Add stl()
function
- `stl()` wraps R's "stl" function in Python - STL is a decomposition method for time series
This commit is contained in:
parent
b0f2fdde10
commit
98b6830b46
5 changed files with 388 additions and 14 deletions
22
setup.cfg
22
setup.cfg
|
@ -89,6 +89,10 @@ extend-ignore =
|
|||
# Comply with black's style.
|
||||
# Source: https://github.com/psf/black/blob/master/docs/compatible_configs.md#flake8
|
||||
E203, W503, WPS348,
|
||||
# Google's Python Style Guide is not reStructuredText
|
||||
# until after being processed by Sphinx Napoleon.
|
||||
# Source: https://github.com/peterjc/flake8-rst-docstrings/issues/17
|
||||
RST201,RST203,RST301,
|
||||
# String constant over-use is checked visually by the programmer.
|
||||
WPS226,
|
||||
# Allow underscores in numbers.
|
||||
|
@ -103,6 +107,9 @@ extend-ignore =
|
|||
WPS429,
|
||||
|
||||
per-file-ignores =
|
||||
# Top-levels of a sub-packages are intended to import a lot.
|
||||
**/__init__.py:
|
||||
F401,WPS201,
|
||||
docs/conf.py:
|
||||
# Allow shadowing built-ins and reading __*__ variables.
|
||||
WPS125,WPS609,
|
||||
|
@ -132,15 +139,9 @@ per-file-ignores =
|
|||
WPS115,
|
||||
# Numbers are normal in config files.
|
||||
WPS432,
|
||||
src/urban_meal_delivery/db/__init__.py:
|
||||
# Top-level of a sub-packages is intended to import a lot.
|
||||
F401,WPS201,
|
||||
src/urban_meal_delivery/db/utils/__init__.py:
|
||||
# Top-level of a sub-packages is intended to import a lot.
|
||||
F401,
|
||||
src/urban_meal_delivery/forecasts/__init__.py:
|
||||
# Top-level of a sub-packages is intended to import a lot.
|
||||
F401,
|
||||
src/urban_meal_delivery/forecasts/decomposition.py:
|
||||
# The module does not have a high cognitive complexity.
|
||||
WPS232,
|
||||
src/urban_meal_delivery/forecasts/timify.py:
|
||||
# No SQL injection as the inputs come from a safe source.
|
||||
S608,
|
||||
|
@ -169,9 +170,6 @@ per-file-ignores =
|
|||
WPS432,
|
||||
# When testing, it is normal to use implementation details.
|
||||
WPS437,
|
||||
tests/db/fake_data/__init__.py:
|
||||
# Top-level of a sub-packages is intended to import a lot.
|
||||
F401,WPS201,
|
||||
|
||||
# Explicitly set mccabe's maximum complexity to 10 as recommended by
|
||||
# Thomas McCabe, the inventor of the McCabe complexity, and the NIST.
|
||||
|
|
|
@ -6,11 +6,12 @@ Example:
|
|||
True
|
||||
"""
|
||||
# The config object must come before all other project-internal imports.
|
||||
from urban_meal_delivery.configuration import config # noqa:F401 isort:skip
|
||||
from urban_meal_delivery.configuration import config # isort:skip
|
||||
|
||||
from importlib import metadata as _metadata
|
||||
|
||||
from urban_meal_delivery import db # noqa:F401
|
||||
from urban_meal_delivery import db
|
||||
from urban_meal_delivery import forecasts
|
||||
|
||||
|
||||
try:
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
"""Demand forecasting utilities."""
|
||||
|
||||
from urban_meal_delivery.forecasts import decomposition
|
||||
from urban_meal_delivery.forecasts import timify
|
||||
|
|
174
src/urban_meal_delivery/forecasts/decomposition.py
Normal file
174
src/urban_meal_delivery/forecasts/decomposition.py
Normal file
|
@ -0,0 +1,174 @@
|
|||
"""Seasonal-trend decomposition procedure based on LOESS (STL).
|
||||
|
||||
This module defines a `stl()` function that wraps R's STL decomposition function
|
||||
using the `rpy2` library.
