Add stl() function

- `stl()` wraps R's "stl" function in Python
- STL is a decomposition method for time series
This commit is contained in:
Alexander Hess 2021-01-11 16:10:45 +01:00
parent b0f2fdde10
commit 98b6830b46
Signed by: alexander
GPG key ID: 344EA5AB10D868E0
5 changed files with 388 additions and 14 deletions

View file

@ -89,6 +89,10 @@ extend-ignore =
# Comply with black's style.
# Source: https://github.com/psf/black/blob/master/docs/compatible_configs.md#flake8
E203, W503, WPS348,
# Google's Python Style Guide is not reStructuredText
# until after being processed by Sphinx Napoleon.
# Source: https://github.com/peterjc/flake8-rst-docstrings/issues/17
RST201,RST203,RST301,
# String constant over-use is checked visually by the programmer.
WPS226,
# Allow underscores in numbers.
@ -103,6 +107,9 @@ extend-ignore =
WPS429,
per-file-ignores =
# Top-levels of a sub-packages are intended to import a lot.
**/__init__.py:
F401,WPS201,
docs/conf.py:
# Allow shadowing built-ins and reading __*__ variables.
WPS125,WPS609,
@ -132,15 +139,9 @@ per-file-ignores =
WPS115,
# Numbers are normal in config files.
WPS432,
src/urban_meal_delivery/db/__init__.py:
# Top-level of a sub-packages is intended to import a lot.
F401,WPS201,
src/urban_meal_delivery/db/utils/__init__.py:
# Top-level of a sub-packages is intended to import a lot.
F401,
src/urban_meal_delivery/forecasts/__init__.py:
# Top-level of a sub-packages is intended to import a lot.
F401,
src/urban_meal_delivery/forecasts/decomposition.py:
# The module does not have a high cognitive complexity.
WPS232,
src/urban_meal_delivery/forecasts/timify.py:
# No SQL injection as the inputs come from a safe source.
S608,
@ -169,9 +170,6 @@ per-file-ignores =
WPS432,
# When testing, it is normal to use implementation details.
WPS437,
tests/db/fake_data/__init__.py:
# Top-level of a sub-packages is intended to import a lot.
F401,WPS201,
# Explicitly set mccabe's maximum complexity to 10 as recommended by
# Thomas McCabe, the inventor of the McCabe complexity, and the NIST.

View file

@ -6,11 +6,12 @@ Example:
True
"""
# The config object must come before all other project-internal imports.
from urban_meal_delivery.configuration import config # noqa:F401 isort:skip
from urban_meal_delivery.configuration import config # isort:skip
from importlib import metadata as _metadata
from urban_meal_delivery import db # noqa:F401
from urban_meal_delivery import db
from urban_meal_delivery import forecasts
try:

View file

@ -1,3 +1,4 @@
"""Demand forecasting utilities."""
from urban_meal_delivery.forecasts import decomposition
from urban_meal_delivery.forecasts import timify

View file

@ -0,0 +1,174 @@
"""Seasonal-trend decomposition procedure based on LOESS (STL).
This module defines a `stl()` function that wraps R's STL decomposition function
using the `rpy2` library.
"""
import math
import pandas as pd
from rpy2 import robjects
from rpy2.robjects import pandas2ri
def stl( # noqa:C901,WPS210,WPS211,WPS231
time_series: pd.Series,
*,
frequency: int,
ns: int,
nt: int = None,
nl: int = None,
ds: int = 0,
dt: int = 1,
dl: int = 1,
js: int = None,
jt: int = None,
jl: int = None,
ni: int = 2,
no: int = 0, # noqa:WPS110
) -> pd.DataFrame:
"""Decompose a time series into seasonal, trend, and residual components.
This is a Python wrapper around the corresponding R function.
Further info on the STL method:
https://www.nniiem.ru/file/news/2016/stl-statistical-model.pdf
https://otexts.com/fpp2/stl.html
Further info on the R's "stl" function:
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/stl
Args:
time_series: time series with a `DateTime` based index;
must not contain `NaN` values
frequency: frequency of the observations in the `time_series`
ns: smoothing parameter for the seasonal component
(= window size of the seasonal smoother);
must be odd and `>= 7` so that the seasonal component is smooth;
the greater `ns`, the smoother the seasonal component;
so, this is a hyper-parameter optimized in accordance with the application
nt: smoothing parameter for the trend component
(= window size of the trend smoother);
must be odd and `>= (1.5 * frequency) / [1 - (1.5 / ns)]`;
the latter threshold is the default value;
the greater `nt`, the smoother the trend component
nl: smoothing parameter for the low-pass filter;
must be odd and `>= frequency`;
the least odd number `>= frequency` is the default
ds: degree of locally fitted polynomial in seasonal smoothing;
must be `0` or `1`
dt: degree of locally fitted polynomial in trend smoothing;
must be `0` or `1`
dl: degree of locally fitted polynomial in low-pass smoothing;
must be `0` or `1`
js: number of steps by which the seasonal smoother skips ahead
and then linearly interpolates between observations;
if set to `1`, the smoother is evaluated at all points;
to make the STL decomposition faster, increase this value;
by default, `js` is the smallest integer `>= 0.1 * ns`
jt: number of steps by which the trend smoother skips ahead
and then linearly interpolates between observations;
if set to `1`, the smoother is evaluated at all points;
to make the STL decomposition faster, increase this value;
by default, `jt` is the smallest integer `>= 0.1 * nt`
jl: number of steps by which the low-pass smoother skips ahead
and then linearly interpolates between observations;
if set to `1`, the smoother is evaluated at all points;
to make the STL decomposition faster, increase this value;
by default, `jl` is the smallest integer `>= 0.1 * nl`
ni: number of iterations of the inner loop that updates the
seasonal and trend components;
usually, a low value (e.g., `2`) suffices
no: number of iterations of the outer loop that handles outliers;
also known as the "robustness" loop;
if no outliers need to be handled, set `no=0`;
otherwise, `no=5` or `no=10` combined with `ni=1` is a good choice
Returns:
result: a DataFrame with three columns ("seasonal", "trend", and "residual")
providing time series of the individual components
Raises:
ValueError: some argument does not adhere to the specifications above
"""
# Re-seed R every time the process does something.
robjects.r('set.seed(42)')
# Validate all arguments and set default values.
if time_series.isnull().any():
raise ValueError('`time_series` must not contain `NaN` values')
if ns % 2 == 0 or ns < 7:
raise ValueError('`ns` must be odd and `>= 7`')
default_nt = math.ceil((1.5 * frequency) / (1 - (1.5 / ns))) # noqa:WPS432
if nt is not None:
if nt % 2 == 0 or nt < default_nt:
raise ValueError(
'`nt` must be odd and `>= (1.5 * frequency) / [1 - (1.5 / ns)]`, '
+ 'which is {0}'.format(default_nt),
)
else:
nt = default_nt
if nt % 2 == 0: # pragma: no cover => hard to construct edge case
nt += 1
if nl is not None:
if nl % 2 == 0 or nl < frequency:
raise ValueError('`nl` must be odd and `>= frequency`')
elif frequency % 2 == 0:
nl = frequency + 1
else: # pragma: no cover => hard to construct edge case
nl = frequency
if ds not in {0, 1}:
raise ValueError('`ds` must be either `0` or `1`')
if dt not in {0, 1}:
raise ValueError('`dt` must be either `0` or `1`')
if dl not in {0, 1}:
raise ValueError('`dl` must be either `0` or `1`')
if js is not None:
if js <= 0:
raise ValueError('`js` must be positive')
else:
js = math.ceil(ns / 10)
if jt is not None:
if jt <= 0:
raise ValueError('`jt` must be positive')
else:
jt = math.ceil(nt / 10)
if jl is not None:
if jl <= 0:
raise ValueError('`jl` must be positive')
else:
jl = math.ceil(nl / 10)
if ni <= 0:
raise ValueError('`ni` must be positive')
if no < 0:
raise ValueError('`no` must be non-negative')
elif no > 0:
robust = True
else:
robust = False
# Call the STL function in R.
ts = robjects.r['ts'](pandas2ri.py2rpy(time_series), frequency=frequency)
result = robjects.r['stl'](
ts, ns, ds, nt, dt, nl, dl, js, jt, jl, robust, ni, no, # noqa:WPS221
)
# Unpack the result to a `pd.DataFrame`.
result = pandas2ri.rpy2py(result[0])
result = {
'seasonal': pd.Series(result[:, 0], index=time_series.index),
'trend': pd.Series(result[:, 1], index=time_series.index),
'residual': pd.Series(result[:, 2], index=time_series.index),
}
return pd.DataFrame(result)

View file

@ -0,0 +1,200 @@
"""Test the `stl()` function."""
import math
import pandas as pd
import pytest
from tests import config as test_config
from urban_meal_delivery import config
from urban_meal_delivery.forecasts import decomposition
# See remarks in `datetime_index` fixture.
FREQUENCY = 7 * 12
# The default `ns` suggested for the STL method.
NS = 7
@pytest.fixture
def datetime_index():
"""A `pd.Index` with `DateTime` values.
The times resemble a vertical time series with a
`frequency` of `7` times the number of daily time steps,
which is `12` for `LONG_TIME_STEP` values.
"""
gen = (
start_at
for start_at in pd.date_range(
test_config.START, test_config.END, freq=f'{test_config.LONG_TIME_STEP}T',
)
if config.SERVICE_START <= start_at.hour < config.SERVICE_END
)
index = pd.Index(gen)
index.name = 'start_at'
return index
@pytest.fixture
def no_demand(datetime_index):
"""A time series of order totals when there was no demand."""
return pd.Series(0, index=datetime_index, name='order_totals')
class TestInvalidArguments:
"""Test `stl()` with invalid arguments."""
def test_no_nans_in_time_series(self, datetime_index):
"""`stl()` requires a `time_series` without `NaN` values."""
time_series = pd.Series(dtype=float, index=datetime_index)
with pytest.raises(ValueError, match='`NaN` values'):
decomposition.stl(time_series, frequency=FREQUENCY, ns=99)
def test_ns_not_odd(self, no_demand):
"""`ns` must be odd and `>= 7`."""
with pytest.raises(ValueError, match='`ns`'):
decomposition.stl(no_demand, frequency=FREQUENCY, ns=8)
@pytest.mark.parametrize('ns', [-99, -1, 1, 5])
def test_ns_smaller_than_seven(self, no_demand, ns):
"""`ns` must be odd and `>= 7`."""
with pytest.raises(ValueError, match='`ns`'):
decomposition.stl(no_demand, frequency=FREQUENCY, ns=ns)
def test_nt_not_odd(self, no_demand):
"""`nt` must be odd and `>= default_nt`."""
nt = 200
default_nt = math.ceil((1.5 * FREQUENCY) / (1 - (1.5 / NS)))
assert nt > default_nt # sanity check
with pytest.raises(ValueError, match='`nt`'):
decomposition.stl(no_demand, frequency=FREQUENCY, ns=NS, nt=nt)
@pytest.mark.parametrize('nt', [-99, -1, 0, 1, 99, 159])
def test_nt_not_at_least_the_default(self, no_demand, nt):
"""`nt` must be odd and `>= default_nt`."""
# `default_nt` becomes 161.
default_nt = math.ceil((1.5 * FREQUENCY) / (1 - (1.5 / NS)))
assert nt < default_nt # sanity check
with pytest.raises(ValueError, match='`nt`'):
decomposition.stl(no_demand, frequency=FREQUENCY, ns=NS, nt=nt)
def test_nl_not_odd(self, no_demand):
"""`nl` must be odd and `>= frequency`."""
nl = 200
assert nl > FREQUENCY # sanity check
with pytest.raises(ValueError, match='`nl`'):
decomposition.stl(no_demand, frequency=FREQUENCY, ns=NS, nl=nl)
def test_nl_at_least_the_frequency(self, no_demand):
"""`nl` must be odd and `>= frequency`."""
nl = 77
assert nl < FREQUENCY # sanity check
with pytest.raises(ValueError, match='`nl`'):
decomposition.stl(no_demand, frequency=FREQUENCY, ns=NS, nl=nl)
def test_ds_not_zero_or_one(self, no_demand):
"""`ds` must be `0` or `1`."""
with pytest.raises(ValueError, match='`ds`'):
decomposition.stl(no_demand, frequency=FREQUENCY, ns=NS, ds=2)
def test_dt_not_zero_or_one(self, no_demand):
"""`dt` must be `0` or `1`."""
with pytest.raises(ValueError, match='`dt`'):
decomposition.stl(no_demand, frequency=FREQUENCY, ns=NS, dt=2)
def test_dl_not_zero_or_one(self, no_demand):
"""`dl` must be `0` or `1`."""
with pytest.raises(ValueError, match='`dl`'):
decomposition.stl(no_demand, frequency=FREQUENCY, ns=NS, dl=2)
@pytest.mark.parametrize('js', [-1, 0])
def test_js_not_positive(self, no_demand, js):
"""`js` must be positive."""
with pytest.raises(ValueError, match='`js`'):
decomposition.stl(no_demand, frequency=FREQUENCY, ns=NS, js=js)
@pytest.mark.parametrize('jt', [-1, 0])
def test_jt_not_positive(self, no_demand, jt):
"""`jt` must be positive."""
with pytest.raises(ValueError, match='`jt`'):
decomposition.stl(no_demand, frequency=FREQUENCY, ns=NS, jt=jt)
@pytest.mark.parametrize('jl', [-1, 0])
def test_jl_not_positive(self, no_demand, jl):
"""`jl` must be positive."""
with pytest.raises(ValueError, match='`jl`'):
decomposition.stl(no_demand, frequency=FREQUENCY, ns=NS, jl=jl)
@pytest.mark.parametrize('ni', [-1, 0])
def test_ni_not_positive(self, no_demand, ni):
"""`ni` must be positive."""
with pytest.raises(ValueError, match='`ni`'):
decomposition.stl(no_demand, frequency=FREQUENCY, ns=NS, ni=ni)
def test_no_not_non_negative(self, no_demand):
"""`no` must be non-negative."""
with pytest.raises(ValueError, match='`no`'):
decomposition.stl(no_demand, frequency=FREQUENCY, ns=NS, no=-1)
class TestValidArguments:
"""Test `stl()` with valid arguments."""
def test_structure_of_returned_dataframe(self, no_demand):
"""`stl()` returns a `pd.DataFrame` with three columns."""
result = decomposition.stl(no_demand, frequency=FREQUENCY, ns=NS)
assert isinstance(result, pd.DataFrame)
assert list(result.columns) == ['seasonal', 'trend', 'residual']
# Run the `stl()` function with all possible combinations of arguments,
# including default ones and explicitly set non-default ones.
@pytest.mark.parametrize('nt', [None, 163])
@pytest.mark.parametrize('nl', [None, 777])
@pytest.mark.parametrize('ds', [0, 1])
@pytest.mark.parametrize('dt', [0, 1])
@pytest.mark.parametrize('dl', [0, 1])
@pytest.mark.parametrize('js', [None, 1])
@pytest.mark.parametrize('jt', [None, 1])
@pytest.mark.parametrize('jl', [None, 1])
@pytest.mark.parametrize('ni', [2, 3])
@pytest.mark.parametrize('no', [0, 1])
def test_decompose_time_series_with_no_demand( # noqa:WPS211,WPS216
self, no_demand, nt, nl, ds, dt, dl, js, jt, jl, ni, no, # noqa:WPS110
):
"""Decomposing a time series with no demand ...
... returns a `pd.DataFrame` with three columns holding only `0.0` values.
"""
decomposed = decomposition.stl(
no_demand,
frequency=FREQUENCY,
ns=NS,
nt=nt,
nl=nl,
ds=ds,
dt=dt,
dl=dl,
js=js,
jt=jt,
jl=jl,
ni=ni,
no=no, # noqa:WPS110
)
result = decomposed.sum().sum()
assert result == 0