
"""
|
||||
# Generate the historic (and real-time) order time series.
|
||||
training_ts, frequency, actuals_ts = self._order_history.make_realtime_ts(
|
||||
pixel_id=pixel.id, predict_at=predict_at, train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
# Decompose the `training_ts` to make predictions for the seasonal
|
||||
# component and the seasonally adjusted observations separately.
|
||||
decomposed_training_ts = methods.decomposition.stl(
|
||||
time_series=training_ts,
|
||||
frequency=frequency,
|
||||
# "Periodic" `ns` parameter => same seasonal component value
|
||||
# for observations of the same lag.
|
||||
ns=999,
|
||||
)
|
||||
|
||||
# Make predictions for the seasonal component by linear extrapolation.
|
||||
seasonal_predictions = methods.extrapolate_season.predict(
|
||||
training_ts=decomposed_training_ts['seasonal'],
|
||||
forecast_interval=actuals_ts.index,
|
||||
frequency=frequency,
|
||||
)
|
||||
|
||||
# Make predictions with the ARIMA model on the seasonally adjusted time series.
|
||||
seasonally_adjusted_predictions = methods.arima.predict(
|
||||
training_ts=(
|
||||
decomposed_training_ts['trend'] + decomposed_training_ts['residual']
|
||||
),
|
||||
forecast_interval=actuals_ts.index,
|
||||
# Because the seasonality was taken out before,
|
||||
# the `training_ts` has, by definition, a `frequency` of `1`.
|
||||
frequency=1,
|
||||
seasonal_fit=False,
|
||||
)
|
||||
|
||||
# The overall `predictions` are the sum of the separate predictions above.
|
||||
# As the linear extrapolation of the seasonal component has no
|
||||
# confidence interval, we put the one from the ARIMA model around
|
||||
# the extrapolated seasonal component.
|
||||
predictions = pd.DataFrame(
|
||||
data={
|
||||
'actual': actuals_ts,
|
||||
'prediction': (
|
||||
seasonal_predictions['prediction'] # noqa:WPS204
|
||||
+ seasonally_adjusted_predictions['prediction']
|
||||
),
|
||||
'low80': (
|
||||
seasonal_predictions['prediction']
|
||||
+ seasonally_adjusted_predictions['low80']
|
||||
),
|
||||
'high80': (
|
||||
seasonal_predictions['prediction']
|
||||
+ seasonally_adjusted_predictions['high80']
|
||||
),
|
||||
'low95': (
|
||||
seasonal_predictions['prediction']
|
||||
+ seasonally_adjusted_predictions['low95']
|
||||
),
|
||||
'high95': (
|
||||
seasonal_predictions['prediction']
|
||||
+ seasonally_adjusted_predictions['high95']
|
||||
),
|
||||
},
|
||||
index=actuals_ts.index,
|
||||
)
|
||||
|
||||
# Sanity checks.
|
||||
if len(predictions) != 1: # pragma: no cover
|
||||
raise RuntimeError('real-time models should predict exactly one time step')
|
||||
if predictions.isnull().any().any(): # pragma: no cover
|
||||
raise RuntimeError('missing predictions in rtarima model')
|
||||
if predict_at not in predictions.index: # pragma: no cover
|
||||
raise RuntimeError('missing prediction for `predict_at`')
|
||||
|
||||
return predictions
|
119
src/urban_meal_delivery/forecasts/models/tactical/vertical.py
Normal file
119
src/urban_meal_delivery/forecasts/models/tactical/vertical.py
Normal file
|
@ -0,0 +1,119 @@
|
|||
"""Vertical forecasting `*Model`s to predict demand for tactical purposes.
|
||||
|
||||
Vertical `*Model`s take order counts of all time steps in the training data
|
||||
and make a prediction for all time steps on the day to be predicted at once.
|
||||
Thus, the training time series have a `frequency` of the number of weekdays,
|
||||
`7`, times the number of time steps on a day. For example, with 60-minute time
|
||||
steps, the `frequency` becomes `7 * 12` (= operating hours from 11 am to 11 pm),
|
||||
which is `84`. Vertical `*Model`s train the forecasting `methods` on a seasonally
|
||||
decomposed time series internally.
|
||||
""" # noqa:RST215
|
||||
|
||||
import datetime as dt
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from urban_meal_delivery import db
|
||||
from urban_meal_delivery.forecasts import methods
|
||||
from urban_meal_delivery.forecasts.models import base
|
||||
|
||||
|
||||
class VerticalARIMAModel(base.ForecastingModelABC):
|
||||
"""The ARIMA model applied on a vertical time series."""
|
||||
|
||||
name = 'varima'
|
||||
|
||||
def predict(
|
||||
self, pixel: db.Pixel, predict_at: dt.datetime, train_horizon: int,
|
||||
) -> pd.DataFrame:
|
||||
"""Predict demand for a time step.
|
||||
|
||||
Args:
|
||||
pixel: pixel in which the prediction is made
|
||||
predict_at: time step (i.e., "start_at") to make the prediction for
|
||||
train_horizon: weeks of historic data used to predict `predict_at`
|
||||
|
||||
Returns:
|
||||
actual order counts (i.e., the "actual" column),
|
||||
point forecasts (i.e., the "prediction" column), and
|
||||
confidence intervals (i.e, the four "low/high/80/95" columns);
|
||||
contains several rows, including one for the `predict_at` time step
|
||||
|
||||
# noqa:DAR401 RuntimeError
|
||||
"""
|
||||
# Generate the historic (and vertical) order time series.
|
||||
training_ts, frequency, actuals_ts = self._order_history.make_vertical_ts(
|
||||
pixel_id=pixel.id,
|
||||
predict_day=predict_at.date(),
|
||||
train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
# Decompose the `training_ts` to make predictions for the seasonal
|
||||
# component and the seasonally adjusted observations separately.
|
||||
decomposed_training_ts = methods.decomposition.stl(
|
||||
time_series=training_ts,
|
||||
frequency=frequency,
|
||||
# "Periodic" `ns` parameter => same seasonal component value
|
||||
# for observations of the same lag.
|
||||
ns=999,
|
||||
)
|
||||
|
||||
# Make predictions for the seasonal component by linear extrapolation.
|
||||
seasonal_predictions = methods.extrapolate_season.predict(
|
||||
training_ts=decomposed_training_ts['seasonal'],
|
||||
forecast_interval=actuals_ts.index,
|
||||
frequency=frequency,
|
||||
)
|
||||
|
||||
# Make predictions with the ARIMA model on the seasonally adjusted time series.
|
||||
seasonally_adjusted_predictions = methods.arima.predict(
|
||||
training_ts=(
|
||||
decomposed_training_ts['trend'] + decomposed_training_ts['residual']
|
||||
),
|
||||
forecast_interval=actuals_ts.index,
|
||||
# Because the seasonality was taken out before,
|
||||
# the `training_ts` has, by definition, a `frequency` of `1`.
|
||||
frequency=1,
|
||||
seasonal_fit=False,
|
||||
)
|
||||
|
||||
# The overall `predictions` are the sum of the separate predictions above.
|
||||
# As the linear extrapolation of the seasonal component has no
|
||||
# confidence interval, we put the one from the ARIMA model around
|
||||
# the extrapolated seasonal component.
|
||||
predictions = pd.DataFrame(
|
||||
data={
|
||||
'actual': actuals_ts,
|
||||
'prediction': (
|
||||
seasonal_predictions['prediction'] # noqa:WPS204
|
||||
+ seasonally_adjusted_predictions['prediction']
|
||||
),
|
||||
'low80': (
|
||||
seasonal_predictions['prediction']
|
||||
+ seasonally_adjusted_predictions['low80']
|
||||
),
|
||||
'high80': (
|
||||
seasonal_predictions['prediction']
|
||||
+ seasonally_adjusted_predictions['high80']
|
||||
),
|
||||
'low95': (
|
||||
seasonal_predictions['prediction']
|
||||
+ seasonally_adjusted_predictions['low95']
|
||||
),
|
||||
'high95': (
|
||||
seasonal_predictions['prediction']
|
||||
+ seasonally_adjusted_predictions['high95']
|
||||
),
|
||||
},
|
||||
index=actuals_ts.index,
|
||||
)
|
||||
|
||||
# Sanity checks.
|
||||
if len(predictions) <= 1: # pragma: no cover
|
||||
raise RuntimeError('vertical models should predict several time steps')
|
||||
if predictions.isnull().any().any(): # pragma: no cover
|
||||
raise RuntimeError('missing predictions in varima model')
|
||||
if predict_at not in predictions.index: # pragma: no cover
|
||||
raise RuntimeError('missing prediction for `predict_at`')
|
||||
|
||||
return predictions
|
560
src/urban_meal_delivery/forecasts/timify.py
Normal file
560
src/urban_meal_delivery/forecasts/timify.py
Normal file
|
@ -0,0 +1,560 @@
|
|||
"""Obtain and work with time series data."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import datetime as dt
|
||||
from typing import Tuple
|
||||
|
||||
import pandas as pd
|
||||
import sqlalchemy as sa
|
||||
|
||||
from urban_meal_delivery import config
|
||||
from urban_meal_delivery import db
|
||||
from urban_meal_delivery.forecasts import models
|
||||
|
||||
|
||||
class OrderHistory:
|
||||
"""Generate time series from the `Order` model in the database.
|
||||
|
||||
The purpose of this class is to abstract away the managing of the order data
|
||||
in memory and the slicing the data into various kinds of time series.
|
||||
"""
|
||||
|
||||
def __init__(self, grid: db.Grid, time_step: int) -> None:
|
||||
"""Initialize a new `OrderHistory` object.
|
||||
|
||||
Args:
|
||||
grid: pixel grid used to aggregate orders spatially
|
||||
time_step: interval length (in minutes) into which orders are aggregated
|
||||
|
||||
# noqa:DAR401 RuntimeError
|
||||
"""
|
||||
self._grid = grid
|
||||
self._time_step = time_step
|
||||
|
||||
# Number of daily time steps must be a whole multiple of `time_step` length.
|
||||
n_daily_time_steps = (
|
||||
60 * (config.SERVICE_END - config.SERVICE_START) / time_step
|
||||
)
|
||||
if n_daily_time_steps != int(n_daily_time_steps): # pragma: no cover
|
||||
raise RuntimeError('Internal error: configuration has invalid TIME_STEPS')
|
||||
self._n_daily_time_steps = int(n_daily_time_steps)
|
||||
|
||||
# The `_data` are populated by `.aggregate_orders()`.
|
||||
self._data = None
|
||||
|
||||
@property
|
||||
def time_step(self) -> int:
|
||||
"""The length of one time step."""
|
||||
return self._time_step
|
||||
|
||||
@property
|
||||
def totals(self) -> pd.DataFrame:
|
||||
"""The order totals by `Pixel` and `.time_step`.
|
||||
|
||||
The returned object should not be mutated!
|
||||
|
||||
Returns:
|
||||
order_totals: a one-column `DataFrame` with a `MultiIndex` of the
|
||||
"pixel_id"s and "start_at"s (i.e., beginnings of the intervals);
|
||||
the column with data is "n_orders"
|
||||
"""
|
||||
if self._data is None:
|
||||
self._data = self.aggregate_orders()
|
||||
|
||||
return self._data
|
||||
|
||||
def aggregate_orders(self) -> pd.DataFrame: # pragma: no cover
|
||||
"""Generate and load all order totals from the database."""
|
||||
# `data` is probably missing "pixel_id"-"start_at" pairs.
|
||||
# This happens when there is no demand in the `Pixel` in the given `time_step`.
|
||||
data = pd.read_sql_query(
|
||||
sa.text(
|
||||
f""" -- # noqa:WPS221
|
||||
SELECT
|
||||
pixel_id,
|
||||
start_at,
|
||||
COUNT(*) AS n_orders
|
||||
FROM (
|
||||
SELECT
|
||||
pixel_id,
|
||||
placed_at_without_seconds - minutes_to_be_cut AS start_at
|
||||
FROM (
|
||||
SELECT
|
||||
pixels.pixel_id,
|
||||
DATE_TRUNC('MINUTE', orders.placed_at)
|
||||
AS placed_at_without_seconds,
|
||||
((
|
||||
EXTRACT(MINUTES FROM orders.placed_at)::INTEGER
|
||||
% {self._time_step}
|
||||
)::TEXT || ' MINUTES')::INTERVAL
|
||||
AS minutes_to_be_cut
|
||||
FROM (
|
||||
SELECT
|
||||
id,
|
||||
placed_at,
|
||||
pickup_address_id
|
||||
FROM
|
||||
{config.CLEAN_SCHEMA}.orders
|
||||
INNER JOIN (
|
||||
SELECT
|
||||
id AS address_id
|
||||
FROM
|
||||
{config.CLEAN_SCHEMA}.addresses
|
||||
WHERE
|
||||
city_id = {self._grid.city.id}
|
||||
) AS in_city
|
||||
ON orders.pickup_address_id = in_city.address_id
|
||||
WHERE
|
||||
ad_hoc IS TRUE
|
||||
) AS
|
||||
orders
|
||||
INNER JOIN (
|
||||
SELECT
|
||||
address_id,
|
||||
pixel_id
|
||||
FROM
|
||||
{config.CLEAN_SCHEMA}.addresses_pixels
|
||||
WHERE
|
||||
grid_id = {self._grid.id}
|
||||
AND
|
||||
city_id = {self._grid.city.id} -- -> sanity check
|
||||
) AS pixels
|
||||
ON orders.pickup_address_id = pixels.address_id
|
||||
) AS placed_at_aggregated_into_start_at
|
||||
) AS pixel_start_at_combinations
|
||||
GROUP BY
|
||||
pixel_id,
|
||||
start_at
|
||||
ORDER BY
|
||||
pixel_id,
|
||||
start_at;
|
||||
""",
|
||||
), # noqa:WPS355
|
||||
con=db.connection,
|
||||
index_col=['pixel_id', 'start_at'],
|
||||
)
|
||||
|
||||
if data.empty:
|
||||
return data
|
||||
|
||||
# Calculate the first and last "start_at" value ...
|
||||
start_day = data.index.levels[1].min().date()
|
||||
start = dt.datetime(
|
||||
start_day.year, start_day.month, start_day.day, config.SERVICE_START,
|
||||
)
|
||||
end_day = data.index.levels[1].max().date()
|
||||
end = dt.datetime(end_day.year, end_day.month, end_day.day, config.SERVICE_END)
|
||||
# ... and all possible `tuple`s of "pixel_id"-"start_at" combinations.
|
||||
# The "start_at" values must lie within the operating hours.
|
||||
gen = (
|
||||
(pixel_id, start_at)
|
||||
for pixel_id in sorted(data.index.levels[0])
|
||||
for start_at in pd.date_range(start, end, freq=f'{self._time_step}T')
|
||||
if config.SERVICE_START <= start_at.hour < config.SERVICE_END
|
||||
)
|
||||
|
||||
# Re-index `data` filling in `0`s where there is no demand.
|
||||
index = pd.MultiIndex.from_tuples(gen)
|
||||
index.names = ['pixel_id', 'start_at']
|
||||
|
||||
return data.reindex(index, fill_value=0)
|
||||
|
||||
def first_order_at(self, pixel_id: int) -> dt.datetime:
|
||||
"""Get the time step with the first order in a pixel.
|
||||
|
||||
Args:
|
||||
pixel_id: pixel for which to get the first order
|
||||
|
||||
Returns:
|
||||
minimum "start_at" from when orders take place
|
||||
|
||||
Raises:
|
||||
LookupError: `pixel_id` not in `grid`
|
||||
|
||||
# noqa:DAR401 RuntimeError
|
||||
"""
|
||||
try:
|
||||
intra_pixel = self.totals.loc[pixel_id]
|
||||
except KeyError:
|
||||
raise LookupError('The `pixel_id` is not in the `grid`') from None
|
||||
|
||||
first_order = intra_pixel[intra_pixel['n_orders'] > 0].index.min()
|
||||
|
||||
# Sanity check: without an `Order`, the `Pixel` should not exist.
|
||||
if first_order is pd.NaT: # pragma: no cover
|
||||
raise RuntimeError('no orders in the pixel')
|
||||
|
||||
# Return a proper `datetime.datetime` object.
|
||||
return dt.datetime(
|
||||
first_order.year,
|
||||
first_order.month,
|
||||
first_order.day,
|
||||
first_order.hour,
|
||||
first_order.minute,
|
||||
)
|
||||
|
||||
def last_order_at(self, pixel_id: int) -> dt.datetime:
|
||||
"""Get the time step with the last order in a pixel.
|
||||
|
||||
Args:
|
||||
pixel_id: pixel for which to get the last order
|
||||
|
||||
Returns:
|
||||
maximum "start_at" from when orders take place
|
||||
|
||||
Raises:
|
||||
LookupError: `pixel_id` not in `grid`
|
||||
|
||||
# noqa:DAR401 RuntimeError
|
||||
"""
|
||||
try:
|
||||
intra_pixel = self.totals.loc[pixel_id]
|
||||
except KeyError:
|
||||
raise LookupError('The `pixel_id` is not in the `grid`') from None
|
||||
|
||||
last_order = intra_pixel[intra_pixel['n_orders'] > 0].index.max()
|
||||
|
||||
# Sanity check: without an `Order`, the `Pixel` should not exist.
|
||||
if last_order is pd.NaT: # pragma: no cover
|
||||
raise RuntimeError('no orders in the pixel')
|
||||
|
||||
# Return a proper `datetime.datetime` object.
|
||||
return dt.datetime(
|
||||
last_order.year,
|
||||
last_order.month,
|
||||
last_order.day,
|
||||
last_order.hour,
|
||||
last_order.minute,
|
||||
)
|
||||
|
||||
def make_horizontal_ts( # noqa:WPS210
|
||||
self, pixel_id: int, predict_at: dt.datetime, train_horizon: int,
|
||||
) -> Tuple[pd.Series, int, pd.Series]:
|
||||
"""Slice a horizontal time series out of the `.totals`.
|
||||
|
||||
Create a time series covering `train_horizon` weeks that can be used
|
||||
for training a forecasting model to predict the demand at `predict_at`.
|
||||
|
||||
For explanation of the terms "horizontal", "vertical", and "real-time"
|
||||
in the context of time series, see section 3.2 in the following paper:
|
||||
https://github.com/webartifex/urban-meal-delivery-demand-forecasting/blob/main/paper.pdf
|
||||
|
||||
Args:
|
||||
pixel_id: pixel in which the time series is aggregated
|
||||
predict_at: time step (i.e., "start_at") for which a prediction is made
|
||||
train_horizon: weeks of historic data used to predict `predict_at`
|
||||
|
||||
Returns:
|
||||
training time series, frequency, actual order count at `predict_at`
|
||||
|
||||
Raises:
|
||||
LookupError: `pixel_id` not in `grid` or `predict_at` not in `.totals`
|
||||
RuntimeError: desired time series slice is not entirely in `.totals`
|
||||
"""
|
||||
try:
|
||||
intra_pixel = self.totals.loc[pixel_id]
|
||||
except KeyError:
|
||||
raise LookupError('The `pixel_id` is not in the `grid`') from None
|
||||
|
||||
if predict_at >= config.CUTOFF_DAY: # pragma: no cover
|
||||
raise RuntimeError('Internal error: cannot predict beyond the given data')
|
||||
|
||||
# The first and last training day are just before the `predict_at` day
|
||||
# and span exactly `train_horizon` weeks covering only the times of the
|
||||
# day equal to the hour/minute of `predict_at`.
|
||||
first_train_day = predict_at.date() - dt.timedelta(weeks=train_horizon)
|
||||
first_start_at = dt.datetime(
|
||||
first_train_day.year,
|
||||
first_train_day.month,
|
||||
first_train_day.day,
|
||||
predict_at.hour,
|
||||
predict_at.minute,
|
||||
)
|
||||
last_train_day = predict_at.date() - dt.timedelta(days=1)
|
||||
last_start_at = dt.datetime(
|
||||
last_train_day.year,
|
||||
last_train_day.month,
|
||||
last_train_day.day,
|
||||
predict_at.hour,
|
||||
predict_at.minute,
|
||||
)
|
||||
|
||||
# The frequency is the number of weekdays.
|
||||
frequency = 7
|
||||
|
||||
# Take only the counts at the `predict_at` time.
|
||||
training_ts = intra_pixel.loc[
|
||||
first_start_at : last_start_at : self._n_daily_time_steps, # type:ignore
|
||||
'n_orders',
|
||||
]
|
||||
if len(training_ts) != frequency * train_horizon:
|
||||
raise RuntimeError('Not enough historic data for `predict_at`')
|
||||
|
||||
actuals_ts = intra_pixel.loc[[predict_at], 'n_orders']
|
||||
if not len(actuals_ts): # pragma: no cover
|
||||
raise LookupError('`predict_at` is not in the order history')
|
||||
|
||||
return training_ts, frequency, actuals_ts
|
||||
|
||||
def make_vertical_ts( # noqa:WPS210
|
||||
self, pixel_id: int, predict_day: dt.date, train_horizon: int,
|
||||
) -> Tuple[pd.Series, int, pd.Series]:
|
||||
"""Slice a vertical time series out of the `.totals`.
|
||||
|
||||
Create a time series covering `train_horizon` weeks that can be used
|
||||
for training a forecasting model to predict the demand on the `predict_day`.
|
||||
|
||||
For explanation of the terms "horizontal", "vertical", and "real-time"
|
||||
in the context of time series, see section 3.2 in the following paper:
|
||||
https://github.com/webartifex/urban-meal-delivery-demand-forecasting/blob/main/paper.pdf
|
||||
|
||||
Args:
|
||||
pixel_id: pixel in which the time series is aggregated
|
||||
predict_day: day for which predictions are made
|
||||
train_horizon: weeks of historic data used to predict `predict_at`
|
||||
|
||||
Returns:
|
||||
training time series, frequency, actual order counts on `predict_day`
|
||||
|
||||
Raises:
|
||||
LookupError: `pixel_id` not in `grid` or `predict_day` not in `.totals`
|
||||
RuntimeError: desired time series slice is not entirely in `.totals`
|
||||
"""
|
||||
try:
|
||||
intra_pixel = self.totals.loc[pixel_id]
|
||||
except KeyError:
|
||||
raise LookupError('The `pixel_id` is not in the `grid`') from None
|
||||
|
||||
if predict_day >= config.CUTOFF_DAY.date(): # pragma: no cover
|
||||
raise RuntimeError('Internal error: cannot predict beyond the given data')
|
||||
|
||||
# The first and last training day are just before the `predict_day`
|
||||
# and span exactly `train_horizon` weeks covering all times of the day.
|
||||
first_train_day = predict_day - dt.timedelta(weeks=train_horizon)
|
||||
first_start_at = dt.datetime(
|
||||
first_train_day.year,
|
||||
first_train_day.month,
|
||||
first_train_day.day,
|
||||
config.SERVICE_START,
|
||||
0,
|
||||
)
|
||||
last_train_day = predict_day - dt.timedelta(days=1)
|
||||
last_start_at = dt.datetime(
|
||||
last_train_day.year,
|
||||
last_train_day.month,
|
||||
last_train_day.day,
|
||||
config.SERVICE_END, # subtract one `time_step` below
|
||||
0,
|
||||
) - dt.timedelta(minutes=self._time_step)
|
||||
|
||||
# The frequency is the number of weekdays times the number of daily time steps.
|
||||
frequency = 7 * self._n_daily_time_steps
|
||||
|
||||
# Take all the counts between `first_train_day` and `last_train_day`.
|
||||
training_ts = intra_pixel.loc[
|
||||
first_start_at:last_start_at, # type:ignore
|
||||
'n_orders',
|
||||
]
|
||||
if len(training_ts) != frequency * train_horizon:
|
||||
raise RuntimeError('Not enough historic data for `predict_day`')
|
||||
|
||||
first_prediction_at = dt.datetime(
|
||||
predict_day.year,
|
||||
predict_day.month,
|
||||
predict_day.day,
|
||||
config.SERVICE_START,
|
||||
0,
|
||||
)
|
||||
last_prediction_at = dt.datetime(
|
||||
predict_day.year,
|
||||
predict_day.month,
|
||||
predict_day.day,
|
||||
config.SERVICE_END, # subtract one `time_step` below
|
||||
0,
|
||||
) - dt.timedelta(minutes=self._time_step)
|
||||
|
||||
actuals_ts = intra_pixel.loc[
|
||||
first_prediction_at:last_prediction_at, # type:ignore
|
||||
'n_orders',
|
||||
]
|
||||
if not len(actuals_ts): # pragma: no cover
|
||||
raise LookupError('`predict_day` is not in the order history')
|
||||
|
||||
return training_ts, frequency, actuals_ts
|
||||
|
||||
def make_realtime_ts( # noqa:WPS210
|
||||
self, pixel_id: int, predict_at: dt.datetime, train_horizon: int,
|
||||
) -> Tuple[pd.Series, int, pd.Series]:
|
||||
"""Slice a vertical real-time time series out of the `.totals`.
|
||||
|
||||
Create a time series covering `train_horizon` weeks that can be used
|
||||
for training a forecasting model to predict the demand at `predict_at`.
|
||||
|
||||
For explanation of the terms "horizontal", "vertical", and "real-time"
|
||||
in the context of time series, see section 3.2 in the following paper:
|
||||
https://github.com/webartifex/urban-meal-delivery-demand-forecasting/blob/main/paper.pdf
|
||||
|
||||
Args:
|
||||
pixel_id: pixel in which the time series is aggregated
|
||||
predict_at: time step (i.e., "start_at") for which a prediction is made
|
||||
train_horizon: weeks of historic data used to predict `predict_at`
|
||||
|
||||
Returns:
|
||||
training time series, frequency, actual order count at `predict_at`
|
||||
|
||||
Raises:
|
||||
LookupError: `pixel_id` not in `grid` or `predict_at` not in `.totals`
|
||||
RuntimeError: desired time series slice is not entirely in `.totals`
|
||||
"""
|
||||
try:
|
||||
intra_pixel = self.totals.loc[pixel_id]
|
||||
except KeyError:
|
||||
raise LookupError('The `pixel_id` is not in the `grid`') from None
|
||||
|
||||
if predict_at >= config.CUTOFF_DAY: # pragma: no cover
|
||||
raise RuntimeError('Internal error: cannot predict beyond the given data')
|
||||
|
||||
# The first and last training day are just before the `predict_at` day
|
||||
# and span exactly `train_horizon` weeks covering all times of the day,
|
||||
# including times on the `predict_at` day that are earlier than `predict_at`.
|
||||
first_train_day = predict_at.date() - dt.timedelta(weeks=train_horizon)
|
||||
first_start_at = dt.datetime(
|
||||
first_train_day.year,
|
||||
first_train_day.month,
|
||||
first_train_day.day,
|
||||
config.SERVICE_START,
|
||||
0,
|
||||
)
|
||||
# Predicting the first time step on the `predict_at` day is a corner case.
|
||||
# Then, the previous day is indeed the `last_train_day`. Predicting any
|
||||
# other time step implies that the `predict_at` day is the `last_train_day`.
|
||||
# `last_train_time` is the last "start_at" before the one being predicted.
|
||||
if predict_at.hour == config.SERVICE_START:
|
||||
last_train_day = predict_at.date() - dt.timedelta(days=1)
|
||||
last_train_time = dt.time(config.SERVICE_END, 0)
|
||||
else:
|
||||
last_train_day = predict_at.date()
|
||||
last_train_time = predict_at.time()
|
||||
last_start_at = dt.datetime(
|
||||
last_train_day.year,
|
||||
last_train_day.month,
|
||||
last_train_day.day,
|
||||
last_train_time.hour,
|
||||
last_train_time.minute,
|
||||
) - dt.timedelta(minutes=self._time_step)
|
||||
|
||||
# The frequency is the number of weekdays times the number of daily time steps.
|
||||
frequency = 7 * self._n_daily_time_steps
|
||||
|
||||
# Take all the counts between `first_train_day` and `last_train_day`,
|
||||
# including the ones on the `predict_at` day prior to `predict_at`.
|
||||
training_ts = intra_pixel.loc[
|
||||
first_start_at:last_start_at, # type:ignore
|
||||
'n_orders',
|
||||
]
|
||||
n_time_steps_on_predict_day = (
|
||||
(
|
||||
predict_at
|
||||
- dt.datetime(
|
||||
predict_at.year,
|
||||
predict_at.month,
|
||||
predict_at.day,
|
||||
config.SERVICE_START,
|
||||
0,
|
||||
)
|
||||
).seconds
|
||||
// 60 # -> minutes
|
||||
// self._time_step
|
||||
)
|
||||
if len(training_ts) != frequency * train_horizon + n_time_steps_on_predict_day:
|
||||
raise RuntimeError('Not enough historic data for `predict_day`')
|
||||
|
||||
actuals_ts = intra_pixel.loc[[predict_at], 'n_orders']
|
||||
if not len(actuals_ts): # pragma: no cover
|
||||
raise LookupError('`predict_at` is not in the order history')
|
||||
|
||||
return training_ts, frequency, actuals_ts
|
||||
|
||||
def avg_daily_demand(
|
||||
self, pixel_id: int, predict_day: dt.date, train_horizon: int,
|
||||
) -> float:
|
||||
"""Calculate the average daily demand (ADD) for a `Pixel`.
|
||||
|
||||
The ADD is defined as the average number of daily `Order`s in a
|
||||
`Pixel` within the training horizon preceding the `predict_day`.
|
||||
|
||||
The ADD is primarily used for the rule-based heuristic to determine
|
||||
the best forecasting model for a `Pixel` on the `predict_day`.
|
||||
|
||||
Implementation note: To calculate the ADD, the order counts are
|
||||
generated as a vertical time series. That must be so as we need to
|
||||
include all time steps of the days before the `predict_day` and
|
||||
no time step of the latter.
|
||||
|
||||
Args:
|
||||
pixel_id: pixel for which the ADD is calculated
|
||||
predict_day: following the `train_horizon` on which the ADD is calculated
|
||||
train_horizon: time horizon over which the ADD is calculated
|
||||
|
||||
Returns:
|
||||
average number of orders per day
|
||||
"""
|
||||
training_ts, _, _ = self.make_vertical_ts( # noqa:WPS434
|
||||
pixel_id=pixel_id, predict_day=predict_day, train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
first_day = training_ts.index.min().date()
|
||||
last_day = training_ts.index.max().date()
|
||||
# `+1` as both `first_day` and `last_day` are included.
|
||||
n_days = (last_day - first_day).days + 1
|
||||
|
||||
return round(training_ts.sum() / n_days, 1)
|
||||
|
||||
def choose_tactical_model(
|
||||
self, pixel_id: int, predict_day: dt.date, train_horizon: int,
|
||||
) -> models.ForecastingModelABC:
|
||||
"""Choose the most promising forecasting `*Model` for tactical purposes.
|
||||
|
||||
The rules are deduced from "Table 1: Top-3 models by ..." in the article
|
||||
"Real-time demand forecasting for an urban delivery platform", the first
|
||||
research paper published for this `urban-meal-delivery` project.
|
||||
|
||||
According to the research findings in the article "Real-time demand
|
||||
forecasting for an urban delivery platform", the best model is a function
|
||||
of the average daily demand (ADD) and the length of the training horizon.
|
||||
|
||||
For the paper check:
|
||||
https://github.com/webartifex/urban-meal-delivery-demand-forecasting/blob/main/paper.pdf
|
||||
https://www.sciencedirect.com/science/article/pii/S1366554520307936
|
||||
|
||||
Args:
|
||||
pixel_id: pixel for which a forecasting `*Model` is chosen
|
||||
predict_day: day for which demand is to be predicted with the `*Model`
|
||||
train_horizon: time horizon available for training the `*Model`
|
||||
|
||||
Returns:
|
||||
most promising forecasting `*Model`
|
||||
|
||||
# noqa:DAR401 RuntimeError
|
||||
""" # noqa:RST215
|
||||
add = self.avg_daily_demand(
|
||||
pixel_id=pixel_id, predict_day=predict_day, train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
# For now, we only make forecasts with 8 weeks
|
||||
# as the training horizon (note:4f79e8fa).
|
||||
if train_horizon == 8:
|
||||
if add >= 25: # = "high demand"
|
||||
return models.HorizontalETSModel(order_history=self)
|
||||
elif add >= 10: # = "medium demand"
|
||||
return models.HorizontalETSModel(order_history=self)
|
||||
elif add >= 2.5: # = "low demand"
|
||||
return models.HorizontalSMAModel(order_history=self)
|
||||
|
||||
# = "no demand"
|
||||
return models.TrivialModel(order_history=self)
|
||||
|
||||
raise RuntimeError(
|
||||
'no rule for the given average daily demand and training horizon',
|
||||
)
|
28
src/urban_meal_delivery/init_r.py
Normal file
28
src/urban_meal_delivery/init_r.py
Normal file
|
@ -0,0 +1,28 @@
|
|||
"""Initialize the R dependencies.
|
||||
|
||||
The purpose of this module is to import all the R packages that are installed
|
||||
into a sub-folder (see `config.R_LIBS_PATH`) in the project's root directory.
|
||||
|
||||
The Jupyter notebook "research/r_dependencies.ipynb" can be used to install all
|
||||
R dependencies on a Ubuntu/Debian based system.
