Add stl() function
- `stl()` wraps R's "stl" function in Python - STL is a decomposition method for time series
This commit is contained in:
parent
b0f2fdde10
commit
98b6830b46
5 changed files with 388 additions and 14 deletions
|
|
@ -6,11 +6,12 @@ Example:
|
|||
True
|
||||
"""
|
||||
# The config object must come before all other project-internal imports.
|
||||
from urban_meal_delivery.configuration import config # noqa:F401 isort:skip
|
||||
from urban_meal_delivery.configuration import config # isort:skip
|
||||
|
||||
from importlib import metadata as _metadata
|
||||
|
||||
from urban_meal_delivery import db # noqa:F401
|
||||
from urban_meal_delivery import db
|
||||
from urban_meal_delivery import forecasts
|
||||
|
||||
|
||||
try:
|
||||
|
|
|
|||
|
|
@ -1,3 +1,4 @@
|
|||
"""Demand forecasting utilities."""
|
||||
|
||||
from urban_meal_delivery.forecasts import decomposition
|
||||
from urban_meal_delivery.forecasts import timify
|
||||
|
|
|
|||
174
src/urban_meal_delivery/forecasts/decomposition.py
Normal file
174
src/urban_meal_delivery/forecasts/decomposition.py
Normal file
|
|
@ -0,0 +1,174 @@
|
|||
"""Seasonal-trend decomposition procedure based on LOESS (STL).
|
||||
|
||||
This module defines a `stl()` function that wraps R's STL decomposition function
|
||||
using the `rpy2` library.
|
||||
"""
|
||||
|
||||
import math
|
||||
|
||||
import pandas as pd
|
||||
from rpy2 import robjects
|
||||
from rpy2.robjects import pandas2ri
|
||||
|
||||
|
||||
def stl( # noqa:C901,WPS210,WPS211,WPS231
|
||||
time_series: pd.Series,
|
||||
*,
|
||||
frequency: int,
|
||||
ns: int,
|
||||
nt: int = None,
|
||||
nl: int = None,
|
||||
ds: int = 0,
|
||||
dt: int = 1,
|
||||
dl: int = 1,
|
||||
js: int = None,
|
||||
jt: int = None,
|
||||
jl: int = None,
|
||||
ni: int = 2,
|
||||
no: int = 0, # noqa:WPS110
|
||||
) -> pd.DataFrame:
|
||||
"""Decompose a time series into seasonal, trend, and residual components.
|
||||
|
||||
This is a Python wrapper around the corresponding R function.
|
||||
|
||||
Further info on the STL method:
|
||||
https://www.nniiem.ru/file/news/2016/stl-statistical-model.pdf
|
||||
https://otexts.com/fpp2/stl.html
|
||||
|
||||
Further info on the R's "stl" function:
|
||||
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/stl
|
||||
|
||||
Args:
|
||||
time_series: time series with a `DateTime` based index;
|
||||
must not contain `NaN` values
|
||||
frequency: frequency of the observations in the `time_series`
|
||||
ns: smoothing parameter for the seasonal component
|
||||
(= window size of the seasonal smoother);
|
||||
must be odd and `>= 7` so that the seasonal component is smooth;
|
||||
the greater `ns`, the smoother the seasonal component;
|
||||
so, this is a hyper-parameter optimized in accordance with the application
|
||||
nt: smoothing parameter for the trend component
|
||||
(= window size of the trend smoother);
|
||||
must be odd and `>= (1.5 * frequency) / [1 - (1.5 / ns)]`;
|
||||
the latter threshold is the default value;
|
||||
the greater `nt`, the smoother the trend component
|
||||
nl: smoothing parameter for the low-pass filter;
|
||||
must be odd and `>= frequency`;
|
||||
the least odd number `>= frequency` is the default
|
||||
ds: degree of locally fitted polynomial in seasonal smoothing;
|
||||
must be `0` or `1`
|
||||
dt: degree of locally fitted polynomial in trend smoothing;
|
||||
must be `0` or `1`
|
||||
dl: degree of locally fitted polynomial in low-pass smoothing;
|
||||
must be `0` or `1`
|
||||
js: number of steps by which the seasonal smoother skips ahead
|
||||
and then linearly interpolates between observations;
|
||||
if set to `1`, the smoother is evaluated at all points;
|
||||
to make the STL decomposition faster, increase this value;
|
||||
by default, `js` is the smallest integer `>= 0.1 * ns`
|
||||
jt: number of steps by which the trend smoother skips ahead
|
||||
and then linearly interpolates between observations;
|
||||
if set to `1`, the smoother is evaluated at all points;
|
||||
to make the STL decomposition faster, increase this value;
|
||||
by default, `jt` is the smallest integer `>= 0.1 * nt`
|
||||
jl: number of steps by which the low-pass smoother skips ahead
|
||||
and then linearly interpolates between observations;
|
||||
if set to `1`, the smoother is evaluated at all points;
|
||||
to make the STL decomposition faster, increase this value;
|
||||
by default, `jl` is the smallest integer `>= 0.1 * nl`
|
||||
ni: number of iterations of the inner loop that updates the
|
||||
seasonal and trend components;
|
||||
usually, a low value (e.g., `2`) suffices
|
||||
no: number of iterations of the outer loop that handles outliers;
|
||||
also known as the "robustness" loop;
|
||||
if no outliers need to be handled, set `no=0`;
|
||||
otherwise, `no=5` or `no=10` combined with `ni=1` is a good choice
|
||||
|
||||
Returns:
|
||||
result: a DataFrame with three columns ("seasonal", "trend", and "residual")
|
||||
providing time series of the individual components
|
||||
|
||||
Raises:
|
||||
ValueError: some argument does not adhere to the specifications above
|
||||
"""