|
||||
"""
|
||||
|
||||
import math
|
||||
|
||||
import pandas as pd
|
||||
from rpy2 import robjects
|
||||
from rpy2.robjects import pandas2ri
|
||||
|
||||
|
||||
def stl( # noqa:C901,WPS210,WPS211,WPS231
|
||||
time_series: pd.Series,
|
||||
*,
|
||||
frequency: int,
|
||||
ns: int,
|
||||
nt: int = None,
|
||||
nl: int = None,
|
||||
ds: int = 0,
|
||||
dt: int = 1,
|
||||
dl: int = 1,
|
||||
js: int = None,
|
||||
jt: int = None,
|
||||
jl: int = None,
|
||||
ni: int = 2,
|
||||
no: int = 0, # noqa:WPS110
|
||||
) -> pd.DataFrame:
|
||||
"""Decompose a time series into seasonal, trend, and residual components.
|
||||
|
||||
This is a Python wrapper around the corresponding R function.
|
||||
|
||||
Further info on the STL method:
|
||||
https://www.nniiem.ru/file/news/2016/stl-statistical-model.pdf
|
||||
https://otexts.com/fpp2/stl.html
|
||||
|
||||
Further info on the R's "stl" function:
|
||||
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/stl
|
||||
|
||||
Args:
|
||||
time_series: time series with a `DateTime` based index;
|
||||
must not contain `NaN` values
|
||||
frequency: frequency of the observations in the `time_series`
|
||||
ns: smoothing parameter for the seasonal component
|
||||
(= window size of the seasonal smoother);
|
||||
must be odd and `>= 7` so that the seasonal component is smooth;
|
||||
the greater `ns`, the smoother the seasonal component;
|
||||
so, this is a hyper-parameter optimized in accordance with the application
|
||||
nt: smoothing parameter for the trend component
|
||||
(= window size of the trend smoother);
|
||||
must be odd and `>= (1.5 * frequency) / [1 - (1.5 / ns)]`;
|
||||
the latter threshold is the default value;
|
||||
the greater `nt`, the smoother the trend component
|
||||
nl: smoothing parameter for the low-pass filter;
|
||||
must be odd and `>= frequency`;
|
||||
the least odd number `>= frequency` is the default
|
||||
ds: degree of locally fitted polynomial in seasonal smoothing;
|
||||
must be `0` or `1`
|
||||
dt: degree of locally fitted polynomial in trend smoothing;
|
||||
must be `0` or `1`
|
||||
dl: degree of locally fitted polynomial in low-pass smoothing;
|
||||
must be `0` or `1`
|
||||
js: number of steps by which the seasonal smoother skips ahead
|
||||
and then linearly interpolates between observations;
|
||||
if set to `1`, the smoother is evaluated at all points;
|
||||
to make the STL decomposition faster, increase this value;
|
||||
by default, `js` is the smallest integer `>= 0.1 * ns`
|
||||
jt: number of steps by which the trend smoother skips ahead
|
||||
and then linearly interpolates between observations;
|
||||
if set to `1`, the smoother is evaluated at all points;
|
||||
to make the STL decomposition faster, increase this value;
|
||||
by default, `jt` is the smallest integer `>= 0.1 * nt`
|
||||
jl: number of steps by which the low-pass smoother skips ahead
|
||||
and then linearly interpolates between observations;
|
||||
if set to `1`, the smoother is evaluated at all points;
|
||||
to make the STL decomposition faster, increase this value;
|
||||
by default, `jl` is the smallest integer `>= 0.1 * nl`
|
||||
ni: number of iterations of the inner loop that updates the
|
||||
seasonal and trend components;
|
||||
usually, a low value (e.g., `2`) suffices
|
||||
no: number of iterations of the outer loop that handles outliers;
|
||||
also known as the "robustness" loop;
|
||||
if no outliers need to be handled, set `no=0`;
|
||||
otherwise, `no=5` or `no=10` combined with `ni=1` is a good choice
|
||||
|
||||
Returns:
|
||||
result: a DataFrame with three columns ("seasonal", "trend", and "residual")
|
||||
providing time series of the individual components
|
||||
|
||||
Raises:
|
||||
ValueError: some argument does not adhere to the specifications above
|
||||
"""
|
||||
# Re-seed R every time the process does something.
|
||||
robjects.r('set.seed(42)')
|
||||
|
||||
# Validate all arguments and set default values.
|
||||
|
||||
if time_series.isnull().any():
|
||||
raise ValueError('`time_series` must not contain `NaN` values')
|
||||
|
||||
if ns % 2 == 0 or ns < 7:
|
||||
raise ValueError('`ns` must be odd and `>= 7`')
|
||||
|
||||
default_nt = math.ceil((1.5 * frequency) / (1 - (1.5 / ns))) # noqa:WPS432
|
||||
if nt is not None:
|
||||
if nt % 2 == 0 or nt < default_nt:
|
||||
raise ValueError(
|
||||
'`nt` must be odd and `>= (1.5 * frequency) / [1 - (1.5 / ns)]`, '
|
||||
+ 'which is {0}'.format(default_nt),
|
||||
)
|
||||
else:
|
||||
nt = default_nt
|
||||
if nt % 2 == 0: # pragma: no cover => hard to construct edge case
|
||||
nt += 1
|
||||
|
||||
if nl is not None:
|
||||
if nl % 2 == 0 or nl < frequency:
|
||||
raise ValueError('`nl` must be odd and `>= frequency`')
|
||||
elif frequency % 2 == 0:
|
||||
nl = frequency + 1
|
||||
else: # pragma: no cover => hard to construct edge case
|
||||
nl = frequency
|
||||
|
||||
if ds not in {0, 1}:
|
||||
raise ValueError('`ds` must be either `0` or `1`')
|
||||
if dt not in {0, 1}:
|
||||
raise ValueError('`dt` must be either `0` or `1`')
|
||||
if dl not in {0, 1}:
|
||||
raise ValueError('`dl` must be either `0` or `1`')
|
||||
|
||||
if js is not None:
|
||||
if js <= 0:
|
||||
raise ValueError('`js` must be positive')
|
||||
else:
|
||||
js = math.ceil(ns / 10)
|
||||
|
||||
if jt is not None:
|
||||
if jt <= 0:
|
||||
raise ValueError('`jt` must be positive')
|
||||
else:
|
||||
jt = math.ceil(nt / 10)
|
||||
|
||||
if jl is not None:
|
||||
if jl <= 0:
|
||||
raise ValueError('`jl` must be positive')
|
||||
else:
|
||||
jl = math.ceil(nl / 10)
|
||||
|
||||
if ni <= 0:
|
||||
raise ValueError('`ni` must be positive')
|
||||
|
||||
if no < 0:
|
||||
raise ValueError('`no` must be non-negative')
|
||||
elif no > 0:
|
||||
robust = True
|
||||
else:
|
||||
robust = False
|
||||
|
||||
# Call the STL function in R.
|
||||
ts = robjects.r['ts'](pandas2ri.py2rpy(time_series), frequency=frequency)
|
||||
result = robjects.r['stl'](
|
||||
ts, ns, ds, nt, dt, nl, dl, js, jt, jl, robust, ni, no, # noqa:WPS221
|
||||
)
|
||||
|
||||
# Unpack the result to a `pd.DataFrame`.
|
||||
result = pandas2ri.rpy2py(result[0])
|
||||
result = {
|
||||
'seasonal': pd.Series(result[:, 0], index=time_series.index),
|
||||
'trend': pd.Series(result[:, 1], index=time_series.index),
|
||||
'residual': pd.Series(result[:, 2], index=time_series.index),
|
||||
}
|
||||
|
||||
return pd.DataFrame(result)
|
200
tests/forecasts/test_decomposition.py
Normal file
200
tests/forecasts/test_decomposition.py
Normal file
|
@ -0,0 +1,200 @@
|
|||
"""Test the `stl()` function."""
|
||||
|
||||
import math
|
||||
|
||||
import pandas as pd
|
||||
import pytest
|
||||
|
||||
from tests import config as test_config
|
||||
from urban_meal_delivery import config
|
||||
from urban_meal_delivery.forecasts import decomposition
|
||||
|
||||
|
||||
# See remarks in `datetime_index` fixture.
|
||||
FREQUENCY = 7 * 12
|
||||
|
||||
# The default `ns` suggested for the STL method.
|
||||
NS = 7
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def datetime_index():
|
||||
"""A `pd.Index` with `DateTime` values.
|
||||
|
||||
The times resemble a vertical time series with a
|
||||
`frequency` of `7` times the number of daily time steps,
|
||||
which is `12` for `LONG_TIME_STEP` values.
|
||||
"""
|
||||
gen = (
|
||||
start_at
|
||||
for start_at in pd.date_range(
|
||||
test_config.START, test_config.END, freq=f'{test_config.LONG_TIME_STEP}T',
|
||||
)
|
||||
if config.SERVICE_START <= start_at.hour < config.SERVICE_END
|
||||
)
|
||||
|
||||
index = pd.Index(gen)
|
||||
index.name = 'start_at'
|
||||
|
||||
return index
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def no_demand(datetime_index):
|
||||
"""A time series of order totals when there was no demand."""
|
||||
return pd.Series(0, index=datetime_index, name='order_totals')
|
||||
|
||||
|
||||
class TestInvalidArguments:
|
||||
"""Test `stl()` with invalid arguments."""
|
||||
|
||||
def test_no_nans_in_time_series(self, datetime_index):
|
||||
"""`stl()` requires a `time_series` without `NaN` values."""
|
||||
time_series = pd.Series(dtype=float, index=datetime_index)
|
||||
|
||||
with pytest.raises(ValueError, match='`NaN` values'):
|
||||
decomposition.stl(time_series, frequency=FREQUENCY, ns=99)
|
||||
|
||||
def test_ns_not_odd(self, no_demand):
|
||||
"""`ns` must be odd and `>= 7`."""
|
||||
with pytest.raises(ValueError, match='`ns`'):
|
||||
decomposition.stl(no_demand, frequency=FREQUENCY, ns=8)
|
||||
|
||||
@pytest.mark.parametrize('ns', [-99, -1, 1, 5])
|
||||
def test_ns_smaller_than_seven(self, no_demand, ns):
|
||||
"""`ns` must be odd and `>= 7`."""
|
||||
with pytest.raises(ValueError, match='`ns`'):
|
||||
decomposition.stl(no_demand, frequency=FREQUENCY, ns=ns)
|
||||
|
||||
def test_nt_not_odd(self, no_demand):
|
||||
"""`nt` must be odd and `>= default_nt`."""
|
||||
nt = 200
|
||||
default_nt = math.ceil((1.5 * FREQUENCY) / (1 - (1.5 / NS)))
|
||||
|
||||
assert nt > default_nt # sanity check
|
||||
|
||||
with pytest.raises(ValueError, match='`nt`'):
|
||||
decomposition.stl(no_demand, frequency=FREQUENCY, ns=NS, nt=nt)
|
||||
|
||||
@pytest.mark.parametrize('nt', [-99, -1, 0, 1, 99, 159])
|
||||
def test_nt_not_at_least_the_default(self, no_demand, nt):
|
||||
"""`nt` must be odd and `>= default_nt`."""
|
||||
# `default_nt` becomes 161.
|
||||
default_nt = math.ceil((1.5 * FREQUENCY) / (1 - (1.5 / NS)))
|
||||
|
||||
assert nt < default_nt # sanity check
|
||||
|
||||
with pytest.raises(ValueError, match='`nt`'):
|
||||
decomposition.stl(no_demand, frequency=FREQUENCY, ns=NS, nt=nt)
|
||||
|
||||
def test_nl_not_odd(self, no_demand):
|
||||
"""`nl` must be odd and `>= frequency`."""
|
||||
nl = 200
|
||||
|
||||
assert nl > FREQUENCY # sanity check
|
||||
|
||||
with pytest.raises(ValueError, match='`nl`'):
|
||||
decomposition.stl(no_demand, frequency=FREQUENCY, ns=NS, nl=nl)
|
||||
|
||||
def test_nl_at_least_the_frequency(self, no_demand):
|
||||
"""`nl` must be odd and `>= frequency`."""
|
||||
nl = 77
|
||||
|
||||
assert nl < FREQUENCY # sanity check
|
||||
|
||||
with pytest.raises(ValueError, match='`nl`'):
|
||||
decomposition.stl(no_demand, frequency=FREQUENCY, ns=NS, nl=nl)
|
||||
|
||||
def test_ds_not_zero_or_one(self, no_demand):
|
||||
"""`ds` must be `0` or `1`."""
|
||||
with pytest.raises(ValueError, match='`ds`'):
|
||||
decomposition.stl(no_demand, frequency=FREQUENCY, ns=NS, ds=2)
|
||||
|
||||
def test_dt_not_zero_or_one(self, no_demand):
|
||||
"""`dt` must be `0` or `1`."""
|
||||
with pytest.raises(ValueError, match='`dt`'):
|
||||
decomposition.stl(no_demand, frequency=FREQUENCY, ns=NS, dt=2)
|
||||
|
||||
def test_dl_not_zero_or_one(self, no_demand):
|
||||
"""`dl` must be `0` or `1`."""
|
||||
with pytest.raises(ValueError, match='`dl`'):
|
||||
decomposition.stl(no_demand, frequency=FREQUENCY, ns=NS, dl=2)
|
||||
|
||||
@pytest.mark.parametrize('js', [-1, 0])
|
||||
def test_js_not_positive(self, no_demand, js):
|
||||
"""`js` must be positive."""
|
||||
with pytest.raises(ValueError, match='`js`'):
|
||||
decomposition.stl(no_demand, frequency=FREQUENCY, ns=NS, js=js)
|
||||
|
||||
@pytest.mark.parametrize('jt', [-1, 0])
|
||||
def test_jt_not_positive(self, no_demand, jt):
|
||||
"""`jt` must be positive."""
|
||||
with pytest.raises(ValueError, match='`jt`'):
|
||||
decomposition.stl(no_demand, frequency=FREQUENCY, ns=NS, jt=jt)
|
||||
|
||||
@pytest.mark.parametrize('jl', [-1, 0])
|
||||
def test_jl_not_positive(self, no_demand, jl):
|
||||
"""`jl` must be positive."""
|
||||
with pytest.raises(ValueError, match='`jl`'):
|
||||
decomposition.stl(no_demand, frequency=FREQUENCY, ns=NS, jl=jl)
|
||||
|
||||
@pytest.mark.parametrize('ni', [-1, 0])
|
||||
def test_ni_not_positive(self, no_demand, ni):
|
||||
"""`ni` must be positive."""
|
||||
with pytest.raises(ValueError, match='`ni`'):
|
||||
decomposition.stl(no_demand, frequency=FREQUENCY, ns=NS, ni=ni)
|
||||
|
||||
def test_no_not_non_negative(self, no_demand):
|
||||
"""`no` must be non-negative."""
|
||||
with pytest.raises(ValueError, match='`no`'):
|
||||
decomposition.stl(no_demand, frequency=FREQUENCY, ns=NS, no=-1)
|
||||
|
||||
|
||||
class TestValidArguments:
|
||||
"""Test `stl()` with valid arguments."""
|
||||
|
||||
def test_structure_of_returned_dataframe(self, no_demand):
|
||||
"""`stl()` returns a `pd.DataFrame` with three columns."""
|
||||
result = decomposition.stl(no_demand, frequency=FREQUENCY, ns=NS)
|
||||
|
||||
assert isinstance(result, pd.DataFrame)
|
||||
assert list(result.columns) == ['seasonal', 'trend', 'residual']
|
||||
|
||||
# Run the `stl()` function with all possible combinations of arguments,
|
||||
# including default ones and explicitly set non-default ones.
|
||||
@pytest.mark.parametrize('nt', [None, 163])
|
||||
@pytest.mark.parametrize('nl', [None, 777])
|
||||
@pytest.mark.parametrize('ds', [0, 1])
|
||||
@pytest.mark.parametrize('dt', [0, 1])
|
||||
@pytest.mark.parametrize('dl', [0, 1])
|
||||
@pytest.mark.parametrize('js', [None, 1])
|
||||
@pytest.mark.parametrize('jt', [None, 1])
|
||||
@pytest.mark.parametrize('jl', [None, 1])
|
||||
@pytest.mark.parametrize('ni', [2, 3])
|
||||
@pytest.mark.parametrize('no', [0, 1])
|
||||
def test_decompose_time_series_with_no_demand( # noqa:WPS211,WPS216
|
||||
self, no_demand, nt, nl, ds, dt, dl, js, jt, jl, ni, no, # noqa:WPS110
|
||||
):
|
||||
"""Decomposing a time series with no demand ...
|
||||
|
||||
... returns a `pd.DataFrame` with three columns holding only `0.0` values.
|
||||
"""
|
||||
decomposed = decomposition.stl(
|
||||
no_demand,
|
||||
frequency=FREQUENCY,
|
||||
ns=NS,
|
||||
nt=nt,
|
||||
nl=nl,
|
||||
ds=ds,
|
||||
dt=dt,
|
||||
dl=dl,
|
||||
js=js,
|
||||
jt=jt,
|
||||
jl=jl,
|
||||
ni=ni,
|
||||
no=no, # noqa:WPS110
|
||||
)
|
||||
|
||||
result = decomposed.sum().sum()
|
||||
|
||||
assert result == 0
|
Loading…
Reference in a new issue