Shorten a couple of names
- rename "total_orders" columns into "n_orders" - rename `.make_*_time_series()` methods into `.make_*_ts()`
This commit is contained in:
parent
d45c60b764
commit
7b824a4a12
4 changed files with 71 additions and 71 deletions
|
@ -53,7 +53,7 @@ class OrderHistory:
|
||||||
Returns:
|
Returns:
|
||||||
order_totals: a one-column `DataFrame` with a `MultiIndex` of the
|
order_totals: a one-column `DataFrame` with a `MultiIndex` of the
|
||||||
"pixel_id"s and "start_at"s (i.e., beginnings of the intervals);
|
"pixel_id"s and "start_at"s (i.e., beginnings of the intervals);
|
||||||
the column with data is "total_orders"
|
the column with data is "n_orders"
|
||||||
"""
|
"""
|
||||||
if self._data is None:
|
if self._data is None:
|
||||||
self._data = self.aggregate_orders()
|
self._data = self.aggregate_orders()
|
||||||
|
@ -69,7 +69,7 @@ class OrderHistory:
|
||||||
SELECT
|
SELECT
|
||||||
pixel_id,
|
pixel_id,
|
||||||
start_at,
|
start_at,
|
||||||
COUNT(*) AS total_orders
|
COUNT(*) AS n_orders
|
||||||
FROM (
|
FROM (
|
||||||
SELECT
|
SELECT
|
||||||
pixel_id,
|
pixel_id,
|
||||||
|
@ -152,7 +152,7 @@ class OrderHistory:
|
||||||
|
|
||||||
return data.reindex(index, fill_value=0)
|
return data.reindex(index, fill_value=0)
|
||||||
|
|
||||||
def make_horizontal_time_series( # noqa:WPS210
|
def make_horizontal_ts( # noqa:WPS210
|
||||||
self, pixel_id: int, predict_at: dt.datetime, train_horizon: int,
|
self, pixel_id: int, predict_at: dt.datetime, train_horizon: int,
|
||||||
) -> Tuple[pd.Series, int, pd.Series]:
|
) -> Tuple[pd.Series, int, pd.Series]:
|
||||||
"""Slice a horizontal time series out of the `.totals`.
|
"""Slice a horizontal time series out of the `.totals`.
|
||||||
|
@ -210,18 +210,18 @@ class OrderHistory:
|
||||||
# Take only the counts at the `predict_at` time.
|
# Take only the counts at the `predict_at` time.
|
||||||
training_ts = intra_pixel.loc[
|
training_ts = intra_pixel.loc[
|
||||||
first_start_at : last_start_at : self._n_daily_time_steps, # type:ignore
|
first_start_at : last_start_at : self._n_daily_time_steps, # type:ignore
|
||||||
'total_orders',
|
'n_orders',
|
||||||
]
|
]
|
||||||
if len(training_ts) != frequency * train_horizon:
|
if len(training_ts) != frequency * train_horizon:
|
||||||
raise RuntimeError('Not enough historic data for `predict_at`')
|
raise RuntimeError('Not enough historic data for `predict_at`')
|
||||||
|
|
||||||
actuals_ts = intra_pixel.loc[[predict_at], 'total_orders']
|
actuals_ts = intra_pixel.loc[[predict_at], 'n_orders']
|
||||||
if not len(actuals_ts): # pragma: no cover
|
if not len(actuals_ts): # pragma: no cover
|
||||||
raise LookupError('`predict_at` is not in the order history')
|
raise LookupError('`predict_at` is not in the order history')
|
||||||
|
|
||||||
return training_ts, frequency, actuals_ts
|
return training_ts, frequency, actuals_ts
|
||||||
|
|
||||||
def make_vertical_time_series( # noqa:WPS210
|
def make_vertical_ts( # noqa:WPS210
|
||||||
self, pixel_id: int, predict_day: dt.date, train_horizon: int,
|
self, pixel_id: int, predict_day: dt.date, train_horizon: int,
|
||||||
) -> Tuple[pd.Series, int, pd.Series]:
|
) -> Tuple[pd.Series, int, pd.Series]:
|
||||||
"""Slice a vertical time series out of the `.totals`.
|
"""Slice a vertical time series out of the `.totals`.
|
||||||
|
@ -278,7 +278,7 @@ class OrderHistory:
|
||||||
# Take all the counts between `first_train_day` and `last_train_day`.
|
# Take all the counts between `first_train_day` and `last_train_day`.
|
||||||
training_ts = intra_pixel.loc[
|
training_ts = intra_pixel.loc[
|
||||||
first_start_at:last_start_at, # type:ignore
|
first_start_at:last_start_at, # type:ignore
|
||||||
'total_orders',
|
'n_orders',
|
||||||
]
|
]
|
||||||
if len(training_ts) != frequency * train_horizon:
|
if len(training_ts) != frequency * train_horizon:
|
||||||
raise RuntimeError('Not enough historic data for `predict_day`')
|
raise RuntimeError('Not enough historic data for `predict_day`')
|
||||||
|
@ -300,14 +300,14 @@ class OrderHistory:
|
||||||
|
|
||||||
actuals_ts = intra_pixel.loc[
|
actuals_ts = intra_pixel.loc[
|
||||||
first_prediction_at:last_prediction_at, # type:ignore
|
first_prediction_at:last_prediction_at, # type:ignore
|
||||||
'total_orders',
|
'n_orders',
|
||||||
]
|
]
|
||||||
if not len(actuals_ts): # pragma: no cover
|
if not len(actuals_ts): # pragma: no cover
|
||||||
raise LookupError('`predict_day` is not in the order history')
|
raise LookupError('`predict_day` is not in the order history')
|
||||||
|
|
||||||
return training_ts, frequency, actuals_ts
|
return training_ts, frequency, actuals_ts
|
||||||
|
|
||||||
def make_real_time_time_series( # noqa:WPS210
|
def make_realtime_ts( # noqa:WPS210
|
||||||
self, pixel_id: int, predict_at: dt.datetime, train_horizon: int,
|
self, pixel_id: int, predict_at: dt.datetime, train_horizon: int,
|
||||||
) -> Tuple[pd.Series, int, pd.Series]:
|
) -> Tuple[pd.Series, int, pd.Series]:
|
||||||
"""Slice a vertical real-time time series out of the `.totals`.
|
"""Slice a vertical real-time time series out of the `.totals`.
|
||||||
|
@ -375,7 +375,7 @@ class OrderHistory:
|
||||||
# including the ones on the `predict_at` day prior to `predict_at`.
|
# including the ones on the `predict_at` day prior to `predict_at`.
|
||||||
training_ts = intra_pixel.loc[
|
training_ts = intra_pixel.loc[
|
||||||
first_start_at:last_start_at, # type:ignore
|
first_start_at:last_start_at, # type:ignore
|
||||||
'total_orders',
|
'n_orders',
|
||||||
]
|
]
|
||||||
n_time_steps_on_predict_day = (
|
n_time_steps_on_predict_day = (
|
||||||
(
|
(
|
||||||
|
@ -394,7 +394,7 @@ class OrderHistory:
|
||||||
if len(training_ts) != frequency * train_horizon + n_time_steps_on_predict_day:
|
if len(training_ts) != frequency * train_horizon + n_time_steps_on_predict_day:
|
||||||
raise RuntimeError('Not enough historic data for `predict_day`')
|
raise RuntimeError('Not enough historic data for `predict_day`')
|
||||||
|
|
||||||
actuals_ts = intra_pixel.loc[[predict_at], 'total_orders']
|
actuals_ts = intra_pixel.loc[[predict_at], 'n_orders']
|
||||||
if not len(actuals_ts): # pragma: no cover
|
if not len(actuals_ts): # pragma: no cover
|
||||||
raise LookupError('`predict_at` is not in the order history')
|
raise LookupError('`predict_at` is not in the order history')
|
||||||
|
|
||||||
|
|
|
@ -42,8 +42,8 @@ def horizontal_datetime_index():
|
||||||
|
|
||||||
@pytest.fixture
|
@pytest.fixture
|
||||||
def horizontal_no_demand(horizontal_datetime_index):
|
def horizontal_no_demand(horizontal_datetime_index):
|
||||||
"""A horizontal time series of order totals when there was no demand."""
|
"""A horizontal time series with order totals: no demand."""
|
||||||
return pd.Series(0, index=horizontal_datetime_index, name='order_totals')
|
return pd.Series(0, index=horizontal_datetime_index, name='n_orders')
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
@pytest.fixture
|
||||||
|
@ -72,5 +72,5 @@ def vertical_datetime_index():
|
||||||
|
|
||||||
@pytest.fixture
|
@pytest.fixture
|
||||||
def vertical_no_demand(vertical_datetime_index):
|
def vertical_no_demand(vertical_datetime_index):
|
||||||
"""A vertical time series of order totals when there was no demand."""
|
"""A vertical time series with order totals: no demand."""
|
||||||
return pd.Series(0, index=vertical_datetime_index, name='order_totals')
|
return pd.Series(0, index=vertical_datetime_index, name='n_orders')
|
||||||
|
|
|
@ -91,9 +91,9 @@ class TestAggregateOrders:
|
||||||
|
|
||||||
# The resulting `DataFrame` has 12 rows holding `1`s.
|
# The resulting `DataFrame` has 12 rows holding `1`s.
|
||||||
assert len(result) == 12
|
assert len(result) == 12
|
||||||
assert result['total_orders'].min() == 1
|
assert result['n_orders'].min() == 1
|
||||||
assert result['total_orders'].max() == 1
|
assert result['n_orders'].max() == 1
|
||||||
assert result['total_orders'].sum() == 12
|
assert result['n_orders'].sum() == 12
|
||||||
|
|
||||||
def test_evenly_distributed_ad_hoc_orders_with_no_demand_late( # noqa:WPS218
|
def test_evenly_distributed_ad_hoc_orders_with_no_demand_late( # noqa:WPS218
|
||||||
self, db_session, one_pixel_grid, restaurant, make_order,
|
self, db_session, one_pixel_grid, restaurant, make_order,
|
||||||
|
@ -123,10 +123,10 @@ class TestAggregateOrders:
|
||||||
# Even though there are only 10 orders, there are 12 rows in the `DataFrame`.
|
# Even though there are only 10 orders, there are 12 rows in the `DataFrame`.
|
||||||
# That is so as `0`s are filled in for hours without any demand at the end.
|
# That is so as `0`s are filled in for hours without any demand at the end.
|
||||||
assert len(result) == 12
|
assert len(result) == 12
|
||||||
assert result['total_orders'].min() == 0
|
assert result['n_orders'].min() == 0
|
||||||
assert result['total_orders'].max() == 1
|
assert result['n_orders'].max() == 1
|
||||||
assert result.iloc[:10]['total_orders'].sum() == 10
|
assert result.iloc[:10]['n_orders'].sum() == 10
|
||||||
assert result.iloc[10:]['total_orders'].sum() == 0
|
assert result.iloc[10:]['n_orders'].sum() == 0
|
||||||
|
|
||||||
def test_one_ad_hoc_order_every_other_hour(
|
def test_one_ad_hoc_order_every_other_hour(
|
||||||
self, db_session, one_pixel_grid, restaurant, make_order,
|
self, db_session, one_pixel_grid, restaurant, make_order,
|
||||||
|
@ -155,9 +155,9 @@ class TestAggregateOrders:
|
||||||
|
|
||||||
# The resulting `DataFrame` has 12 rows, 6 holding `0`s, and 6 holding `1`s.
|
# The resulting `DataFrame` has 12 rows, 6 holding `0`s, and 6 holding `1`s.
|
||||||
assert len(result) == 12
|
assert len(result) == 12
|
||||||
assert result['total_orders'].min() == 0
|
assert result['n_orders'].min() == 0
|
||||||
assert result['total_orders'].max() == 1
|
assert result['n_orders'].max() == 1
|
||||||
assert result['total_orders'].sum() == 6
|
assert result['n_orders'].sum() == 6
|
||||||
|
|
||||||
def test_one_ad_hoc_and_one_pre_order(
|
def test_one_ad_hoc_and_one_pre_order(
|
||||||
self, db_session, one_pixel_grid, restaurant, make_order,
|
self, db_session, one_pixel_grid, restaurant, make_order,
|
||||||
|
@ -199,9 +199,9 @@ class TestAggregateOrders:
|
||||||
|
|
||||||
# The resulting `DataFrame` has 12 rows, 11 holding `0`s, and one holding a `1`.
|
# The resulting `DataFrame` has 12 rows, 11 holding `0`s, and one holding a `1`.
|
||||||
assert len(result) == 12
|
assert len(result) == 12
|
||||||
assert result['total_orders'].min() == 0
|
assert result['n_orders'].min() == 0
|
||||||
assert result['total_orders'].max() == 1
|
assert result['n_orders'].max() == 1
|
||||||
assert result['total_orders'].sum() == 1
|
assert result['n_orders'].sum() == 1
|
||||||
|
|
||||||
def test_evenly_distributed_ad_hoc_orders_with_half_hour_time_steps( # noqa:WPS218
|
def test_evenly_distributed_ad_hoc_orders_with_half_hour_time_steps( # noqa:WPS218
|
||||||
self, db_session, one_pixel_grid, restaurant, make_order,
|
self, db_session, one_pixel_grid, restaurant, make_order,
|
||||||
|
@ -234,10 +234,10 @@ class TestAggregateOrders:
|
||||||
# The resulting `DataFrame` has 24 rows for the 24 30-minute time steps.
|
# The resulting `DataFrame` has 24 rows for the 24 30-minute time steps.
|
||||||
# The rows' values are `0` and `1` alternating.
|
# The rows' values are `0` and `1` alternating.
|
||||||
assert len(result) == 24
|
assert len(result) == 24
|
||||||
assert result['total_orders'].min() == 0
|
assert result['n_orders'].min() == 0
|
||||||
assert result['total_orders'].max() == 1
|
assert result['n_orders'].max() == 1
|
||||||
assert result.iloc[::2]['total_orders'].sum() == 12
|
assert result.iloc[::2]['n_orders'].sum() == 12
|
||||||
assert result.iloc[1::2]['total_orders'].sum() == 0
|
assert result.iloc[1::2]['n_orders'].sum() == 0
|
||||||
|
|
||||||
def test_ad_hoc_orders_over_two_days(
|
def test_ad_hoc_orders_over_two_days(
|
||||||
self, db_session, one_pixel_grid, restaurant, make_order,
|
self, db_session, one_pixel_grid, restaurant, make_order,
|
||||||
|
@ -285,9 +285,9 @@ class TestAggregateOrders:
|
||||||
|
|
||||||
# The resulting `DataFrame` has 24 rows, 12 for each day.
|
# The resulting `DataFrame` has 24 rows, 12 for each day.
|
||||||
assert len(result) == 24
|
assert len(result) == 24
|
||||||
assert result['total_orders'].min() == 0
|
assert result['n_orders'].min() == 0
|
||||||
assert result['total_orders'].max() == 1
|
assert result['n_orders'].max() == 1
|
||||||
assert result['total_orders'].sum() == 18
|
assert result['n_orders'].sum() == 18
|
||||||
|
|
||||||
@pytest.fixture
|
@pytest.fixture
|
||||||
def two_pixel_grid( # noqa:WPS211
|
def two_pixel_grid( # noqa:WPS211
|
||||||
|
@ -381,6 +381,6 @@ class TestAggregateOrders:
|
||||||
|
|
||||||
# The resulting `DataFrame` has 24 rows, 12 for each pixel.
|
# The resulting `DataFrame` has 24 rows, 12 for each pixel.
|
||||||
assert len(result) == 24
|
assert len(result) == 24
|
||||||
assert result['total_orders'].min() == 0
|
assert result['n_orders'].min() == 0
|
||||||
assert result['total_orders'].max() == 2
|
assert result['n_orders'].max() == 2
|
||||||
assert result['total_orders'].sum() == 30
|
assert result['n_orders'].sum() == 30
|
||||||
|
|
|
@ -41,7 +41,7 @@ def order_totals(good_pixel_id):
|
||||||
index = pd.MultiIndex.from_tuples(gen)
|
index = pd.MultiIndex.from_tuples(gen)
|
||||||
index.names = ['pixel_id', 'start_at']
|
index.names = ['pixel_id', 'start_at']
|
||||||
|
|
||||||
df = pd.DataFrame(data={'total_orders': 0}, index=index)
|
df = pd.DataFrame(data={'n_orders': 0}, index=index)
|
||||||
|
|
||||||
# Sanity check: n_pixels * n_time_steps_per_day * n_weekdays * n_weeks.
|
# Sanity check: n_pixels * n_time_steps_per_day * n_weekdays * n_weeks.
|
||||||
assert len(df) == 2 * 12 * (7 * 2 + 1)
|
assert len(df) == 2 * 12 * (7 * 2 + 1)
|
||||||
|
@ -88,13 +88,13 @@ def bad_predict_at():
|
||||||
|
|
||||||
|
|
||||||
class TestMakeHorizontalTimeSeries:
|
class TestMakeHorizontalTimeSeries:
|
||||||
"""Test the `OrderHistory.make_horizontal_time_series()` method."""
|
"""Test the `OrderHistory.make_horizontal_ts()` method."""
|
||||||
|
|
||||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||||
def test_wrong_pixel(self, order_history, good_predict_at, train_horizon):
|
def test_wrong_pixel(self, order_history, good_predict_at, train_horizon):
|
||||||
"""A `pixel_id` that is not in the `grid`."""
|
"""A `pixel_id` that is not in the `grid`."""
|
||||||
with pytest.raises(LookupError):
|
with pytest.raises(LookupError):
|
||||||
order_history.make_horizontal_time_series(
|
order_history.make_horizontal_ts(
|
||||||
pixel_id=999_999,
|
pixel_id=999_999,
|
||||||
predict_at=good_predict_at,
|
predict_at=good_predict_at,
|
||||||
train_horizon=train_horizon,
|
train_horizon=train_horizon,
|
||||||
|
@ -105,7 +105,7 @@ class TestMakeHorizontalTimeSeries:
|
||||||
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
||||||
):
|
):
|
||||||
"""The time series come as a `pd.Series`."""
|
"""The time series come as a `pd.Series`."""
|
||||||
result = order_history.make_horizontal_time_series(
|
result = order_history.make_horizontal_ts(
|
||||||
pixel_id=good_pixel_id,
|
pixel_id=good_pixel_id,
|
||||||
predict_at=good_predict_at,
|
predict_at=good_predict_at,
|
||||||
train_horizon=train_horizon,
|
train_horizon=train_horizon,
|
||||||
|
@ -114,9 +114,9 @@ class TestMakeHorizontalTimeSeries:
|
||||||
training_ts, _, actuals_ts = result
|
training_ts, _, actuals_ts = result
|
||||||
|
|
||||||
assert isinstance(training_ts, pd.Series)
|
assert isinstance(training_ts, pd.Series)
|
||||||
assert training_ts.name == 'total_orders'
|
assert training_ts.name == 'n_orders'
|
||||||
assert isinstance(actuals_ts, pd.Series)
|
assert isinstance(actuals_ts, pd.Series)
|
||||||
assert actuals_ts.name == 'total_orders'
|
assert actuals_ts.name == 'n_orders'
|
||||||
|
|
||||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||||
def test_time_series_have_correct_length(
|
def test_time_series_have_correct_length(
|
||||||
|
@ -126,7 +126,7 @@ class TestMakeHorizontalTimeSeries:
|
||||||
|
|
||||||
... whereas the time series with the actual order counts has only `1` value.
|
... whereas the time series with the actual order counts has only `1` value.
|
||||||
"""
|
"""
|
||||||
result = order_history.make_horizontal_time_series(
|
result = order_history.make_horizontal_ts(
|
||||||
pixel_id=good_pixel_id,
|
pixel_id=good_pixel_id,
|
||||||
predict_at=good_predict_at,
|
predict_at=good_predict_at,
|
||||||
train_horizon=train_horizon,
|
train_horizon=train_horizon,
|
||||||
|
@ -142,7 +142,7 @@ class TestMakeHorizontalTimeSeries:
|
||||||
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
||||||
):
|
):
|
||||||
"""The `frequency` must be `7`."""
|
"""The `frequency` must be `7`."""
|
||||||
result = order_history.make_horizontal_time_series(
|
result = order_history.make_horizontal_ts(
|
||||||
pixel_id=good_pixel_id,
|
pixel_id=good_pixel_id,
|
||||||
predict_at=good_predict_at,
|
predict_at=good_predict_at,
|
||||||
train_horizon=train_horizon,
|
train_horizon=train_horizon,
|
||||||
|
@ -161,7 +161,7 @@ class TestMakeHorizontalTimeSeries:
|
||||||
... the history of order totals is not long enough.
|
... the history of order totals is not long enough.
|
||||||
"""
|
"""
|
||||||
with pytest.raises(RuntimeError):
|
with pytest.raises(RuntimeError):
|
||||||
order_history.make_horizontal_time_series(
|
order_history.make_horizontal_ts(
|
||||||
pixel_id=good_pixel_id,
|
pixel_id=good_pixel_id,
|
||||||
predict_at=bad_predict_at,
|
predict_at=bad_predict_at,
|
||||||
train_horizon=train_horizon,
|
train_horizon=train_horizon,
|
||||||
|
@ -175,19 +175,19 @@ class TestMakeHorizontalTimeSeries:
|
||||||
... the history of order totals can never be long enough.
|
... the history of order totals can never be long enough.
|
||||||
"""
|
"""
|
||||||
with pytest.raises(RuntimeError):
|
with pytest.raises(RuntimeError):
|
||||||
order_history.make_horizontal_time_series(
|
order_history.make_horizontal_ts(
|
||||||
pixel_id=good_pixel_id, predict_at=good_predict_at, train_horizon=999,
|
pixel_id=good_pixel_id, predict_at=good_predict_at, train_horizon=999,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
class TestMakeVerticalTimeSeries:
|
class TestMakeVerticalTimeSeries:
|
||||||
"""Test the `OrderHistory.make_vertical_time_series()` method."""
|
"""Test the `OrderHistory.make_vertical_ts()` method."""
|
||||||
|
|
||||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||||
def test_wrong_pixel(self, order_history, good_predict_at, train_horizon):
|
def test_wrong_pixel(self, order_history, good_predict_at, train_horizon):
|
||||||
"""A `pixel_id` that is not in the `grid`."""
|
"""A `pixel_id` that is not in the `grid`."""
|
||||||
with pytest.raises(LookupError):
|
with pytest.raises(LookupError):
|
||||||
order_history.make_vertical_time_series(
|
order_history.make_vertical_ts(
|
||||||
pixel_id=999_999,
|
pixel_id=999_999,
|
||||||
predict_day=good_predict_at.date(),
|
predict_day=good_predict_at.date(),
|
||||||
train_horizon=train_horizon,
|
train_horizon=train_horizon,
|
||||||
|
@ -198,7 +198,7 @@ class TestMakeVerticalTimeSeries:
|
||||||
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
||||||
):
|
):
|
||||||
"""The time series come as `pd.Series`."""
|
"""The time series come as `pd.Series`."""
|
||||||
result = order_history.make_vertical_time_series(
|
result = order_history.make_vertical_ts(
|
||||||
pixel_id=good_pixel_id,
|
pixel_id=good_pixel_id,
|
||||||
predict_day=good_predict_at.date(),
|
predict_day=good_predict_at.date(),
|
||||||
train_horizon=train_horizon,
|
train_horizon=train_horizon,
|
||||||
|
@ -207,9 +207,9 @@ class TestMakeVerticalTimeSeries:
|
||||||
training_ts, _, actuals_ts = result
|
training_ts, _, actuals_ts = result
|
||||||
|
|
||||||
assert isinstance(training_ts, pd.Series)
|
assert isinstance(training_ts, pd.Series)
|
||||||
assert training_ts.name == 'total_orders'
|
assert training_ts.name == 'n_orders'
|
||||||
assert isinstance(actuals_ts, pd.Series)
|
assert isinstance(actuals_ts, pd.Series)
|
||||||
assert actuals_ts.name == 'total_orders'
|
assert actuals_ts.name == 'n_orders'
|
||||||
|
|
||||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||||
def test_time_series_have_correct_length(
|
def test_time_series_have_correct_length(
|
||||||
|
@ -223,7 +223,7 @@ class TestMakeVerticalTimeSeries:
|
||||||
The time series with the actual order counts always holds one observation
|
The time series with the actual order counts always holds one observation
|
||||||
per time step of a day.
|
per time step of a day.
|
||||||
"""
|
"""
|
||||||
result = order_history.make_vertical_time_series(
|
result = order_history.make_vertical_ts(
|
||||||
pixel_id=good_pixel_id,
|
pixel_id=good_pixel_id,
|
||||||
predict_day=good_predict_at.date(),
|
predict_day=good_predict_at.date(),
|
||||||
train_horizon=train_horizon,
|
train_horizon=train_horizon,
|
||||||
|
@ -245,7 +245,7 @@ class TestMakeVerticalTimeSeries:
|
||||||
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
||||||
):
|
):
|
||||||
"""The `frequency` is the number of weekly time steps."""
|
"""The `frequency` is the number of weekly time steps."""
|
||||||
result = order_history.make_vertical_time_series(
|
result = order_history.make_vertical_ts(
|
||||||
pixel_id=good_pixel_id,
|
pixel_id=good_pixel_id,
|
||||||
predict_day=good_predict_at.date(),
|
predict_day=good_predict_at.date(),
|
||||||
train_horizon=train_horizon,
|
train_horizon=train_horizon,
|
||||||
|
@ -270,7 +270,7 @@ class TestMakeVerticalTimeSeries:
|
||||||
... the history of order totals is not long enough.
|
... the history of order totals is not long enough.
|
||||||
"""
|
"""
|
||||||
with pytest.raises(RuntimeError):
|
with pytest.raises(RuntimeError):
|
||||||
order_history.make_vertical_time_series(
|
order_history.make_vertical_ts(
|
||||||
pixel_id=good_pixel_id,
|
pixel_id=good_pixel_id,
|
||||||
predict_day=bad_predict_at.date(),
|
predict_day=bad_predict_at.date(),
|
||||||
train_horizon=train_horizon,
|
train_horizon=train_horizon,
|
||||||
|
@ -284,7 +284,7 @@ class TestMakeVerticalTimeSeries:
|
||||||
... the history of order totals can never be long enough.
|
... the history of order totals can never be long enough.
|
||||||
"""
|
"""
|
||||||
with pytest.raises(RuntimeError):
|
with pytest.raises(RuntimeError):
|
||||||
order_history.make_vertical_time_series(
|
order_history.make_vertical_ts(
|
||||||
pixel_id=good_pixel_id,
|
pixel_id=good_pixel_id,
|
||||||
predict_day=good_predict_at.date(),
|
predict_day=good_predict_at.date(),
|
||||||
train_horizon=999,
|
train_horizon=999,
|
||||||
|
@ -292,13 +292,13 @@ class TestMakeVerticalTimeSeries:
|
||||||
|
|
||||||
|
|
||||||
class TestMakeRealTimeTimeSeries:
|
class TestMakeRealTimeTimeSeries:
|
||||||
"""Test the `OrderHistory.make_real_time_time_series()` method."""
|
"""Test the `OrderHistory.make_realtime_ts()` method."""
|
||||||
|
|
||||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||||
def test_wrong_pixel(self, order_history, good_predict_at, train_horizon):
|
def test_wrong_pixel(self, order_history, good_predict_at, train_horizon):
|
||||||
"""A `pixel_id` that is not in the `grid`."""
|
"""A `pixel_id` that is not in the `grid`."""
|
||||||
with pytest.raises(LookupError):
|
with pytest.raises(LookupError):
|
||||||
order_history.make_real_time_time_series(
|
order_history.make_realtime_ts(
|
||||||
pixel_id=999_999,
|
pixel_id=999_999,
|
||||||
predict_at=good_predict_at,
|
predict_at=good_predict_at,
|
||||||
train_horizon=train_horizon,
|
train_horizon=train_horizon,
|
||||||
|
@ -309,7 +309,7 @@ class TestMakeRealTimeTimeSeries:
|
||||||
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
||||||
):
|
):
|
||||||
"""The time series come as `pd.Series`."""
|
"""The time series come as `pd.Series`."""
|
||||||
result = order_history.make_real_time_time_series(
|
result = order_history.make_realtime_ts(
|
||||||
pixel_id=good_pixel_id,
|
pixel_id=good_pixel_id,
|
||||||
predict_at=good_predict_at,
|
predict_at=good_predict_at,
|
||||||
train_horizon=train_horizon,
|
train_horizon=train_horizon,
|
||||||
|
@ -318,9 +318,9 @@ class TestMakeRealTimeTimeSeries:
|
||||||
training_ts, _, actuals_ts = result
|
training_ts, _, actuals_ts = result
|
||||||
|
|
||||||
assert isinstance(training_ts, pd.Series)
|
assert isinstance(training_ts, pd.Series)
|
||||||
assert training_ts.name == 'total_orders'
|
assert training_ts.name == 'n_orders'
|
||||||
assert isinstance(actuals_ts, pd.Series)
|
assert isinstance(actuals_ts, pd.Series)
|
||||||
assert actuals_ts.name == 'total_orders'
|
assert actuals_ts.name == 'n_orders'
|
||||||
|
|
||||||
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
|
||||||
def test_time_series_have_correct_length1(
|
def test_time_series_have_correct_length1(
|
||||||
|
@ -341,7 +341,7 @@ class TestMakeRealTimeTimeSeries:
|
||||||
config.SERVICE_START,
|
config.SERVICE_START,
|
||||||
0,
|
0,
|
||||||
)
|
)
|
||||||
result = order_history.make_real_time_time_series(
|
result = order_history.make_realtime_ts(
|
||||||
pixel_id=good_pixel_id, predict_at=predict_at, train_horizon=train_horizon,
|
pixel_id=good_pixel_id, predict_at=predict_at, train_horizon=train_horizon,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -372,7 +372,7 @@ class TestMakeRealTimeTimeSeries:
|
||||||
"""
|
"""
|
||||||
assert good_predict_at.hour == test_config.NOON
|
assert good_predict_at.hour == test_config.NOON
|
||||||
|
|
||||||
result = order_history.make_real_time_time_series(
|
result = order_history.make_realtime_ts(
|
||||||
pixel_id=good_pixel_id,
|
pixel_id=good_pixel_id,
|
||||||
predict_at=good_predict_at,
|
predict_at=good_predict_at,
|
||||||
train_horizon=train_horizon,
|
train_horizon=train_horizon,
|
||||||
|
@ -400,7 +400,7 @@ class TestMakeRealTimeTimeSeries:
|
||||||
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
self, order_history, good_pixel_id, good_predict_at, train_horizon,
|
||||||
):
|
):
|
||||||
"""The `frequency` is the number of weekly time steps."""
|
"""The `frequency` is the number of weekly time steps."""
|
||||||
result = order_history.make_real_time_time_series(
|
result = order_history.make_realtime_ts(
|
||||||
pixel_id=good_pixel_id,
|
pixel_id=good_pixel_id,
|
||||||
predict_at=good_predict_at,
|
predict_at=good_predict_at,
|
||||||
train_horizon=train_horizon,
|
train_horizon=train_horizon,
|
||||||
|
@ -425,7 +425,7 @@ class TestMakeRealTimeTimeSeries:
|
||||||
... the history of order totals is not long enough.
|
... the history of order totals is not long enough.
|
||||||
"""
|
"""
|
||||||
with pytest.raises(RuntimeError):
|
with pytest.raises(RuntimeError):
|
||||||
order_history.make_real_time_time_series(
|
order_history.make_realtime_ts(
|
||||||
pixel_id=good_pixel_id,
|
pixel_id=good_pixel_id,
|
||||||
predict_at=bad_predict_at,
|
predict_at=bad_predict_at,
|
||||||
train_horizon=train_horizon,
|
train_horizon=train_horizon,
|
||||||
|
@ -439,6 +439,6 @@ class TestMakeRealTimeTimeSeries:
|
||||||
... the history of order totals can never be long enough.
|
... the history of order totals can never be long enough.
|
||||||
"""
|
"""
|
||||||
with pytest.raises(RuntimeError):
|
with pytest.raises(RuntimeError):
|
||||||
order_history.make_real_time_time_series(
|
order_history.make_realtime_ts(
|
||||||
pixel_id=good_pixel_id, predict_at=good_predict_at, train_horizon=999,
|
pixel_id=good_pixel_id, predict_at=good_predict_at, train_horizon=999,
|
||||||
)
|
)
|
||||||
|
|
Loading…
Reference in a new issue