|
||||
# Re-seed R every time the process does something.
|
||||
robjects.r('set.seed(42)')
|
||||
|
||||
# Validate all arguments and set default values.
|
||||
|
||||
if time_series.isnull().any():
|
||||
raise ValueError('`time_series` must not contain `NaN` values')
|
||||
|
||||
if ns % 2 == 0 or ns < 7:
|
||||
raise ValueError('`ns` must be odd and `>= 7`')
|
||||
|
||||
default_nt = math.ceil((1.5 * frequency) / (1 - (1.5 / ns))) # noqa:WPS432
|
||||
if nt is not None:
|
||||
if nt % 2 == 0 or nt < default_nt:
|
||||
raise ValueError(
|
||||
'`nt` must be odd and `>= (1.5 * frequency) / [1 - (1.5 / ns)]`, '
|
||||
+ 'which is {0}'.format(default_nt),
|
||||
)
|
||||
else:
|
||||
nt = default_nt
|
||||
if nt % 2 == 0: # pragma: no cover => hard to construct edge case
|
||||
nt += 1
|
||||
|
||||
if nl is not None:
|
||||
if nl % 2 == 0 or nl < frequency:
|
||||
raise ValueError('`nl` must be odd and `>= frequency`')
|
||||
elif frequency % 2 == 0:
|
||||
nl = frequency + 1
|
||||
else: # pragma: no cover => hard to construct edge case
|
||||
nl = frequency
|
||||
|
||||
if ds not in {0, 1}:
|
||||
raise ValueError('`ds` must be either `0` or `1`')
|
||||
if dt not in {0, 1}:
|
||||
raise ValueError('`dt` must be either `0` or `1`')
|
||||
if dl not in {0, 1}:
|
||||
raise ValueError('`dl` must be either `0` or `1`')
|
||||
|
||||
if js is not None:
|
||||
if js <= 0:
|
||||
raise ValueError('`js` must be positive')
|
||||
else:
|
||||
js = math.ceil(ns / 10)
|
||||
|
||||
if jt is not None:
|
||||
if jt <= 0:
|
||||
raise ValueError('`jt` must be positive')
|
||||
else:
|
||||
jt = math.ceil(nt / 10)
|
||||
|
||||
if jl is not None:
|
||||
if jl <= 0:
|
||||
raise ValueError('`jl` must be positive')
|
||||
else:
|
||||
jl = math.ceil(nl / 10)
|
||||
|
||||
if ni <= 0:
|
||||
raise ValueError('`ni` must be positive')
|
||||
|
||||
if no < 0:
|
||||
raise ValueError('`no` must be non-negative')
|
||||
elif no > 0:
|
||||
robust = True
|
||||
else:
|
||||
robust = False
|
||||
|
||||
# Call the STL function in R.
|
||||
ts = robjects.r['ts'](pandas2ri.py2rpy(time_series), frequency=frequency)
|
||||
result = robjects.r['stl'](
|
||||
ts, ns, ds, nt, dt, nl, dl, js, jt, jl, robust, ni, no, # noqa:WPS221
|
||||
)
|
||||
|
||||
# Unpack the result to a `pd.DataFrame`.
|
||||
result = pandas2ri.rpy2py(result[0])
|
||||
result = {
|
||||
'seasonal': pd.Series(result[:, 0], index=time_series.index),
|
||||
'trend': pd.Series(result[:, 1], index=time_series.index),
|
||||
'residual': pd.Series(result[:, 2], index=time_series.index),
|
||||
}
|
||||
|
||||
return pd.DataFrame(result)
|
||||
Loading…
Add table
Add a link
Reference in a new issue