Add TrivialModel
- the trivial model simply predicts `0` demand for all time steps
This commit is contained in:
parent
015d304306
commit
6fd16f2a6c
3 changed files with 77 additions and 0 deletions
|
@ -32,5 +32,6 @@ A future `planning` sub-package will contain the `*Model`s used to plan the
|
|||
from urban_meal_delivery.forecasts.models.base import ForecastingModelABC
|
||||
from urban_meal_delivery.forecasts.models.tactical.horizontal import HorizontalETSModel
|
||||
from urban_meal_delivery.forecasts.models.tactical.horizontal import HorizontalSMAModel
|
||||
from urban_meal_delivery.forecasts.models.tactical.other import TrivialModel
|
||||
from urban_meal_delivery.forecasts.models.tactical.realtime import RealtimeARIMAModel
|
||||
from urban_meal_delivery.forecasts.models.tactical.vertical import VerticalARIMAModel
|
||||
|
|
75
src/urban_meal_delivery/forecasts/models/tactical/other.py
Normal file
75
src/urban_meal_delivery/forecasts/models/tactical/other.py
Normal file
|
@ -0,0 +1,75 @@
|
|||
"""Forecasting `*Model`s to predict demand for tactical purposes ...
|
||||
|
||||
... that cannot be classified into either "horizontal", "vertical",
|
||||
or "real-time".
|
||||
""" # noqa:RST215
|
||||
|
||||
import datetime as dt
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from urban_meal_delivery import db
|
||||
from urban_meal_delivery.forecasts.models import base
|
||||
|
||||
|
||||
class TrivialModel(base.ForecastingModelABC):
|
||||
"""A trivial model predicting `0` demand.
|
||||
|
||||
No need to distinguish between a "horizontal", "vertical", or
|
||||
"real-time" model here as all give the same prediction for all time steps.
|
||||
"""
|
||||
|
||||
name = 'trivial'
|
||||
|
||||
def predict(
|
||||
self, pixel: db.Pixel, predict_at: dt.datetime, train_horizon: int,
|
||||
) -> pd.DataFrame:
|
||||
"""Predict demand for a time step.
|
||||
|
||||
Args:
|
||||
pixel: pixel in which the prediction is made
|
||||
predict_at: time step (i.e., "start_at") to make the prediction for
|
||||
train_horizon: weeks of historic data used to predict `predict_at`
|
||||
|
||||
Returns:
|
||||
actual order counts (i.e., the "actual" column) and
|
||||
point forecasts (i.e., the "prediction" column);
|
||||
this model does not support confidence intervals;
|
||||
contains one row for the `predict_at` time step
|
||||
|
||||
# noqa:DAR401 RuntimeError
|
||||
"""
|
||||
# Generate the historic order time series mainly to check if a valid
|
||||
# `training_ts` exists (i.e., the demand history is long enough).
|
||||
_, frequency, actuals_ts = self._order_history.make_horizontal_ts(
|
||||
pixel_id=pixel.id, predict_at=predict_at, train_horizon=train_horizon,
|
||||
)
|
||||
|
||||
# Sanity checks.
|
||||
if frequency != 7: # pragma: no cover
|
||||
raise RuntimeError('`frequency` should be `7`')
|
||||
if len(actuals_ts) != 1: # pragma: no cover
|
||||
raise RuntimeError(
|
||||
'the trivial model can only predict one step into the future',
|
||||
)
|
||||
|
||||
# The "prediction" is simply `0.0`.
|
||||
predictions = pd.DataFrame(
|
||||
data={
|
||||
'actual': actuals_ts,
|
||||
'prediction': 0.0,
|
||||
'low80': float('NaN'),
|
||||
'high80': float('NaN'),
|
||||
'low95': float('NaN'),
|
||||
'high95': float('NaN'),
|
||||
},
|
||||
index=actuals_ts.index,
|
||||
)
|
||||
|
||||
# Sanity checks.
|
||||
if predictions['actual'].isnull().any(): # pragma: no cover
|
||||
raise RuntimeError('missing actuals in trivial model')
|
||||
if predict_at not in predictions.index: # pragma: no cover
|
||||
raise RuntimeError('missing prediction for `predict_at`')
|
||||
|
||||
return predictions
|
|
@ -14,6 +14,7 @@ MODELS = (
|
|||
models.HorizontalSMAModel,
|
||||
models.RealtimeARIMAModel,
|
||||
models.VerticalARIMAModel,
|
||||
models.TrivialModel,
|
||||
)
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue