Shorten a couple of names
- rename "total_orders" columns into "n_orders" - rename `.make_*_time_series()` methods into `.make_*_ts()`
This commit is contained in:
parent
d45c60b764
commit
7b824a4a12
4 changed files with 71 additions and 71 deletions
|
|
@ -53,7 +53,7 @@ class OrderHistory:
|
|||
Returns:
|
||||
order_totals: a one-column `DataFrame` with a `MultiIndex` of the
|
||||
"pixel_id"s and "start_at"s (i.e., beginnings of the intervals);
|
||||
the column with data is "total_orders"
|
||||
the column with data is "n_orders"
|
||||
"""
|
||||
if self._data is None:
|
||||
self._data = self.aggregate_orders()
|
||||
|
|
@ -69,7 +69,7 @@ class OrderHistory:
|
|||
SELECT
|
||||
pixel_id,
|
||||
start_at,
|
||||
COUNT(*) AS total_orders
|
||||
COUNT(*) AS n_orders
|
||||
FROM (
|
||||
SELECT
|
||||
pixel_id,
|
||||
|
|
@ -152,7 +152,7 @@ class OrderHistory:
|
|||
|
||||
return data.reindex(index, fill_value=0)
|
||||
|
||||
def make_horizontal_time_series( # noqa:WPS210
|
||||
def make_horizontal_ts( # noqa:WPS210
|
||||
self, pixel_id: int, predict_at: dt.datetime, train_horizon: int,
|
||||
) -> Tuple[pd.Series, int, pd.Series]:
|
||||
"""Slice a horizontal time series out of the `.totals`.
|
||||
|
|
@ -209,19 +209,19 @@ class OrderHistory:
|
|||
|
||||
# Take only the counts at the `predict_at` time.
|
||||
training_ts = intra_pixel.loc[
|
||||
first_start_at : last_start_at : self._n_daily_time_steps, # type: ignore
|
||||
'total_orders',
|
||||
first_start_at : last_start_at : self._n_daily_time_steps, # type:ignore
|
||||
'n_orders',
|
||||
]
|
||||
if len(training_ts) != frequency * train_horizon:
|
||||
raise RuntimeError('Not enough historic data for `predict_at`')
|
||||
|
||||
actuals_ts = intra_pixel.loc[[predict_at], 'total_orders']
|
||||
actuals_ts = intra_pixel.loc[[predict_at], 'n_orders']
|
||||
if not len(actuals_ts): # pragma: no cover
|
||||
raise LookupError('`predict_at` is not in the order history')
|
||||
|
||||
return training_ts, frequency, actuals_ts
|
||||
|
||||
def make_vertical_time_series( # noqa:WPS210
|
||||
def make_vertical_ts( # noqa:WPS210
|
||||
self, pixel_id: int, predict_day: dt.date, train_horizon: int,
|
||||
) -> Tuple[pd.Series, int, pd.Series]:
|
||||
"""Slice a vertical time series out of the `.totals`.
|
||||
|
|
@ -277,8 +277,8 @@ class OrderHistory:
|
|||
|
||||
# Take all the counts between `first_train_day` and `last_train_day`.
|
||||
training_ts = intra_pixel.loc[
|
||||
first_start_at:last_start_at, # type: ignore
|
||||
'total_orders',
|
||||
first_start_at:last_start_at, # type:ignore
|
||||
'n_orders',
|
||||
]
|
||||
if len(training_ts) != frequency * train_horizon:
|
||||
raise RuntimeError('Not enough historic data for `predict_day`')
|
||||
|
|
@ -299,15 +299,15 @@ class OrderHistory:
|
|||
) - dt.timedelta(minutes=self._time_step)
|
||||
|
||||
actuals_ts = intra_pixel.loc[
|
||||
first_prediction_at:last_prediction_at, # type: ignore
|
||||
'total_orders',
|
||||
first_prediction_at:last_prediction_at, # type:ignore
|
||||
'n_orders',
|
||||
]
|
||||
if not len(actuals_ts): # pragma: no cover
|
||||
raise LookupError('`predict_day` is not in the order history')
|
||||
|
||||
return training_ts, frequency, actuals_ts
|
||||
|
||||
def make_real_time_time_series( # noqa:WPS210
|
||||
def make_realtime_ts( # noqa:WPS210
|
||||
self, pixel_id: int, predict_at: dt.datetime, train_horizon: int,
|
||||
) -> Tuple[pd.Series, int, pd.Series]:
|
||||
"""Slice a vertical real-time time series out of the `.totals`.
|
||||
|
|
@ -374,8 +374,8 @@ class OrderHistory:
|
|||
# Take all the counts between `first_train_day` and `last_train_day`,
|
||||
# including the ones on the `predict_at` day prior to `predict_at`.
|
||||
training_ts = intra_pixel.loc[
|
||||
first_start_at:last_start_at, # type: ignore
|
||||
'total_orders',
|
||||
first_start_at:last_start_at, # type:ignore
|
||||
'n_orders',
|
||||
]
|
||||
n_time_steps_on_predict_day = (
|
||||
(
|
||||
|
|
@ -394,7 +394,7 @@ class OrderHistory:
|
|||
if len(training_ts) != frequency * train_horizon + n_time_steps_on_predict_day:
|
||||
raise RuntimeError('Not enough historic data for `predict_day`')
|
||||
|
||||
actuals_ts = intra_pixel.loc[[predict_at], 'total_orders']
|
||||
actuals_ts = intra_pixel.loc[[predict_at], 'n_orders']
|
||||
if not len(actuals_ts): # pragma: no cover
|
||||
raise LookupError('`predict_at` is not in the order history')
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue