Add urban_meal_delivery.forecasts.models sub-package

- `*Model`s use the `methods.*.predict()` functions to predict demand
  given an order time series generated by `timify.OrderHistory`
- `models.base.ForecastingModelABC` unifies how all `*Model`s work
  and implements a caching strategy
- implement three `*Model`s for tactical forecasting, based on the
  hets, varima, and rtarima models described in the first research paper
- add overall documentation for `urban_meal_delivery.forecasts` package
- move the fixtures in `tests.forecasts.timify.conftest` to
  `tests.forecasts.conftest` and adjust the horizon of the test horizon
  from two to three weeks
This commit is contained in:
Alexander Hess 2021-02-01 20:39:52 +01:00
commit 67cd58cf16
Signed by: alexander
GPG key ID: 344EA5AB10D868E0
12 changed files with 747 additions and 71 deletions

View file

@ -1,57 +0,0 @@
"""Fixture for testing the `urban_meal_delivery.forecast.timify` module."""
import pandas as pd
import pytest
from tests import config as test_config
from urban_meal_delivery import config
from urban_meal_delivery.forecasts import timify
@pytest.fixture
def good_pixel_id(pixel):
"""A `pixel_id` that is on the `grid`."""
return pixel.id # `== 1`
@pytest.fixture
def order_totals(good_pixel_id):
"""A mock for `OrderHistory.totals`.
To be a bit more realistic, we sample two pixels on the `grid`.
Uses the LONG_TIME_STEP as the length of a time step.
"""
pixel_ids = [good_pixel_id, good_pixel_id + 1]
gen = (
(pixel_id, start_at)
for pixel_id in pixel_ids
for start_at in pd.date_range(
test_config.START, test_config.END, freq=f'{test_config.LONG_TIME_STEP}T',
)
if config.SERVICE_START <= start_at.hour < config.SERVICE_END
)
# Re-index `data` filling in `0`s where there is no demand.
index = pd.MultiIndex.from_tuples(gen)
index.names = ['pixel_id', 'start_at']
df = pd.DataFrame(data={'n_orders': 1}, index=index)
# Sanity check: n_pixels * n_time_steps_per_day * n_weekdays * n_weeks.
assert len(df) == 2 * 12 * (7 * 2 + 1)
return df
@pytest.fixture
def order_history(order_totals, grid):
"""An `OrderHistory` object that does not need the database.
Uses the LONG_TIME_STEP as the length of a time step.
"""
oh = timify.OrderHistory(grid=grid, time_step=test_config.LONG_TIME_STEP)
oh._data = order_totals
return oh

View file

@ -17,8 +17,8 @@ from urban_meal_delivery import config
def good_predict_at():
"""A `predict_at` within `START`-`END` and ...
... a long enough history so that either `train_horizon=1`
or `train_horizon=2` works.
... a long enough history so that either `SHORT_TRAIN_HORIZON`
or `LONG_TRAIN_HORIZON` works.
"""
return datetime.datetime(
test_config.END.year,
@ -33,10 +33,10 @@ def good_predict_at():
def bad_predict_at():
"""A `predict_at` within `START`-`END` but ...
... not a long enough history so that both `train_horizon=1`
and `train_horizon=2` do not work.
... not a long enough history so that both `SHORT_TRAIN_HORIZON`
and `LONG_TRAIN_HORIZON` do not work.
"""
predict_day = test_config.END - datetime.timedelta(weeks=1, days=1)
predict_day = test_config.END - datetime.timedelta(weeks=2, days=1)
return datetime.datetime(
predict_day.year, predict_day.month, predict_day.day, test_config.NOON, 0,
)