|
||||
"""
|
||||
|
||||
from rpy2.rinterface_lib import callbacks as rcallbacks
|
||||
from rpy2.robjects import packages as rpackages
|
||||
|
||||
|
||||
# Suppress R's messages to stdout and stderr.
|
||||
# Source: https://stackoverflow.com/a/63220287
|
||||
rcallbacks.consolewrite_print = lambda msg: None # pragma: no cover
|
||||
rcallbacks.consolewrite_warnerror = lambda msg: None # pragma: no cover
|
||||
|
||||
|
||||
# For clarity and convenience, re-raise the error that results from missing R
|
||||
# dependencies with clearer instructions as to how to deal with it.
|
||||
try: # noqa:WPS229
|
||||
rpackages.importr('forecast')
|
||||
rpackages.importr('zoo')
|
||||
|
||||
except rpackages.PackageNotInstalledError: # pragma: no cover
|
||||
msg = 'See the "research/r_dependencies.ipynb" notebook!'
|
||||
raise rpackages.PackageNotInstalledError(msg) from None
|
34
tests/config.py
Normal file
34
tests/config.py
Normal file
|
@ -0,0 +1,34 @@
|
|||
"""Globals used when testing."""
|
||||
|
||||
import datetime as dt
|
||||
|
||||
from urban_meal_delivery import config
|
||||
|
||||
|
||||
# The day on which most test cases take place.
|
||||
YEAR, MONTH, DAY = 2016, 7, 1
|
||||
|
||||
# The hour when most test cases take place.
|
||||
NOON = 12
|
||||
|
||||
# `START` and `END` constitute a 57-day time span, 8 full weeks plus 1 day.
|
||||
# That implies a maximum `train_horizon` of `8` as that needs full 7-day weeks.
|
||||
START = dt.datetime(YEAR, MONTH, DAY, config.SERVICE_START, 0)
|
||||
_end = START + dt.timedelta(days=56) # `56` as `START` is not included
|
||||
END = dt.datetime(_end.year, _end.month, _end.day, config.SERVICE_END, 0)
|
||||
|
||||
# Default time steps (in minutes), for example, for `OrderHistory` objects.
|
||||
LONG_TIME_STEP = 60
|
||||
SHORT_TIME_STEP = 30
|
||||
TIME_STEPS = (SHORT_TIME_STEP, LONG_TIME_STEP)
|
||||
# The `frequency` of vertical time series is the number of days in a week, 7,
|
||||
# times the number of time steps per day. With 12 operating hours (11 am - 11 pm)
|
||||
# the `frequency`s are 84 and 168 for the `LONG/SHORT_TIME_STEP`s.
|
||||
VERTICAL_FREQUENCY_LONG = 7 * 12
|
||||
VERTICAL_FREQUENCY_SHORT = 7 * 24
|
||||
|
||||
# Default training horizons, for example, for
|
||||
# `OrderHistory.make_horizontal_time_series()`.
|
||||
LONG_TRAIN_HORIZON = 8
|
||||
SHORT_TRAIN_HORIZON = 2
|
||||
TRAIN_HORIZONS = (SHORT_TRAIN_HORIZON, LONG_TRAIN_HORIZON)
|
|
@ -1,12 +1,116 @@
|
|||
"""Utils for testing the entire package."""
|
||||
"""Fixtures for testing the entire package.
|
||||
|
||||
The ORM related fixtures are placed here too as some integration tests
|
||||
in the CLI layer need access to the database.
|
||||
"""
|
||||
|
||||
import os
|
||||
|
||||
import pytest
|
||||
import sqlalchemy as sa
|
||||
from alembic import command as migrations_cmd
|
||||
from alembic import config as migrations_config
|
||||
from sqlalchemy import orm
|
||||
|
||||
from tests.db import fake_data
|
||||
from urban_meal_delivery import config
|
||||
from urban_meal_delivery import db
|
||||
|
||||
|
||||
# The TESTING environment variable is set
|
||||
# in setup.cfg in pytest's config section.
|
||||
if not os.getenv('TESTING'):
|
||||
raise RuntimeError('Tests must be executed with TESTING set in the environment')
|
||||
|
||||
if not config.TESTING:
|
||||
raise RuntimeError('The testing configuration was not loaded')
|
||||
|
||||
|
||||
@pytest.fixture(scope='session', params=['all_at_once', 'sequentially'])
|
||||
def db_connection(request):
|
||||
"""Create all tables given the ORM models.
|
||||
|
||||
The tables are put into a distinct PostgreSQL schema
|
||||
that is removed after all tests are over.
|
||||
|
||||
The database connection used to do that is yielded.
|
||||
|
||||
There are two modes for this fixture:
|
||||
|
||||
- "all_at_once": build up the tables all at once with MetaData.create_all()
|
||||
- "sequentially": build up the tables sequentially with `alembic upgrade head`
|
||||
|
||||
This ensures that Alembic's migration files are consistent.
|
||||
"""
|
||||
# We need a fresh database connection for each of the two `params`.
|
||||
# Otherwise, the first test of the parameter run second will fail.
|
||||
engine = sa.create_engine(config.DATABASE_URI)
|
||||
connection = engine.connect()
|
||||
|
||||
# Monkey patch the package's global `engine` and `connection` objects,
|
||||
# just in case if it is used somewhere in the code base.
|
||||
db.engine = engine
|
||||
db.connection = connection
|
||||
|
||||
if request.param == 'all_at_once':
|
||||
connection.execute(f'CREATE SCHEMA {config.CLEAN_SCHEMA};')
|
||||
db.Base.metadata.create_all(connection)
|
||||
else:
|
||||
cfg = migrations_config.Config('alembic.ini')
|
||||
migrations_cmd.upgrade(cfg, 'head')
|
||||
|
||||
try:
|
||||
yield connection
|
||||
|
||||
finally:
|
||||
connection.execute(f'DROP SCHEMA {config.CLEAN_SCHEMA} CASCADE;')
|
||||
|
||||
if request.param == 'sequentially':
|
||||
tmp_alembic_version = f'{config.ALEMBIC_TABLE}_{config.CLEAN_SCHEMA}'
|
||||
connection.execute(
|
||||
f'DROP TABLE {config.ALEMBIC_TABLE_SCHEMA}.{tmp_alembic_version};',
|
||||
)
|
||||
|
||||
connection.close()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def db_session(db_connection):
|
||||
"""A SQLAlchemy session that rolls back everything after a test case."""
|
||||
# Begin the outermost transaction
|
||||
# that is rolled back at the end of each test case.
|
||||
transaction = db_connection.begin()
|
||||
|
||||
# Create a session bound to the same connection as the `transaction`.
|
||||
# Using any other session would not result in the roll back.
|
||||
session = orm.sessionmaker()(bind=db_connection)
|
||||
|
||||
# Monkey patch the package's global `session` object,
|
||||
# which is used heavily in the code base.
|
||||
db.session = session
|
||||
|
||||
try:
|
||||
yield session
|
||||
|
||||
finally:
|
||||
session.close()
|
||||
transaction.rollback()
|
||||
|
||||
|
||||
# Import the fixtures from the `fake_data` sub-package.
|
||||
|
||||
make_address = fake_data.make_address
|
||||
make_courier = fake_data.make_courier
|
||||
make_customer = fake_data.make_customer
|
||||
make_order = fake_data.make_order
|
||||
make_restaurant = fake_data.make_restaurant
|
||||
|
||||
address = fake_data.address
|
||||
city = fake_data.city
|
||||
city_data = fake_data.city_data
|
||||
courier = fake_data.courier
|
||||
customer = fake_data.customer
|
||||
order = fake_data.order
|
||||
restaurant = fake_data.restaurant
|
||||
grid = fake_data.grid
|
||||
pixel = fake_data.pixel
|
||||
|
|
5
tests/console/__init__.py
Normal file
5
tests/console/__init__.py
Normal file
|
@ -0,0 +1,5 @@
|
|||
"""Test the CLI scripts in the urban-meal-delivery package.
|
||||
|
||||
Some tests require a database. Therefore, the corresponding code is excluded
|
||||
from coverage reporting with "pragma: no cover" (grep:b1f68d24).
|
||||
"""
|
10
tests/console/conftest.py
Normal file
10
tests/console/conftest.py
Normal file
|
@ -0,0 +1,10 @@
|
|||
"""Fixture for testing the CLI scripts."""
|
||||
|
||||
import pytest
|
||||
from click import testing as click_testing
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def cli() -> click_testing.CliRunner:
|
||||
"""Initialize Click's CLI Test Runner."""
|
||||
return click_testing.CliRunner()
|
48
tests/console/test_gridify.py
Normal file
48
tests/console/test_gridify.py
Normal file
|
@ -0,0 +1,48 @@
|
|||
"""Integration test for the `urban_meal_delivery.console.gridify` module."""
|
||||
|
||||
import pytest
|
||||
|
||||
import urban_meal_delivery
|
||||
from urban_meal_delivery import db
|
||||
from urban_meal_delivery.console import gridify
|
||||
|
||||
|
||||
@pytest.mark.db
|
||||
def test_two_pixels_with_two_addresses( # noqa:WPS211
|
||||
cli, db_session, monkeypatch, city, make_address, make_restaurant, make_order,
|
||||
):
|
||||
"""Two `Address` objects in distinct `Pixel` objects.
|
||||
|
||||
This is roughly the same test case as
|
||||
`tests.db.test_grids.test_two_pixels_with_two_addresses`.
|
||||
The difference is that the result is written to the database.
|
||||
"""
|
||||
# Create two `Address` objects in distinct `Pixel`s.
|
||||
# One `Address` in the lower-left `Pixel`, ...
|
||||
address1 = make_address(latitude=48.8357377, longitude=2.2517412)
|
||||
# ... and another one in the upper-right one.
|
||||
address2 = make_address(latitude=48.8898312, longitude=2.4357622)
|
||||
|
||||
# Locate a `Restaurant` at the two `Address` objects and
|
||||
# place one `Order` for each of them so that the `Address`
|
||||
# objects are used as `Order.pickup_address`s.
|
||||
restaurant1 = make_restaurant(address=address1)
|
||||
restaurant2 = make_restaurant(address=address2)
|
||||
order1 = make_order(restaurant=restaurant1)
|
||||
order2 = make_order(restaurant=restaurant2)
|
||||
|
||||
db_session.add(order1)
|
||||
db_session.add(order2)
|
||||
db_session.commit()
|
||||
|
||||
side_length = max(city.total_x // 2, city.total_y // 2) + 1
|
||||
|
||||
# Hack the configuration regarding the grids to be created.
|
||||
monkeypatch.setattr(urban_meal_delivery.config, 'GRID_SIDE_LENGTHS', [side_length])
|
||||
|
||||
result = cli.invoke(gridify.gridify)
|
||||
|
||||
assert result.exit_code == 0
|
||||
|
||||
assert db_session.query(db.Grid).count() == 1
|
||||
assert db_session.query(db.Pixel).count() == 2
|
|
@ -1,34 +1,31 @@
|
|||
"""Test the package's `umd` command-line client."""
|
||||
"""Test the package's top-level `umd` CLI command."""
|
||||
|
||||
import click
|
||||
import pytest
|
||||
from click import testing as click_testing
|
||||
|
||||
from urban_meal_delivery import console
|
||||
from urban_meal_delivery.console import main
|
||||
|
||||
|
||||
class TestShowVersion:
|
||||
"""Test console.show_version().
|
||||
"""Test `console.main.show_version()`.
|
||||
|
||||
The function is used as a callback to a click command option.
|
||||
|
||||
show_version() prints the name and version of the installed package to
|
||||
`show_version()` prints the name and version of the installed package to
|
||||
stdout. The output looks like this: "{pkg_name}, version {version}".
|
||||
|
||||
Development (= non-final) versions are indicated by appending a
|
||||
" (development)" to the output.
|
||||
"""
|
||||
|
||||
# pylint:disable=no-self-use
|
||||
|
||||
@pytest.fixture
|
||||
def ctx(self) -> click.Context:
|
||||
"""Context around the console.main Command."""
|
||||
return click.Context(console.main)
|
||||
"""Context around the `main.entry_point` Command."""
|
||||
return click.Context(main.entry_point)
|
||||
|
||||
def test_no_version(self, capsys, ctx):
|
||||
"""The the early exit branch without any output."""
|
||||
console.show_version(ctx, _param='discarded', value=False)
|
||||
"""Test the early exit branch without any output."""
|
||||
main.show_version(ctx, _param='discarded', value=False)
|
||||
|
||||
captured = capsys.readouterr()
|
||||
|
||||
|
@ -37,10 +34,10 @@ class TestShowVersion:
|
|||
def test_final_version(self, capsys, ctx, monkeypatch):
|
||||
"""For final versions, NO "development" warning is emitted."""
|
||||
version = '1.2.3'
|
||||
monkeypatch.setattr(console.urban_meal_delivery, '__version__', version)
|
||||
monkeypatch.setattr(main.urban_meal_delivery, '__version__', version)
|
||||
|
||||
with pytest.raises(click.exceptions.Exit):
|
||||
console.show_version(ctx, _param='discarded', value=True)
|
||||
main.show_version(ctx, _param='discarded', value=True)
|
||||
|
||||
captured = capsys.readouterr()
|
||||
|
||||
|
@ -49,37 +46,29 @@ class TestShowVersion:
|
|||
def test_develop_version(self, capsys, ctx, monkeypatch):
|
||||
"""For develop versions, a warning thereof is emitted."""
|
||||
version = '1.2.3.dev0'
|
||||
monkeypatch.setattr(console.urban_meal_delivery, '__version__', version)
|
||||
monkeypatch.setattr(main.urban_meal_delivery, '__version__', version)
|
||||
|
||||
with pytest.raises(click.exceptions.Exit):
|
||||
console.show_version(ctx, _param='discarded', value=True)
|
||||
main.show_version(ctx, _param='discarded', value=True)
|
||||
|
||||
captured = capsys.readouterr()
|
||||
|
||||
assert captured.out.strip().endswith(f', version {version} (development)')
|
||||
|
||||
|
||||
class TestCLI:
|
||||
"""Test the `umd` CLI utility.
|
||||
class TestCLIWithoutCommand:
|
||||
"""Test the `umd` CLI utility, invoked without any specific command.
|
||||
|
||||
The test cases are integration tests.
|
||||
Therefore, they are not considered for coverage reporting.
|
||||
"""
|
||||
|
||||
# pylint:disable=no-self-use
|
||||
|
||||
@pytest.fixture
|
||||
def cli(self) -> click_testing.CliRunner:
|
||||
"""Initialize Click's CLI Test Runner."""
|
||||
return click_testing.CliRunner()
|
||||
|
||||
@pytest.mark.no_cover
|
||||
def test_no_options(self, cli):
|
||||
"""Exit with 0 status code and no output if run without options."""
|
||||
result = cli.invoke(console.main)
|
||||
result = cli.invoke(main.entry_point)
|
||||
|
||||
assert result.exit_code == 0
|
||||
assert result.output == ''
|
||||
|
||||
# The following test cases validate the --version / -V option.
|
||||
|
||||
|
@ -90,9 +79,9 @@ class TestCLI:
|
|||
def test_final_version(self, cli, monkeypatch, option):
|
||||
"""For final versions, NO "development" warning is emitted."""
|
||||
version = '1.2.3'
|
||||
monkeypatch.setattr(console.urban_meal_delivery, '__version__', version)
|
||||
monkeypatch.setattr(main.urban_meal_delivery, '__version__', version)
|
||||
|
||||
result = cli.invoke(console.main, option)
|
||||
result = cli.invoke(main.entry_point, option)
|
||||
|
||||
assert result.exit_code == 0
|
||||
assert result.output.strip().endswith(f', version {version}')
|
||||
|
@ -102,9 +91,9 @@ class TestCLI:
|
|||
def test_develop_version(self, cli, monkeypatch, option):
|
||||
"""For develop versions, a warning thereof is emitted."""
|
||||
version = '1.2.3.dev0'
|
||||
monkeypatch.setattr(console.urban_meal_delivery, '__version__', version)
|
||||
monkeypatch.setattr(main.urban_meal_delivery, '__version__', version)
|
||||
|
||||
result = cli.invoke(console.main, option)
|
||||
result = cli.invoke(main.entry_point, option)
|
||||
|
||||
assert result.exit_code == 0
|
||||
assert result.output.strip().endswith(f', version {version} (development)')
|
|
@ -1,263 +0,0 @@
|
|||
"""Utils for testing the ORM layer."""
|
||||
|
||||
import datetime
|
||||
|
||||
import pytest
|
||||
from alembic import command as migrations_cmd
|
||||
from alembic import config as migrations_config
|
||||
|
||||
from urban_meal_delivery import config
|
||||
from urban_meal_delivery import db
|
||||
|
||||
|
||||
@pytest.fixture(scope='session', params=['all_at_once', 'sequentially'])
|
||||
def db_engine(request):
|
||||
"""Create all tables given the ORM models.
|
||||
|
||||
The tables are put into a distinct PostgreSQL schema
|
||||
that is removed after all tests are over.
|
||||
|
||||
The engine used to do that is yielded.
|
||||
|
||||
There are two modes for this fixture:
|
||||
|
||||
- "all_at_once": build up the tables all at once with MetaData.create_all()
|
||||
- "sequentially": build up the tables sequentially with `alembic upgrade head`
|
||||
|
||||
This ensures that Alembic's migration files are consistent.
|
||||
"""
|
||||
engine = db.make_engine()
|
||||
|
||||
if request.param == 'all_at_once':
|
||||
engine.execute(f'CREATE SCHEMA {config.CLEAN_SCHEMA};')
|
||||
db.Base.metadata.create_all(engine)
|
||||
else:
|
||||
cfg = migrations_config.Config('alembic.ini')
|
||||
migrations_cmd.upgrade(cfg, 'head')
|
||||
|
||||
try:
|
||||
yield engine
|
||||
|
||||
finally:
|
||||
engine.execute(f'DROP SCHEMA {config.CLEAN_SCHEMA} CASCADE;')
|
||||
|
||||
if request.param == 'sequentially':
|
||||
tmp_alembic_version = f'{config.ALEMBIC_TABLE}_{config.CLEAN_SCHEMA}'
|
||||
engine.execute(
|
||||
f'DROP TABLE {config.ALEMBIC_TABLE_SCHEMA}.{tmp_alembic_version};',
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def db_session(db_engine):
|
||||
"""A SQLAlchemy session that rolls back everything after a test case."""
|
||||
connection = db_engine.connect()
|
||||
# Begin the outer most transaction
|
||||
# that is rolled back at the end of the test.
|
||||
transaction = connection.begin()
|
||||
# Create a session bound on the same connection as the transaction.
|
||||
# Using any other session would not work.
|
||||
Session = db.make_session_factory() # noqa:N806
|
||||
session = Session(bind=connection)
|
||||
|
||||
try:
|
||||
yield session
|
||||
|
||||
finally:
|
||||
session.close()
|
||||
transaction.rollback()
|
||||
connection.close()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def address_data():
|
||||
"""The data for an Address object in Paris."""
|
||||
return {
|
||||
'id': 1,
|
||||
'_primary_id': 1, # => "itself"
|
||||
'created_at': datetime.datetime(2020, 1, 2, 3, 4, 5),
|
||||
'place_id': 'ChIJxSr71vZt5kcRoFHY4caCCxw',
|
||||
'latitude': 48.85313,
|
||||
'longitude': 2.37461,
|
||||
'_city_id': 1,
|
||||
'city_name': 'St. German',
|
||||
'zip_code': '75011',
|
||||
'street': '42 Rue De Charonne',
|
||||
'floor': None,
|
||||
}
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def address(address_data, city):
|
||||
"""An Address object."""
|
||||
address = db.Address(**address_data)
|
||||
address.city = city
|
||||
return address
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def address2_data():
|
||||
"""The data for an Address object in Paris."""
|
||||
return {
|
||||
'id': 2,
|
||||
'_primary_id': 2, # => "itself"
|
||||
'created_at': datetime.datetime(2020, 1, 2, 4, 5, 6),
|
||||
'place_id': 'ChIJs-9a6QZy5kcRY8Wwk9Ywzl8',
|
||||
'latitude': 48.852196,
|
||||
'longitude': 2.373937,
|
||||
'_city_id': 1,
|
||||
'city_name': 'Paris',
|
||||
'zip_code': '75011',
|
||||
'street': 'Rue De Charonne 3',
|
||||
'floor': 2,
|
||||
}
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def address2(address2_data, city):
|
||||
"""An Address object."""
|
||||
address2 = db.Address(**address2_data)
|
||||
address2.city = city
|
||||
return address2
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def city_data():
|
||||
"""The data for the City object modeling Paris."""
|
||||
return {
|
||||
'id': 1,
|
||||
'name': 'Paris',
|
||||
'kml': "<?xml version='1.0' encoding='UTF-8'?> ...",
|
||||
'_center_latitude': 48.856614,
|
||||
'_center_longitude': 2.3522219,
|
||||
'_northeast_latitude': 48.9021449,
|
||||
'_northeast_longitude': 2.4699208,
|
||||
'_southwest_latitude': 48.815573,
|
||||
'_southwest_longitude': 2.225193,
|
||||
'initial_zoom': 12,
|
||||
}
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def city(city_data):
|
||||
"""A City object."""
|
||||
return db.City(**city_data)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def courier_data():
|
||||
"""The data for a Courier object."""
|
||||
return {
|
||||
'id': 1,
|
||||
'created_at': datetime.datetime(2020, 1, 2, 3, 4, 5),
|
||||
'vehicle': 'bicycle',
|
||||
'historic_speed': 7.89,
|
||||
'capacity': 100,
|
||||
'pay_per_hour': 750,
|
||||
'pay_per_order': 200,
|
||||
}
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def courier(courier_data):
|
||||
"""A Courier object."""
|
||||
return db.Courier(**courier_data)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def customer_data():
|
||||
"""The data for the Customer object."""
|
||||
return {'id': 1}
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def customer(customer_data):
|
||||
"""A Customer object."""
|
||||
return db.Customer(**customer_data)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def order_data():
|
||||
"""The data for an ad-hoc Order object."""
|
||||
return {
|
||||
'id': 1,
|
||||
'_delivery_id': 1,
|
||||
'_customer_id': 1,
|
||||
'placed_at': datetime.datetime(2020, 1, 2, 11, 55, 11),
|
||||
'ad_hoc': True,
|
||||
'scheduled_delivery_at': None,
|
||||
'scheduled_delivery_at_corrected': None,
|
||||
'first_estimated_delivery_at': datetime.datetime(2020, 1, 2, 12, 35, 0),
|
||||
'cancelled': False,
|
||||
'cancelled_at': None,
|
||||
'cancelled_at_corrected': None,
|
||||
'sub_total': 2000,
|
||||
'delivery_fee': 250,
|
||||
'total': 2250,
|
||||
'_restaurant_id': 1,
|
||||
'restaurant_notified_at': datetime.datetime(2020, 1, 2, 12, 5, 5),
|
||||
'restaurant_notified_at_corrected': False,
|
||||
'restaurant_confirmed_at': datetime.datetime(2020, 1, 2, 12, 5, 25),
|
||||
'restaurant_confirmed_at_corrected': False,
|
||||
'estimated_prep_duration': 900,
|
||||
'estimated_prep_duration_corrected': False,
|
||||
'estimated_prep_buffer': 480,
|
||||
'_courier_id': 1,
|
||||
'dispatch_at': datetime.datetime(2020, 1, 2, 12, 5, 1),
|
||||
'dispatch_at_corrected': False,
|
||||
'courier_notified_at': datetime.datetime(2020, 1, 2, 12, 6, 2),
|
||||
'courier_notified_at_corrected': False,
|
||||
'courier_accepted_at': datetime.datetime(2020, 1, 2, 12, 6, 17),
|
||||
'courier_accepted_at_corrected': False,
|
||||
'utilization': 50,
|
||||
'_pickup_address_id': 1,
|
||||
'reached_pickup_at': datetime.datetime(2020, 1, 2, 12, 16, 21),
|
||||
'pickup_at': datetime.datetime(2020, 1, 2, 12, 18, 1),
|
||||
'pickup_at_corrected': False,
|
||||
'pickup_not_confirmed': False,
|
||||
'left_pickup_at': datetime.datetime(2020, 1, 2, 12, 19, 45),
|
||||
'left_pickup_at_corrected': False,
|
||||
'_delivery_address_id': 2,
|
||||
'reached_delivery_at': datetime.datetime(2020, 1, 2, 12, 27, 33),
|
||||
'delivery_at': datetime.datetime(2020, 1, 2, 12, 29, 55),
|
||||
'delivery_at_corrected': False,
|
||||
'delivery_not_confirmed': False,
|
||||
'_courier_waited_at_delivery': False,
|
||||
'logged_delivery_distance': 500,
|
||||
'logged_avg_speed': 7.89,
|
||||
'logged_avg_speed_distance': 490,
|
||||
}
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def order( # noqa:WPS211 pylint:disable=too-many-arguments
|
||||
order_data, customer, restaurant, courier, address, address2,
|
||||
):
|
||||
"""An Order object."""
|
||||
order = db.Order(**order_data)
|
||||
order.customer = customer
|
||||
order.restaurant = restaurant
|
||||
order.courier = courier
|
||||
order.pickup_address = address
|
||||
order.delivery_address = address2
|
||||
return order
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def restaurant_data():
|
||||
"""The data for the Restaurant object."""
|
||||
return {
|
||||
'id': 1,
|
||||
'created_at': datetime.datetime(2020, 1, 2, 3, 4, 5),
|
||||
'name': 'Vevay',
|
||||
'_address_id': 1,
|
||||
'estimated_prep_duration': 1000,
|
||||
}
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def restaurant(restaurant_data, address):
|
||||
"""A Restaurant object."""
|
||||
restaurant = db.Restaurant(**restaurant_data)
|
||||
restaurant.address = address
|
||||
return restaurant
|
16
tests/db/fake_data/__init__.py
Normal file
16
tests/db/fake_data/__init__.py
Normal file
|
@ -0,0 +1,16 @@
|
|||
"""Fixtures for testing the ORM layer with fake data."""
|
||||
|
||||
from tests.db.fake_data.fixture_makers import make_address
|
||||
from tests.db.fake_data.fixture_makers import make_courier
|
||||
from tests.db.fake_data.fixture_makers import make_customer
|
||||
from tests.db.fake_data.fixture_makers import make_order
|
||||
from tests.db.fake_data.fixture_makers import make_restaurant
|
||||
from tests.db.fake_data.static_fixtures import address
|
||||
from tests.db.fake_data.static_fixtures import city
|
||||
from tests.db.fake_data.static_fixtures import city_data
|
||||
from tests.db.fake_data.static_fixtures import courier
|
||||
from tests.db.fake_data.static_fixtures import customer
|
||||
from tests.db.fake_data.static_fixtures import grid
|
||||
from tests.db.fake_data.static_fixtures import order
|
||||
from tests.db.fake_data.static_fixtures import pixel
|
||||
from tests.db.fake_data.static_fixtures import restaurant
|
378
tests/db/fake_data/factories.py
Normal file
378
tests/db/fake_data/factories.py
Normal file
|
@ -0,0 +1,378 @@
|
|||
"""Factories to create instances for the SQLAlchemy models."""
|
||||
|
||||
import datetime as dt
|
||||
import random
|
||||
import string
|
||||
|
||||
import factory
|
||||
import faker
|
||||
from factory import alchemy
|
||||
from geopy import distance
|
||||
|
||||
from tests import config as test_config
|
||||
from urban_meal_delivery import db
|
||||
|
||||
|
||||
def _random_timespan( # noqa:WPS211
|
||||
*,
|
||||
min_hours=0,
|
||||
min_minutes=0,
|
||||
min_seconds=0,
|
||||
max_hours=0,
|
||||
max_minutes=0,
|
||||
max_seconds=0,
|
||||
):
|
||||
"""A randomized `timedelta` object between the specified arguments."""
|
||||
total_min_seconds = min_hours * 3600 + min_minutes * 60 + min_seconds
|
||||
total_max_seconds = max_hours * 3600 + max_minutes * 60 + max_seconds
|
||||
return dt.timedelta(seconds=random.randint(total_min_seconds, total_max_seconds))
|
||||
|
||||
|
||||
def _early_in_the_morning():
|
||||
"""A randomized `datetime` object early in the morning."""
|
||||
early = dt.datetime(test_config.YEAR, test_config.MONTH, test_config.DAY, 3, 0)
|
||||
return early + _random_timespan(max_hours=2)
|
||||
|
||||
|
||||
class AddressFactory(alchemy.SQLAlchemyModelFactory):
|
||||
"""Create instances of the `db.Address` model."""
|
||||
|
||||
class Meta:
|
||||
model = db.Address
|
||||
sqlalchemy_get_or_create = ('id',)
|
||||
|
||||
id = factory.Sequence(lambda num: num) # noqa:WPS125
|
||||
created_at = factory.LazyFunction(_early_in_the_morning)
|
||||
|
||||
# When testing, all addresses are considered primary ones.
|
||||
# As non-primary addresses have no different behavior and
|
||||
# the property is only kept from the original dataset for
|
||||
# completeness sake, that is ok to do.
|
||||
primary_id = factory.LazyAttribute(lambda obj: obj.id)
|
||||
|
||||
# Mimic a Google Maps Place ID with just random characters.
|
||||
place_id = factory.LazyFunction(
|
||||
lambda: ''.join(random.choice(string.ascii_lowercase) for _ in range(20)),
|
||||
)
|
||||
|
||||
# Place the addresses somewhere in downtown Paris.
|
||||
latitude = factory.Faker('coordinate', center=48.855, radius=0.01)
|
||||
longitude = factory.Faker('coordinate', center=2.34, radius=0.03)
|
||||
# city -> set by the `make_address` fixture as there is only one `city`
|
||||
city_name = 'Paris'
|
||||
zip_code = factory.LazyFunction(lambda: random.randint(75001, 75020))
|
||||
street = factory.Faker('street_address', locale='fr_FR')
|
||||
|
||||
|
||||
class CourierFactory(alchemy.SQLAlchemyModelFactory):
|
||||
"""Create instances of the `db.Courier` model."""
|
||||
|
||||
class Meta:
|
||||
model = db.Courier
|
||||
sqlalchemy_get_or_create = ('id',)
|
||||
|
||||
id = factory.Sequence(lambda num: num) # noqa:WPS125
|
||||
created_at = factory.LazyFunction(_early_in_the_morning)
|
||||
vehicle = 'bicycle'
|
||||
historic_speed = 7.89
|
||||
capacity = 100
|
||||
pay_per_hour = 750
|
||||
pay_per_order = 200
|
||||
|
||||
|
||||
class CustomerFactory(alchemy.SQLAlchemyModelFactory):
|
||||
"""Create instances of the `db.Customer` model."""
|
||||
|
||||
class Meta:
|
||||
model = db.Customer
|
||||
sqlalchemy_get_or_create = ('id',)
|
||||
|
||||
id = factory.Sequence(lambda num: num) # noqa:WPS125
|
||||
|
||||
|
||||
_restaurant_names = faker.Faker()
|
||||
|
||||
|
||||
class RestaurantFactory(alchemy.SQLAlchemyModelFactory):
|
||||
"""Create instances of the `db.Restaurant` model."""
|
||||
|
||||
class Meta:
|
||||
model = db.Restaurant
|
||||
sqlalchemy_get_or_create = ('id',)
|
||||
|
||||
id = factory.Sequence(lambda num: num) # noqa:WPS125
|
||||
created_at = factory.LazyFunction(_early_in_the_morning)
|
||||
name = factory.LazyFunction(
|
||||
lambda: f"{_restaurant_names.first_name()}'s Restaurant",
|
||||
)
|
||||
# address -> set by the `make_restaurant` fixture as there is only one `city`
|
||||
estimated_prep_duration = 1000
|
||||
|
||||
|
||||
class AdHocOrderFactory(alchemy.SQLAlchemyModelFactory):
|
||||
"""Create instances of the `db.Order` model.
|
||||
|
||||
This factory creates ad-hoc `Order`s while the `ScheduledOrderFactory`
|
||||
below creates pre-orders. They are split into two classes mainly
|
||||
because the logic regarding how the timestamps are calculated from
|
||||
each other differs.
|
||||
|
||||
See the docstring in the contained `Params` class for
|
||||
flags to adapt how the `Order` is created.
|
||||
"""
|
||||
|
||||
class Meta:
|
||||
model = db.Order
|
||||
sqlalchemy_get_or_create = ('id',)
|
||||
|
||||
class Params:
|
||||
"""Define flags that overwrite some attributes.
|
||||
|
||||
The `factory.Trait` objects in this class are executed after all
|
||||
the normal attributes in the `OrderFactory` classes were evaluated.
|
||||
|
||||
Flags:
|
||||
cancel_before_pickup
|
||||
cancel_after_pickup
|
||||
"""
|
||||
|
||||
# Timestamps after `cancelled_at` are discarded
|
||||
# by the `post_generation` hook at the end of the `OrderFactory`.
|
||||
cancel_ = factory.Trait( # noqa:WPS120 -> leading underscore does not work
|
||||
cancelled=True, cancelled_at_corrected=False,
|
||||
)
|
||||
cancel_before_pickup = factory.Trait(
|
||||
cancel_=True,
|
||||
cancelled_at=factory.LazyAttribute(
|
||||
lambda obj: obj.dispatch_at
|
||||
+ _random_timespan(
|
||||
max_seconds=(obj.pickup_at - obj.dispatch_at).total_seconds(),
|
||||
),
|
||||
),
|
||||
)
|
||||
cancel_after_pickup = factory.Trait(
|
||||
cancel_=True,
|
||||
cancelled_at=factory.LazyAttribute(
|
||||
lambda obj: obj.pickup_at
|
||||
+ _random_timespan(
|
||||
max_seconds=(obj.delivery_at - obj.pickup_at).total_seconds(),
|
||||
),
|
||||
),
|
||||
)
|
||||
|
||||
# Generic attributes
|
||||
id = factory.Sequence(lambda num: num) # noqa:WPS125
|
||||
# customer -> set by the `make_order` fixture for better control
|
||||
|
||||
# Attributes regarding the specialization of an `Order`: ad-hoc or scheduled.
|
||||
# Ad-hoc `Order`s are placed between 11.45 and 14.15.
|
||||
placed_at = factory.LazyFunction(
|
||||
lambda: dt.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, 11, 45,
|
||||
)
|
||||
+ _random_timespan(max_hours=2, max_minutes=30),
|
||||
)
|
||||
ad_hoc = True
|
||||
scheduled_delivery_at = None
|
||||
scheduled_delivery_at_corrected = None
|
||||
# Without statistical info, we assume an ad-hoc `Order` delivered after 45 minutes.
|
||||
first_estimated_delivery_at = factory.LazyAttribute(
|
||||
lambda obj: obj.placed_at + dt.timedelta(minutes=45),
|
||||
)
|
||||
|
||||
# Attributes regarding the cancellation of an `Order`.
|
||||
# May be overwritten with the `cancel_before_pickup` or `cancel_after_pickup` flags.
|
||||
cancelled = False
|
||||
cancelled_at = None
|
||||
cancelled_at_corrected = None
|
||||
|
||||
# Price-related attributes -> sample realistic prices
|
||||
sub_total = factory.LazyFunction(lambda: 100 * random.randint(15, 25))
|
||||
delivery_fee = 250
|
||||
total = factory.LazyAttribute(lambda obj: obj.sub_total + obj.delivery_fee)
|
||||
|
||||
# Restaurant-related attributes
|
||||
# restaurant -> set by the `make_order` fixture for better control
|
||||
restaurant_notified_at = factory.LazyAttribute(
|
||||
lambda obj: obj.placed_at + _random_timespan(min_seconds=30, max_seconds=90),
|
||||
)
|
||||
restaurant_notified_at_corrected = False
|
||||
restaurant_confirmed_at = factory.LazyAttribute(
|
||||
lambda obj: obj.restaurant_notified_at
|
||||
+ _random_timespan(min_seconds=30, max_seconds=150),
|
||||
)
|
||||
restaurant_confirmed_at_corrected = False
|
||||
# Use the database defaults of the historic data.
|
||||
estimated_prep_duration = 900
|
||||
estimated_prep_duration_corrected = False
|
||||
estimated_prep_buffer = 480
|
||||
|
||||
# Dispatch-related columns
|
||||
# courier -> set by the `make_order` fixture for better control
|
||||
dispatch_at = factory.LazyAttribute(
|
||||
lambda obj: obj.placed_at + _random_timespan(min_seconds=600, max_seconds=1080),
|
||||
)
|
||||
dispatch_at_corrected = False
|
||||
courier_notified_at = factory.LazyAttribute(
|
||||
lambda obj: obj.dispatch_at
|
||||
+ _random_timespan(min_seconds=100, max_seconds=140),
|
||||
)
|
||||
courier_notified_at_corrected = False
|
||||
courier_accepted_at = factory.LazyAttribute(
|
||||
lambda obj: obj.courier_notified_at
|
||||
+ _random_timespan(min_seconds=15, max_seconds=45),
|
||||
)
|
||||
courier_accepted_at_corrected = False
|
||||
# Sample a realistic utilization.
|
||||
utilization = factory.LazyFunction(lambda: random.choice([50, 60, 70, 80, 90, 100]))
|
||||
|
||||
# Pickup-related attributes
|
||||
# pickup_address -> aligned with `restaurant.address` by the `make_order` fixture
|
||||
reached_pickup_at = factory.LazyAttribute(
|
||||
lambda obj: obj.courier_accepted_at
|
||||
+ _random_timespan(min_seconds=300, max_seconds=600),
|
||||
)
|
||||
pickup_at = factory.LazyAttribute(
|
||||
lambda obj: obj.reached_pickup_at
|
||||
+ _random_timespan(min_seconds=120, max_seconds=600),
|
||||
)
|
||||
pickup_at_corrected = False
|
||||
pickup_not_confirmed = False
|
||||
left_pickup_at = factory.LazyAttribute(
|
||||
lambda obj: obj.pickup_at + _random_timespan(min_seconds=60, max_seconds=180),
|
||||
)
|
||||
left_pickup_at_corrected = False
|
||||
|
||||
# Delivery-related attributes
|
||||
# delivery_address -> set by the `make_order` fixture as there is only one `city`
|
||||
reached_delivery_at = factory.LazyAttribute(
|
||||
lambda obj: obj.left_pickup_at
|
||||
+ _random_timespan(min_seconds=240, max_seconds=480),
|
||||
)
|
||||
delivery_at = factory.LazyAttribute(
|
||||
lambda obj: obj.reached_delivery_at
|
||||
+ _random_timespan(min_seconds=240, max_seconds=660),
|
||||
)
|
||||
delivery_at_corrected = False
|
||||
delivery_not_confirmed = False
|
||||
_courier_waited_at_delivery = factory.LazyAttribute(
|
||||
lambda obj: False if obj.delivery_at else None,
|
||||
)
|
||||
|
||||
# Statistical attributes -> calculate realistic stats
|
||||
logged_delivery_distance = factory.LazyAttribute(
|
||||
lambda obj: distance.great_circle( # noqa:WPS317
|
||||
(obj.pickup_address.latitude, obj.pickup_address.longitude),
|
||||
(obj.delivery_address.latitude, obj.delivery_address.longitude),
|
||||
).meters,
|
||||
)
|
||||
logged_avg_speed = factory.LazyAttribute( # noqa:ECE001
|
||||
lambda obj: round(
|
||||
(
|
||||
obj.logged_avg_speed_distance
|
||||
/ (obj.delivery_at - obj.pickup_at).total_seconds()
|
||||
),
|
||||
2,
|
||||
),
|
||||
)
|
||||
logged_avg_speed_distance = factory.LazyAttribute(
|
||||
lambda obj: 0.95 * obj.logged_delivery_distance,
|
||||
)
|
||||
|
||||
@factory.post_generation
|
||||
def post( # noqa:C901,WPS231
|
||||
obj, create, extracted, **kwargs, # noqa:B902,N805
|
||||
):
|
||||
"""Discard timestamps that occur after cancellation."""
|
||||
if obj.cancelled:
|
||||
if obj.cancelled_at <= obj.restaurant_notified_at:
|
||||
obj.restaurant_notified_at = None
|
||||
obj.restaurant_notified_at_corrected = None
|
||||
if obj.cancelled_at <= obj.restaurant_confirmed_at:
|
||||
obj.restaurant_confirmed_at = None
|
||||
obj.restaurant_confirmed_at_corrected = None
|
||||
if obj.cancelled_at <= obj.dispatch_at:
|
||||
obj.dispatch_at = None
|
||||
obj.dispatch_at_corrected = None
|
||||
if obj.cancelled_at <= obj.courier_notified_at:
|
||||
obj.courier_notified_at = None
|
||||
obj.courier_notified_at_corrected = None
|
||||
if obj.cancelled_at <= obj.courier_accepted_at:
|
||||
obj.courier_accepted_at = None
|
||||
obj.courier_accepted_at_corrected = None
|
||||
if obj.cancelled_at <= obj.reached_pickup_at:
|
||||
obj.reached_pickup_at = None
|
||||
if obj.cancelled_at <= obj.pickup_at:
|
||||
obj.pickup_at = None
|
||||
obj.pickup_at_corrected = None
|
||||
obj.pickup_not_confirmed = None
|
||||
if obj.cancelled_at <= obj.left_pickup_at:
|
||||
obj.left_pickup_at = None
|
||||
obj.left_pickup_at_corrected = None
|
||||
if obj.cancelled_at <= obj.reached_delivery_at:
|
||||
obj.reached_delivery_at = None
|
||||
if obj.cancelled_at <= obj.delivery_at:
|
||||
obj.delivery_at = None
|
||||
obj.delivery_at_corrected = None
|
||||
obj.delivery_not_confirmed = None
|
||||
obj._courier_waited_at_delivery = None
|
||||
|
||||
|
||||
class ScheduledOrderFactory(AdHocOrderFactory):
|
||||
"""Create instances of the `db.Order` model.
|
||||
|
||||
This class takes care of the various timestamps for pre-orders.
|
||||
|
||||
Pre-orders are placed long before the test day's lunch time starts.
|
||||
All timestamps are relative to either `.dispatch_at` or `.restaurant_notified_at`
|
||||
and calculated backwards from `.scheduled_delivery_at`.
|
||||
"""
|
||||
|
||||
# Attributes regarding the specialization of an `Order`: ad-hoc or scheduled.
|
||||
placed_at = factory.LazyFunction(_early_in_the_morning)
|
||||
ad_hoc = False
|
||||
# Discrete `datetime` objects in the "core" lunch time are enough.
|
||||
scheduled_delivery_at = factory.LazyFunction(
|
||||
lambda: random.choice(
|
||||
[
|
||||
dt.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, 12, 0,
|
||||
),
|
||||
dt.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, 12, 15,
|
||||
),
|
||||
dt.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, 12, 30,
|
||||
),
|
||||
dt.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, 12, 45,
|
||||
),
|
||||
dt.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, 13, 0,
|
||||
),
|
||||
dt.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, 13, 15,
|
||||
),
|
||||
dt.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, 13, 30,
|
||||
),
|
||||
],
|
||||
),
|
||||
)
|
||||
scheduled_delivery_at_corrected = False
|
||||
# Assume the `Order` is on time.
|
||||
first_estimated_delivery_at = factory.LazyAttribute(
|
||||
lambda obj: obj.scheduled_delivery_at,
|
||||
)
|
||||
|
||||
# Restaurant-related attributes
|
||||
restaurant_notified_at = factory.LazyAttribute(
|
||||
lambda obj: obj.scheduled_delivery_at
|
||||
- _random_timespan(min_minutes=45, max_minutes=50),
|
||||
)
|
||||
|
||||
# Dispatch-related attributes
|
||||
dispatch_at = factory.LazyAttribute(
|
||||
lambda obj: obj.scheduled_delivery_at
|
||||
- _random_timespan(min_minutes=40, max_minutes=45),
|
||||
)
|
105
tests/db/fake_data/fixture_makers.py
Normal file
105
tests/db/fake_data/fixture_makers.py
Normal file
|
@ -0,0 +1,105 @@
|
|||
"""Fixture factories for testing the ORM layer with fake data."""
|
||||
|
||||
import pytest
|
||||
|
||||
from tests.db.fake_data import factories
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def make_address(city):
|
||||
"""Replaces `AddressFactory.build()`: Create an `Address` in the `city`."""
|
||||
# Reset the identifiers before every test.
|
||||
factories.AddressFactory.reset_sequence(1)
|
||||
|
||||
def func(**kwargs):
|
||||
"""Create an `Address` object in the `city`."""
|
||||
return factories.AddressFactory.build(city=city, **kwargs)
|
||||
|
||||
return func
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def make_courier():
|
||||
"""Replaces `CourierFactory.build()`: Create a `Courier`."""
|
||||
# Reset the identifiers before every test.
|
||||
factories.CourierFactory.reset_sequence(1)
|
||||
|
||||
def func(**kwargs):
|
||||
"""Create a new `Courier` object."""
|
||||
return factories.CourierFactory.build(**kwargs)
|
||||
|
||||
return func
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def make_customer():
|
||||
"""Replaces `CustomerFactory.build()`: Create a `Customer`."""
|
||||
# Reset the identifiers before every test.
|
||||
factories.CustomerFactory.reset_sequence(1)
|
||||
|
||||
def func(**kwargs):
|
||||
"""Create a new `Customer` object."""
|
||||
return factories.CustomerFactory.build(**kwargs)
|
||||
|
||||
return func
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def make_restaurant(make_address):
|
||||
"""Replaces `RestaurantFactory.build()`: Create a `Restaurant`."""
|
||||
# Reset the identifiers before every test.
|
||||
factories.RestaurantFactory.reset_sequence(1)
|
||||
|
||||
def func(address=None, **kwargs):
|
||||
"""Create a new `Restaurant` object.
|
||||
|
||||
If no `address` is provided, a new `Address` is created.
|
||||
"""
|
||||
if address is None:
|
||||
address = make_address()
|
||||
|
||||
return factories.RestaurantFactory.build(address=address, **kwargs)
|
||||
|
||||
return func
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def make_order(make_address, make_courier, make_customer, make_restaurant):
|
||||
"""Replaces `OrderFactory.build()`: Create a `Order`."""
|
||||
# Reset the identifiers before every test.
|
||||
factories.AdHocOrderFactory.reset_sequence(1)
|
||||
|
||||
def func(scheduled=False, restaurant=None, courier=None, **kwargs):
|
||||
"""Create a new `Order` object.
|
||||
|
||||
Each `Order` is made by a new `Customer` with a unique `Address` for delivery.
|
||||
|
||||
Args:
|
||||
scheduled: if an `Order` is a pre-order
|
||||
restaurant: who receives the `Order`; defaults to a new `Restaurant`
|
||||
courier: who delivered the `Order`; defaults to a new `Courier`
|
||||
kwargs: additional keyword arguments forwarded to the `OrderFactory`
|
||||
|
||||
Returns:
|
||||
order
|
||||
"""
|
||||
if scheduled:
|
||||
factory_cls = factories.ScheduledOrderFactory
|
||||
else:
|
||||
factory_cls = factories.AdHocOrderFactory
|
||||
|
||||
if restaurant is None:
|
||||
restaurant = make_restaurant()
|
||||
if courier is None:
|
||||
courier = make_courier()
|
||||
|
||||
return factory_cls.build(
|
||||
customer=make_customer(), # assume a unique `Customer` per order
|
||||
restaurant=restaurant,
|
||||
courier=courier,
|
||||
pickup_address=restaurant.address, # no `Address` history
|
||||
delivery_address=make_address(), # unique `Customer` => new `Address`
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
return func
|
70
tests/db/fake_data/static_fixtures.py
Normal file
70
tests/db/fake_data/static_fixtures.py
Normal file
|
@ -0,0 +1,70 @@
|
|||
"""Fake data for testing the ORM layer."""
|
||||
|
||||
import pytest
|
||||
|
||||
from urban_meal_delivery import db
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def city_data():
|
||||
"""The data for the one and only `City` object as a `dict`."""
|
||||
return {
|
||||
'id': 1,
|
||||
'name': 'Paris',
|
||||
'kml': "<?xml version='1.0' encoding='UTF-8'?> ...",
|
||||
'center_latitude': 48.856614,
|
||||
'center_longitude': 2.3522219,
|
||||
'northeast_latitude': 48.9021449,
|
||||
'northeast_longitude': 2.4699208,
|
||||
'southwest_latitude': 48.815573,
|
||||
'southwest_longitude': 2.225193,
|
||||
'initial_zoom': 12,
|
||||
}
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def city(city_data):
|
||||
"""The one and only `City` object."""
|
||||
return db.City(**city_data)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def address(make_address):
|
||||
"""An `Address` object in the `city`."""
|
||||
return make_address()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def courier(make_courier):
|
||||
"""A `Courier` object."""
|
||||
return make_courier()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def customer(make_customer):
|
||||
"""A `Customer` object."""
|
||||
return make_customer()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def restaurant(address, make_restaurant):
|
||||
"""A `Restaurant` object located at the `address`."""
|
||||
return make_restaurant(address=address)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def order(make_order, restaurant):
|
||||
"""An `Order` object for the `restaurant`."""
|
||||
return make_order(restaurant=restaurant)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def grid(city):
|
||||
"""A `Grid` with a pixel area of 1 square kilometer."""
|
||||
return db.Grid(city=city, side_length=1000)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def pixel(grid):
|
||||
"""The `Pixel` in the lower-left corner of the `grid`."""
|
||||
return db.Pixel(id=1, grid=grid, n_x=0, n_y=0)
|
|
@ -1,141 +1,154 @@
|
|||
"""Test the ORM's Address model."""
|
||||
"""Test the ORM's `Address` model."""
|
||||
|
||||
import pytest
|
||||
import sqlalchemy as sqla
|
||||
from sqlalchemy import exc as sa_exc
|
||||
from sqlalchemy.orm import exc as orm_exc
|
||||
|
||||
from urban_meal_delivery import db
|
||||
from urban_meal_delivery.db import utils
|
||||
|
||||
|
||||
class TestSpecialMethods:
|
||||
"""Test special methods in Address."""
|
||||
"""Test special methods in `Address`."""
|
||||
|
||||
# pylint:disable=no-self-use
|
||||
|
||||
def test_create_address(self, address_data):
|
||||
"""Test instantiation of a new Address object."""
|
||||
result = db.Address(**address_data)
|
||||
|
||||
assert result is not None
|
||||
|
||||
def test_text_representation(self, address_data):
|
||||
"""Address has a non-literal text representation."""
|
||||
address = db.Address(**address_data)
|
||||
street = address_data['street']
|
||||
city_name = address_data['city_name']
|
||||
def test_create_address(self, address):
|
||||
"""Test instantiation of a new `Address` object."""
|
||||
assert address is not None
|
||||
|
||||
def test_text_representation(self, address):
|
||||
"""`Address` has a non-literal text representation."""
|
||||
result = repr(address)
|
||||
|
||||
assert result == f'<Address({street} in {city_name})>'
|
||||
assert result == f'<Address({address.street} in {address.city_name})>'
|
||||
|
||||
|
||||
@pytest.mark.e2e
|
||||
@pytest.mark.db
|
||||
@pytest.mark.no_cover
|
||||
class TestConstraints:
|
||||
"""Test the database constraints defined in Address."""
|
||||
"""Test the database constraints defined in `Address`."""
|
||||
|
||||
# pylint:disable=no-self-use
|
||||
def test_insert_into_database(self, db_session, address):
|
||||
"""Insert an instance into the (empty) database."""
|
||||
assert db_session.query(db.Address).count() == 0
|
||||
|
||||
def test_insert_into_database(self, address, db_session):
|
||||
"""Insert an instance into the database."""
|
||||
db_session.add(address)
|
||||
db_session.commit()
|
||||
|
||||
def test_dublicate_primary_key(self, address, address_data, city, db_session):
|
||||
"""Can only add a record once."""
|
||||
assert db_session.query(db.Address).count() == 1
|
||||
|
||||
def test_delete_a_referenced_address(self, db_session, address, make_address):
|
||||
"""Remove a record that is referenced with a FK."""
|
||||
db_session.add(address)
|
||||
# Fake another_address that has the same `.primary_id` as `address`.
|
||||
db_session.add(make_address(primary_id=address.id))
|
||||
db_session.commit()
|
||||
|
||||
another_address = db.Address(**address_data)
|
||||
another_address.city = city
|
||||
db_session.add(another_address)
|
||||
db_session.delete(address)
|
||||
|
||||
with pytest.raises(orm_exc.FlushError):
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='fk_addresses_to_addresses_via_primary_id',
|
||||
):
|
||||
db_session.commit()
|
||||
|
||||
def test_delete_a_referenced_address(self, address, address_data, db_session):
|
||||
def test_delete_a_referenced_city(self, db_session, address):
|
||||
"""Remove a record that is referenced with a FK."""
|
||||
db_session.add(address)
|
||||
db_session.commit()
|
||||
|
||||
# Fake a second address that belongs to the same primary address.
|
||||
address_data['id'] += 1
|
||||
another_address = db.Address(**address_data)
|
||||
db_session.add(another_address)
|
||||
db_session.commit()
|
||||
# Must delete without ORM as otherwise an UPDATE statement is emitted.
|
||||
stmt = sqla.delete(db.City).where(db.City.id == address.city.id)
|
||||
|
||||
with pytest.raises(sa_exc.IntegrityError):
|
||||
db_session.execute(
|
||||
db.Address.__table__.delete().where( # noqa:WPS609
|
||||
db.Address.id == address.id,
|
||||
),
|
||||
)
|
||||
|
||||
def test_delete_a_referenced_city(self, address, city, db_session):
|
||||
"""Remove a record that is referenced with a FK."""
|
||||
db_session.add(address)
|
||||
db_session.commit()
|
||||
|
||||
with pytest.raises(sa_exc.IntegrityError):
|
||||
db_session.execute(
|
||||
db.City.__table__.delete().where(db.City.id == city.id), # noqa:WPS609
|
||||
)
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='fk_addresses_to_cities_via_city_id',
|
||||
):
|
||||
db_session.execute(stmt)
|
||||
|
||||
@pytest.mark.parametrize('latitude', [-91, 91])
|
||||
def test_invalid_latitude(self, address, db_session, latitude):
|
||||
def test_invalid_latitude(self, db_session, address, latitude):
|
||||
"""Insert an instance with invalid data."""
|
||||
address.latitude = latitude
|
||||
db_session.add(address)
|
||||
|
||||
with pytest.raises(sa_exc.IntegrityError):
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='latitude_between_90_degrees',
|
||||
):
|
||||
db_session.commit()
|
||||
|
||||
@pytest.mark.parametrize('longitude', [-181, 181])
|
||||
def test_invalid_longitude(self, address, db_session, longitude):
|
||||
def test_invalid_longitude(self, db_session, address, longitude):
|
||||
"""Insert an instance with invalid data."""
|
||||
address.longitude = longitude
|
||||
db_session.add(address)
|
||||
|
||||
with pytest.raises(sa_exc.IntegrityError):
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='longitude_between_180_degrees',
|
||||
):
|
||||
db_session.commit()
|
||||
|
||||
@pytest.mark.parametrize('zip_code', [-1, 0, 9999, 100000])
|
||||
def test_invalid_zip_code(self, address, db_session, zip_code):
|
||||
def test_invalid_zip_code(self, db_session, address, zip_code):
|
||||
"""Insert an instance with invalid data."""
|
||||
address.zip_code = zip_code
|
||||
db_session.add(address)
|
||||
|
||||
with pytest.raises(sa_exc.IntegrityError):
|
||||
with pytest.raises(sa_exc.IntegrityError, match='valid_zip_code'):
|
||||
db_session.commit()
|
||||
|
||||
@pytest.mark.parametrize('floor', [-1, 41])
|
||||
def test_invalid_floor(self, address, db_session, floor):
|
||||
def test_invalid_floor(self, db_session, address, floor):
|
||||
"""Insert an instance with invalid data."""
|
||||
address.floor = floor
|
||||
db_session.add(address)
|
||||
|
||||
with pytest.raises(sa_exc.IntegrityError):
|
||||
with pytest.raises(sa_exc.IntegrityError, match='realistic_floor'):
|
||||
db_session.commit()
|
||||
|
||||
|
||||
class TestProperties:
|
||||
"""Test properties in Address."""
|
||||
"""Test properties in `Address`."""
|
||||
|
||||
# pylint:disable=no-self-use
|
||||
|
||||
def test_is_primary(self, address_data):
|
||||
"""Test Address.is_primary property."""
|
||||
address = db.Address(**address_data)
|
||||
def test_is_primary(self, address):
|
||||
"""Test `Address.is_primary` property."""
|
||||
assert address.id == address.primary_id
|
||||
|
||||
result = address.is_primary
|
||||
|
||||
assert result is True
|
||||
|
||||
def test_is_not_primary(self, address_data):
|
||||
"""Test Address.is_primary property."""
|
||||
address_data['_primary_id'] = 999
|
||||
address = db.Address(**address_data)
|
||||
def test_is_not_primary(self, address):
|
||||
"""Test `Address.is_primary` property."""
|
||||
address.primary_id = 999
|
||||
|
||||
result = address.is_primary
|
||||
|
||||
assert result is False
|
||||
|
||||
def test_location(self, address):
|
||||
"""Test `Address.location` property."""
|
||||
latitude = float(address.latitude)
|
||||
longitude = float(address.longitude)
|
||||
|
||||
result = address.location
|
||||
|
||||
assert isinstance(result, utils.Location)
|
||||
assert result.latitude == pytest.approx(latitude)
|
||||
assert result.longitude == pytest.approx(longitude)
|
||||
|
||||
def test_location_is_cached(self, address):
|
||||
"""Test `Address.location` property."""
|
||||
result1 = address.location
|
||||
result2 = address.location
|
||||
|
||||
assert result1 is result2
|
||||
|
||||
def test_x_is_positive(self, address):
|
||||
"""Test `Address.x` property."""
|
||||
result = address.x
|
||||
|
||||
assert result > 0
|
||||
|
||||
def test_y_is_positive(self, address):
|
||||
"""Test `Address.y` property."""
|
||||
result = address.y
|
||||
|
||||
assert result > 0
|
||||
|
|
135
tests/db/test_addresses_pixels.py
Normal file
135
tests/db/test_addresses_pixels.py
Normal file
|
@ -0,0 +1,135 @@
|
|||
"""Test the ORM's `AddressPixelAssociation` model.
|
||||
|
||||
Implementation notes:
|
||||
The test suite has 100% coverage without the test cases in this module.
|
||||
That is so as the `AddressPixelAssociation` model is imported into the
|
||||
`urban_meal_delivery.db` namespace so that the `Address` and `Pixel` models
|
||||
can find it upon initialization. Yet, none of the other unit tests run any
|
||||
code associated with it. Therefore, we test it here as non-e2e tests and do
|
||||
not measure its coverage.
|
||||
"""
|
||||
|
||||
import pytest
|
||||
import sqlalchemy as sqla
|
||||
from sqlalchemy import exc as sa_exc
|
||||
|
||||
from urban_meal_delivery import db
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def assoc(address, pixel):
|
||||
"""An association between `address` and `pixel`."""
|
||||
return db.AddressPixelAssociation(address=address, pixel=pixel)
|
||||
|
||||
|
||||
@pytest.mark.no_cover
|
||||
class TestSpecialMethods:
|
||||
"""Test special methods in `Pixel`."""
|
||||
|
||||
def test_create_an_address_pixel_association(self, assoc):
|
||||
"""Test instantiation of a new `AddressPixelAssociation` object."""
|
||||
assert assoc is not None
|
||||
|
||||
|
||||
@pytest.mark.db
|
||||
@pytest.mark.no_cover
|
||||
class TestConstraints:
|
||||
"""Test the database constraints defined in `AddressPixelAssociation`.
|
||||
|
||||
The foreign keys to `City` and `Grid` are tested via INSERT and not
|
||||
DELETE statements as the latter would already fail because of foreign
|
||||
keys defined in `Address` and `Pixel`.
|
||||
"""
|
||||
|
||||
def test_insert_into_database(self, db_session, assoc):
|
||||
"""Insert an instance into the (empty) database."""
|
||||
assert db_session.query(db.AddressPixelAssociation).count() == 0
|
||||
|
||||
db_session.add(assoc)
|
||||
db_session.commit()
|
||||
|
||||
assert db_session.query(db.AddressPixelAssociation).count() == 1
|
||||
|
||||
def test_delete_a_referenced_address(self, db_session, assoc):
|
||||
"""Remove a record that is referenced with a FK."""
|
||||
db_session.add(assoc)
|
||||
db_session.commit()
|
||||
|
||||
# Must delete without ORM as otherwise an UPDATE statement is emitted.
|
||||
stmt = sqla.delete(db.Address).where(db.Address.id == assoc.address.id)
|
||||
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError,
|
||||
match='fk_addresses_pixels_to_addresses_via_address_id_city_id',
|
||||
):
|
||||
db_session.execute(stmt)
|
||||
|
||||
def test_reference_an_invalid_city(self, db_session, address, pixel):
|
||||
"""Insert a record with an invalid foreign key."""
|
||||
db_session.add(address)
|
||||
db_session.add(pixel)
|
||||
db_session.commit()
|
||||
|
||||
# Must insert without ORM as otherwise SQLAlchemy figures out
|
||||
# that something is wrong before any query is sent to the database.
|
||||
stmt = sqla.insert(db.AddressPixelAssociation).values(
|
||||
address_id=address.id,
|
||||
city_id=999,
|
||||
grid_id=pixel.grid.id,
|
||||
pixel_id=pixel.id,
|
||||
)
|
||||
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError,
|
||||
match='fk_addresses_pixels_to_addresses_via_address_id_city_id',
|
||||
):
|
||||
db_session.execute(stmt)
|
||||
|
||||
def test_reference_an_invalid_grid(self, db_session, address, pixel):
|
||||
"""Insert a record with an invalid foreign key."""
|
||||
db_session.add(address)
|
||||
db_session.add(pixel)
|
||||
db_session.commit()
|
||||
|
||||
# Must insert without ORM as otherwise SQLAlchemy figures out
|
||||
# that something is wrong before any query is sent to the database.
|
||||
stmt = sqla.insert(db.AddressPixelAssociation).values(
|
||||
address_id=address.id,
|
||||
city_id=address.city.id,
|
||||
grid_id=999,
|
||||
pixel_id=pixel.id,
|
||||
)
|
||||
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError,
|
||||
match='fk_addresses_pixels_to_grids_via_grid_id_city_id',
|
||||
):
|
||||
db_session.execute(stmt)
|
||||
|
||||
def test_delete_a_referenced_pixel(self, db_session, assoc):
|
||||
"""Remove a record that is referenced with a FK."""
|
||||
db_session.add(assoc)
|
||||
db_session.commit()
|
||||
|
||||
# Must delete without ORM as otherwise an UPDATE statement is emitted.
|
||||
stmt = sqla.delete(db.Pixel).where(db.Pixel.id == assoc.pixel.id)
|
||||
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError,
|
||||
match='fk_addresses_pixels_to_pixels_via_pixel_id_grid_id',
|
||||
):
|
||||
db_session.execute(stmt)
|
||||
|
||||
def test_put_an_address_on_a_grid_twice(self, db_session, address, assoc, pixel):
|
||||
"""Insert a record that violates a unique constraint."""
|
||||
db_session.add(assoc)
|
||||
db_session.commit()
|
||||
|
||||
# Create a neighboring `Pixel` and put the same `address` as in `pixel` in it.
|
||||
neighbor = db.Pixel(grid=pixel.grid, n_x=pixel.n_x, n_y=pixel.n_y + 1)
|
||||
another_assoc = db.AddressPixelAssociation(address=address, pixel=neighbor)
|
||||
|
||||
db_session.add(another_assoc)
|
||||
|
||||
with pytest.raises(sa_exc.IntegrityError, match='duplicate key value'):
|
||||
db_session.commit()
|
|
@ -1,99 +1,96 @@
|
|||
"""Test the ORM's City model."""
|
||||
"""Test the ORM's `City` model."""
|
||||
|
||||
import pytest
|
||||
from sqlalchemy.orm import exc as orm_exc
|
||||
|
||||
from urban_meal_delivery import db
|
||||
from urban_meal_delivery.db import utils
|
||||
|
||||
|
||||
class TestSpecialMethods:
|
||||
"""Test special methods in City."""
|
||||
"""Test special methods in `City`."""
|
||||
|
||||
# pylint:disable=no-self-use
|
||||
|
||||
def test_create_city(self, city_data):
|
||||
"""Test instantiation of a new City object."""
|
||||
result = db.City(**city_data)
|
||||
|
||||
assert result is not None
|
||||
|
||||
def test_text_representation(self, city_data):
|
||||
"""City has a non-literal text representation."""
|
||||
city = db.City(**city_data)
|
||||
name = city_data['name']
|
||||
def test_create_city(self, city):
|
||||
"""Test instantiation of a new `City` object."""
|
||||
assert city is not None
|
||||
|
||||
def test_text_representation(self, city):
|
||||
"""`City` has a non-literal text representation."""
|
||||
result = repr(city)
|
||||
|
||||
assert result == f'<City({name})>'
|
||||
assert result == f'<City({city.name})>'
|
||||
|
||||
|
||||
@pytest.mark.e2e
|
||||
@pytest.mark.db
|
||||
@pytest.mark.no_cover
|
||||
class TestConstraints:
|
||||
"""Test the database constraints defined in City."""
|
||||
"""Test the database constraints defined in `City`."""
|
||||
|
||||
# pylint:disable=no-self-use
|
||||
def test_insert_into_database(self, db_session, city):
|
||||
"""Insert an instance into the (empty) database."""
|
||||
assert db_session.query(db.City).count() == 0
|
||||
|
||||
def test_insert_into_database(self, city, db_session):
|
||||
"""Insert an instance into the database."""
|
||||
db_session.add(city)
|
||||
db_session.commit()
|
||||
|
||||
def test_dublicate_primary_key(self, city, city_data, db_session):
|
||||
"""Can only add a record once."""
|
||||
db_session.add(city)
|
||||
db_session.commit()
|
||||
|
||||
another_city = db.City(**city_data)
|
||||
db_session.add(another_city)
|
||||
|
||||
with pytest.raises(orm_exc.FlushError):
|
||||
db_session.commit()
|
||||
assert db_session.query(db.City).count() == 1
|
||||
|
||||
|
||||
class TestProperties:
|
||||
"""Test properties in City."""
|
||||
"""Test properties in `City`."""
|
||||
|
||||
# pylint:disable=no-self-use
|
||||
def test_center(self, city, city_data):
|
||||
"""Test `City.center` property."""
|
||||
result = city.center
|
||||
|
||||
def test_location_data(self, city_data):
|
||||
"""Test City.location property."""
|
||||
city = db.City(**city_data)
|
||||
assert isinstance(result, utils.Location)
|
||||
assert result.latitude == pytest.approx(city_data['center_latitude'])
|
||||
assert result.longitude == pytest.approx(city_data['center_longitude'])
|
||||
|
||||
result = city.location
|
||||
def test_center_is_cached(self, city):
|
||||
"""Test `City.center` property."""
|
||||
result1 = city.center
|
||||
result2 = city.center
|
||||
|
||||
assert isinstance(result, dict)
|
||||
assert len(result) == 2
|
||||
assert result['latitude'] == pytest.approx(city_data['_center_latitude'])
|
||||
assert result['longitude'] == pytest.approx(city_data['_center_longitude'])
|
||||
assert result1 is result2
|
||||
|
||||
def test_viewport_data_overall(self, city_data):
|
||||
"""Test City.viewport property."""
|
||||
city = db.City(**city_data)
|
||||
def test_northeast(self, city, city_data):
|
||||
"""Test `City.northeast` property."""
|
||||
result = city.northeast
|
||||
|
||||
result = city.viewport
|
||||
assert isinstance(result, utils.Location)
|
||||
assert result.latitude == pytest.approx(city_data['northeast_latitude'])
|
||||
assert result.longitude == pytest.approx(city_data['northeast_longitude'])
|
||||
|
||||
assert isinstance(result, dict)
|
||||
assert len(result) == 2
|
||||
def test_northeast_is_cached(self, city):
|
||||
"""Test `City.northeast` property."""
|
||||
result1 = city.northeast
|
||||
result2 = city.northeast
|
||||
|
||||
def test_viewport_data_northeast(self, city_data):
|
||||
"""Test City.viewport property."""
|
||||
city = db.City(**city_data)
|
||||
assert result1 is result2
|
||||
|
||||
result = city.viewport['northeast']
|
||||
def test_southwest(self, city, city_data):
|
||||
"""Test `City.southwest` property."""
|
||||
result = city.southwest
|
||||
|
||||
assert isinstance(result, dict)
|
||||
assert len(result) == 2
|
||||
assert result['latitude'] == pytest.approx(city_data['_northeast_latitude'])
|
||||
assert result['longitude'] == pytest.approx(city_data['_northeast_longitude'])
|
||||
assert isinstance(result, utils.Location)
|
||||
assert result.latitude == pytest.approx(city_data['southwest_latitude'])
|
||||
assert result.longitude == pytest.approx(city_data['southwest_longitude'])
|
||||
|
||||
def test_viewport_data_southwest(self, city_data):
|
||||
"""Test City.viewport property."""
|
||||
city = db.City(**city_data)
|
||||
def test_southwest_is_cached(self, city):
|
||||
"""Test `City.southwest` property."""
|
||||
result1 = city.southwest
|
||||
result2 = city.southwest
|
||||
|
||||
result = city.viewport['southwest']
|
||||
assert result1 is result2
|
||||
|
||||
assert isinstance(result, dict)
|
||||
assert len(result) == 2
|
||||
assert result['latitude'] == pytest.approx(city_data['_southwest_latitude'])
|
||||
assert result['longitude'] == pytest.approx(city_data['_southwest_longitude'])
|
||||
def test_total_x(self, city):
|
||||
"""Test `City.total_x` property."""
|
||||
result = city.total_x
|
||||
|
||||
assert result > 18_000
|
||||
|
||||
def test_total_y(self, city):
|
||||
"""Test `City.total_y` property."""
|
||||
result = city.total_y
|
||||
|
||||
assert result > 9_000
|
||||
|
|
|
@ -1,125 +1,107 @@
|
|||
"""Test the ORM's Courier model."""
|
||||
"""Test the ORM's `Courier` model."""
|
||||
|
||||
import pytest
|
||||
from sqlalchemy import exc as sa_exc
|
||||
from sqlalchemy.orm import exc as orm_exc
|
||||
|
||||
from urban_meal_delivery import db
|
||||
|
||||
|
||||
class TestSpecialMethods:
|
||||
"""Test special methods in Courier."""
|
||||
"""Test special methods in `Courier`."""
|
||||
|
||||
# pylint:disable=no-self-use
|
||||
|
||||
def test_create_courier(self, courier_data):
|
||||
"""Test instantiation of a new Courier object."""
|
||||
result = db.Courier(**courier_data)
|
||||
|
||||
assert result is not None
|
||||
|
||||
def test_text_representation(self, courier_data):
|
||||
"""Courier has a non-literal text representation."""
|
||||
courier_data['id'] = 1
|
||||
courier = db.Courier(**courier_data)
|
||||
id_ = courier_data['id']
|
||||
def test_create_courier(self, courier):
|
||||
"""Test instantiation of a new `Courier` object."""
|
||||
assert courier is not None
|
||||
|
||||
def test_text_representation(self, courier):
|
||||
"""`Courier` has a non-literal text representation."""
|
||||
result = repr(courier)
|
||||
|
||||
assert result == f'<Courier(#{id_})>'
|
||||
assert result == f'<Courier(#{courier.id})>'
|
||||
|
||||
|
||||
@pytest.mark.e2e
|
||||
@pytest.mark.db
|
||||
@pytest.mark.no_cover
|
||||
class TestConstraints:
|
||||
"""Test the database constraints defined in Courier."""
|
||||
"""Test the database constraints defined in `Courier`."""
|
||||
|
||||
# pylint:disable=no-self-use
|
||||
def test_insert_into_database(self, db_session, courier):
|
||||
"""Insert an instance into the (empty) database."""
|
||||
assert db_session.query(db.Courier).count() == 0
|
||||
|
||||
def test_insert_into_database(self, courier, db_session):
|
||||
"""Insert an instance into the database."""
|
||||
db_session.add(courier)
|
||||
db_session.commit()
|
||||
|
||||
def test_dublicate_primary_key(self, courier, courier_data, db_session):
|
||||
"""Can only add a record once."""
|
||||
db_session.add(courier)
|
||||
db_session.commit()
|
||||
assert db_session.query(db.Courier).count() == 1
|
||||
|
||||
another_courier = db.Courier(**courier_data)
|
||||
db_session.add(another_courier)
|
||||
|
||||
with pytest.raises(orm_exc.FlushError):
|
||||
db_session.commit()
|
||||
|
||||
def test_invalid_vehicle(self, courier, db_session):
|
||||
def test_invalid_vehicle(self, db_session, courier):
|
||||
"""Insert an instance with invalid data."""
|
||||
courier.vehicle = 'invalid'
|
||||
db_session.add(courier)
|
||||
|
||||
with pytest.raises(sa_exc.IntegrityError):
|
||||
with pytest.raises(sa_exc.IntegrityError, match='available_vehicle_types'):
|
||||
db_session.commit()
|
||||
|
||||
def test_negative_speed(self, courier, db_session):
|
||||
def test_negative_speed(self, db_session, courier):
|
||||
"""Insert an instance with invalid data."""
|
||||
courier.historic_speed = -1
|
||||
db_session.add(courier)
|
||||
|
||||
with pytest.raises(sa_exc.IntegrityError):
|
||||
with pytest.raises(sa_exc.IntegrityError, match='realistic_speed'):
|
||||
db_session.commit()
|
||||
|
||||
def test_unrealistic_speed(self, courier, db_session):
|
||||
def test_unrealistic_speed(self, db_session, courier):
|
||||
"""Insert an instance with invalid data."""
|
||||
courier.historic_speed = 999
|
||||
db_session.add(courier)
|
||||
|
||||
with pytest.raises(sa_exc.IntegrityError):
|
||||
with pytest.raises(sa_exc.IntegrityError, match='realistic_speed'):
|
||||
db_session.commit()
|
||||
|
||||
def test_negative_capacity(self, courier, db_session):
|
||||
def test_negative_capacity(self, db_session, courier):
|
||||
"""Insert an instance with invalid data."""
|
||||
courier.capacity = -1
|
||||
db_session.add(courier)
|
||||
|
||||
with pytest.raises(sa_exc.IntegrityError):
|
||||
with pytest.raises(sa_exc.IntegrityError, match='capacity_under_200_liters'):
|
||||
db_session.commit()
|
||||
|
||||
def test_too_much_capacity(self, courier, db_session):
|
||||
def test_too_much_capacity(self, db_session, courier):
|
||||
"""Insert an instance with invalid data."""
|
||||
courier.capacity = 999
|
||||
db_session.add(courier)
|
||||
|
||||
with pytest.raises(sa_exc.IntegrityError):
|
||||
with pytest.raises(sa_exc.IntegrityError, match='capacity_under_200_liters'):
|
||||
db_session.commit()
|
||||
|
||||
def test_negative_pay_per_hour(self, courier, db_session):
|
||||
def test_negative_pay_per_hour(self, db_session, courier):
|
||||
"""Insert an instance with invalid data."""
|
||||
courier.pay_per_hour = -1
|
||||
db_session.add(courier)
|
||||
|
||||
with pytest.raises(sa_exc.IntegrityError):
|
||||
with pytest.raises(sa_exc.IntegrityError, match='realistic_pay_per_hour'):
|
||||
db_session.commit()
|
||||
|
||||
def test_too_much_pay_per_hour(self, courier, db_session):
|
||||
def test_too_much_pay_per_hour(self, db_session, courier):
|
||||
"""Insert an instance with invalid data."""
|
||||
courier.pay_per_hour = 9999
|
||||
db_session.add(courier)
|
||||
|
||||
with pytest.raises(sa_exc.IntegrityError):
|
||||
with pytest.raises(sa_exc.IntegrityError, match='realistic_pay_per_hour'):
|
||||
db_session.commit()
|
||||
|
||||
def test_negative_pay_per_order(self, courier, db_session):
|
||||
def test_negative_pay_per_order(self, db_session, courier):
|
||||
"""Insert an instance with invalid data."""
|
||||
courier.pay_per_order = -1
|
||||
db_session.add(courier)
|
||||
|
||||
with pytest.raises(sa_exc.IntegrityError):
|
||||
with pytest.raises(sa_exc.IntegrityError, match='realistic_pay_per_order'):
|
||||
db_session.commit()
|
||||
|
||||
def test_too_much_pay_per_order(self, courier, db_session):
|
||||
def test_too_much_pay_per_order(self, db_session, courier):
|
||||
"""Insert an instance with invalid data."""
|
||||
courier.pay_per_order = 999
|
||||
db_session.add(courier)
|
||||
|
||||
with pytest.raises(sa_exc.IntegrityError):
|
||||
with pytest.raises(sa_exc.IntegrityError, match='realistic_pay_per_order'):
|
||||
db_session.commit()
|
||||
|
|
|
@ -1,51 +1,34 @@
|
|||
"""Test the ORM's Customer model."""
|
||||
"""Test the ORM's `Customer` model."""
|
||||
|
||||
import pytest
|
||||
from sqlalchemy.orm import exc as orm_exc
|
||||
|
||||
from urban_meal_delivery import db
|
||||
|
||||
|
||||
class TestSpecialMethods:
|
||||
"""Test special methods in Customer."""
|
||||
"""Test special methods in `Customer`."""
|
||||
|
||||
# pylint:disable=no-self-use
|
||||
|
||||
def test_create_customer(self, customer_data):
|
||||
"""Test instantiation of a new Customer object."""
|
||||
result = db.Customer(**customer_data)
|
||||
|
||||
assert result is not None
|
||||
|
||||
def test_text_representation(self, customer_data):
|
||||
"""Customer has a non-literal text representation."""
|
||||
customer = db.Customer(**customer_data)
|
||||
id_ = customer_data['id']
|
||||
def test_create_customer(self, customer):
|
||||
"""Test instantiation of a new `Customer` object."""
|
||||
assert customer is not None
|
||||
|
||||
def test_text_representation(self, customer):
|
||||
"""`Customer` has a non-literal text representation."""
|
||||
result = repr(customer)
|
||||
|
||||
assert result == f'<Customer(#{id_})>'
|
||||
assert result == f'<Customer(#{customer.id})>'
|
||||
|
||||
|
||||
@pytest.mark.e2e
|
||||
@pytest.mark.db
|
||||
@pytest.mark.no_cover
|
||||
class TestConstraints:
|
||||
"""Test the database constraints defined in Customer."""
|
||||
"""Test the database constraints defined in `Customer`."""
|
||||
|
||||
# pylint:disable=no-self-use
|
||||
def test_insert_into_database(self, db_session, customer):
|
||||
"""Insert an instance into the (empty) database."""
|
||||
assert db_session.query(db.Customer).count() == 0
|
||||
|
||||
def test_insert_into_database(self, customer, db_session):
|
||||
"""Insert an instance into the database."""
|
||||
db_session.add(customer)
|
||||
db_session.commit()
|
||||
|
||||
def test_dublicate_primary_key(self, customer, customer_data, db_session):
|
||||
"""Can only add a record once."""
|
||||
db_session.add(customer)
|
||||
db_session.commit()
|
||||
|
||||
another_customer = db.Customer(**customer_data)
|
||||
db_session.add(another_customer)
|
||||
|
||||
with pytest.raises(orm_exc.FlushError):
|
||||
db_session.commit()
|
||||
assert db_session.query(db.Customer).count() == 1
|
||||
|
|
505
tests/db/test_forecasts.py
Normal file
505
tests/db/test_forecasts.py
Normal file
|
@ -0,0 +1,505 @@
|
|||
"""Test the ORM's `Forecast` model."""
|
||||
|
||||
import datetime as dt
|
||||
|
||||
import pandas as pd
|
||||
import pytest
|
||||
import sqlalchemy as sqla
|
||||
from sqlalchemy import exc as sa_exc
|
||||
|
||||
from tests import config as test_config
|
||||
from urban_meal_delivery import db
|
||||
|
||||
|
||||
MODEL = 'hets'
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def forecast(pixel):
|
||||
"""A `forecast` made in the `pixel` at `NOON`."""
|
||||
start_at = dt.datetime(
|
||||
test_config.END.year,
|
||||
test_config.END.month,
|
||||
test_config.END.day,
|
||||
test_config.NOON,
|
||||
)
|
||||
|
||||
return db.Forecast(
|
||||
pixel=pixel,
|
||||
start_at=start_at,
|
||||
time_step=test_config.LONG_TIME_STEP,
|
||||
train_horizon=test_config.LONG_TRAIN_HORIZON,
|
||||
model=MODEL,
|
||||
actual=12,
|
||||
prediction=12.3,
|
||||
low80=1.23,
|
||||
high80=123.4,
|
||||
low95=0.123,
|
||||
high95=1234.5,
|
||||
)
|
||||
|
||||
|
||||
class TestSpecialMethods:
|
||||
"""Test special methods in `Forecast`."""
|
||||
|
||||
def test_create_forecast(self, forecast):
|
||||
"""Test instantiation of a new `Forecast` object."""
|
||||
assert forecast is not None
|
||||
|
||||
def test_text_representation(self, forecast):
|
||||
"""`Forecast` has a non-literal text representation."""
|
||||
result = repr(forecast)
|
||||
|
||||
assert (
|
||||
result
|
||||
== f'<Forecast: {forecast.prediction} for pixel ({forecast.pixel.n_x}|{forecast.pixel.n_y}) at {forecast.start_at}>' # noqa:E501
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.db
|
||||
@pytest.mark.no_cover
|
||||
class TestConstraints:
|
||||
"""Test the database constraints defined in `Forecast`."""
|
||||
|
||||
def test_insert_into_database(self, db_session, forecast):
|
||||
"""Insert an instance into the (empty) database."""
|
||||
assert db_session.query(db.Forecast).count() == 0
|
||||
|
||||
db_session.add(forecast)
|
||||
db_session.commit()
|
||||
|
||||
assert db_session.query(db.Forecast).count() == 1
|
||||
|
||||
def test_delete_a_referenced_pixel(self, db_session, forecast):
|
||||
"""Remove a record that is referenced with a FK."""
|
||||
db_session.add(forecast)
|
||||
db_session.commit()
|
||||
|
||||
# Must delete without ORM as otherwise an UPDATE statement is emitted.
|
||||
stmt = sqla.delete(db.Pixel).where(db.Pixel.id == forecast.pixel.id)
|
||||
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='fk_forecasts_to_pixels_via_pixel_id',
|
||||
):
|
||||
db_session.execute(stmt)
|
||||
|
||||
@pytest.mark.parametrize('hour', [10, 23])
|
||||
def test_invalid_start_at_outside_operating_hours(
|
||||
self, db_session, forecast, hour,
|
||||
):
|
||||
"""Insert an instance with invalid data."""
|
||||
forecast.start_at = dt.datetime(
|
||||
forecast.start_at.year,
|
||||
forecast.start_at.month,
|
||||
forecast.start_at.day,
|
||||
hour,
|
||||
)
|
||||
db_session.add(forecast)
|
||||
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='within_operating_hours',
|
||||
):
|
||||
db_session.commit()
|
||||
|
||||
def test_invalid_start_at_not_quarter_of_hour(self, db_session, forecast):
|
||||
"""Insert an instance with invalid data."""
|
||||
forecast.start_at += dt.timedelta(minutes=1)
|
||||
db_session.add(forecast)
|
||||
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='must_be_quarters_of_the_hour',
|
||||
):
|
||||
db_session.commit()
|
||||
|
||||
def test_invalid_start_at_seconds_set(self, db_session, forecast):
|
||||
"""Insert an instance with invalid data."""
|
||||
forecast.start_at += dt.timedelta(seconds=1)
|
||||
db_session.add(forecast)
|
||||
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='no_seconds',
|
||||
):
|
||||
db_session.commit()
|
||||
|
||||
def test_invalid_start_at_microseconds_set(self, db_session, forecast):
|
||||
"""Insert an instance with invalid data."""
|
||||
forecast.start_at += dt.timedelta(microseconds=1)
|
||||
db_session.add(forecast)
|
||||
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='no_microseconds',
|
||||
):
|
||||
db_session.commit()
|
||||
|
||||
@pytest.mark.parametrize('value', [-1, 0])
|
||||
def test_positive_time_step(self, db_session, forecast, value):
|
||||
"""Insert an instance with invalid data."""
|
||||
forecast.time_step = value
|
||||
db_session.add(forecast)
|
||||
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='time_step_must_be_positive',
|
||||
):
|
||||
db_session.commit()
|
||||
|
||||
@pytest.mark.parametrize('value', [-1, 0])
|
||||
def test_positive_train_horizon(self, db_session, forecast, value):
|
||||
"""Insert an instance with invalid data."""
|
||||
forecast.train_horizon = value
|
||||
db_session.add(forecast)
|
||||
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='training_horizon_must_be_positive',
|
||||
):
|
||||
db_session.commit()
|
||||
|
||||
def test_non_negative_actuals(self, db_session, forecast):
|
||||
"""Insert an instance with invalid data."""
|
||||
forecast.actual = -1
|
||||
db_session.add(forecast)
|
||||
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='actuals_must_be_non_negative',
|
||||
):
|
||||
db_session.commit()
|
||||
|
||||
def test_set_prediction_without_ci(self, db_session, forecast):
|
||||
"""Sanity check to see that the check constraint ...
|
||||
|
||||
... "prediction_must_be_within_ci" is not triggered.
|
||||
"""
|
||||
forecast.low80 = None
|
||||
forecast.high80 = None
|
||||
forecast.low95 = None
|
||||
forecast.high95 = None
|
||||
|
||||
db_session.add(forecast)
|
||||
db_session.commit()
|
||||
|
||||
def test_ci80_with_missing_low(self, db_session, forecast):
|
||||
"""Insert an instance with invalid data."""
|
||||
assert forecast.high80 is not None
|
||||
|
||||
forecast.low80 = None
|
||||
db_session.add(forecast)
|
||||
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='ci_upper_and_lower_bounds',
|
||||
):
|
||||
db_session.commit()
|
||||
|
||||
def test_ci95_with_missing_low(self, db_session, forecast):
|
||||
"""Insert an instance with invalid data."""
|
||||
assert forecast.high95 is not None
|
||||
|
||||
forecast.low95 = None
|
||||
db_session.add(forecast)
|
||||
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='ci_upper_and_lower_bounds',
|
||||
):
|
||||
db_session.commit()
|
||||
|
||||
def test_ci80_with_missing_high(self, db_session, forecast):
|
||||
"""Insert an instance with invalid data."""
|
||||
assert forecast.low80 is not None
|
||||
|
||||
forecast.high80 = None
|
||||
db_session.add(forecast)
|
||||
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='ci_upper_and_lower_bounds',
|
||||
):
|
||||
db_session.commit()
|
||||
|
||||
def test_ci95_with_missing_high(self, db_session, forecast):
|
||||
"""Insert an instance with invalid data."""
|
||||
assert forecast.low95 is not None
|
||||
|
||||
forecast.high95 = None
|
||||
db_session.add(forecast)
|
||||
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='ci_upper_and_lower_bounds',
|
||||
):
|
||||
db_session.commit()
|
||||
|
||||
def test_prediction_smaller_than_low80_with_ci95_set(self, db_session, forecast):
|
||||
"""Insert an instance with invalid data."""
|
||||
assert forecast.low95 is not None
|
||||
assert forecast.high95 is not None
|
||||
|
||||
forecast.prediction = forecast.low80 - 0.001
|
||||
db_session.add(forecast)
|
||||
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='prediction_must_be_within_ci',
|
||||
):
|
||||
db_session.commit()
|
||||
|
||||
def test_prediction_smaller_than_low80_without_ci95_set(
|
||||
self, db_session, forecast,
|
||||
):
|
||||
"""Insert an instance with invalid data."""
|
||||
forecast.low95 = None
|
||||
forecast.high95 = None
|
||||
|
||||
forecast.prediction = forecast.low80 - 0.001
|
||||
db_session.add(forecast)
|
||||
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='prediction_must_be_within_ci',
|
||||
):
|
||||
db_session.commit()
|
||||
|
||||
def test_prediction_smaller_than_low95_with_ci80_set(self, db_session, forecast):
|
||||
"""Insert an instance with invalid data."""
|
||||
assert forecast.low80 is not None
|
||||
assert forecast.high80 is not None
|
||||
|
||||
forecast.prediction = forecast.low95 - 0.001
|
||||
db_session.add(forecast)
|
||||
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='prediction_must_be_within_ci',
|
||||
):
|
||||
db_session.commit()
|
||||
|
||||
def test_prediction_smaller_than_low95_without_ci80_set(
|
||||
self, db_session, forecast,
|
||||
):
|
||||
"""Insert an instance with invalid data."""
|
||||
forecast.low80 = None
|
||||
forecast.high80 = None
|
||||
|
||||
forecast.prediction = forecast.low95 - 0.001
|
||||
db_session.add(forecast)
|
||||
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='prediction_must_be_within_ci',
|
||||
):
|
||||
db_session.commit()
|
||||
|
||||
def test_prediction_greater_than_high80_with_ci95_set(self, db_session, forecast):
|
||||
"""Insert an instance with invalid data."""
|
||||
assert forecast.low95 is not None
|
||||
assert forecast.high95 is not None
|
||||
|
||||
forecast.prediction = forecast.high80 + 0.001
|
||||
db_session.add(forecast)
|
||||
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='prediction_must_be_within_ci',
|
||||
):
|
||||
db_session.commit()
|
||||
|
||||
def test_prediction_greater_than_high80_without_ci95_set(
|
||||
self, db_session, forecast,
|
||||
):
|
||||
"""Insert an instance with invalid data."""
|
||||
forecast.low95 = None
|
||||
forecast.high95 = None
|
||||
|
||||
forecast.prediction = forecast.high80 + 0.001
|
||||
db_session.add(forecast)
|
||||
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='prediction_must_be_within_ci',
|
||||
):
|
||||
db_session.commit()
|
||||
|
||||
def test_prediction_greater_than_high95_with_ci80_set(self, db_session, forecast):
|
||||
"""Insert an instance with invalid data."""
|
||||
assert forecast.low80 is not None
|
||||
assert forecast.high80 is not None
|
||||
|
||||
forecast.prediction = forecast.high95 + 0.001
|
||||
db_session.add(forecast)
|
||||
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='prediction_must_be_within_ci',
|
||||
):
|
||||
db_session.commit()
|
||||
|
||||
def test_prediction_greater_than_high95_without_ci80_set(
|
||||
self, db_session, forecast,
|
||||
):
|
||||
"""Insert an instance with invalid data."""
|
||||
forecast.low80 = None
|
||||
forecast.high80 = None
|
||||
|
||||
forecast.prediction = forecast.high95 + 0.001
|
||||
db_session.add(forecast)
|
||||
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='prediction_must_be_within_ci',
|
||||
):
|
||||
db_session.commit()
|
||||
|
||||
def test_ci80_upper_bound_greater_than_lower_bound(self, db_session, forecast):
|
||||
"""Insert an instance with invalid data."""
|
||||
assert forecast.low80 is not None
|
||||
assert forecast.high80 is not None
|
||||
|
||||
# Do not trigger the "ci95_must_be_wider_than_ci80" constraint.
|
||||
forecast.low95 = None
|
||||
forecast.high95 = None
|
||||
|
||||
forecast.low80, forecast.high80 = ( # noqa:WPS414
|
||||
forecast.high80,
|
||||
forecast.low80,
|
||||
)
|
||||
|
||||
db_session.add(forecast)
|
||||
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='ci_upper_bound_greater_than_lower_bound',
|
||||
):
|
||||
db_session.commit()
|
||||
|
||||
def test_ci95_upper_bound_greater_than_lower_bound(self, db_session, forecast):
|
||||
"""Insert an instance with invalid data."""
|
||||
assert forecast.low95 is not None
|
||||
assert forecast.high95 is not None
|
||||
|
||||
# Do not trigger the "ci95_must_be_wider_than_ci80" constraint.
|
||||
forecast.low80 = None
|
||||
forecast.high80 = None
|
||||
|
||||
forecast.low95, forecast.high95 = ( # noqa:WPS414
|
||||
forecast.high95,
|
||||
forecast.low95,
|
||||
)
|
||||
|
||||
db_session.add(forecast)
|
||||
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='ci_upper_bound_greater_than_lower_bound',
|
||||
):
|
||||
db_session.commit()
|
||||
|
||||
def test_ci95_is_wider_than_ci80_at_low_end(self, db_session, forecast):
|
||||
"""Insert an instance with invalid data."""
|
||||
assert forecast.low80 is not None
|
||||
assert forecast.low95 is not None
|
||||
|
||||
forecast.low80, forecast.low95 = (forecast.low95, forecast.low80) # noqa:WPS414
|
||||
|
||||
db_session.add(forecast)
|
||||
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='ci95_must_be_wider_than_ci80',
|
||||
):
|
||||
db_session.commit()
|
||||
|
||||
def test_ci95_is_wider_than_ci80_at_high_end(self, db_session, forecast):
|
||||
"""Insert an instance with invalid data."""
|
||||
assert forecast.high80 is not None
|
||||
assert forecast.high95 is not None
|
||||
|
||||
forecast.high80, forecast.high95 = ( # noqa:WPS414
|
||||
forecast.high95,
|
||||
forecast.high80,
|
||||
)
|
||||
|
||||
db_session.add(forecast)
|
||||
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='ci95_must_be_wider_than_ci80',
|
||||
):
|
||||
db_session.commit()
|
||||
|
||||
def test_two_predictions_for_same_forecasting_setting(self, db_session, forecast):
|
||||
"""Insert a record that violates a unique constraint."""
|
||||
db_session.add(forecast)
|
||||
db_session.commit()
|
||||
|
||||
another_forecast = db.Forecast(
|
||||
pixel=forecast.pixel,
|
||||
start_at=forecast.start_at,
|
||||
time_step=forecast.time_step,
|
||||
train_horizon=forecast.train_horizon,
|
||||
model=forecast.model,
|
||||
actual=forecast.actual,
|
||||
prediction=2,
|
||||
low80=1,
|
||||
high80=3,
|
||||
low95=0,
|
||||
high95=4,
|
||||
)
|
||||
db_session.add(another_forecast)
|
||||
|
||||
with pytest.raises(sa_exc.IntegrityError, match='duplicate key value'):
|
||||
db_session.commit()
|
||||
|
||||
|
||||
class TestFromDataFrameConstructor:
|
||||
"""Test the alternative `Forecast.from_dataframe()` constructor."""
|
||||
|
||||
@pytest.fixture
|
||||
def prediction_data(self):
|
||||
"""A `pd.DataFrame` as returned by `*Model.predict()` ...
|
||||
|
||||
... and used as the `data` argument to `Forecast.from_dataframe()`.
|
||||
|
||||
We assume the `data` come from some vertical forecasting `*Model`
|
||||
and contain several rows (= `3` in this example) corresponding
|
||||
to different time steps centered around `NOON`.
|
||||
"""
|
||||
noon_start_at = dt.datetime(
|
||||
test_config.END.year,
|
||||
test_config.END.month,
|
||||
test_config.END.day,
|
||||
test_config.NOON,
|
||||
)
|
||||
|
||||
index = pd.Index(
|
||||
[
|
||||
noon_start_at - dt.timedelta(minutes=test_config.LONG_TIME_STEP),
|
||||
noon_start_at,
|
||||
noon_start_at + dt.timedelta(minutes=test_config.LONG_TIME_STEP),
|
||||
],
|
||||
)
|
||||
index.name = 'start_at'
|
||||
|
||||
return pd.DataFrame(
|
||||
data={
|
||||
'actual': (11, 12, 13),
|
||||
'prediction': (11.3, 12.3, 13.3),
|
||||
'low80': (1.123, 1.23, 1.323),
|
||||
'high80': (112.34, 123.4, 132.34),
|
||||
'low95': (0.1123, 0.123, 0.1323),
|
||||
'high95': (1123.45, 1234.5, 1323.45),
|
||||
},
|
||||
index=index,
|
||||
)
|
||||
|
||||
def test_convert_dataframe_into_orm_objects(self, pixel, prediction_data):
|
||||
"""Call `Forecast.from_dataframe()`."""
|
||||
forecasts = db.Forecast.from_dataframe(
|
||||
pixel=pixel,
|
||||
time_step=test_config.LONG_TIME_STEP,
|
||||
train_horizon=test_config.LONG_TRAIN_HORIZON,
|
||||
model=MODEL,
|
||||
data=prediction_data,
|
||||
)
|
||||
|
||||
assert len(forecasts) == 3
|
||||
for forecast in forecasts:
|
||||
assert isinstance(forecast, db.Forecast)
|
||||
|
||||
@pytest.mark.db
|
||||
def test_persist_predictions_into_database(
|
||||
self, db_session, pixel, prediction_data,
|
||||
):
|
||||
"""Call `Forecast.from_dataframe()` and persist the results."""
|
||||
forecasts = db.Forecast.from_dataframe(
|
||||
pixel=pixel,
|
||||
time_step=test_config.LONG_TIME_STEP,
|
||||
train_horizon=test_config.LONG_TRAIN_HORIZON,
|
||||
model=MODEL,
|
||||
data=prediction_data,
|
||||
)
|
||||
|
||||
db_session.add_all(forecasts)
|
||||
db_session.commit()
|
239
tests/db/test_grids.py
Normal file
239
tests/db/test_grids.py
Normal file
|
@ -0,0 +1,239 @@
|
|||
"""Test the ORM's `Grid` model."""
|
||||
|
||||
import pytest
|
||||
import sqlalchemy as sqla
|
||||
from sqlalchemy import exc as sa_exc
|
||||
|
||||
from urban_meal_delivery import db
|
||||
|
||||
|
||||
class TestSpecialMethods:
|
||||
"""Test special methods in `Grid`."""
|
||||
|
||||
def test_create_grid(self, grid):
|
||||
"""Test instantiation of a new `Grid` object."""
|
||||
assert grid is not None
|
||||
|
||||
def test_text_representation(self, grid):
|
||||
"""`Grid` has a non-literal text representation."""
|
||||
result = repr(grid)
|
||||
|
||||
assert result == f'<Grid: {grid.pixel_area} sqr. km>'
|
||||
|
||||
|
||||
@pytest.mark.db
|
||||
@pytest.mark.no_cover
|
||||
class TestConstraints:
|
||||
"""Test the database constraints defined in `Grid`."""
|
||||
|
||||
def test_insert_into_database(self, db_session, grid):
|
||||
"""Insert an instance into the (empty) database."""
|
||||
assert db_session.query(db.Grid).count() == 0
|
||||
|
||||
db_session.add(grid)
|
||||
db_session.commit()
|
||||
|
||||
assert db_session.query(db.Grid).count() == 1
|
||||
|
||||
def test_delete_a_referenced_city(self, db_session, grid):
|
||||
"""Remove a record that is referenced with a FK."""
|
||||
db_session.add(grid)
|
||||
db_session.commit()
|
||||
|
||||
# Must delete without ORM as otherwise an UPDATE statement is emitted.
|
||||
stmt = sqla.delete(db.City).where(db.City.id == grid.city.id)
|
||||
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='fk_grids_to_cities_via_city_id',
|
||||
):
|
||||
db_session.execute(stmt)
|
||||
|
||||
def test_two_grids_with_identical_side_length(self, db_session, grid):
|
||||
"""Insert a record that violates a unique constraint."""
|
||||
db_session.add(grid)
|
||||
db_session.commit()
|
||||
|
||||
# Create a `Grid` with the same `.side_length` in the same `.city`.
|
||||
another_grid = db.Grid(city=grid.city, side_length=grid.side_length)
|
||||
db_session.add(another_grid)
|
||||
|
||||
with pytest.raises(sa_exc.IntegrityError, match='duplicate key value'):
|
||||
db_session.commit()
|
||||
|
||||
|
||||
class TestProperties:
|
||||
"""Test properties in `Grid`."""
|
||||
|
||||
def test_pixel_area(self, grid):
|
||||
"""Test `Grid.pixel_area` property."""
|
||||
result = grid.pixel_area
|
||||
|
||||
assert result == 1.0
|
||||
|
||||
|
||||
class TestGridification:
|
||||
"""Test the `Grid.gridify()` constructor."""
|
||||
|
||||
@pytest.fixture
|
||||
def addresses_mock(self, mocker, monkeypatch):
|
||||
"""A `Mock` whose `.return_value` are to be set ...
|
||||
|
||||
... to the addresses that are gridified. The addresses are
|
||||
all considered `Order.pickup_address` attributes for some orders.
|
||||
"""
|
||||
mock = mocker.Mock()
|
||||
query = ( # noqa:ECE001
|
||||
mock.query.return_value.join.return_value.filter.return_value.all # noqa:E501,WPS219
|
||||
)
|
||||
monkeypatch.setattr(db, 'session', mock)
|
||||
|
||||
return query
|
||||
|
||||
@pytest.mark.no_cover
|
||||
def test_no_pixel_without_addresses(self, city, addresses_mock):
|
||||
"""Without orders, there are no `Pixel` objects on the `grid`.
|
||||
|
||||
This test case skips the `for`-loop inside `Grid.gridify()`.
|
||||
"""
|
||||
addresses_mock.return_value = []
|
||||
|
||||
# The chosen `side_length` would result in one `Pixel` if there were orders.
|
||||
# `+1` as otherwise there would be a second pixel in one direction.
|
||||
side_length = max(city.total_x, city.total_y) + 1
|
||||
|
||||
result = db.Grid.gridify(city=city, side_length=side_length)
|
||||
|
||||
assert isinstance(result, db.Grid)
|
||||
assert len(result.pixels) == 0 # noqa:WPS507
|
||||
|
||||
def test_one_pixel_with_one_address(self, city, order, addresses_mock):
|
||||
"""At the very least, there must be one `Pixel` ...
|
||||
|
||||
... if the `side_length` is greater than both the
|
||||
horizontal and vertical distances of the viewport.
|
||||
"""
|
||||
addresses_mock.return_value = [order.pickup_address]
|
||||
|
||||
# `+1` as otherwise there would be a second pixel in one direction.
|
||||
side_length = max(city.total_x, city.total_y) + 1
|
||||
|
||||
result = db.Grid.gridify(city=city, side_length=side_length)
|
||||
|
||||
assert isinstance(result, db.Grid)
|
||||
assert len(result.pixels) == 1
|
||||
|
||||
def test_one_pixel_with_two_addresses(self, city, make_order, addresses_mock):
|
||||
"""At the very least, there must be one `Pixel` ...
|
||||
|
||||
... if the `side_length` is greater than both the
|
||||
horizontal and vertical distances of the viewport.
|
||||
|
||||
This test case is necessary as `test_one_pixel_with_one_address`
|
||||
does not have to re-use an already created `Pixel` object internally.
|
||||
"""
|
||||
orders = [make_order(), make_order()]
|
||||
addresses_mock.return_value = [order.pickup_address for order in orders]
|
||||
|
||||
# `+1` as otherwise there would be a second pixel in one direction.
|
||||
side_length = max(city.total_x, city.total_y) + 1
|
||||
|
||||
result = db.Grid.gridify(city=city, side_length=side_length)
|
||||
|
||||
assert isinstance(result, db.Grid)
|
||||
assert len(result.pixels) == 1
|
||||
|
||||
def test_no_pixel_with_one_address_too_far_south(self, city, order, addresses_mock):
|
||||
"""An `address` outside the `city`'s viewport is discarded."""
|
||||
# Move the `address` just below `city.southwest`.
|
||||
order.pickup_address.latitude = city.southwest.latitude - 0.1
|
||||
addresses_mock.return_value = [order.pickup_address]
|
||||
|
||||
# `+1` as otherwise there would be a second pixel in one direction.
|
||||
side_length = max(city.total_x, city.total_y) + 1
|
||||
|
||||
result = db.Grid.gridify(city=city, side_length=side_length)
|
||||
|
||||
assert isinstance(result, db.Grid)
|
||||
assert len(result.pixels) == 0 # noqa:WPS507
|
||||
|
||||
@pytest.mark.no_cover
|
||||
def test_no_pixel_with_one_address_too_far_west(self, city, order, addresses_mock):
|
||||
"""An `address` outside the `city`'s viewport is discarded.
|
||||
|
||||
This test is a logical sibling to
|
||||
`test_no_pixel_with_one_address_too_far_south` and therefore redundant.
|
||||
"""
|
||||
# Move the `address` just left to `city.southwest`.
|
||||
order.pickup_address.longitude = city.southwest.longitude - 0.1
|
||||
addresses_mock.return_value = [order.pickup_address]
|
||||
|
||||
# `+1` as otherwise there would be a second pixel in one direction.
|
||||
side_length = max(city.total_x, city.total_y) + 1
|
||||
|
||||
result = db.Grid.gridify(city=city, side_length=side_length)
|
||||
|
||||
assert isinstance(result, db.Grid)
|
||||
assert len(result.pixels) == 0 # noqa:WPS507
|
||||
|
||||
@pytest.mark.no_cover
|
||||
def test_two_pixels_with_two_addresses(self, city, make_address, addresses_mock):
|
||||
"""Two `Address` objects in distinct `Pixel` objects.
|
||||
|
||||
This test is more of a sanity check.
|
||||
"""
|
||||
# Create two `Address` objects in distinct `Pixel`s.
|
||||
addresses_mock.return_value = [
|
||||
# One `Address` in the lower-left `Pixel`, ...
|
||||
make_address(latitude=48.8357377, longitude=2.2517412),
|
||||
# ... and another one in the upper-right one.
|
||||
make_address(latitude=48.8898312, longitude=2.4357622),
|
||||
]
|
||||
|
||||
side_length = max(city.total_x // 2, city.total_y // 2) + 1
|
||||
|
||||
# By assumption of the test data.
|
||||
n_pixels_x = (city.total_x // side_length) + 1
|
||||
n_pixels_y = (city.total_y // side_length) + 1
|
||||
assert n_pixels_x * n_pixels_y == 4
|
||||
|
||||
# Create a `Grid` with at most four `Pixel`s.
|
||||
result = db.Grid.gridify(city=city, side_length=side_length)
|
||||
|
||||
assert isinstance(result, db.Grid)
|
||||
assert len(result.pixels) == 2
|
||||
|
||||
@pytest.mark.db
|
||||
@pytest.mark.no_cover
|
||||
@pytest.mark.parametrize('side_length', [250, 500, 1_000, 2_000, 4_000, 8_000])
|
||||
def test_make_random_grids( # noqa:WPS211,WPS218
|
||||
self, db_session, city, make_address, make_restaurant, make_order, side_length,
|
||||
):
|
||||
"""With 100 random `Address` objects, a grid must have ...
|
||||
|
||||
... between 1 and a deterministic upper bound of `Pixel` objects.
|
||||
|
||||
This test creates confidence that the created `Grid`
|
||||
objects adhere to the database constraints.
|
||||
"""
|
||||
addresses = [make_address() for _ in range(100)]
|
||||
restaurants = [make_restaurant(address=address) for address in addresses]
|
||||
orders = [make_order(restaurant=restaurant) for restaurant in restaurants]
|
||||
db_session.add_all(orders)
|
||||
|
||||
n_pixels_x = (city.total_x // side_length) + 1
|
||||
n_pixels_y = (city.total_y // side_length) + 1
|
||||
|
||||
result = db.Grid.gridify(city=city, side_length=side_length)
|
||||
|
||||
assert isinstance(result, db.Grid)
|
||||
assert 1 <= len(result.pixels) <= n_pixels_x * n_pixels_y
|
||||
|
||||
# Sanity checks for `Pixel.southwest` and `Pixel.northeast`.
|
||||
for pixel in result.pixels:
|
||||
assert abs(pixel.southwest.x - pixel.n_x * side_length) < 2
|
||||
assert abs(pixel.southwest.y - pixel.n_y * side_length) < 2
|
||||
assert abs(pixel.northeast.x - (pixel.n_x + 1) * side_length) < 2
|
||||
assert abs(pixel.northeast.y - (pixel.n_y + 1) * side_length) < 2
|
||||
|
||||
db_session.add(result)
|
||||
db_session.commit()
|
|
@ -1,57 +1,40 @@
|
|||
"""Test the ORM's Order model."""
|
||||
"""Test the ORM's `Order` model."""
|
||||
|
||||
import datetime
|
||||
import random
|
||||
|
||||
import pytest
|
||||
from sqlalchemy.orm import exc as orm_exc
|
||||
|
||||
from urban_meal_delivery import db
|
||||
|
||||
|
||||
class TestSpecialMethods:
|
||||
"""Test special methods in Order."""
|
||||
"""Test special methods in `Order`."""
|
||||
|
||||
# pylint:disable=no-self-use
|
||||
|
||||
def test_create_order(self, order_data):
|
||||
"""Test instantiation of a new Order object."""
|
||||
result = db.Order(**order_data)
|
||||
|
||||
assert result is not None
|
||||
|
||||
def test_text_representation(self, order_data):
|
||||
"""Order has a non-literal text representation."""
|
||||
order = db.Order(**order_data)
|
||||
id_ = order_data['id']
|
||||
def test_create_order(self, order):
|
||||
"""Test instantiation of a new `Order` object."""
|
||||
assert order is not None
|
||||
|
||||
def test_text_representation(self, order):
|
||||
"""`Order` has a non-literal text representation."""
|
||||
result = repr(order)
|
||||
|
||||
assert result == f'<Order(#{id_})>'
|
||||
assert result == f'<Order(#{order.id})>'
|
||||
|
||||
|
||||
@pytest.mark.e2e
|
||||
@pytest.mark.db
|
||||
@pytest.mark.no_cover
|
||||
class TestConstraints:
|
||||
"""Test the database constraints defined in Order."""
|
||||
"""Test the database constraints defined in `Order`."""
|
||||
|
||||
# pylint:disable=no-self-use
|
||||
def test_insert_into_database(self, db_session, order):
|
||||
"""Insert an instance into the (empty) database."""
|
||||
assert db_session.query(db.Order).count() == 0
|
||||
|
||||
def test_insert_into_database(self, order, db_session):
|
||||
"""Insert an instance into the database."""
|
||||
db_session.add(order)
|
||||
db_session.commit()
|
||||
|
||||
def test_dublicate_primary_key(self, order, order_data, city, db_session):
|
||||
"""Can only add a record once."""
|
||||
db_session.add(order)
|
||||
db_session.commit()
|
||||
|
||||
another_order = db.Order(**order_data)
|
||||
another_order.city = city
|
||||
db_session.add(another_order)
|
||||
|
||||
with pytest.raises(orm_exc.FlushError):
|
||||
db_session.commit()
|
||||
assert db_session.query(db.Order).count() == 1
|
||||
|
||||
# TODO (order-constraints): the various Foreign Key and Check Constraints
|
||||
# should be tested eventually. This is not of highest importance as
|
||||
|
@ -59,339 +42,429 @@ class TestConstraints:
|
|||
|
||||
|
||||
class TestProperties:
|
||||
"""Test properties in Order."""
|
||||
"""Test properties in `Order`.
|
||||
|
||||
# pylint:disable=no-self-use,too-many-public-methods
|
||||
The `order` fixture uses the defaults specified in `factories.OrderFactory`
|
||||
and provided by the `make_order` fixture.
|
||||
"""
|
||||
|
||||
def test_is_not_scheduled(self, order_data):
|
||||
"""Test Order.scheduled property."""
|
||||
order = db.Order(**order_data)
|
||||
def test_is_ad_hoc(self, order):
|
||||
"""Test `Order.scheduled` property."""
|
||||
assert order.ad_hoc is True
|
||||
|
||||
result = order.scheduled
|
||||
|
||||
assert result is False
|
||||
|
||||
def test_is_scheduled(self, order_data):
|
||||
"""Test Order.scheduled property."""
|
||||
order_data['ad_hoc'] = False
|
||||
order_data['scheduled_delivery_at'] = datetime.datetime(2020, 1, 2, 12, 30, 0)
|
||||
order_data['scheduled_delivery_at_corrected'] = False
|
||||
order = db.Order(**order_data)
|
||||
def test_is_scheduled(self, make_order):
|
||||
"""Test `Order.scheduled` property."""
|
||||
order = make_order(scheduled=True)
|
||||
assert order.ad_hoc is False
|
||||
|
||||
result = order.scheduled
|
||||
|
||||
assert result is True
|
||||
|
||||
def test_is_completed(self, order_data):
|
||||
"""Test Order.completed property."""
|
||||
order = db.Order(**order_data)
|
||||
|
||||
def test_is_completed(self, order):
|
||||
"""Test `Order.completed` property."""
|
||||
result = order.completed
|
||||
|
||||
assert result is True
|
||||
|
||||
def test_is_not_completed(self, order_data):
|
||||
"""Test Order.completed property."""
|
||||
order_data['cancelled'] = True
|
||||
order_data['cancelled_at'] = datetime.datetime(2020, 1, 2, 12, 15, 0)
|
||||
order_data['cancelled_at_corrected'] = False
|
||||
order = db.Order(**order_data)
|
||||
def test_is_not_completed1(self, make_order):
|
||||
"""Test `Order.completed` property."""
|
||||
order = make_order(cancel_before_pickup=True)
|
||||
assert order.cancelled is True
|
||||
|
||||
result = order.completed
|
||||
|
||||
assert result is False
|
||||
|
||||
def test_is_corrected(self, order_data):
|
||||
"""Test Order.corrected property."""
|
||||
order_data['dispatch_at_corrected'] = True
|
||||
order = db.Order(**order_data)
|
||||
def test_is_not_completed2(self, make_order):
|
||||
"""Test `Order.completed` property."""
|
||||
order = make_order(cancel_after_pickup=True)
|
||||
assert order.cancelled is True
|
||||
|
||||
result = order.completed
|
||||
|
||||
assert result is False
|
||||
|
||||
def test_is_not_corrected(self, order):
|
||||
"""Test `Order.corrected` property."""
|
||||
# By default, the `OrderFactory` sets all `.*_corrected` attributes to `False`.
|
||||
result = order.corrected
|
||||
|
||||
assert result is False
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
'column',
|
||||
[
|
||||
'scheduled_delivery_at',
|
||||
'cancelled_at',
|
||||
'restaurant_notified_at',
|
||||
'restaurant_confirmed_at',
|
||||
'dispatch_at',
|
||||
'courier_notified_at',
|
||||
'courier_accepted_at',
|
||||
'pickup_at',
|
||||
'left_pickup_at',
|
||||
'delivery_at',
|
||||
],
|
||||
)
|
||||
def test_is_corrected(self, order, column):
|
||||
"""Test `Order.corrected` property."""
|
||||
setattr(order, f'{column}_corrected', True)
|
||||
|
||||
result = order.corrected
|
||||
|
||||
assert result is True
|
||||
|
||||
def test_time_to_accept_no_dispatch_at(self, order_data):
|
||||
"""Test Order.time_to_accept property."""
|
||||
order_data['dispatch_at'] = None
|
||||
order = db.Order(**order_data)
|
||||
def test_time_to_accept_no_dispatch_at(self, order):
|
||||
"""Test `Order.time_to_accept` property."""
|
||||
order.dispatch_at = None
|
||||
|
||||
with pytest.raises(RuntimeError, match='not set'):
|
||||
int(order.time_to_accept)
|
||||
|
||||
def test_time_to_accept_no_courier_accepted(self, order_data):
|
||||
"""Test Order.time_to_accept property."""
|
||||
order_data['courier_accepted_at'] = None
|
||||
order = db.Order(**order_data)
|
||||
def test_time_to_accept_no_courier_accepted(self, order):
|
||||
"""Test `Order.time_to_accept` property."""
|
||||
order.courier_accepted_at = None
|
||||
|
||||
with pytest.raises(RuntimeError, match='not set'):
|
||||
int(order.time_to_accept)
|
||||
|
||||
def test_time_to_accept_success(self, order_data):
|
||||
"""Test Order.time_to_accept property."""
|
||||
order = db.Order(**order_data)
|
||||
|
||||
def test_time_to_accept_success(self, order):
|
||||
"""Test `Order.time_to_accept` property."""
|
||||
result = order.time_to_accept
|
||||
|
||||
assert isinstance(result, datetime.timedelta)
|
||||
assert result > datetime.timedelta(0)
|
||||
|
||||
def test_time_to_react_no_courier_notified(self, order_data):
|
||||
"""Test Order.time_to_react property."""
|
||||
order_data['courier_notified_at'] = None
|
||||
order = db.Order(**order_data)
|
||||
def test_time_to_react_no_courier_notified(self, order):
|
||||
"""Test `Order.time_to_react` property."""
|
||||
order.courier_notified_at = None
|
||||
|
||||
with pytest.raises(RuntimeError, match='not set'):
|
||||
int(order.time_to_react)
|
||||
|
||||
def test_time_to_react_no_courier_accepted(self, order_data):
|
||||
"""Test Order.time_to_react property."""
|
||||
order_data['courier_accepted_at'] = None
|
||||
order = db.Order(**order_data)
|
||||
def test_time_to_react_no_courier_accepted(self, order):
|
||||
"""Test `Order.time_to_react` property."""
|
||||
order.courier_accepted_at = None
|
||||
|
||||
with pytest.raises(RuntimeError, match='not set'):
|
||||
int(order.time_to_react)
|
||||
|
||||
def test_time_to_react_success(self, order_data):
|
||||
"""Test Order.time_to_react property."""
|
||||
order = db.Order(**order_data)
|
||||
|
||||
def test_time_to_react_success(self, order):
|
||||
"""Test `Order.time_to_react` property."""
|
||||
result = order.time_to_react
|
||||
|
||||
assert isinstance(result, datetime.timedelta)
|
||||
assert result > datetime.timedelta(0)
|
||||
|
||||
def test_time_to_pickup_no_reached_pickup_at(self, order_data):
|
||||
"""Test Order.time_to_pickup property."""
|
||||
order_data['reached_pickup_at'] = None
|
||||
order = db.Order(**order_data)
|
||||
def test_time_to_pickup_no_reached_pickup_at(self, order):
|
||||
"""Test `Order.time_to_pickup` property."""
|
||||
order.reached_pickup_at = None
|
||||
|
||||
with pytest.raises(RuntimeError, match='not set'):
|
||||
int(order.time_to_pickup)
|
||||
|
||||
def test_time_to_pickup_no_courier_accepted(self, order_data):
|
||||
"""Test Order.time_to_pickup property."""
|
||||
order_data['courier_accepted_at'] = None
|
||||
order = db.Order(**order_data)
|
||||
def test_time_to_pickup_no_courier_accepted(self, order):
|
||||
"""Test `Order.time_to_pickup` property."""
|
||||
order.courier_accepted_at = None
|
||||
|
||||
with pytest.raises(RuntimeError, match='not set'):
|
||||
int(order.time_to_pickup)
|
||||
|
||||
def test_time_to_pickup_success(self, order_data):
|
||||
"""Test Order.time_to_pickup property."""
|
||||
order = db.Order(**order_data)
|
||||
|
||||
def test_time_to_pickup_success(self, order):
|
||||
"""Test `Order.time_to_pickup` property."""
|
||||
result = order.time_to_pickup
|
||||
|
||||
assert isinstance(result, datetime.timedelta)
|
||||
assert result > datetime.timedelta(0)
|
||||
|
||||
def test_time_at_pickup_no_reached_pickup_at(self, order_data):
|
||||
"""Test Order.time_at_pickup property."""
|
||||
order_data['reached_pickup_at'] = None
|
||||
order = db.Order(**order_data)
|
||||
def test_time_at_pickup_no_reached_pickup_at(self, order):
|
||||
"""Test `Order.time_at_pickup` property."""
|
||||
order.reached_pickup_at = None
|
||||
|
||||
with pytest.raises(RuntimeError, match='not set'):
|
||||
int(order.time_at_pickup)
|
||||
|
||||
def test_time_at_pickup_no_pickup_at(self, order_data):
|
||||
"""Test Order.time_at_pickup property."""
|
||||
order_data['pickup_at'] = None
|
||||
order = db.Order(**order_data)
|
||||
def test_time_at_pickup_no_pickup_at(self, order):
|
||||
"""Test `Order.time_at_pickup` property."""
|
||||
order.pickup_at = None
|
||||
|
||||
with pytest.raises(RuntimeError, match='not set'):
|
||||
int(order.time_at_pickup)
|
||||
|
||||
def test_time_at_pickup_success(self, order_data):
|
||||
"""Test Order.time_at_pickup property."""
|
||||
order = db.Order(**order_data)
|
||||
|
||||
def test_time_at_pickup_success(self, order):
|
||||
"""Test `Order.time_at_pickup` property."""
|
||||
result = order.time_at_pickup
|
||||
|
||||
assert isinstance(result, datetime.timedelta)
|
||||
assert result > datetime.timedelta(0)
|
||||
|
||||
def test_scheduled_pickup_at_no_restaurant_notified( # noqa:WPS118
|
||||
self, order_data,
|
||||
):
|
||||
"""Test Order.scheduled_pickup_at property."""
|
||||
order_data['restaurant_notified_at'] = None
|
||||
order = db.Order(**order_data)
|
||||
def test_scheduled_pickup_at_no_restaurant_notified(self, order): # noqa:WPS118
|
||||
"""Test `Order.scheduled_pickup_at` property."""
|
||||
order.restaurant_notified_at = None
|
||||
|
||||
with pytest.raises(RuntimeError, match='not set'):
|
||||
int(order.scheduled_pickup_at)
|
||||
|
||||
def test_scheduled_pickup_at_no_est_prep_duration(self, order_data): # noqa:WPS118
|
||||
"""Test Order.scheduled_pickup_at property."""
|
||||
order_data['estimated_prep_duration'] = None
|
||||
order = db.Order(**order_data)
|
||||
def test_scheduled_pickup_at_no_est_prep_duration(self, order): # noqa:WPS118
|
||||
"""Test `Order.scheduled_pickup_at` property."""
|
||||
order.estimated_prep_duration = None
|
||||
|
||||
with pytest.raises(RuntimeError, match='not set'):
|
||||
int(order.scheduled_pickup_at)
|
||||
|
||||
def test_scheduled_pickup_at_success(self, order_data):
|
||||
"""Test Order.scheduled_pickup_at property."""
|
||||
order = db.Order(**order_data)
|
||||
|
||||
def test_scheduled_pickup_at_success(self, order):
|
||||
"""Test `Order.scheduled_pickup_at` property."""
|
||||
result = order.scheduled_pickup_at
|
||||
|
||||
assert isinstance(result, datetime.datetime)
|
||||
assert order.placed_at < result < order.delivery_at
|
||||
|
||||
def test_if_courier_early_at_pickup(self, order_data):
|
||||
"""Test Order.courier_early property."""
|
||||
order = db.Order(**order_data)
|
||||
def test_courier_is_early_at_pickup(self, order):
|
||||
"""Test `Order.courier_early` property."""
|
||||
# Manipulate the attribute that determines `Order.scheduled_pickup_at`.
|
||||
order.estimated_prep_duration = 999_999
|
||||
|
||||
result = order.courier_early
|
||||
|
||||
assert bool(result) is True
|
||||
|
||||
def test_if_courier_late_at_pickup(self, order_data):
|
||||
"""Test Order.courier_late property."""
|
||||
# Opposite of test case before.
|
||||
order = db.Order(**order_data)
|
||||
def test_courier_is_not_early_at_pickup(self, order):
|
||||
"""Test `Order.courier_early` property."""
|
||||
# Manipulate the attribute that determines `Order.scheduled_pickup_at`.
|
||||
order.estimated_prep_duration = 1
|
||||
|
||||
result = order.courier_early
|
||||
|
||||
assert bool(result) is False
|
||||
|
||||
def test_courier_is_late_at_pickup(self, order):
|
||||
"""Test `Order.courier_late` property."""
|
||||
# Manipulate the attribute that determines `Order.scheduled_pickup_at`.
|
||||
order.estimated_prep_duration = 1
|
||||
|
||||
result = order.courier_late
|
||||
|
||||
assert bool(result) is True
|
||||
|
||||
def test_courier_is_not_late_at_pickup(self, order):
|
||||
"""Test `Order.courier_late` property."""
|
||||
# Manipulate the attribute that determines `Order.scheduled_pickup_at`.
|
||||
order.estimated_prep_duration = 999_999
|
||||
|
||||
result = order.courier_late
|
||||
|
||||
assert bool(result) is False
|
||||
|
||||
def test_if_restaurant_early_at_pickup(self, order_data):
|
||||
"""Test Order.restaurant_early property."""
|
||||
order = db.Order(**order_data)
|
||||
def test_restaurant_early_at_pickup(self, order):
|
||||
"""Test `Order.restaurant_early` property."""
|
||||
# Manipulate the attribute that determines `Order.scheduled_pickup_at`.
|
||||
order.estimated_prep_duration = 999_999
|
||||
|
||||
result = order.restaurant_early
|
||||
|
||||
assert bool(result) is True
|
||||
|
||||
def test_if_restaurant_late_at_pickup(self, order_data):
|
||||
"""Test Order.restaurant_late property."""
|
||||
# Opposite of test case before.
|
||||
order = db.Order(**order_data)
|
||||
def test_restaurant_is_not_early_at_pickup(self, order):
|
||||
"""Test `Order.restaurant_early` property."""
|
||||
# Manipulate the attribute that determines `Order.scheduled_pickup_at`.
|
||||
order.estimated_prep_duration = 1
|
||||
|
||||
result = order.restaurant_early
|
||||
|
||||
assert bool(result) is False
|
||||
|
||||
def test_restaurant_is_late_at_pickup(self, order):
|
||||
"""Test `Order.restaurant_late` property."""
|
||||
# Manipulate the attribute that determines `Order.scheduled_pickup_at`.
|
||||
order.estimated_prep_duration = 1
|
||||
|
||||
result = order.restaurant_late
|
||||
|
||||
assert bool(result) is True
|
||||
|
||||
def test_restaurant_is_not_late_at_pickup(self, order):
|
||||
"""Test `Order.restaurant_late` property."""
|
||||
# Manipulate the attribute that determines `Order.scheduled_pickup_at`.
|
||||
order.estimated_prep_duration = 999_999
|
||||
|
||||
result = order.restaurant_late
|
||||
|
||||
assert bool(result) is False
|
||||
|
||||
def test_time_to_delivery_no_reached_delivery_at(self, order_data): # noqa:WPS118
|
||||
"""Test Order.time_to_delivery property."""
|
||||
order_data['reached_delivery_at'] = None
|
||||
order = db.Order(**order_data)
|
||||
def test_time_to_delivery_no_reached_delivery_at(self, order): # noqa:WPS118
|
||||
"""Test `Order.time_to_delivery` property."""
|
||||
order.reached_delivery_at = None
|
||||
|
||||
with pytest.raises(RuntimeError, match='not set'):
|
||||
int(order.time_to_delivery)
|
||||
|
||||
def test_time_to_delivery_no_pickup_at(self, order_data):
|
||||
"""Test Order.time_to_delivery property."""
|
||||
order_data['pickup_at'] = None
|
||||
order = db.Order(**order_data)
|
||||
def test_time_to_delivery_no_pickup_at(self, order):
|
||||
"""Test `Order.time_to_delivery` property."""
|
||||
order.pickup_at = None
|
||||
|
||||
with pytest.raises(RuntimeError, match='not set'):
|
||||
int(order.time_to_delivery)
|
||||
|
||||
def test_time_to_delivery_success(self, order_data):
|
||||
"""Test Order.time_to_delivery property."""
|
||||
order = db.Order(**order_data)
|
||||
|
||||
def test_time_to_delivery_success(self, order):
|
||||
"""Test `Order.time_to_delivery` property."""
|
||||
result = order.time_to_delivery
|
||||
|
||||
assert isinstance(result, datetime.timedelta)
|
||||
assert result > datetime.timedelta(0)
|
||||
|
||||
def test_time_at_delivery_no_reached_delivery_at(self, order_data): # noqa:WPS118
|
||||
"""Test Order.time_at_delivery property."""
|
||||
order_data['reached_delivery_at'] = None
|
||||
order = db.Order(**order_data)
|
||||
def test_time_at_delivery_no_reached_delivery_at(self, order): # noqa:WPS118
|
||||
"""Test `Order.time_at_delivery` property."""
|
||||
order.reached_delivery_at = None
|
||||
|
||||
with pytest.raises(RuntimeError, match='not set'):
|
||||
int(order.time_at_delivery)
|
||||
|
||||
def test_time_at_delivery_no_delivery_at(self, order_data):
|
||||
"""Test Order.time_at_delivery property."""
|
||||
order_data['delivery_at'] = None
|
||||
order = db.Order(**order_data)
|
||||
def test_time_at_delivery_no_delivery_at(self, order):
|
||||
"""Test `Order.time_at_delivery` property."""
|
||||
order.delivery_at = None
|
||||
|
||||
with pytest.raises(RuntimeError, match='not set'):
|
||||
int(order.time_at_delivery)
|
||||
|
||||
def test_time_at_delivery_success(self, order_data):
|
||||
"""Test Order.time_at_delivery property."""
|
||||
order = db.Order(**order_data)
|
||||
|
||||
def test_time_at_delivery_success(self, order):
|
||||
"""Test `Order.time_at_delivery` property."""
|
||||
result = order.time_at_delivery
|
||||
|
||||
assert isinstance(result, datetime.timedelta)
|
||||
assert result > datetime.timedelta(0)
|
||||
|
||||
def test_courier_waited_at_delviery(self, order_data):
|
||||
"""Test Order.courier_waited_at_delivery property."""
|
||||
order_data['_courier_waited_at_delivery'] = True
|
||||
order = db.Order(**order_data)
|
||||
def test_courier_waited_at_delviery(self, order):
|
||||
"""Test `Order.courier_waited_at_delivery` property."""
|
||||
order._courier_waited_at_delivery = True
|
||||
|
||||
result = int(order.courier_waited_at_delivery.total_seconds())
|
||||
result = order.courier_waited_at_delivery.total_seconds()
|
||||
|
||||
assert result > 0
|
||||
|
||||
def test_courier_did_not_wait_at_delivery(self, order_data):
|
||||
"""Test Order.courier_waited_at_delivery property."""
|
||||
order_data['_courier_waited_at_delivery'] = False
|
||||
order = db.Order(**order_data)
|
||||
def test_courier_did_not_wait_at_delivery(self, order):
|
||||
"""Test `Order.courier_waited_at_delivery` property."""
|
||||
order._courier_waited_at_delivery = False
|
||||
|
||||
result = int(order.courier_waited_at_delivery.total_seconds())
|
||||
result = order.courier_waited_at_delivery.total_seconds()
|
||||
|
||||
assert result == 0
|
||||
|
||||
def test_if_delivery_early_success(self, order_data):
|
||||
"""Test Order.delivery_early property."""
|
||||
order_data['ad_hoc'] = False
|
||||
order_data['scheduled_delivery_at'] = datetime.datetime(2020, 1, 2, 12, 30, 0)
|
||||
order_data['scheduled_delivery_at_corrected'] = False
|
||||
order = db.Order(**order_data)
|
||||
def test_ad_hoc_order_cannot_be_early(self, order):
|
||||
"""Test `Order.delivery_early` property."""
|
||||
# By default, the `OrderFactory` creates ad-hoc orders.
|
||||
with pytest.raises(AttributeError, match='scheduled'):
|
||||
int(order.delivery_early)
|
||||
|
||||
def test_scheduled_order_delivered_early(self, make_order):
|
||||
"""Test `Order.delivery_early` property."""
|
||||
order = make_order(scheduled=True)
|
||||
# Schedule the order to a lot later.
|
||||
order.scheduled_delivery_at += datetime.timedelta(hours=2)
|
||||
|
||||
result = order.delivery_early
|
||||
|
||||
assert bool(result) is True
|
||||
|
||||
def test_if_delivery_early_failure(self, order_data):
|
||||
"""Test Order.delivery_early property."""
|
||||
order = db.Order(**order_data)
|
||||
def test_scheduled_order_not_delivered_early(self, make_order):
|
||||
"""Test `Order.delivery_early` property."""
|
||||
order = make_order(scheduled=True)
|
||||
# Schedule the order to a lot earlier.
|
||||
order.scheduled_delivery_at -= datetime.timedelta(hours=2)
|
||||
|
||||
with pytest.raises(AttributeError, match='scheduled'):
|
||||
int(order.delivery_early)
|
||||
result = order.delivery_early
|
||||
|
||||
def test_if_delivery_late_success(self, order_data):
|
||||
assert bool(result) is False
|
||||
|
||||
def test_ad_hoc_order_cannot_be_late(self, order):
|
||||
"""Test Order.delivery_late property."""
|
||||
order_data['ad_hoc'] = False
|
||||
order_data['scheduled_delivery_at'] = datetime.datetime(2020, 1, 2, 12, 30, 0)
|
||||
order_data['scheduled_delivery_at_corrected'] = False
|
||||
order = db.Order(**order_data)
|
||||
# By default, the `OrderFactory` creates ad-hoc orders.
|
||||
with pytest.raises(AttributeError, match='scheduled'):
|
||||
int(order.delivery_late)
|
||||
|
||||
def test_scheduled_order_delivered_late(self, make_order):
|
||||
"""Test `Order.delivery_early` property."""
|
||||
order = make_order(scheduled=True)
|
||||
# Schedule the order to a lot earlier.
|
||||
order.scheduled_delivery_at -= datetime.timedelta(hours=2)
|
||||
|
||||
result = order.delivery_late
|
||||
|
||||
assert bool(result) is True
|
||||
|
||||
def test_scheduled_order_not_delivered_late(self, make_order):
|
||||
"""Test `Order.delivery_early` property."""
|
||||
order = make_order(scheduled=True)
|
||||
# Schedule the order to a lot later.
|
||||
order.scheduled_delivery_at += datetime.timedelta(hours=2)
|
||||
|
||||
result = order.delivery_late
|
||||
|
||||
assert bool(result) is False
|
||||
|
||||
def test_if_delivery_late_failure(self, order_data):
|
||||
"""Test Order.delivery_late property."""
|
||||
order = db.Order(**order_data)
|
||||
|
||||
with pytest.raises(AttributeError, match='scheduled'):
|
||||
int(order.delivery_late)
|
||||
|
||||
def test_no_total_time_for_pre_order(self, order_data):
|
||||
"""Test Order.total_time property."""
|
||||
order_data['ad_hoc'] = False
|
||||
order_data['scheduled_delivery_at'] = datetime.datetime(2020, 1, 2, 12, 30, 0)
|
||||
order_data['scheduled_delivery_at_corrected'] = False
|
||||
order = db.Order(**order_data)
|
||||
def test_no_total_time_for_scheduled_order(self, make_order):
|
||||
"""Test `Order.total_time` property."""
|
||||
order = make_order(scheduled=True)
|
||||
|
||||
with pytest.raises(AttributeError, match='Scheduled'):
|
||||
int(order.total_time)
|
||||
|
||||
def test_no_total_time_for_cancelled_order(self, order_data):
|
||||
"""Test Order.total_time property."""
|
||||
order_data['cancelled'] = True
|
||||
order_data['cancelled_at'] = datetime.datetime(2020, 1, 2, 12, 15, 0)
|
||||
order_data['cancelled_at_corrected'] = False
|
||||
order = db.Order(**order_data)
|
||||
def test_no_total_time_for_cancelled_order(self, make_order):
|
||||
"""Test `Order.total_time` property."""
|
||||
order = make_order(cancel_before_pickup=True)
|
||||
|
||||
with pytest.raises(RuntimeError, match='Cancelled'):
|
||||
int(order.total_time)
|
||||
|
||||
def test_total_time_success(self, order_data):
|
||||
"""Test Order.total_time property."""
|
||||
order = db.Order(**order_data)
|
||||
|
||||
def test_total_time_success(self, order):
|
||||
"""Test `Order.total_time` property."""
|
||||
result = order.total_time
|
||||
|
||||
assert isinstance(result, datetime.timedelta)
|
||||
assert result > datetime.timedelta(0)
|
||||
|
||||
|
||||
@pytest.mark.db
|
||||
@pytest.mark.no_cover
|
||||
def test_make_random_orders( # noqa:C901,WPS211,WPS213,WPS231
|
||||
db_session, make_address, make_courier, make_restaurant, make_order,
|
||||
):
|
||||
"""Sanity check the all the `make_*` fixtures.
|
||||
|
||||
Ensure that all generated `Address`, `Courier`, `Customer`, `Restauarant`,
|
||||
and `Order` objects adhere to the database constraints.
|
||||
""" # noqa:D202
|
||||
# Generate a large number of `Order`s to obtain a large variance of data.
|
||||
for _ in range(1_000): # noqa:WPS122
|
||||
|
||||
# Ad-hoc `Order`s are far more common than pre-orders.
|
||||
scheduled = random.choice([True, False, False, False, False])
|
||||
|
||||
# Randomly pass a `address` argument to `make_restaurant()` and
|
||||
# a `restaurant` argument to `make_order()`.
|
||||
if random.random() < 0.5:
|
||||
address = random.choice([None, make_address()])
|
||||
restaurant = make_restaurant(address=address)
|
||||
else:
|
||||
restaurant = None
|
||||
|
||||
# Randomly pass a `courier` argument to `make_order()`.
|
||||
courier = random.choice([None, make_courier()])
|
||||
|
||||
# A tiny fraction of `Order`s get cancelled.
|
||||
if random.random() < 0.05:
|
||||
if random.random() < 0.5:
|
||||
cancel_before_pickup, cancel_after_pickup = True, False
|
||||
else:
|
||||
cancel_before_pickup, cancel_after_pickup = False, True
|
||||
else:
|
||||
cancel_before_pickup, cancel_after_pickup = False, False
|
||||
|
||||
# Write all the generated objects to the database.
|
||||
# This should already trigger an `IntegrityError` if the data are flawed.
|
||||
order = make_order(
|
||||
scheduled=scheduled,
|
||||
restaurant=restaurant,
|
||||
courier=courier,
|
||||
cancel_before_pickup=cancel_before_pickup,
|
||||
cancel_after_pickup=cancel_after_pickup,
|
||||
)
|
||||
db_session.add(order)
|
||||
|
||||
db_session.commit()
|
||||
|
|
152
tests/db/test_pixels.py
Normal file
152
tests/db/test_pixels.py
Normal file
|
@ -0,0 +1,152 @@
|
|||
"""Test the ORM's `Pixel` model."""
|
||||
|
||||
import pytest
|
||||
import sqlalchemy as sqla
|
||||
from sqlalchemy import exc as sa_exc
|
||||
|
||||
from urban_meal_delivery import db
|
||||
|
||||
|
||||
class TestSpecialMethods:
|
||||
"""Test special methods in `Pixel`."""
|
||||
|
||||
def test_create_pixel(self, pixel):
|
||||
"""Test instantiation of a new `Pixel` object."""
|
||||
assert pixel is not None
|
||||
|
||||
def test_text_representation(self, pixel):
|
||||
"""`Pixel` has a non-literal text representation."""
|
||||
result = repr(pixel)
|
||||
|
||||
assert result == f'<Pixel: ({pixel.n_x}|{pixel.n_y})>'
|
||||
|
||||
|
||||
@pytest.mark.db
|
||||
@pytest.mark.no_cover
|
||||
class TestConstraints:
|
||||
"""Test the database constraints defined in `Pixel`."""
|
||||
|
||||
def test_insert_into_database(self, db_session, pixel):
|
||||
"""Insert an instance into the (empty) database."""
|
||||
assert db_session.query(db.Pixel).count() == 0
|
||||
|
||||
db_session.add(pixel)
|
||||
db_session.commit()
|
||||
|
||||
assert db_session.query(db.Pixel).count() == 1
|
||||
|
||||
def test_delete_a_referenced_grid(self, db_session, pixel):
|
||||
"""Remove a record that is referenced with a FK."""
|
||||
db_session.add(pixel)
|
||||
db_session.commit()
|
||||
|
||||
# Must delete without ORM as otherwise an UPDATE statement is emitted.
|
||||
stmt = sqla.delete(db.Grid).where(db.Grid.id == pixel.grid.id)
|
||||
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='fk_pixels_to_grids_via_grid_id',
|
||||
):
|
||||
db_session.execute(stmt)
|
||||
|
||||
def test_negative_n_x(self, db_session, pixel):
|
||||
"""Insert an instance with invalid data."""
|
||||
pixel.n_x = -1
|
||||
db_session.add(pixel)
|
||||
|
||||
with pytest.raises(sa_exc.IntegrityError, match='n_x_is_positive'):
|
||||
db_session.commit()
|
||||
|
||||
def test_negative_n_y(self, db_session, pixel):
|
||||
"""Insert an instance with invalid data."""
|
||||
pixel.n_y = -1
|
||||
db_session.add(pixel)
|
||||
|
||||
with pytest.raises(sa_exc.IntegrityError, match='n_y_is_positive'):
|
||||
db_session.commit()
|
||||
|
||||
def test_non_unique_coordinates_within_a_grid(self, db_session, pixel):
|
||||
"""Insert an instance with invalid data."""
|
||||
another_pixel = db.Pixel(grid=pixel.grid, n_x=pixel.n_x, n_y=pixel.n_y)
|
||||
db_session.add(another_pixel)
|
||||
|
||||
with pytest.raises(sa_exc.IntegrityError, match='duplicate key value'):
|
||||
db_session.commit()
|
||||
|
||||
|
||||
class TestProperties:
|
||||
"""Test properties in `Pixel`."""
|
||||
|
||||
def test_side_length(self, pixel):
|
||||
"""Test `Pixel.side_length` property."""
|
||||
result = pixel.side_length
|
||||
|
||||
assert result == 1_000
|
||||
|
||||
def test_area(self, pixel):
|
||||
"""Test `Pixel.area` property."""
|
||||
result = pixel.area
|
||||
|
||||
assert result == 1.0
|
||||
|
||||
def test_northeast(self, pixel):
|
||||
"""Test `Pixel.northeast` property."""
|
||||
result = pixel.northeast
|
||||
|
||||
assert abs(result.x - pixel.side_length) < 2
|
||||
assert abs(result.y - pixel.side_length) < 2
|
||||
|
||||
def test_northeast_is_cached(self, pixel):
|
||||
"""Test `Pixel.northeast` property."""
|
||||
result1 = pixel.northeast
|
||||
result2 = pixel.northeast
|
||||
|
||||
assert result1 is result2
|
||||
|
||||
def test_southwest(self, pixel):
|
||||
"""Test `Pixel.southwest` property."""
|
||||
result = pixel.southwest
|
||||
|
||||
assert abs(result.x) < 2
|
||||
assert abs(result.y) < 2
|
||||
|
||||
def test_southwest_is_cached(self, pixel):
|
||||
"""Test `Pixel.southwest` property."""
|
||||
result1 = pixel.southwest
|
||||
result2 = pixel.southwest
|
||||
|
||||
assert result1 is result2
|
||||
|
||||
@pytest.fixture
|
||||
def _restaurants_mock(self, mocker, monkeypatch, restaurant):
|
||||
"""A `Mock` whose `.return_value` is `[restaurant]`."""
|
||||
mock = mocker.Mock()
|
||||
query = ( # noqa:ECE001
|
||||
mock.query.return_value.join.return_value.filter.return_value.all # noqa:E501,WPS219
|
||||
)
|
||||
query.return_value = [restaurant]
|
||||
monkeypatch.setattr(db, 'session', mock)
|
||||
|
||||
@pytest.mark.usefixtures('_restaurants_mock')
|
||||
def test_restaurants(self, pixel, restaurant):
|
||||
"""Test `Pixel.restaurants` property."""
|
||||
result = pixel.restaurants
|
||||
|
||||
assert result == [restaurant]
|
||||
|
||||
@pytest.mark.usefixtures('_restaurants_mock')
|
||||
def test_restaurants_is_cached(self, pixel):
|
||||
"""Test `Pixel.restaurants` property."""
|
||||
result1 = pixel.restaurants
|
||||
result2 = pixel.restaurants
|
||||
|
||||
assert result1 is result2
|
||||
|
||||
@pytest.mark.db
|
||||
def test_restaurants_with_db(self, pixel):
|
||||
"""Test `Pixel.restaurants` property.
|
||||
|
||||
This is a trivial integration test.
|
||||
"""
|
||||
result = pixel.restaurants
|
||||
|
||||
assert not result # = empty `list`
|
|
@ -1,80 +1,69 @@
|
|||
"""Test the ORM's Restaurant model."""
|
||||
"""Test the ORM's `Restaurant` model."""
|
||||
|
||||
import pytest
|
||||
import sqlalchemy as sqla
|
||||
from sqlalchemy import exc as sa_exc
|
||||
from sqlalchemy.orm import exc as orm_exc
|
||||
|
||||
from urban_meal_delivery import db
|
||||
|
||||
|
||||
class TestSpecialMethods:
|
||||
"""Test special methods in Restaurant."""
|
||||
"""Test special methods in `Restaurant`."""
|
||||
|
||||
# pylint:disable=no-self-use
|
||||
|
||||
def test_create_restaurant(self, restaurant_data):
|
||||
"""Test instantiation of a new Restaurant object."""
|
||||
result = db.Restaurant(**restaurant_data)
|
||||
|
||||
assert result is not None
|
||||
|
||||
def test_text_representation(self, restaurant_data):
|
||||
"""Restaurant has a non-literal text representation."""
|
||||
restaurant = db.Restaurant(**restaurant_data)
|
||||
name = restaurant_data['name']
|
||||
def test_create_restaurant(self, restaurant):
|
||||
"""Test instantiation of a new `Restaurant` object."""
|
||||
assert restaurant is not None
|
||||
|
||||
def test_text_representation(self, restaurant):
|
||||
"""`Restaurant` has a non-literal text representation."""
|
||||
result = repr(restaurant)
|
||||
|
||||
assert result == f'<Restaurant({name})>'
|
||||
assert result == f'<Restaurant({restaurant.name})>'
|
||||
|
||||
|
||||
@pytest.mark.e2e
|
||||
@pytest.mark.db
|
||||
@pytest.mark.no_cover
|
||||
class TestConstraints:
|
||||
"""Test the database constraints defined in Restaurant."""
|
||||
"""Test the database constraints defined in `Restaurant`."""
|
||||
|
||||
# pylint:disable=no-self-use
|
||||
def test_insert_into_database(self, db_session, restaurant):
|
||||
"""Insert an instance into the (empty) database."""
|
||||
assert db_session.query(db.Restaurant).count() == 0
|
||||
|
||||
def test_insert_into_database(self, restaurant, db_session):
|
||||
"""Insert an instance into the database."""
|
||||
db_session.add(restaurant)
|
||||
db_session.commit()
|
||||
|
||||
def test_dublicate_primary_key(self, restaurant, restaurant_data, db_session):
|
||||
"""Can only add a record once."""
|
||||
db_session.add(restaurant)
|
||||
db_session.commit()
|
||||
assert db_session.query(db.Restaurant).count() == 1
|
||||
|
||||
another_restaurant = db.Restaurant(**restaurant_data)
|
||||
db_session.add(another_restaurant)
|
||||
|
||||
with pytest.raises(orm_exc.FlushError):
|
||||
db_session.commit()
|
||||
|
||||
def test_delete_a_referenced_address(self, restaurant, address, db_session):
|
||||
def test_delete_a_referenced_address(self, db_session, restaurant):
|
||||
"""Remove a record that is referenced with a FK."""
|
||||
db_session.add(restaurant)
|
||||
db_session.commit()
|
||||
|
||||
with pytest.raises(sa_exc.IntegrityError):
|
||||
db_session.execute(
|
||||
db.Address.__table__.delete().where( # noqa:WPS609
|
||||
db.Address.id == address.id,
|
||||
),
|
||||
)
|
||||
# Must delete without ORM as otherwise an UPDATE statement is emitted.
|
||||
stmt = sqla.delete(db.Address).where(db.Address.id == restaurant.address.id)
|
||||
|
||||
def test_negative_prep_duration(self, restaurant, db_session):
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='fk_restaurants_to_addresses_via_address_id',
|
||||
):
|
||||
db_session.execute(stmt)
|
||||
|
||||
def test_negative_prep_duration(self, db_session, restaurant):
|
||||
"""Insert an instance with invalid data."""
|
||||
restaurant.estimated_prep_duration = -1
|
||||
db_session.add(restaurant)
|
||||
|
||||
with pytest.raises(sa_exc.IntegrityError):
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='realistic_estimated_prep_duration',
|
||||
):
|
||||
db_session.commit()
|
||||
|
||||
def test_too_high_prep_duration(self, restaurant, db_session):
|
||||
def test_too_high_prep_duration(self, db_session, restaurant):
|
||||
"""Insert an instance with invalid data."""
|
||||
restaurant.estimated_prep_duration = 2500
|
||||
db_session.add(restaurant)
|
||||
|
||||
with pytest.raises(sa_exc.IntegrityError):
|
||||
with pytest.raises(
|
||||
sa_exc.IntegrityError, match='realistic_estimated_prep_duration',
|
||||
):
|
||||
db_session.commit()
|
||||
|
|
1
tests/db/utils/__init__.py
Normal file
1
tests/db/utils/__init__.py
Normal file
|
@ -0,0 +1 @@
|
|||
"""Test the utilities for the ORM layer."""
|
195
tests/db/utils/test_locations.py
Normal file
195
tests/db/utils/test_locations.py
Normal file
|
@ -0,0 +1,195 @@
|
|||
"""Test the `Location` class."""
|
||||
|
||||
import pytest
|
||||
|
||||
from urban_meal_delivery.db import utils
|
||||
|
||||
|
||||
# All tests take place in Paris.
|
||||
MIN_EASTING, MAX_EASTING = 443_100, 461_200
|
||||
MIN_NORTHING, MAX_NORTHING = 5_407_200, 5_416_800
|
||||
ZONE = '31U'
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def location(address):
|
||||
"""A `Location` object based off the `address` fixture."""
|
||||
obj = utils.Location(address.latitude, address.longitude)
|
||||
|
||||
assert obj.zone == ZONE # sanity check
|
||||
|
||||
return obj
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def faraway_location():
|
||||
"""A `Location` object far away from the `location`."""
|
||||
obj = utils.Location(latitude=0, longitude=0)
|
||||
|
||||
assert obj.zone != ZONE # sanity check
|
||||
|
||||
return obj
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def origin(city):
|
||||
"""A `Location` object based off the one and only `city`."""
|
||||
obj = city.southwest
|
||||
|
||||
assert obj.zone == ZONE # sanity check
|
||||
|
||||
return obj
|
||||
|
||||
|
||||
class TestSpecialMethods:
|
||||
"""Test special methods in `Location`."""
|
||||
|
||||
def test_create_utm_coordinates(self, location):
|
||||
"""Test instantiation of a new `Location` object."""
|
||||
assert location is not None
|
||||
|
||||
def test_text_representation(self, location):
|
||||
"""The text representation is a non-literal."""
|
||||
result = repr(location)
|
||||
|
||||
assert result.startswith('<Location:')
|
||||
assert result.endswith('>')
|
||||
|
||||
@pytest.mark.e2e
|
||||
def test_coordinates_in_the_text_representation(self, location):
|
||||
"""Test the UTM convention in the non-literal text `repr()`.
|
||||
|
||||
Example Format:
|
||||
`<UTM: 17T 630084 4833438>'`
|
||||
"""
|
||||
result = repr(location)
|
||||
|
||||
parts = result.split(' ')
|
||||
zone = parts[1]
|
||||
easting = int(parts[2])
|
||||
northing = int(parts[3][:-1]) # strip the ending ">"
|
||||
|
||||
assert zone == location.zone
|
||||
assert MIN_EASTING < easting < MAX_EASTING
|
||||
assert MIN_NORTHING < northing < MAX_NORTHING
|
||||
|
||||
def test_compare_utm_coordinates_to_different_data_type(self, location):
|
||||
"""Test `Location.__eq__()`."""
|
||||
result = location == object()
|
||||
|
||||
assert result is False
|
||||
|
||||
def test_compare_utm_coordinates_to_far_away_coordinates(
|
||||
self, location, faraway_location,
|
||||
):
|
||||
"""Test `Location.__eq__()`."""
|
||||
with pytest.raises(ValueError, match='must be in the same zone'):
|
||||
bool(location == faraway_location)
|
||||
|
||||
def test_compare_utm_coordinates_to_equal_coordinates(self, location, address):
|
||||
"""Test `Location.__eq__()`."""
|
||||
same_location = utils.Location(address.latitude, address.longitude)
|
||||
|
||||
result = location == same_location
|
||||
|
||||
assert result is True
|
||||
|
||||
def test_compare_utm_coordinates_to_themselves(self, location):
|
||||
"""Test `Location.__eq__()`."""
|
||||
result = location == location # noqa:WPS312
|
||||
|
||||
assert result is True
|
||||
|
||||
def test_compare_utm_coordinates_to_different_coordinates(self, location, origin):
|
||||
"""Test `Location.__eq__()`."""
|
||||
result = location == origin
|
||||
|
||||
assert result is False
|
||||
|
||||
|
||||
class TestProperties:
|
||||
"""Test properties in `Location`."""
|
||||
|
||||
def test_latitude(self, location, address):
|
||||
"""Test `Location.latitude` property."""
|
||||
result = location.latitude
|
||||
|
||||
assert result == pytest.approx(float(address.latitude))
|
||||
|
||||
def test_longitude(self, location, address):
|
||||
"""Test `Location.longitude` property."""
|
||||
result = location.longitude
|
||||
|
||||
assert result == pytest.approx(float(address.longitude))
|
||||
|
||||
def test_easting(self, location):
|
||||
"""Test `Location.easting` property."""
|
||||
result = location.easting
|
||||
|
||||
assert MIN_EASTING < result < MAX_EASTING
|
||||
|
||||
def test_northing(self, location):
|
||||
"""Test `Location.northing` property."""
|
||||
result = location.northing
|
||||
|
||||
assert MIN_NORTHING < result < MAX_NORTHING
|
||||
|
||||
def test_zone(self, location):
|
||||
"""Test `Location.zone` property."""
|
||||
result = location.zone
|
||||
|
||||
assert result == ZONE
|
||||
|
||||
def test_zone_details(self, location):
|
||||
"""Test `Location.zone_details` property."""
|
||||
result = location.zone_details
|
||||
|
||||
zone, band = result
|
||||
assert ZONE == f'{zone}{band}'
|
||||
|
||||
|
||||
class TestRelateTo:
|
||||
"""Test the `Location.relate_to()` method and the `.x` and `.y` properties."""
|
||||
|
||||
def test_run_relate_to_twice(self, location, origin):
|
||||
"""The `.relate_to()` method must only be run once."""
|
||||
location.relate_to(origin)
|
||||
|
||||
with pytest.raises(RuntimeError, match='once'):
|
||||
location.relate_to(origin)
|
||||
|
||||
def test_call_relate_to_with_wrong_other_type(self, location):
|
||||
"""`other` must be another `Location`."""
|
||||
with pytest.raises(TypeError, match='Location'):
|
||||
location.relate_to(object())
|
||||
|
||||
def test_call_relate_to_with_far_away_other(
|
||||
self, location, faraway_location,
|
||||
):
|
||||
"""The `other` origin must be in the same UTM zone."""
|
||||
with pytest.raises(ValueError, match='must be in the same zone'):
|
||||
location.relate_to(faraway_location)
|
||||
|
||||
def test_access_x_without_origin(self, location):
|
||||
"""`.relate_to()` must be called before `.x` can be accessed."""
|
||||
with pytest.raises(RuntimeError, match='origin to relate to must be set'):
|
||||
int(location.x)
|
||||
|
||||
def test_access_y_without_origin(self, location):
|
||||
"""`.relate_to()` must be called before `.y` can be accessed."""
|
||||
with pytest.raises(RuntimeError, match='origin to relate to must be set'):
|
||||
int(location.y)
|
||||
|
||||
def test_origin_must_be_lower_left_when_relating_to_oneself(self, location):
|
||||
"""`.x` and `.y` must be `== (0, 0)` when oneself is the origin."""
|
||||
location.relate_to(location)
|
||||
|
||||
assert (location.x, location.y) == (0, 0)
|
||||
|
||||
@pytest.mark.e2e
|
||||
def test_x_and_y_must_not_be_lower_left_for_address_in_city(self, location, origin):
|
||||
"""`.x` and `.y` must be `> (0, 0)` when oneself is the origin."""
|
||||
location.relate_to(origin)
|
||||
|
||||
assert location.x > 0
|
||||
assert location.y > 0
|
1
tests/forecasts/__init__.py
Normal file
1
tests/forecasts/__init__.py
Normal file
|
@ -0,0 +1 @@
|
|||
"""Tests for the `urban_meal_delivery.forecasts` sub-package."""
|
138
tests/forecasts/conftest.py
Normal file
138
tests/forecasts/conftest.py
Normal file
|
@ -0,0 +1,138 @@
|
|||
"""Fixtures for testing the `urban_meal_delivery.forecasts` sub-package."""
|
||||
|
||||
import datetime as dt
|
||||
|
||||
import pandas as pd
|
||||
import pytest
|
||||
|
||||
from tests import config as test_config
|
||||
from urban_meal_delivery import config
|
||||
from urban_meal_delivery.forecasts import timify
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def horizontal_datetime_index():
|
||||
"""A `pd.Index` with `DateTime` values.
|
||||
|
||||
The times resemble a horizontal time series with a `frequency` of `7`.
|
||||
All observations take place at `NOON`.
|
||||
"""
|
||||
first_start_at = dt.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, test_config.NOON, 0,
|
||||
)
|
||||
|
||||
gen = (
|
||||
start_at
|
||||
for start_at in pd.date_range(first_start_at, test_config.END, freq='D')
|
||||
)
|
||||
|
||||
index = pd.Index(gen)
|
||||
index.name = 'start_at'
|
||||
|
||||
# Sanity check.
|
||||
# `+1` as both the `START` and `END` day are included.
|
||||
n_days = (test_config.END - test_config.START).days + 1
|
||||
assert len(index) == n_days
|
||||
|
||||
return index
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def horizontal_no_demand(horizontal_datetime_index):
|
||||
"""A horizontal time series with order totals: no demand."""
|
||||
return pd.Series(0, index=horizontal_datetime_index, name='n_orders')
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def vertical_datetime_index():
|
||||
"""A `pd.Index` with `DateTime` values.
|
||||
|
||||
The times resemble a vertical time series with a
|
||||
`frequency` of `7` times the number of daily time steps,
|
||||
which is `12` for `LONG_TIME_STEP` values.
|
||||
"""
|
||||
gen = (
|
||||
start_at
|
||||
for start_at in pd.date_range(
|
||||
test_config.START, test_config.END, freq=f'{test_config.LONG_TIME_STEP}T',
|
||||
)
|
||||
if config.SERVICE_START <= start_at.hour < config.SERVICE_END
|
||||
)
|
||||
|
||||
index = pd.Index(gen)
|
||||
index.name = 'start_at'
|
||||
|
||||
# Sanity check: n_days * n_number_of_opening_hours.
|
||||
# `+1` as both the `START` and `END` day are included.
|
||||
n_days = (test_config.END - test_config.START).days + 1
|
||||
assert len(index) == n_days * 12
|
||||
|
||||
return index
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def vertical_no_demand(vertical_datetime_index):
|
||||
"""A vertical time series with order totals: no demand."""
|
||||
return pd.Series(0, index=vertical_datetime_index, name='n_orders')
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def good_pixel_id(pixel):
|
||||
"""A `pixel_id` that is on the `grid`."""
|
||||
return pixel.id # `== 1`
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def predict_at() -> dt.datetime:
|
||||
"""`NOON` on the day to be predicted."""
|
||||
return dt.datetime(
|
||||
test_config.END.year,
|
||||
test_config.END.month,
|
||||
test_config.END.day,
|
||||
test_config.NOON,
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def order_totals(good_pixel_id):
|
||||
"""A mock for `OrderHistory.totals`.
|
||||
|
||||
To be a bit more realistic, we sample two pixels on the `grid`.
|
||||
|
||||
Uses the LONG_TIME_STEP as the length of a time step.
|
||||
"""
|
||||
pixel_ids = [good_pixel_id, good_pixel_id + 1]
|
||||
|
||||
gen = (
|
||||
(pixel_id, start_at)
|
||||
for pixel_id in pixel_ids
|
||||
for start_at in pd.date_range(
|
||||
test_config.START, test_config.END, freq=f'{test_config.LONG_TIME_STEP}T',
|
||||
)
|
||||
if config.SERVICE_START <= start_at.hour < config.SERVICE_END
|
||||
)
|
||||
|
||||
# Re-index `data` filling in `0`s where there is no demand.
|
||||
index = pd.MultiIndex.from_tuples(gen)
|
||||
index.names = ['pixel_id', 'start_at']
|
||||
|
||||
df = pd.DataFrame(data={'n_orders': 1}, index=index)
|
||||
|
||||
# Sanity check: n_pixels * n_time_steps_per_day * n_days.
|
||||
# `+1` as both the `START` and `END` day are included.
|
||||
n_days = (test_config.END - test_config.START).days + 1
|
||||
assert len(df) == 2 * 12 * n_days
|
||||
|
||||
return df
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def order_history(order_totals, grid):
|
||||
"""An `OrderHistory` object that does not need the database.
|
||||
|
||||
Uses the LONG_TIME_STEP as the length of a time step.
|
||||
"""
|
||||
oh = timify.OrderHistory(grid=grid, time_step=test_config.LONG_TIME_STEP)
|
||||
oh._data = order_totals
|
||||
|
||||
return oh
|
1
tests/forecasts/methods/__init__.py
Normal file
1
tests/forecasts/methods/__init__.py
Normal file
|
@ -0,0 +1 @@
|
|||
"""Tests for the `urban_meal_delivery.forecasts.methods` sub-package."""
|
243
tests/forecasts/methods/test_decomposition.py
Normal file
243
tests/forecasts/methods/test_decomposition.py
Normal file
|
@ -0,0 +1,243 @@
|
|||
"""Test the `stl()` function."""
|
||||
|
||||
import math
|
||||
|
||||
import pandas as pd
|
||||
import pytest
|
||||
|
||||
from tests import config as test_config
|
||||
from urban_meal_delivery.forecasts.methods import decomposition
|
||||
|
||||
|
||||
# The "periodic" `ns` suggested for the STL method.
|
||||
NS = 999
|
||||
|
||||
|
||||
class TestInvalidArguments:
|
||||
"""Test `stl()` with invalid arguments."""
|
||||
|
||||
def test_no_nans_in_time_series(self, vertical_datetime_index):
|
||||
"""`stl()` requires a `time_series` without `NaN` values."""
|
||||
time_series = pd.Series(dtype=float, index=vertical_datetime_index)
|
||||
|
||||
with pytest.raises(ValueError, match='`NaN` values'):
|
||||
decomposition.stl(
|
||||
time_series, frequency=test_config.VERTICAL_FREQUENCY_LONG, ns=NS,
|
||||
)
|
||||
|
||||
def test_ns_not_odd(self, vertical_no_demand):
|
||||
"""`ns` must be odd and `>= 7`."""
|
||||
with pytest.raises(ValueError, match='`ns`'):
|
||||
decomposition.stl(
|
||||
vertical_no_demand, frequency=test_config.VERTICAL_FREQUENCY_LONG, ns=8,
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize('ns', [-99, -1, 1, 5])
|
||||
def test_ns_smaller_than_seven(self, vertical_no_demand, ns):
|
||||
"""`ns` must be odd and `>= 7`."""
|
||||
with pytest.raises(ValueError, match='`ns`'):
|
||||
decomposition.stl(
|
||||
vertical_no_demand,
|
||||
frequency=test_config.VERTICAL_FREQUENCY_LONG,
|
||||
ns=ns,
|
||||
)
|
||||
|
||||
def test_nt_not_odd(self, vertical_no_demand):
|
||||
"""`nt` must be odd and `>= default_nt`."""
|
||||
nt = 200
|
||||
default_nt = math.ceil(
|
||||
(1.5 * test_config.VERTICAL_FREQUENCY_LONG) / (1 - (1.5 / NS)),
|
||||
)
|
||||
|
||||
assert nt > default_nt # sanity check
|
||||
|
||||
with pytest.raises(ValueError, match='`nt`'):
|
||||
decomposition.stl(
|
||||
vertical_no_demand,
|
||||
frequency=test_config.VERTICAL_FREQUENCY_LONG,
|
||||
ns=NS,
|
||||
nt=nt,
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize('nt', [-99, -1, 0, 1, 99, 125])
|
||||
def test_nt_not_at_least_the_default(self, vertical_no_demand, nt):
|
||||
"""`nt` must be odd and `>= default_nt`."""
|
||||
# `default_nt` becomes 161.
|
||||
default_nt = math.ceil(
|
||||
(1.5 * test_config.VERTICAL_FREQUENCY_LONG) / (1 - (1.5 / NS)),
|
||||
)
|
||||
|
||||
assert nt < default_nt # sanity check
|
||||
|
||||
with pytest.raises(ValueError, match='`nt`'):
|
||||
decomposition.stl(
|
||||
vertical_no_demand,
|
||||
frequency=test_config.VERTICAL_FREQUENCY_LONG,
|
||||
ns=NS,
|
||||
nt=nt,
|
||||
)
|
||||
|
||||
def test_nl_not_odd(self, vertical_no_demand):
|
||||
"""`nl` must be odd and `>= frequency`."""
|
||||
nl = 200
|
||||
|
||||
assert nl > test_config.VERTICAL_FREQUENCY_LONG # sanity check
|
||||
|
||||
with pytest.raises(ValueError, match='`nl`'):
|
||||
decomposition.stl(
|
||||
vertical_no_demand,
|
||||
frequency=test_config.VERTICAL_FREQUENCY_LONG,
|
||||
ns=NS,
|
||||
nl=nl,
|
||||
)
|
||||
|
||||
def test_nl_at_least_the_frequency(self, vertical_no_demand):
|
||||
"""`nl` must be odd and `>= frequency`."""
|
||||
nl = 77
|
||||
|
||||
assert nl < test_config.VERTICAL_FREQUENCY_LONG # sanity check
|
||||
|
||||
with pytest.raises(ValueError, match='`nl`'):
|
||||
decomposition.stl(
|
||||
vertical_no_demand,
|
||||
frequency=test_config.VERTICAL_FREQUENCY_LONG,
|
||||
ns=NS,
|
||||
nl=nl,
|
||||
)
|
||||
|
||||
def test_ds_not_zero_or_one(self, vertical_no_demand):
|
||||
"""`ds` must be `0` or `1`."""
|
||||
with pytest.raises(ValueError, match='`ds`'):
|
||||
decomposition.stl(
|
||||
vertical_no_demand,
|
||||
frequency=test_config.VERTICAL_FREQUENCY_LONG,
|
||||
ns=NS,
|
||||
ds=2,
|
||||
)
|
||||
|
||||
def test_dt_not_zero_or_one(self, vertical_no_demand):
|
||||
"""`dt` must be `0` or `1`."""
|
||||
with pytest.raises(ValueError, match='`dt`'):
|
||||
decomposition.stl(
|
||||
vertical_no_demand,
|
||||
frequency=test_config.VERTICAL_FREQUENCY_LONG,
|
||||
ns=NS,
|
||||
dt=2,
|
||||
)
|
||||
|
||||
def test_dl_not_zero_or_one(self, vertical_no_demand):
|
||||
"""`dl` must be `0` or `1`."""
|
||||
with pytest.raises(ValueError, match='`dl`'):
|
||||
decomposition.stl(
|
||||
vertical_no_demand,
|
||||
frequency=test_config.VERTICAL_FREQUENCY_LONG,
|
||||
ns=NS,
|
||||
dl=2,
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize('js', [-1, 0])
|
||||
def test_js_not_positive(self, vertical_no_demand, js):
|
||||
"""`js` must be positive."""
|
||||
with pytest.raises(ValueError, match='`js`'):
|
||||
decomposition.stl(
|
||||
vertical_no_demand,
|
||||
frequency=test_config.VERTICAL_FREQUENCY_LONG,
|
||||
ns=NS,
|
||||
js=js,
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize('jt', [-1, 0])
|
||||
def test_jt_not_positive(self, vertical_no_demand, jt):
|
||||
"""`jt` must be positive."""
|
||||
with pytest.raises(ValueError, match='`jt`'):
|
||||
decomposition.stl(
|
||||
vertical_no_demand,
|
||||
frequency=test_config.VERTICAL_FREQUENCY_LONG,
|
||||
ns=NS,
|
||||
jt=jt,
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize('jl', [-1, 0])
|
||||
def test_jl_not_positive(self, vertical_no_demand, jl):
|
||||
"""`jl` must be positive."""
|
||||
with pytest.raises(ValueError, match='`jl`'):
|
||||
decomposition.stl(
|
||||
vertical_no_demand,
|
||||
frequency=test_config.VERTICAL_FREQUENCY_LONG,
|
||||
ns=NS,
|
||||
jl=jl,
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize('ni', [-1, 0])
|
||||
def test_ni_not_positive(self, vertical_no_demand, ni):
|
||||
"""`ni` must be positive."""
|
||||
with pytest.raises(ValueError, match='`ni`'):
|
||||
decomposition.stl(
|
||||
vertical_no_demand,
|
||||
frequency=test_config.VERTICAL_FREQUENCY_LONG,
|
||||
ns=NS,
|
||||
ni=ni,
|
||||
)
|
||||
|
||||
def test_no_not_non_negative(self, vertical_no_demand):
|
||||
"""`no` must be non-negative."""
|
||||
with pytest.raises(ValueError, match='`no`'):
|
||||
decomposition.stl(
|
||||
vertical_no_demand,
|
||||
frequency=test_config.VERTICAL_FREQUENCY_LONG,
|
||||
ns=NS,
|
||||
no=-1,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.r
|
||||
class TestValidArguments:
|
||||
"""Test `stl()` with valid arguments."""
|
||||
|
||||
def test_structure_of_returned_dataframe(self, vertical_no_demand):
|
||||
"""`stl()` returns a `pd.DataFrame` with three columns."""
|
||||
result = decomposition.stl(
|
||||
vertical_no_demand, frequency=test_config.VERTICAL_FREQUENCY_LONG, ns=NS,
|
||||
)
|
||||
|
||||
assert isinstance(result, pd.DataFrame)
|
||||
assert list(result.columns) == ['seasonal', 'trend', 'residual']
|
||||
|
||||
# Run the `stl()` function with all possible combinations of arguments,
|
||||
# including default ones and explicitly set non-default ones.
|
||||
@pytest.mark.parametrize('nt', [None, 163])
|
||||
@pytest.mark.parametrize('nl', [None, 777])
|
||||
@pytest.mark.parametrize('ds', [0, 1])
|
||||
@pytest.mark.parametrize('dt', [0, 1])
|
||||
@pytest.mark.parametrize('dl', [0, 1])
|
||||
@pytest.mark.parametrize('js', [None, 1])
|
||||
@pytest.mark.parametrize('jt', [None, 1])
|
||||
@pytest.mark.parametrize('jl', [None, 1])
|
||||
@pytest.mark.parametrize('ni', [2, 3])
|
||||
@pytest.mark.parametrize('no', [0, 1])
|
||||
def test_decompose_time_series_with_no_demand( # noqa:WPS211,WPS216
|
||||
self, vertical_no_demand, nt, nl, ds, dt, dl, js, jt, jl, ni, no, # noqa:WPS110
|
||||
):
|
||||
"""Decomposing a time series with no demand ...
|
||||
|
||||
... returns a `pd.DataFrame` with three columns holding only `0.0` values.
|
||||
"""
|
||||
decomposed = decomposition.stl(
|
||||
vertical_no_demand,
|
||||
frequency=test_config.VERTICAL_FREQUENCY_LONG,
|
||||
ns=NS,
|
||||
nt=nt,
|
||||
nl=nl,
|
||||
ds=ds,
|
||||
dt=dt,
|
||||
dl=dl,
|
||||
js=js,
|
||||
jt=jt,
|
||||
jl=jl,
|
||||
ni=ni,
|
||||
no=no, # noqa:WPS110
|
||||
)
|
||||
|
||||
result = decomposed.sum().sum()
|
||||
|
||||
assert result == 0
|
130
tests/forecasts/methods/test_predictions.py
Normal file
130
tests/forecasts/methods/test_predictions.py
Normal file
|
@ -0,0 +1,130 @@
|
|||
"""Test all the `*.predict()` functions in the `methods` sub-package."""
|
||||
|
||||
import datetime as dt
|
||||
|
||||
import pandas as pd
|
||||
import pytest
|
||||
|
||||
from tests import config as test_config
|
||||
from urban_meal_delivery import config
|
||||
from urban_meal_delivery.forecasts.methods import arima
|
||||
from urban_meal_delivery.forecasts.methods import ets
|
||||
from urban_meal_delivery.forecasts.methods import extrapolate_season
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def forecast_interval():
|
||||
"""A `pd.Index` with `DateTime` values ...
|
||||
|
||||
... that takes place one day after the `START`-`END` horizon and
|
||||
resembles an entire day (`12` "start_at" values as we use `LONG_TIME_STEP`).
|
||||
"""
|
||||
future_day = test_config.END.date() + dt.timedelta(days=1)
|
||||
first_start_at = dt.datetime(
|
||||
future_day.year, future_day.month, future_day.day, config.SERVICE_START, 0,
|
||||
)
|
||||
end_of_day = dt.datetime(
|
||||
future_day.year, future_day.month, future_day.day, config.SERVICE_END, 0,
|
||||
)
|
||||
|
||||
gen = (
|
||||
start_at
|
||||
for start_at in pd.date_range(
|
||||
first_start_at, end_of_day, freq=f'{test_config.LONG_TIME_STEP}T',
|
||||
)
|
||||
if config.SERVICE_START <= start_at.hour < config.SERVICE_END
|
||||
)
|
||||
|
||||
index = pd.Index(gen)
|
||||
index.name = 'start_at'
|
||||
|
||||
return index
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def forecast_time_step():
|
||||
"""A `pd.Index` with one `DateTime` value, resembling `NOON`."""
|
||||
future_day = test_config.END.date() + dt.timedelta(days=1)
|
||||
|
||||
start_at = dt.datetime(
|
||||
future_day.year, future_day.month, future_day.day, test_config.NOON, 0,
|
||||
)
|
||||
|
||||
index = pd.Index([start_at])
|
||||
index.name = 'start_at'
|
||||
|
||||
return index
|
||||
|
||||
|
||||
@pytest.mark.r
|
||||
@pytest.mark.parametrize(
|
||||
'func', [arima.predict, ets.predict, extrapolate_season.predict],
|
||||
)
|
||||
class TestMakePredictions:
|
||||
"""Make predictions with `arima.predict()` and `ets.predict()`."""
|
||||
|
||||
def test_training_data_contains_nan_values(
|
||||
self, func, vertical_no_demand, forecast_interval,
|
||||
):
|
||||
"""`training_ts` must not contain `NaN` values."""
|
||||
vertical_no_demand.iloc[0] = pd.NA
|
||||
|
||||
with pytest.raises(ValueError, match='must not contain `NaN`'):
|
||||
func(
|
||||
training_ts=vertical_no_demand,
|
||||
forecast_interval=forecast_interval,
|
||||
frequency=test_config.VERTICAL_FREQUENCY_LONG,
|
||||
)
|
||||
|
||||
def test_structure_of_returned_dataframe(
|
||||
self, func, vertical_no_demand, forecast_interval,
|
||||
):
|
||||
"""Both `.predict()` return a `pd.DataFrame` with five columns."""
|
||||
result = func(
|
||||
training_ts=vertical_no_demand,
|
||||
forecast_interval=forecast_interval,
|
||||
frequency=test_config.VERTICAL_FREQUENCY_LONG,
|
||||
)
|
||||
|
||||
assert isinstance(result, pd.DataFrame)
|
||||
assert list(result.columns) == [
|
||||
'prediction',
|
||||
'low80',
|
||||
'high80',
|
||||
'low95',
|
||||
'high95',
|
||||
]
|
||||
|
||||
def test_predict_horizontal_time_series_with_no_demand(
|
||||
self, func, horizontal_no_demand, forecast_time_step,
|
||||
):
|
||||
"""Predicting a horizontal time series with no demand ...
|
||||
|
||||
... returns a `pd.DataFrame` with five columns holding only `0.0` values.
|
||||
"""
|
||||
predictions = func(
|
||||
training_ts=horizontal_no_demand,
|
||||
forecast_interval=forecast_time_step,
|
||||
frequency=7,
|
||||
)
|
||||
|
||||
result = predictions.sum().sum()
|
||||
|
||||
assert result == 0
|
||||
|
||||
def test_predict_vertical_time_series_with_no_demand(
|
||||
self, func, vertical_no_demand, forecast_interval,
|
||||
):
|
||||
"""Predicting a vertical time series with no demand ...
|
||||
|
||||
... returns a `pd.DataFrame` with five columns holding only `0.0` values.
|
||||
"""
|
||||
predictions = func(
|
||||
training_ts=vertical_no_demand,
|
||||
forecast_interval=forecast_interval,
|
||||
frequency=test_config.VERTICAL_FREQUENCY_LONG,
|
||||
)
|
||||
|
||||
result = predictions.sum().sum()
|
||||
|
||||
assert result == 0
|
172
tests/forecasts/test_models.py
Normal file
172
tests/forecasts/test_models.py
Normal file
|
@ -0,0 +1,172 @@
|
|||
"""Tests for the `urban_meal_delivery.forecasts.models` sub-package."""
|
||||
|
||||
|
||||
import pandas as pd
|
||||
import pytest
|
||||
|
||||
from tests import config as test_config
|
||||
from urban_meal_delivery import db
|
||||
from urban_meal_delivery.forecasts import models
|
||||
|
||||
|
||||
MODELS = (
|
||||
models.HorizontalETSModel,
|
||||
models.HorizontalSMAModel,
|
||||
models.RealtimeARIMAModel,
|
||||
models.VerticalARIMAModel,
|
||||
models.TrivialModel,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('model_cls', MODELS)
|
||||
class TestGenericForecastingModelProperties:
|
||||
"""Test everything all concrete `*Model`s have in common.
|
||||
|
||||
The test cases here replace testing the `ForecastingModelABC` class on its own.
|
||||
|
||||
As uncertainty is in the nature of forecasting, we do not test the individual
|
||||
point forecasts or confidence intervals themselves. Instead, we confirm
|
||||
that all the `*Model`s adhere to the `ForecastingModelABC` generically.
|
||||
So, these test cases are more like integration tests conceptually.
|
||||
|
||||
Also, note that some `methods.*.predict()` functions use R behind the scenes.
|
||||
""" # noqa:RST215
|
||||
|
||||
def test_create_model(self, model_cls, order_history):
|
||||
"""Test instantiation of a new and concrete `*Model` object."""
|
||||
model = model_cls(order_history=order_history)
|
||||
|
||||
assert model is not None
|
||||
|
||||
def test_model_has_a_name(self, model_cls, order_history):
|
||||
"""Access the `*Model.name` property."""
|
||||
model = model_cls(order_history=order_history)
|
||||
|
||||
result = model.name
|
||||
|
||||
assert isinstance(result, str)
|
||||
|
||||
unique_model_names = set()
|
||||
|
||||
def test_each_model_has_a_unique_name(self, model_cls, order_history):
|
||||
"""The `*Model.name` values must be unique across all `*Model`s.
|
||||
|
||||
Important: this test case has a side effect that is visible
|
||||
across the different parametrized versions of this case!
|
||||
""" # noqa:RST215
|
||||
model = model_cls(order_history=order_history)
|
||||
|
||||
assert model.name not in self.unique_model_names
|
||||
|
||||
self.unique_model_names.add(model.name)
|
||||
|
||||
@pytest.mark.r
|
||||
def test_make_prediction_structure(
|
||||
self, model_cls, order_history, pixel, predict_at,
|
||||
):
|
||||
"""`*Model.predict()` returns a `pd.DataFrame` ...
|
||||
|
||||
... with known columns.
|
||||
""" # noqa:RST215
|
||||
model = model_cls(order_history=order_history)
|
||||
|
||||
result = model.predict(
|
||||
pixel=pixel,
|
||||
predict_at=predict_at,
|
||||
train_horizon=test_config.LONG_TRAIN_HORIZON,
|
||||
)
|
||||
|
||||
assert isinstance(result, pd.DataFrame)
|
||||
assert list(result.columns) == [
|
||||
'actual',
|
||||
'prediction',
|
||||
'low80',
|
||||
'high80',
|
||||
'low95',
|
||||
'high95',
|
||||
]
|
||||
|
||||
@pytest.mark.r
|
||||
def test_make_prediction_for_given_time_step(
|
||||
self, model_cls, order_history, pixel, predict_at,
|
||||
):
|
||||
"""`*Model.predict()` returns a row for ...
|
||||
|
||||
... the time step starting at `predict_at`.
|
||||
""" # noqa:RST215
|
||||
model = model_cls(order_history=order_history)
|
||||
|
||||
result = model.predict(
|
||||
pixel=pixel,
|
||||
predict_at=predict_at,
|
||||
train_horizon=test_config.LONG_TRAIN_HORIZON,
|
||||
)
|
||||
|
||||
assert predict_at in result.index
|
||||
|
||||
@pytest.mark.r
|
||||
def test_make_prediction_contains_actual_values(
|
||||
self, model_cls, order_history, pixel, predict_at,
|
||||
):
|
||||
"""`*Model.predict()` returns a `pd.DataFrame` ...
|
||||
|
||||
... where the "actual" and "prediction" columns must not be empty.
|
||||
""" # noqa:RST215
|
||||
model = model_cls(order_history=order_history)
|
||||
|
||||
result = model.predict(
|
||||
pixel=pixel,
|
||||
predict_at=predict_at,
|
||||
train_horizon=test_config.LONG_TRAIN_HORIZON,
|
||||
)
|
||||
|
||||
assert not result['actual'].isnull().any()
|
||||
assert not result['prediction'].isnull().any()
|
||||
|
||||
@pytest.mark.db
|
||||
@pytest.mark.r
|
||||
def test_make_forecast( # noqa:WPS211
|
||||
self, db_session, model_cls, order_history, pixel, predict_at,
|
||||
):
|
||||
"""`*Model.make_forecast()` returns a `Forecast` object.""" # noqa:RST215
|
||||
model = model_cls(order_history=order_history)
|
||||
|
||||
result = model.make_forecast(
|
||||
pixel=pixel,
|
||||
predict_at=predict_at,
|
||||
train_horizon=test_config.LONG_TRAIN_HORIZON,
|
||||
)
|
||||
|
||||
assert isinstance(result, db.Forecast)
|
||||
assert result.pixel == pixel
|
||||
assert result.start_at == predict_at
|
||||
assert result.train_horizon == test_config.LONG_TRAIN_HORIZON
|
||||
|
||||
@pytest.mark.db
|
||||
@pytest.mark.r
|
||||
def test_make_forecast_is_cached( # noqa:WPS211
|
||||
self, db_session, model_cls, order_history, pixel, predict_at,
|
||||
):
|
||||
"""`*Model.make_forecast()` caches the `Forecast` object.""" # noqa:RST215
|
||||
model = model_cls(order_history=order_history)
|
||||
|
||||
assert db_session.query(db.Forecast).count() == 0
|
||||
|
||||
result1 = model.make_forecast(
|
||||
pixel=pixel,
|
||||
predict_at=predict_at,
|
||||
train_horizon=test_config.LONG_TRAIN_HORIZON,
|
||||
)
|
||||
|
||||
n_cached_forecasts = db_session.query(db.Forecast).count()
|
||||
assert n_cached_forecasts >= 1
|
||||
|
||||
result2 = model.make_forecast(
|
||||
pixel=pixel,
|
||||
predict_at=predict_at,
|
||||
train_horizon=test_config.LONG_TRAIN_HORIZON,
|
||||
)
|
||||
|
||||
assert n_cached_forecasts == db_session.query(db.Forecast).count()
|
||||
|
||||
assert result1 == result2
|
1
tests/forecasts/timify/__init__.py
Normal file
1
tests/forecasts/timify/__init__.py
Normal file
|
@ -0,0 +1 @@
|
|||
"""Tests for the `urban_meal_delivery.forecasts.timify` module."""
|
386
tests/forecasts/timify/test_aggregate_orders.py
Normal file
386
tests/forecasts/timify/test_aggregate_orders.py
Normal file
|
@ -0,0 +1,386 @@
|
|||
"""Test the `OrderHistory.aggregate_orders()` method."""
|
||||
|
||||
import datetime
|
||||
|
||||
import pytest
|
||||
|
||||
from tests import config as test_config
|
||||
from urban_meal_delivery import db
|
||||
from urban_meal_delivery.forecasts import timify
|
||||
|
||||
|
||||
@pytest.mark.db
|
||||
class TestAggregateOrders:
|
||||
"""Test the `OrderHistory.aggregate_orders()` method.
|
||||
|
||||
The test cases are integration tests that model realistic scenarios.
|
||||
"""
|
||||
|
||||
@pytest.fixture
|
||||
def addresses_mock(self, mocker, monkeypatch):
|
||||
"""A `Mock` whose `.return_value` are to be set ...
|
||||
|
||||
... to the addresses that are gridified. The addresses are
|
||||
all considered `Order.pickup_address` attributes for some orders.
|
||||
|
||||
Note: This fixture also exists in `tests.db.test_grids`.
|
||||
"""
|
||||
mock = mocker.Mock()
|
||||
query = ( # noqa:ECE001
|
||||
mock.query.return_value.join.return_value.filter.return_value.all # noqa:E501,WPS219
|
||||
)
|
||||
monkeypatch.setattr(db, 'session', mock)
|
||||
|
||||
return query
|
||||
|
||||
@pytest.fixture
|
||||
def one_pixel_grid(self, db_session, city, restaurant, addresses_mock):
|
||||
"""A persisted `Grid` with one `Pixel`.
|
||||
|
||||
`restaurant` must be a dependency as otherwise the `restaurant.address`
|
||||
is not put into the database as an `Order.pickup_address`.
|
||||
"""
|
||||
addresses_mock.return_value = [restaurant.address]
|
||||
|
||||
# `+1` as otherwise there would be a second pixel in one direction.
|
||||
side_length = max(city.total_x, city.total_y) + 1
|
||||
grid = db.Grid.gridify(city=city, side_length=side_length)
|
||||
db_session.add(grid)
|
||||
|
||||
assert len(grid.pixels) == 1 # sanity check
|
||||
|
||||
return grid
|
||||
|
||||
def test_no_orders(self, db_session, one_pixel_grid, restaurant):
|
||||
"""Edge case that does not occur for real-life data."""
|
||||
db_session.commit()
|
||||
assert len(restaurant.orders) == 0 # noqa:WPS507 sanity check
|
||||
|
||||
oh = timify.OrderHistory(
|
||||
grid=one_pixel_grid, time_step=test_config.LONG_TIME_STEP,
|
||||
)
|
||||
|
||||
result = oh.aggregate_orders()
|
||||
|
||||
assert len(result) == 0 # noqa:WPS507
|
||||
|
||||
def test_evenly_distributed_ad_hoc_orders(
|
||||
self, db_session, one_pixel_grid, restaurant, make_order,
|
||||
):
|
||||
"""12 ad-hoc orders, one per operating hour."""
|
||||
# Create one order per hour and 12 orders in total.
|
||||
for hour in range(11, 23):
|
||||
order = make_order(
|
||||
scheduled=False,
|
||||
restaurant=restaurant,
|
||||
placed_at=datetime.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, hour, 11,
|
||||
),
|
||||
)
|
||||
db_session.add(order)
|
||||
|
||||
db_session.commit()
|
||||
|
||||
assert len(restaurant.orders) == 12 # sanity check
|
||||
|
||||
oh = timify.OrderHistory(
|
||||
grid=one_pixel_grid, time_step=test_config.LONG_TIME_STEP,
|
||||
)
|
||||
|
||||
result = oh.aggregate_orders()
|
||||
|
||||
# The resulting `DataFrame` has 12 rows holding `1`s.
|
||||
assert len(result) == 12
|
||||
assert result['n_orders'].min() == 1
|
||||
assert result['n_orders'].max() == 1
|
||||
assert result['n_orders'].sum() == 12
|
||||
|
||||
def test_evenly_distributed_ad_hoc_orders_with_no_demand_late( # noqa:WPS218
|
||||
self, db_session, one_pixel_grid, restaurant, make_order,
|
||||
):
|
||||
"""10 ad-hoc orders, one per hour, no orders after 21."""
|
||||
# Create one order per hour and 10 orders in total.
|
||||
for hour in range(11, 21):
|
||||
order = make_order(
|
||||
scheduled=False,
|
||||
restaurant=restaurant,
|
||||
placed_at=datetime.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, hour, 11,
|
||||
),
|
||||
)
|
||||
db_session.add(order)
|
||||
|
||||
db_session.commit()
|
||||
|
||||
assert len(restaurant.orders) == 10 # sanity check
|
||||
|
||||
oh = timify.OrderHistory(
|
||||
grid=one_pixel_grid, time_step=test_config.LONG_TIME_STEP,
|
||||
)
|
||||
|
||||
result = oh.aggregate_orders()
|
||||
|
||||
# Even though there are only 10 orders, there are 12 rows in the `DataFrame`.
|
||||
# That is so as `0`s are filled in for hours without any demand at the end.
|
||||
assert len(result) == 12
|
||||
assert result['n_orders'].min() == 0
|
||||
assert result['n_orders'].max() == 1
|
||||
assert result.iloc[:10]['n_orders'].sum() == 10
|
||||
assert result.iloc[10:]['n_orders'].sum() == 0
|
||||
|
||||
def test_one_ad_hoc_order_every_other_hour(
|
||||
self, db_session, one_pixel_grid, restaurant, make_order,
|
||||
):
|
||||
"""6 ad-hoc orders, one every other hour."""
|
||||
# Create one order every other hour.
|
||||
for hour in range(11, 23, 2):
|
||||
order = make_order(
|
||||
scheduled=False,
|
||||
restaurant=restaurant,
|
||||
placed_at=datetime.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, hour, 11,
|
||||
),
|
||||
)
|
||||
db_session.add(order)
|
||||
|
||||
db_session.commit()
|
||||
|
||||
assert len(restaurant.orders) == 6 # sanity check
|
||||
|
||||
oh = timify.OrderHistory(
|
||||
grid=one_pixel_grid, time_step=test_config.LONG_TIME_STEP,
|
||||
)
|
||||
|
||||
result = oh.aggregate_orders()
|
||||
|
||||
# The resulting `DataFrame` has 12 rows, 6 holding `0`s, and 6 holding `1`s.
|
||||
assert len(result) == 12
|
||||
assert result['n_orders'].min() == 0
|
||||
assert result['n_orders'].max() == 1
|
||||
assert result['n_orders'].sum() == 6
|
||||
|
||||
def test_one_ad_hoc_and_one_pre_order(
|
||||
self, db_session, one_pixel_grid, restaurant, make_order,
|
||||
):
|
||||
"""1 ad-hoc and 1 scheduled order.
|
||||
|
||||
The scheduled order is discarded.
|
||||
"""
|
||||
ad_hoc_order = make_order(
|
||||
scheduled=False,
|
||||
restaurant=restaurant,
|
||||
placed_at=datetime.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, 11, 11,
|
||||
),
|
||||
)
|
||||
db_session.add(ad_hoc_order)
|
||||
|
||||
pre_order = make_order(
|
||||
scheduled=True,
|
||||
restaurant=restaurant,
|
||||
placed_at=datetime.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, 9, 0,
|
||||
),
|
||||
scheduled_delivery_at=datetime.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, 12, 0,
|
||||
),
|
||||
)
|
||||
db_session.add(pre_order)
|
||||
|
||||
db_session.commit()
|
||||
|
||||
assert len(restaurant.orders) == 2 # sanity check
|
||||
|
||||
oh = timify.OrderHistory(
|
||||
grid=one_pixel_grid, time_step=test_config.LONG_TIME_STEP,
|
||||
)
|
||||
|
||||
result = oh.aggregate_orders()
|
||||
|
||||
# The resulting `DataFrame` has 12 rows, 11 holding `0`s, and one holding a `1`.
|
||||
assert len(result) == 12
|
||||
assert result['n_orders'].min() == 0
|
||||
assert result['n_orders'].max() == 1
|
||||
assert result['n_orders'].sum() == 1
|
||||
|
||||
def test_evenly_distributed_ad_hoc_orders_with_half_hour_time_steps( # noqa:WPS218
|
||||
self, db_session, one_pixel_grid, restaurant, make_order,
|
||||
):
|
||||
"""12 ad-hoc orders, one per hour, with 30 minute time windows.
|
||||
|
||||
In half the time steps, there is no demand.
|
||||
"""
|
||||
# Create one order per hour and 10 orders in total.
|
||||
for hour in range(11, 23):
|
||||
order = make_order(
|
||||
scheduled=False,
|
||||
restaurant=restaurant,
|
||||
placed_at=datetime.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, hour, 11,
|
||||
),
|
||||
)
|
||||
db_session.add(order)
|
||||
|
||||
db_session.commit()
|
||||
|
||||
assert len(restaurant.orders) == 12 # sanity check
|
||||
|
||||
oh = timify.OrderHistory(
|
||||
grid=one_pixel_grid, time_step=test_config.SHORT_TIME_STEP,
|
||||
)
|
||||
|
||||
result = oh.aggregate_orders()
|
||||
|
||||
# The resulting `DataFrame` has 24 rows for the 24 30-minute time steps.
|
||||
# The rows' values are `0` and `1` alternating.
|
||||
assert len(result) == 24
|
||||
assert result['n_orders'].min() == 0
|
||||
assert result['n_orders'].max() == 1
|
||||
assert result.iloc[::2]['n_orders'].sum() == 12
|
||||
assert result.iloc[1::2]['n_orders'].sum() == 0
|
||||
|
||||
def test_ad_hoc_orders_over_two_days(
|
||||
self, db_session, one_pixel_grid, restaurant, make_order,
|
||||
):
|
||||
"""First day 12 ad-hoc orders, one per operating hour ...
|
||||
|
||||
... and 6 orders, one every other hour on the second day.
|
||||
In total, there are 18 orders.
|
||||
"""
|
||||
# Create one order per hour and 12 orders in total.
|
||||
for hour in range(11, 23):
|
||||
order = make_order(
|
||||
scheduled=False,
|
||||
restaurant=restaurant,
|
||||
placed_at=datetime.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, hour, 11,
|
||||
),
|
||||
)
|
||||
db_session.add(order)
|
||||
|
||||
# Create one order every other hour and 6 orders in total.
|
||||
for hour in range(11, 23, 2): # noqa:WPS440
|
||||
order = make_order(
|
||||
scheduled=False,
|
||||
restaurant=restaurant,
|
||||
placed_at=datetime.datetime(
|
||||
test_config.YEAR,
|
||||
test_config.MONTH,
|
||||
test_config.DAY + 1,
|
||||
hour, # noqa:WPS441
|
||||
11,
|
||||
),
|
||||
)
|
||||
db_session.add(order)
|
||||
|
||||
db_session.commit()
|
||||
|
||||
assert len(restaurant.orders) == 18 # sanity check
|
||||
|
||||
oh = timify.OrderHistory(
|
||||
grid=one_pixel_grid, time_step=test_config.LONG_TIME_STEP,
|
||||
)
|
||||
|
||||
result = oh.aggregate_orders()
|
||||
|
||||
# The resulting `DataFrame` has 24 rows, 12 for each day.
|
||||
assert len(result) == 24
|
||||
assert result['n_orders'].min() == 0
|
||||
assert result['n_orders'].max() == 1
|
||||
assert result['n_orders'].sum() == 18
|
||||
|
||||
@pytest.fixture
|
||||
def two_pixel_grid( # noqa:WPS211
|
||||
self, db_session, city, make_address, make_restaurant, addresses_mock,
|
||||
):
|
||||
"""A persisted `Grid` with two `Pixel` objects."""
|
||||
# One `Address` in the lower-left `Pixel`, ...
|
||||
address1 = make_address(latitude=48.8357377, longitude=2.2517412)
|
||||
# ... and another one in the upper-right one.
|
||||
address2 = make_address(latitude=48.8898312, longitude=2.4357622)
|
||||
|
||||
addresses_mock.return_value = [address1, address2]
|
||||
|
||||
# Create `Restaurant`s at the two addresses.
|
||||
make_restaurant(address=address1)
|
||||
make_restaurant(address=address2)
|
||||
|
||||
# This creates four `Pixel`s, two of which have no `pickup_address`.
|
||||
side_length = max(city.total_x // 2, city.total_y // 2) + 1
|
||||
|
||||
grid = db.Grid.gridify(city=city, side_length=side_length)
|
||||
|
||||
db_session.add(grid)
|
||||
|
||||
assert len(grid.pixels) == 2 # sanity check
|
||||
|
||||
return grid
|
||||
|
||||
def test_two_pixels_with_shifted_orders( # noqa:WPS218
|
||||
self, db_session, two_pixel_grid, make_order,
|
||||
):
|
||||
"""One restaurant with one order every other hour ...
|
||||
|
||||
... and another restaurant with two orders per hour.
|
||||
In total, there are 30 orders.
|
||||
"""
|
||||
address1, address2 = two_pixel_grid.city.addresses
|
||||
# Rarely, an `Address` may have several `Restaurant`s in the real dataset.
|
||||
restaurant1, restaurant2 = address1.restaurants[0], address2.restaurants[0]
|
||||
|
||||
# Create one order every other hour for `restaurant1`.
|
||||
for hour in range(11, 23, 2):
|
||||
order = make_order(
|
||||
scheduled=False,
|
||||
restaurant=restaurant1,
|
||||
placed_at=datetime.datetime(
|
||||
test_config.YEAR, test_config.MONTH, test_config.DAY, hour, 11,
|
||||
),
|
||||
)
|
||||
db_session.add(order)
|
||||
|
||||
# Create two orders per hour for `restaurant2`.
|
||||
for hour in range(11, 23): # noqa:WPS440
|
||||
order = make_order(
|
||||
scheduled=False,
|
||||
restaurant=restaurant2,
|
||||
placed_at=datetime.datetime(
|
||||
test_config.YEAR,
|
||||
test_config.MONTH,
|
||||
test_config.DAY,
|
||||
hour, # noqa:WPS441
|
||||
13,
|
||||
),
|
||||
)
|
||||
db_session.add(order)
|
||||
|
||||
order = make_order(
|
||||
scheduled=False,
|
||||
restaurant=restaurant2,
|
||||
placed_at=datetime.datetime(
|
||||
test_config.YEAR,
|
||||
test_config.MONTH,
|
||||
test_config.DAY,
|
||||
hour, # noqa:WPS441
|
||||
14,
|
||||
),
|
||||
)
|
||||
db_session.add(order)
|
||||
|
||||
db_session.commit()
|
||||
|
||||
# sanity checks
|
||||
assert len(restaurant1.orders) == 6
|
||||
assert len(restaurant2.orders) == 24
|
||||
|
||||
oh = timify.OrderHistory(
|
||||
grid=two_pixel_grid, time_step=test_config.LONG_TIME_STEP,
|
||||
)
|
||||
|
||||
result = oh.aggregate_orders()
|
||||
|
||||
# The resulting `DataFrame` has 24 rows, 12 for each pixel.
|
||||
assert len(result) == 24
|
||||
assert result['n_orders'].min() == 0
|
||||
assert result['n_orders'].max() == 2
|
||||
assert result['n_orders'].sum() == 30
|
143
tests/forecasts/timify/test_avg_daily_demand.py
Normal file
143
tests/forecasts/timify/test_avg_daily_demand.py
Normal file
|
@ -0,0 +1,143 @@
|
|||
"""Tests for the `OrderHistory.avg_daily_demand()` and ...
|
||||
|
||||
`OrderHistory.choose_tactical_model()` methods.
|
||||
|
||||
We test both methods together as they take the same input and are really
|
||||
two parts of the same conceptual step.
|
||||
"""
|
||||
|
||||
import pytest
|
||||
|
||||
from tests import config as test_config
|
||||
from urban_meal_delivery.forecasts import models
|
||||
|
||||
|
||||
class TestAverageDailyDemand:
|
||||
"""Tests for the `OrderHistory.avg_daily_demand()` method."""
|
||||
|
||||
def test_avg_daily_demand_with_constant_demand(
|
||||
self, order_history, good_pixel_id, predict_at,
|
||||
):
|
||||
"""The average daily demand must be the number of time steps ...
|
||||
|
||||
... if the demand is `1` at each time step.
|
||||
|
||||
Note: The `order_history` fixture assumes `12` time steps per day as it
|
||||
uses `LONG_TIME_STEP=60` as the length of a time step.
|
||||
"""
|
||||
result = order_history.avg_daily_demand(
|
||||
pixel_id=good_pixel_id,
|
||||
predict_day=predict_at.date(),
|
||||
train_horizon=test_config.LONG_TRAIN_HORIZON,
|
||||
)
|
||||
|
||||
assert result == 12.0
|
||||
|
||||
def test_avg_daily_demand_with_no_demand(
|
||||
self, order_history, good_pixel_id, predict_at,
|
||||
):
|
||||
"""Without demand, the average daily demand must be `0.0`."""
|
||||
order_history._data.loc[:, 'n_orders'] = 0
|
||||
|
||||
result = order_history.avg_daily_demand(
|
||||
pixel_id=good_pixel_id,
|
||||
predict_day=predict_at.date(),
|
||||
train_horizon=test_config.LONG_TRAIN_HORIZON,
|
||||
)
|
||||
|
||||
assert result == 0.0
|
||||
|
||||
|
||||
class TestChooseTacticalModel:
|
||||
"""Tests for the `OrderHistory.choose_tactical_model()` method."""
|
||||
|
||||
def test_best_model_with_high_demand(
|
||||
self, order_history, good_pixel_id, predict_at,
|
||||
):
|
||||
"""With high demand, the average daily demand is `.>= 25.0`."""
|
||||
# With 12 time steps per day, the ADD becomes `36.0`.
|
||||
order_history._data.loc[:, 'n_orders'] = 3
|
||||
|
||||
result = order_history.choose_tactical_model(
|
||||
pixel_id=good_pixel_id,
|
||||
predict_day=predict_at.date(),
|
||||
train_horizon=test_config.LONG_TRAIN_HORIZON,
|
||||
)
|
||||
|
||||
assert isinstance(result, models.HorizontalETSModel)
|
||||
|
||||
def test_best_model_with_medium_demand(
|
||||
self, order_history, good_pixel_id, predict_at,
|
||||
):
|
||||
"""With medium demand, the average daily demand is `>= 10.0` and `< 25.0`."""
|
||||
# With 12 time steps per day, the ADD becomes `24.0`.
|
||||
order_history._data.loc[:, 'n_orders'] = 2
|
||||
|
||||
result = order_history.choose_tactical_model(
|
||||
pixel_id=good_pixel_id,
|
||||
predict_day=predict_at.date(),
|
||||
train_horizon=test_config.LONG_TRAIN_HORIZON,
|
||||
)
|
||||
|
||||
assert isinstance(result, models.HorizontalETSModel)
|
||||
|
||||
def test_best_model_with_low_demand(
|
||||
self, order_history, good_pixel_id, predict_at,
|
||||
):
|
||||
"""With low demand, the average daily demand is `>= 2.5` and `< 10.0`."""
|
||||
# With 12 time steps per day, the ADD becomes `12.0` ...
|
||||
data = order_history._data
|
||||
data.loc[:, 'n_orders'] = 1
|
||||
|
||||
# ... and we set three additional time steps per day to `0`.
|
||||
data.loc[ # noqa:ECE001
|
||||
# all `Pixel`s, all `Order`s in time steps starting at 11 am
|
||||
(slice(None), slice(data.index.levels[1][0], None, 12)),
|
||||
'n_orders',
|
||||
] = 0
|
||||
data.loc[ # noqa:ECE001
|
||||
# all `Pixel`s, all `Order`s in time steps starting at 12 am
|
||||
(slice(None), slice(data.index.levels[1][1], None, 12)),
|
||||
'n_orders',
|
||||
] = 0
|
||||
data.loc[ # noqa:ECE001
|
||||
# all `Pixel`s, all `Order`s in time steps starting at 1 pm
|
||||
(slice(None), slice(data.index.levels[1][2], None, 12)),
|
||||
'n_orders',
|
||||
] = 0
|
||||
|
||||
result = order_history.choose_tactical_model(
|
||||
pixel_id=good_pixel_id,
|
||||
predict_day=predict_at.date(),
|
||||
train_horizon=test_config.LONG_TRAIN_HORIZON,
|
||||
)
|
||||
|
||||
assert isinstance(result, models.HorizontalSMAModel)
|
||||
|
||||
def test_best_model_with_no_demand(
|
||||
self, order_history, good_pixel_id, predict_at,
|
||||
):
|
||||
"""Without demand, the average daily demand is `< 2.5`."""
|
||||
order_history._data.loc[:, 'n_orders'] = 0
|
||||
|
||||
result = order_history.choose_tactical_model(
|
||||
pixel_id=good_pixel_id,
|
||||
predict_day=predict_at.date(),
|
||||
train_horizon=test_config.LONG_TRAIN_HORIZON,
|
||||
)
|
||||
|
||||
assert isinstance(result, models.TrivialModel)
|
||||
|
||||
def test_best_model_for_unknown_train_horizon(
|
||||
self, order_history, good_pixel_id, predict_at, # noqa:RST215
|
||||
):
|
||||
"""For `train_horizon`s not included in the rule-based system ...
|
||||
|
||||
... the method raises a `RuntimeError`.
|
||||
"""
|
||||
with pytest.raises(RuntimeError, match='no rule'):
|
||||
order_history.choose_tactical_model(
|
||||
pixel_id=good_pixel_id,
|
||||
predict_day=predict_at.date(),
|
||||
train_horizon=test_config.SHORT_TRAIN_HORIZON,
|
||||
)
|
399
tests/forecasts/timify/test_make_time_series.py
Normal file
399
tests/forecasts/timify/test_make_time_series.py
Normal file
|
@ -0,0 +1,399 @@
|
|||
"""Test the code generating time series with the order totals.
|
||||
|
||||
Unless otherwise noted, each `time_step` is 60 minutes long implying
|
||||
12 time steps per day (i.e., we use `LONG_TIME_STEP` by default).
|
||||
"""
|
||||
|
||||
import datetime
|
||||
|
||||
import pandas as pd
|
||||
import pytest
|
||||
|
||||
from tests import config as test_config
|
||||
from urban_meal_delivery import config
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def good_predict_at():
|
||||
"""A `predict_at` within `START`-`END` and ...
|
||||
|
||||
... a long enough history so that either `SHORT_TRAIN_HORIZON`
|
||||
or `LONG_TRAIN_HORIZON` works.
|
||||
"""
|
||||
return datetime.datetime(
|
||||
test_config.END.year,
|
||||
test_config.END.month,
|
||||
test_config.END.day,
|
||||
test_config.NOON,
|
||||
0,
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def bad_predict_at():
|
||||
"""A `predict_at` within `START`-`END` but ...
|
||||
|
||||
... not a long enough history so that both `SHORT_TRAIN_HORIZON`
|
||||
and `LONG_TRAIN_HORIZON` do not work.
|
||||
"""
|
||||
predict_day = test_config.END - datetime.timedelta(weeks=6, days=1)
|
||||
return datetime.datetime(
|
||||
predict_day.year, predict_day.month, predict_day.day, test_config.NOON, 0,
|
||||
)
|
||||
|
||||
|
||||
class TestMakeHorizontalTimeSeries:
|
||||
"""Test the `OrderHistory.make_horizontal_ts()` method."""
|
||||
|
||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||
def test_wrong_pixel(self, order_history, good_predict_at, train_horizon):
|
||||
"""A `pixel_id` that is not in the `grid`."""
|
||||
with pytest.raises(LookupError):
|
||||
order_history.make_horizontal_ts(
|
||||
pixel_id=999_999,
|
||||
predict_at=good_predict_at,
|
||||
train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||
def test_time_series_are_series(
|
||||
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
||||
):
|
||||
"""The time series come as a `pd.Series`."""
|
||||
result = order_history.make_horizontal_ts(
|
||||
pixel_id=good_pixel_id,
|
||||
predict_at=good_predict_at,
|
||||
train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
training_ts, _, actuals_ts = result
|
||||
|
||||
assert isinstance(training_ts, pd.Series)
|
||||
assert training_ts.name == 'n_orders'
|
||||
assert isinstance(actuals_ts, pd.Series)
|
||||
assert actuals_ts.name == 'n_orders'
|
||||
|
||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||
def test_time_series_have_correct_length(
|
||||
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
||||
):
|
||||
"""The length of a training time series must be a multiple of `7` ...
|
||||
|
||||
... whereas the time series with the actual order counts has only `1` value.
|
||||
"""
|
||||
result = order_history.make_horizontal_ts(
|
||||
pixel_id=good_pixel_id,
|
||||
predict_at=good_predict_at,
|
||||
train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
training_ts, _, actuals_ts = result
|
||||
|
||||
assert len(training_ts) == 7 * train_horizon
|
||||
assert len(actuals_ts) == 1
|
||||
|
||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||
def test_frequency_is_number_of_weekdays(
|
||||
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
||||
):
|
||||
"""The `frequency` must be `7`."""
|
||||
result = order_history.make_horizontal_ts(
|
||||
pixel_id=good_pixel_id,
|
||||
predict_at=good_predict_at,
|
||||
train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
_, frequency, _ = result # noqa:WPS434
|
||||
|
||||
assert frequency == 7
|
||||
|
||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||
def test_no_long_enough_history1(
|
||||
self, order_history, good_pixel_id, bad_predict_at, train_horizon,
|
||||
):
|
||||
"""If the `predict_at` day is too early in the `START`-`END` horizon ...
|
||||
|
||||
... the history of order totals is not long enough.
|
||||
"""
|
||||
with pytest.raises(RuntimeError):
|
||||
order_history.make_horizontal_ts(
|
||||
pixel_id=good_pixel_id,
|
||||
predict_at=bad_predict_at,
|
||||
train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
def test_no_long_enough_history2(
|
||||
self, order_history, good_pixel_id, good_predict_at,
|
||||
):
|
||||
"""If the `train_horizon` is longer than the `START`-`END` horizon ...
|
||||
|
||||
... the history of order totals can never be long enough.
|
||||
"""
|
||||
with pytest.raises(RuntimeError):
|
||||
order_history.make_horizontal_ts(
|
||||
pixel_id=good_pixel_id, predict_at=good_predict_at, train_horizon=999,
|
||||
)
|
||||
|
||||
|
||||
class TestMakeVerticalTimeSeries:
|
||||
"""Test the `OrderHistory.make_vertical_ts()` method."""
|
||||
|
||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||
def test_wrong_pixel(self, order_history, good_predict_at, train_horizon):
|
||||
"""A `pixel_id` that is not in the `grid`."""
|
||||
with pytest.raises(LookupError):
|
||||
order_history.make_vertical_ts(
|
||||
pixel_id=999_999,
|
||||
predict_day=good_predict_at.date(),
|
||||
train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||
def test_time_series_are_series(
|
||||
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
||||
):
|
||||
"""The time series come as `pd.Series`."""
|
||||
result = order_history.make_vertical_ts(
|
||||
pixel_id=good_pixel_id,
|
||||
predict_day=good_predict_at.date(),
|
||||
train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
training_ts, _, actuals_ts = result
|
||||
|
||||
assert isinstance(training_ts, pd.Series)
|
||||
assert training_ts.name == 'n_orders'
|
||||
assert isinstance(actuals_ts, pd.Series)
|
||||
assert actuals_ts.name == 'n_orders'
|
||||
|
||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||
def test_time_series_have_correct_length(
|
||||
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
||||
):
|
||||
"""The length of a training time series is the product of the ...
|
||||
|
||||
... weekly time steps (i.e., product of `7` and the number of daily time steps)
|
||||
and the `train_horizon` in weeks.
|
||||
|
||||
The time series with the actual order counts always holds one observation
|
||||
per time step of a day.
|
||||
"""
|
||||
result = order_history.make_vertical_ts(
|
||||
pixel_id=good_pixel_id,
|
||||
predict_day=good_predict_at.date(),
|
||||
train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
training_ts, _, actuals_ts = result
|
||||
|
||||
n_daily_time_steps = (
|
||||
60
|
||||
* (config.SERVICE_END - config.SERVICE_START)
|
||||
// test_config.LONG_TIME_STEP
|
||||
)
|
||||
|
||||
assert len(training_ts) == 7 * n_daily_time_steps * train_horizon
|
||||
assert len(actuals_ts) == n_daily_time_steps
|
||||
|
||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||
def test_frequency_is_number_number_of_weekly_time_steps(
|
||||
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
||||
):
|
||||
"""The `frequency` is the number of weekly time steps."""
|
||||
result = order_history.make_vertical_ts(
|
||||
pixel_id=good_pixel_id,
|
||||
predict_day=good_predict_at.date(),
|
||||
train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
_, frequency, _ = result # noqa:WPS434
|
||||
|
||||
n_daily_time_steps = (
|
||||
60
|
||||
* (config.SERVICE_END - config.SERVICE_START)
|
||||
// test_config.LONG_TIME_STEP
|
||||
)
|
||||
|
||||
assert frequency == 7 * n_daily_time_steps
|
||||
|
||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||
def test_no_long_enough_history1(
|
||||
self, order_history, good_pixel_id, bad_predict_at, train_horizon,
|
||||
):
|
||||
"""If the `predict_at` day is too early in the `START`-`END` horizon ...
|
||||
|
||||
... the history of order totals is not long enough.
|
||||
"""
|
||||
with pytest.raises(RuntimeError):
|
||||
order_history.make_vertical_ts(
|
||||
pixel_id=good_pixel_id,
|
||||
predict_day=bad_predict_at.date(),
|
||||
train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
def test_no_long_enough_history2(
|
||||
self, order_history, good_pixel_id, good_predict_at,
|
||||
):
|
||||
"""If the `train_horizon` is longer than the `START`-`END` horizon ...
|
||||
|
||||
... the history of order totals can never be long enough.
|
||||
"""
|
||||
with pytest.raises(RuntimeError):
|
||||
order_history.make_vertical_ts(
|
||||
pixel_id=good_pixel_id,
|
||||
predict_day=good_predict_at.date(),
|
||||
train_horizon=999,
|
||||
)
|
||||
|
||||
|
||||
class TestMakeRealTimeTimeSeries:
|
||||
"""Test the `OrderHistory.make_realtime_ts()` method."""
|
||||
|
||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||
def test_wrong_pixel(self, order_history, good_predict_at, train_horizon):
|
||||
"""A `pixel_id` that is not in the `grid`."""
|
||||
with pytest.raises(LookupError):
|
||||
order_history.make_realtime_ts(
|
||||
pixel_id=999_999,
|
||||
predict_at=good_predict_at,
|
||||
train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||
def test_time_series_are_series(
|
||||
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
||||
):
|
||||
"""The time series come as `pd.Series`."""
|
||||
result = order_history.make_realtime_ts(
|
||||
pixel_id=good_pixel_id,
|
||||
predict_at=good_predict_at,
|
||||
train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
training_ts, _, actuals_ts = result
|
||||
|
||||
assert isinstance(training_ts, pd.Series)
|
||||
assert training_ts.name == 'n_orders'
|
||||
assert isinstance(actuals_ts, pd.Series)
|
||||
assert actuals_ts.name == 'n_orders'
|
||||
|
||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||
def test_time_series_have_correct_length1(
|
||||
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
||||
):
|
||||
"""The length of a training time series is the product of the ...
|
||||
|
||||
... weekly time steps (i.e., product of `7` and the number of daily time steps)
|
||||
and the `train_horizon` in weeks; however, this assertion only holds if
|
||||
we predict the first `time_step` of the day.
|
||||
|
||||
The time series with the actual order counts always holds `1` value.
|
||||
"""
|
||||
predict_at = datetime.datetime(
|
||||
good_predict_at.year,
|
||||
good_predict_at.month,
|
||||
good_predict_at.day,
|
||||
config.SERVICE_START,
|
||||
0,
|
||||
)
|
||||
result = order_history.make_realtime_ts(
|
||||
pixel_id=good_pixel_id, predict_at=predict_at, train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
training_ts, _, actuals_ts = result
|
||||
|
||||
n_daily_time_steps = (
|
||||
60
|
||||
* (config.SERVICE_END - config.SERVICE_START)
|
||||
// test_config.LONG_TIME_STEP
|
||||
)
|
||||
|
||||
assert len(training_ts) == 7 * n_daily_time_steps * train_horizon
|
||||
assert len(actuals_ts) == 1
|
||||
|
||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||
def test_time_series_have_correct_length2(
|
||||
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
||||
):
|
||||
"""The length of a training time series is the product of the ...
|
||||
|
||||
... weekly time steps (i.e., product of `7` and the number of daily time steps)
|
||||
and the `train_horizon` in weeks; however, this assertion only holds if
|
||||
we predict the first `time_step` of the day. Predicting any other `time_step`
|
||||
means that the training time series becomes longer by the number of time steps
|
||||
before the one being predicted.
|
||||
|
||||
The time series with the actual order counts always holds `1` value.
|
||||
"""
|
||||
assert good_predict_at.hour == test_config.NOON
|
||||
|
||||
result = order_history.make_realtime_ts(
|
||||
pixel_id=good_pixel_id,
|
||||
predict_at=good_predict_at,
|
||||
train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
training_ts, _, actuals_ts = result
|
||||
|
||||
n_daily_time_steps = (
|
||||
60
|
||||
* (config.SERVICE_END - config.SERVICE_START)
|
||||
// test_config.LONG_TIME_STEP
|
||||
)
|
||||
n_time_steps_before = (
|
||||
60 * (test_config.NOON - config.SERVICE_START) // test_config.LONG_TIME_STEP
|
||||
)
|
||||
|
||||
assert (
|
||||
len(training_ts)
|
||||
== 7 * n_daily_time_steps * train_horizon + n_time_steps_before
|
||||
)
|
||||
assert len(actuals_ts) == 1
|
||||
|
||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||
def test_frequency_is_number_number_of_weekly_time_steps(
|
||||
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
||||
):
|
||||
"""The `frequency` is the number of weekly time steps."""
|
||||
result = order_history.make_realtime_ts(
|
||||
pixel_id=good_pixel_id,
|
||||
predict_at=good_predict_at,
|
||||
train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
_, frequency, _ = result # noqa:WPS434
|
||||
|
||||
n_daily_time_steps = (
|
||||
60
|
||||
* (config.SERVICE_END - config.SERVICE_START)
|
||||
// test_config.LONG_TIME_STEP
|
||||
)
|
||||
|
||||
assert frequency == 7 * n_daily_time_steps
|
||||
|
||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||
def test_no_long_enough_history1(
|
||||
self, order_history, good_pixel_id, bad_predict_at, train_horizon,
|
||||
):
|
||||
"""If the `predict_at` day is too early in the `START`-`END` horizon ...
|
||||
|
||||
... the history of order totals is not long enough.
|
||||
"""
|
||||
with pytest.raises(RuntimeError):
|
||||
order_history.make_realtime_ts(
|
||||
pixel_id=good_pixel_id,
|
||||
predict_at=bad_predict_at,
|
||||
train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
def test_no_long_enough_history2(
|
||||
self, order_history, good_pixel_id, good_predict_at,
|
||||
):
|
||||
"""If the `train_horizon` is longer than the `START`-`END` horizon ...
|
||||
|
||||
... the history of order totals can never be long enough.
|
||||
"""
|
||||
with pytest.raises(RuntimeError):
|
||||
order_history.make_realtime_ts(
|
||||
pixel_id=good_pixel_id, predict_at=good_predict_at, train_horizon=999,
|
||||
)
|
92
tests/forecasts/timify/test_order_history.py
Normal file
92
tests/forecasts/timify/test_order_history.py
Normal file
|
@ -0,0 +1,92 @@
|
|||
"""Test the basic functionalities in the `OrderHistory` class."""
|
||||
|
||||
import datetime as dt
|
||||
|
||||
import pytest
|
||||
|
||||
from tests import config as test_config
|
||||
from urban_meal_delivery.forecasts import timify
|
||||
|
||||
|
||||
class TestSpecialMethods:
|
||||
"""Test the special methods in `OrderHistory`."""
|
||||
|
||||
def test_instantiate(self, order_history):
|
||||
"""Test `OrderHistory.__init__()`."""
|
||||
assert order_history is not None
|
||||
|
||||
|
||||
class TestProperties:
|
||||
"""Test the properties in `OrderHistory`."""
|
||||
|
||||
@pytest.mark.parametrize('time_step', test_config.TIME_STEPS)
|
||||
def test_time_step(self, grid, time_step):
|
||||
"""Test `OrderHistory.time_step` property."""
|
||||
order_history = timify.OrderHistory(grid=grid, time_step=time_step)
|
||||
|
||||
result = order_history.time_step
|
||||
|
||||
assert result == time_step
|
||||
|
||||
def test_totals(self, order_history, order_totals):
|
||||
"""Test `OrderHistory.totals` property.
|
||||
|
||||
The result of the `OrderHistory.aggregate_orders()` method call
|
||||
is cached in the `OrderHistory.totals` property.
|
||||
|
||||
Note: `OrderHistory.aggregate_orders()` is not called as
|
||||
`OrderHistory._data` is already set in the `order_history` fixture.
|
||||
"""
|
||||
result = order_history.totals
|
||||
|
||||
assert result is order_totals
|
||||
|
||||
def test_totals_is_cached(self, order_history, monkeypatch):
|
||||
"""Test `OrderHistory.totals` property.
|
||||
|
||||
The result of the `OrderHistory.aggregate_orders()` method call
|
||||
is cached in the `OrderHistory.totals` property.
|
||||
|
||||
Note: We make `OrderHistory.aggregate_orders()` return a `sentinel`
|
||||
that is cached into `OrderHistory._data`, which must be unset first.
|
||||
"""
|
||||
monkeypatch.setattr(order_history, '_data', None)
|
||||
sentinel = object()
|
||||
monkeypatch.setattr(order_history, 'aggregate_orders', lambda: sentinel)
|
||||
|
||||
result1 = order_history.totals
|
||||
result2 = order_history.totals
|
||||
|
||||
assert result1 is result2
|
||||
assert result1 is sentinel
|
||||
|
||||
|
||||
class TestMethods:
|
||||
"""Test various methods in `OrderHistory`."""
|
||||
|
||||
def test_first_order_at_existing_pixel(self, order_history, good_pixel_id):
|
||||
"""Test `OrderHistory.first_order_at()` with good input."""
|
||||
result = order_history.first_order_at(good_pixel_id)
|
||||
|
||||
assert result == test_config.START
|
||||
|
||||
def test_first_order_at_non_existing_pixel(self, order_history, good_pixel_id):
|
||||
"""Test `OrderHistory.first_order_at()` with bad input."""
|
||||
with pytest.raises(
|
||||
LookupError, match='`pixel_id` is not in the `grid`',
|
||||
):
|
||||
order_history.first_order_at(-1)
|
||||
|
||||
def test_last_order_at_existing_pixel(self, order_history, good_pixel_id):
|
||||
"""Test `OrderHistory.last_order_at()` with good input."""
|
||||
result = order_history.last_order_at(good_pixel_id)
|
||||
|
||||
one_time_step = dt.timedelta(minutes=test_config.LONG_TIME_STEP)
|
||||
assert result == test_config.END - one_time_step
|
||||
|
||||
def test_last_order_at_non_existing_pixel(self, order_history, good_pixel_id):
|
||||
"""Test `OrderHistory.last_order_at()` with bad input."""
|
||||
with pytest.raises(
|
||||
LookupError, match='`pixel_id` is not in the `grid`',
|
||||
):
|
||||
order_history.last_order_at(-1)
|
|
@ -29,6 +29,9 @@ def test_database_uri_set(env, monkeypatch):
|
|||
monkeypatch.setattr(configuration.ProductionConfig, 'DATABASE_URI', uri)
|
||||
monkeypatch.setattr(configuration.TestingConfig, 'DATABASE_URI', uri)
|
||||
|
||||
# Prevent that a warning is emitted for a missing R_LIBS_PATH.
|
||||
monkeypatch.setattr(configuration.Config, 'R_LIBS_PATH', '.cache/r_libs')
|
||||
|
||||
with pytest.warns(None) as record:
|
||||
configuration.make_config(env)
|
||||
|
||||
|
@ -36,15 +39,88 @@ def test_database_uri_set(env, monkeypatch):
|
|||
|
||||
|
||||
@pytest.mark.parametrize('env', envs)
|
||||
def test_no_database_uri_set(env, monkeypatch):
|
||||
def test_no_database_uri_set_with_testing_env_var(env, monkeypatch):
|
||||
"""Package does not work without DATABASE_URI set in the environment."""
|
||||
monkeypatch.setattr(configuration.ProductionConfig, 'DATABASE_URI', None)
|
||||
monkeypatch.setattr(configuration.TestingConfig, 'DATABASE_URI', None)
|
||||
|
||||
monkeypatch.setenv('TESTING', 'true')
|
||||
|
||||
# Prevent that a warning is emitted for a missing R_LIBS_PATH.
|
||||
monkeypatch.setattr(configuration.Config, 'R_LIBS_PATH', '.cache/r_libs')
|
||||
|
||||
with pytest.warns(None) as record:
|
||||
configuration.make_config(env)
|
||||
|
||||
assert len(record) == 0 # noqa:WPS441,WPS507
|
||||
|
||||
|
||||
@pytest.mark.parametrize('env', envs)
|
||||
def test_no_database_uri_set_without_testing_env_var(env, monkeypatch):
|
||||
"""Package does not work without DATABASE_URI set in the environment."""
|
||||
monkeypatch.setattr(configuration.ProductionConfig, 'DATABASE_URI', None)
|
||||
monkeypatch.setattr(configuration.TestingConfig, 'DATABASE_URI', None)
|
||||
|
||||
monkeypatch.delenv('TESTING', raising=False)
|
||||
|
||||
# Prevent that a warning is emitted for a missing R_LIBS_PATH.
|
||||
monkeypatch.setattr(configuration.Config, 'R_LIBS_PATH', '.cache/r_libs')
|
||||
|
||||
with pytest.warns(UserWarning, match='no DATABASE_URI'):
|
||||
configuration.make_config(env)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('env', envs)
|
||||
def test_r_libs_path_set(env, monkeypatch):
|
||||
"""Package does NOT emit a warning if R_LIBS is set in the environment."""
|
||||
monkeypatch.setattr(configuration.Config, 'R_LIBS_PATH', '.cache/r_libs')
|
||||
|
||||
# Prevent that a warning is emitted for a missing DATABASE_URI.
|
||||
uri = 'postgresql://user:password@localhost/db'
|
||||
monkeypatch.setattr(configuration.ProductionConfig, 'DATABASE_URI', uri)
|
||||
|
||||
with pytest.warns(None) as record:
|
||||
configuration.make_config(env)
|
||||
|
||||
assert len(record) == 0 # noqa:WPS441,WPS507
|
||||
|
||||
|
||||
@pytest.mark.parametrize('env', envs)
|
||||
def test_no_r_libs_path_set_with_testing_env_var(env, monkeypatch):
|
||||
"""Package emits a warning if no R_LIBS is set in the environment ...
|
||||
|
||||
... when not testing.
|
||||
"""
|
||||
monkeypatch.setattr(configuration.Config, 'R_LIBS_PATH', None)
|
||||
monkeypatch.setenv('TESTING', 'true')
|
||||
|
||||
# Prevent that a warning is emitted for a missing DATABASE_URI.
|
||||
uri = 'postgresql://user:password@localhost/db'
|
||||
monkeypatch.setattr(configuration.ProductionConfig, 'DATABASE_URI', uri)
|
||||
|
||||
with pytest.warns(None) as record:
|
||||
configuration.make_config(env)
|
||||
|
||||
assert len(record) == 0 # noqa:WPS441,WPS507
|
||||
|
||||
|
||||
@pytest.mark.parametrize('env', envs)
|
||||
def test_no_r_libs_path_set_without_testing_env_var(env, monkeypatch):
|
||||
"""Package emits a warning if no R_LIBS is set in the environment ...
|
||||
|
||||
... when not testing.
|
||||
"""
|
||||
monkeypatch.setattr(configuration.Config, 'R_LIBS_PATH', None)
|
||||
monkeypatch.delenv('TESTING', raising=False)
|
||||
|
||||
# Prevent that a warning is emitted for a missing DATABASE_URI.
|
||||
uri = 'postgresql://user:password@localhost/db'
|
||||
monkeypatch.setattr(configuration.ProductionConfig, 'DATABASE_URI', uri)
|
||||
|
||||
with pytest.warns(UserWarning, match='no R_LIBS'):
|
||||
configuration.make_config(env)
|
||||
|
||||
|
||||
def test_random_testing_schema():
|
||||
"""CLEAN_SCHEMA is randomized if not set explicitly."""
|
||||
result = configuration.random_schema_name()
|
||||
|
|
19
tests/test_init_r.py
Normal file
19
tests/test_init_r.py
Normal file
|
@ -0,0 +1,19 @@
|
|||
"""Verify that the R packages are installed correctly."""
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.mark.r
|
||||
def test_r_packages_installed():
|
||||
"""Import the `urban_meal_delivery.init_r` module.
|
||||
|
||||
Doing this raises a `PackageNotInstalledError` if the
|
||||
mentioned R packages are not importable.
|
||||
|
||||
They must be installed externally. That happens either
|
||||
in the "research/r_dependencies.ipynb" notebook or
|
||||
in the GitHub Actions CI.
|
||||
"""
|
||||
from urban_meal_delivery import init_r # noqa:WPS433
|
||||
|
||||
assert init_r is not None
|
|
@ -20,8 +20,6 @@ import urban_meal_delivery
|
|||
class TestPEP404Compliance:
|
||||
"""Packaged version identifier is PEP440 compliant."""
|
||||
|
||||
# pylint:disable=no-self-use
|
||||
|
||||
@pytest.fixture
|
||||
def parsed_version(self) -> str:
|
||||
"""The packaged version."""
|
||||
|
@ -47,8 +45,6 @@ class TestPEP404Compliance:
|
|||
class TestSemanticVersioning:
|
||||
"""Packaged version follows a strict subset of semantic versioning."""
|
||||
|
||||
# pylint:disable=no-self-use
|
||||
|
||||
version_pattern = re.compile(
|
||||
r'^(0|([1-9]\d*))\.(0|([1-9]\d*))\.(0|([1-9]\d*))(\.dev(0|([1-9]\d*)))?$',
|
||||
)
|
||||
|
|
Loading…
Reference in a new issue