Add OrderHistory.make_vertical_time_series()
- the method slices out a vertical time series from the data within an `OrderHistory` object
This commit is contained in:
parent
b61db734b6
commit
5330ceb771
2 changed files with 194 additions and 1 deletions
|
|
@ -117,7 +117,7 @@ class TestMakeHorizontalTimeSeries:
|
|||
):
|
||||
"""The length of a training time series must be a multiple of `7` ...
|
||||
|
||||
whereas the time series with the actual order counts always holds `1` value.
|
||||
... whereas the time series with the actual order counts has only `1` value.
|
||||
"""
|
||||
result = order_history.make_horizontal_time_series(
|
||||
pixel_id=good_pixel_id,
|
||||
|
|
@ -171,3 +171,114 @@ class TestMakeHorizontalTimeSeries:
|
|||
order_history.make_horizontal_time_series(
|
||||
pixel_id=good_pixel_id, predict_at=good_predict_at, train_horizon=999,
|
||||
)
|
||||
|
||||
|
||||
class TestMakeVerticalTimeSeries:
|
||||
"""Test the `OrderHistory.make_vertical_time_series()` method."""
|
||||
|
||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||
def test_wrong_pixel(self, order_history, good_predict_at, train_horizon):
|
||||
"""A `pixel_id` that is not in the `grid`."""
|
||||
with pytest.raises(LookupError):
|
||||
order_history.make_vertical_time_series(
|
||||
pixel_id=999_999,
|
||||
predict_day=good_predict_at.date(),
|
||||
train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||
def test_time_series_are_dataframes(
|
||||
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
||||
):
|
||||
"""The time series come in a one-column `pd.DataFrame`."""
|
||||
result = order_history.make_vertical_time_series(
|
||||
pixel_id=good_pixel_id,
|
||||
predict_day=good_predict_at.date(),
|
||||
train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
training_df, _, actual_df = result
|
||||
|
||||
assert isinstance(training_df, pd.DataFrame)
|
||||
assert training_df.columns == ['total_orders']
|
||||
assert isinstance(actual_df, pd.DataFrame)
|
||||
assert actual_df.columns == ['total_orders']
|
||||
|
||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||
def test_time_series_have_correct_length(
|
||||
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
||||
):
|
||||
"""The length of a training time series is the product of the ...
|
||||
|
||||
... weekly time steps (i.e., product of `7` and the number of daily time steps)
|
||||
and the `train_horizon` in weeks.
|
||||
|
||||
The time series with the actual order counts always holds one observation
|
||||
per time step of a day.
|
||||
"""
|
||||
result = order_history.make_vertical_time_series(
|
||||
pixel_id=good_pixel_id,
|
||||
predict_day=good_predict_at.date(),
|
||||
train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
training_df, _, actual_df = result
|
||||
|
||||
n_daily_time_steps = (
|
||||
60
|
||||
* (config.SERVICE_END - config.SERVICE_START)
|
||||
// test_config.LONG_TIME_STEP
|
||||
)
|
||||
|
||||
assert len(training_df) == 7 * n_daily_time_steps * train_horizon
|
||||
assert len(actual_df) == n_daily_time_steps
|
||||
|
||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||
def test_frequency_is_number_number_of_weekly_time_steps(
|
||||
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
||||
):
|
||||
"""The `frequency` is the number of weekly time steps."""
|
||||
result = order_history.make_vertical_time_series(
|
||||
pixel_id=good_pixel_id,
|
||||
predict_day=good_predict_at.date(),
|
||||
train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
_, frequency, _ = result # noqa:WPS434
|
||||
|
||||
n_daily_time_steps = (
|
||||
60
|
||||
* (config.SERVICE_END - config.SERVICE_START)
|
||||
// test_config.LONG_TIME_STEP
|
||||
)
|
||||
|
||||
assert frequency == 7 * n_daily_time_steps
|
||||
|
||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||
def test_no_long_enough_history1(
|
||||
self, order_history, good_pixel_id, bad_predict_at, train_horizon,
|
||||
):
|
||||
"""If the `predict_at` day is too early in the `START`-`END` horizon ...
|
||||
|
||||
... the history of order totals is not long enough.
|
||||
"""
|
||||
with pytest.raises(RuntimeError):
|
||||
order_history.make_vertical_time_series(
|
||||
pixel_id=good_pixel_id,
|
||||
predict_day=bad_predict_at.date(),
|
||||
train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
def test_no_long_enough_history2(
|
||||
self, order_history, good_pixel_id, good_predict_at,
|
||||
):
|
||||
"""If the `train_horizon` is longer than the `START`-`END` horizon ...
|
||||
|
||||
... the history of order totals can never be long enough.
|
||||
"""
|
||||
with pytest.raises(RuntimeError):
|
||||
order_history.make_vertical_time_series(
|
||||
pixel_id=good_pixel_id,
|
||||
predict_day=good_predict_at.date(),
|
||||
train_horizon=999,
|
||||
)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue