diff --git a/research/06_tactical_demand_forecasting.ipynb b/research/06_tactical_demand_forecasting.ipynb new file mode 100644 index 0000000..51a5e2f --- /dev/null +++ b/research/06_tactical_demand_forecasting.ipynb @@ -0,0 +1,1531 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Tactical Demand Forecasting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook runs the script that creates all forecasts according to a heuristic derived from the first research paper \"Real-time Demand Forecasting for an Urban Delivery Platform\". Conceptually, this script is like a cache warmer so that the forecasts need not be made any more when optimizing the routing strategies. Instead, they are already in the database." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[32murban-meal-delivery\u001b[0m, version \u001b[34m0.3.0\u001b[0m\n" + ] + } + ], + "source": [ + "!umd --version" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Upgrade Database Schema" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "%cd -q .." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO [alembic.runtime.migration] Context impl PostgresqlImpl.\n", + "INFO [alembic.runtime.migration] Will assume transactional DDL.\n", + "INFO [alembic.runtime.migration] Running upgrade e86290e7305e -> c2af85bada01, Store actuals with forecast.\n", + "INFO [alembic.runtime.migration] Running upgrade c2af85bada01 -> 8bfb928a31f8, Rename `Forecast.training_horizon` into `.train_horizon`.\n" + ] + } + ], + "source": [ + "!alembic upgrade 8bfb928a31f8" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Predict Demand in all Pixels" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Execute the script for all possible parameters. The script is designed to continue where it left off in a previous run, which is why the output is shortened below.\n", + "\n", + "Forecasts are created for city grids for a `train_horizon` of `7` and `8` weeks (in both cases the heuristic chooses the same forecasting `*Model`s given the same average daily demand on the training horizon). The `time_step` is `60` minutes for all forecasts.\n", + "\n", + "In total, the script is run `n_cities * n_grids * n_time_steps * n_train_horizons = 3 * 3 * 1 * 2 = 18` times." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`umd tactical-forecasts CITY SIDE_LENGTH TIME_STEP TRAIN_HORIZON`" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Parameters: city=\"bordeaux\", grid.side_length=707, time_step=60, train_horizon=7\n", + "Predicting pixel #501 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #502 in bordeaux for 2017-01-31 with hsma\n", + "Predicting pixel #503 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #504 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #505 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #506 in bordeaux for 2017-01-31 with hsma\n", + "Predicting pixel #507 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #508 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #509 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #510 in bordeaux for 2017-01-30 with hsma\n", + "Predicting pixel #511 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #512 in bordeaux for 2017-01-31 with hsma\n", + "Predicting pixel #513 in bordeaux for 2017-01-30 with trivial\n", + "Predicting pixel #514 in bordeaux for 2017-01-30 with trivial\n", + "Predicting pixel #515 in bordeaux for 2016-11-15 with trivial\n", + "Predicting pixel #516 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #517 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #518 in bordeaux for 2016-10-15 with trivial\n", + "Predicting pixel #519 in bordeaux for 2017-01-30 with hsma\n", + "Predicting pixel #520 in bordeaux for 2017-01-31 with hsma\n", + "Predicting pixel #522 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #523 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #524 in bordeaux for 2017-01-30 with trivial\n", + "Predicting pixel #525 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #526 in bordeaux for 2017-01-10 with trivial\n", + "Predicting pixel #527 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #528 in bordeaux for 2017-01-31 with hsma\n", + "Predicting pixel #529 in bordeaux for 2017-01-31 with trivial\n" + ] + } + ], + "source": [ + "!umd tactical-forecasts bordeaux 707 60 7" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Parameters: city=\"bordeaux\", grid.side_length=1000, time_step=60, train_horizon=7\n", + "Predicting pixel #531 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #532 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #533 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #534 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #535 in bordeaux for 2017-01-31 with hsma\n", + "Predicting pixel #536 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #537 in bordeaux for 2017-01-30 with hsma\n", + "Predicting pixel #538 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #539 in bordeaux for 2017-01-31 with hsma\n", + "Predicting pixel #540 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #541 in bordeaux for 2016-11-15 with trivial\n", + "Predicting pixel #542 in bordeaux for 2017-01-31 with hsma\n", + "Predicting pixel #543 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #544 in bordeaux for 2017-01-30 with hsma\n", + "Predicting pixel #545 in bordeaux for 2017-01-31 with hsma\n", + "Predicting pixel #546 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #547 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #548 in bordeaux for 2017-01-30 with trivial\n", + "Predicting pixel #549 in bordeaux for 2017-01-29 with trivial\n", + "Predicting pixel #550 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #551 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #552 in bordeaux for 2017-01-31 with trivial\n" + ] + } + ], + "source": [ + "!umd tactical-forecasts bordeaux 1000 60 7" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Parameters: city=\"bordeaux\", grid.side_length=1414, time_step=60, train_horizon=7\n", + "Predicting pixel #553 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #554 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #555 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #556 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #557 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #558 in bordeaux for 2017-01-31 with hsma\n", + "Predicting pixel #559 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #560 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #561 in bordeaux for 2017-01-30 with hsma\n", + "Predicting pixel #562 in bordeaux for 2017-01-31 with hsma\n", + "Predicting pixel #563 in bordeaux for 2017-01-31 with hsma\n", + "Predicting pixel #564 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #565 in bordeaux for 2017-01-30 with trivial\n", + "Predicting pixel #566 in bordeaux for 2017-01-31 with trivial\n" + ] + } + ], + "source": [ + "!umd tactical-forecasts bordeaux 1414 60 7" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Parameters: city=\"bordeaux\", grid.side_length=707, time_step=60, train_horizon=8\n", + "Predicting pixel #501 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #502 in bordeaux for 2017-01-31 with hsma\n", + "Predicting pixel #503 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #504 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #505 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #506 in bordeaux for 2017-01-31 with hsma\n", + "Predicting pixel #507 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #508 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #509 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #510 in bordeaux for 2017-01-30 with hsma\n", + "Predicting pixel #511 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #512 in bordeaux for 2017-01-31 with hsma\n", + "Predicting pixel #513 in bordeaux for 2017-01-30 with trivial\n", + "Predicting pixel #514 in bordeaux for 2017-01-30 with trivial\n", + "Predicting pixel #515 in bordeaux for 2016-11-15 with trivial\n", + "Predicting pixel #516 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #517 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #518 in bordeaux for 2016-10-15 with trivial\n", + "Predicting pixel #519 in bordeaux for 2017-01-30 with hsma\n", + "Predicting pixel #520 in bordeaux for 2017-01-31 with hsma\n", + "Predicting pixel #522 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #523 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #524 in bordeaux for 2017-01-30 with trivial\n", + "Predicting pixel #525 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #526 in bordeaux for 2017-01-10 with trivial\n", + "Predicting pixel #527 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #528 in bordeaux for 2017-01-31 with hsma\n", + "Predicting pixel #529 in bordeaux for 2017-01-31 with trivial\n" + ] + } + ], + "source": [ + "!umd tactical-forecasts bordeaux 707 60 8" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Parameters: city=\"bordeaux\", grid.side_length=1000, time_step=60, train_horizon=8\n", + "Predicting pixel #531 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #532 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #533 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #534 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #535 in bordeaux for 2017-01-31 with hsma\n", + "Predicting pixel #536 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #537 in bordeaux for 2017-01-30 with hsma\n", + "Predicting pixel #538 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #539 in bordeaux for 2017-01-31 with hsma\n", + "Predicting pixel #540 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #541 in bordeaux for 2016-11-15 with trivial\n", + "Predicting pixel #542 in bordeaux for 2017-01-31 with hsma\n", + "Predicting pixel #543 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #544 in bordeaux for 2017-01-30 with hsma\n", + "Predicting pixel #545 in bordeaux for 2017-01-31 with hsma\n", + "Predicting pixel #546 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #547 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #548 in bordeaux for 2017-01-30 with trivial\n", + "Predicting pixel #549 in bordeaux for 2017-01-29 with trivial\n", + "Predicting pixel #550 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #551 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #552 in bordeaux for 2017-01-31 with trivial\n" + ] + } + ], + "source": [ + "!umd tactical-forecasts bordeaux 1000 60 8" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Parameters: city=\"bordeaux\", grid.side_length=1414, time_step=60, train_horizon=8\n", + "Predicting pixel #553 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #554 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #555 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #556 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #557 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #558 in bordeaux for 2017-01-31 with hsma\n", + "Predicting pixel #559 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #560 in bordeaux for 2017-01-31 with hets\n", + "Predicting pixel #561 in bordeaux for 2017-01-30 with hsma\n", + "Predicting pixel #562 in bordeaux for 2017-01-31 with hsma\n", + "Predicting pixel #563 in bordeaux for 2017-01-31 with hsma\n", + "Predicting pixel #564 in bordeaux for 2017-01-31 with trivial\n", + "Predicting pixel #565 in bordeaux for 2017-01-30 with trivial\n", + "Predicting pixel #566 in bordeaux for 2017-01-31 with trivial\n" + ] + } + ], + "source": [ + "!umd tactical-forecasts bordeaux 1414 60 8" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Parameters: city=\"lyon\", grid.side_length=707, time_step=60, train_horizon=7\n", + "Predicting pixel #1 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #2 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #3 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #4 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #5 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #6 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #7 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #8 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #9 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #10 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #11 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #12 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #13 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #14 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #15 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #16 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #17 in lyon for 2017-01-31 with trivial\n", + "Predicting pixel #18 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #19 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #20 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #21 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #22 in lyon for 2017-01-31 with trivial\n", + "Predicting pixel #23 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #24 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #25 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #26 in lyon for 2017-01-29 with hsma\n", + "Predicting pixel #27 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #28 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #29 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #30 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #31 in lyon for 2017-01-31 with trivial\n", + "Predicting pixel #32 in lyon for 2016-08-25 with trivial\n", + "Predicting pixel #33 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #34 in lyon for 2017-01-31 with trivial\n", + "Predicting pixel #35 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #36 in lyon for 2017-01-31 with trivial\n", + "Predicting pixel #37 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #38 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #39 in lyon for 2017-01-31 with trivial\n", + "Predicting pixel #40 in lyon for 2016-09-16 with trivial\n", + "Predicting pixel #41 in lyon for 2016-08-19 with trivial\n", + "Predicting pixel #42 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #43 in lyon for 2017-01-30 with trivial\n", + "Predicting pixel #44 in lyon for 2017-01-31 with trivial\n", + "Predicting pixel #45 in lyon for 2017-01-28 with trivial\n", + "Predicting pixel #46 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #47 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #48 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #49 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #50 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #51 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #52 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #53 in lyon for 2016-10-15 with trivial\n", + "Predicting pixel #54 in lyon for 2016-04-19 with trivial\n", + "Predicting pixel #55 in lyon for 2017-01-31 with trivial\n", + "Predicting pixel #56 in lyon for 2016-08-25 with trivial\n", + "Predicting pixel #57 in lyon for 2016-06-29 with trivial\n", + "Predicting pixel #58 in lyon for 2017-01-31 with trivial\n", + "Predicting pixel #59 in lyon for 2017-01-30 with trivial\n", + "Predicting pixel #61 in lyon for 2016-07-19 with trivial\n" + ] + } + ], + "source": [ + "!umd tactical-forecasts lyon 707 60 7" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Parameters: city=\"lyon\", grid.side_length=1000, time_step=60, train_horizon=7\n", + "Predicting pixel #63 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #64 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #65 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #66 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #67 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #68 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #69 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #70 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #71 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #72 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #73 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #74 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #75 in lyon for 2017-01-30 with trivial\n", + "Predicting pixel #76 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #77 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #78 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #79 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #80 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #81 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #82 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #83 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #84 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #85 in lyon for 2016-08-25 with trivial\n", + "Predicting pixel #86 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #87 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #88 in lyon for 2017-01-31 with trivial\n", + "Predicting pixel #89 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #90 in lyon for 2017-01-31 with trivial\n", + "Predicting pixel #91 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #92 in lyon for 2017-01-31 with trivial\n", + "Predicting pixel #93 in lyon for 2017-01-30 with trivial\n", + "Predicting pixel #94 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #95 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #96 in lyon for 2016-12-22 with trivial\n", + "Predicting pixel #97 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #98 in lyon for 2016-10-15 with trivial\n", + "Predicting pixel #99 in lyon for 2016-08-25 with trivial\n" + ] + } + ], + "source": [ + "!umd tactical-forecasts lyon 1000 60 7" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Parameters: city=\"lyon\", grid.side_length=1414, time_step=60, train_horizon=7\n", + "Predicting pixel #101 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #102 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #103 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #104 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #105 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #106 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #107 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #108 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #109 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #110 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #111 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #112 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #113 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #114 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #115 in lyon for 2017-01-30 with hsma\n", + "Predicting pixel #116 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #117 in lyon for 2017-01-31 with trivial\n", + "Predicting pixel #118 in lyon for 2016-08-25 with trivial\n", + "Predicting pixel #119 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #120 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #121 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #122 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #123 in lyon for 2016-08-25 with trivial\n" + ] + } + ], + "source": [ + "!umd tactical-forecasts lyon 1414 60 7" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Parameters: city=\"lyon\", grid.side_length=707, time_step=60, train_horizon=8\n", + "Predicting pixel #1 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #2 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #3 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #4 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #5 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #6 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #7 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #8 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #9 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #10 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #11 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #12 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #13 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #14 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #15 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #16 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #17 in lyon for 2017-01-31 with trivial\n", + "Predicting pixel #18 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #19 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #20 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #21 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #22 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #23 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #24 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #25 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #26 in lyon for 2017-01-29 with hsma\n", + "Predicting pixel #27 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #28 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #29 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #30 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #31 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #32 in lyon for 2016-08-25 with trivial\n", + "Predicting pixel #33 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #34 in lyon for 2017-01-31 with trivial\n", + "Predicting pixel #35 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #36 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #37 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #38 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #39 in lyon for 2017-01-31 with trivial\n", + "Predicting pixel #40 in lyon for 2016-09-16 with trivial\n", + "Predicting pixel #41 in lyon for 2016-08-19 with trivial\n", + "Predicting pixel #42 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #43 in lyon for 2017-01-30 with trivial\n", + "Predicting pixel #44 in lyon for 2017-01-31 with trivial\n", + "Predicting pixel #45 in lyon for 2017-01-28 with trivial\n", + "Predicting pixel #46 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #47 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #48 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #49 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #50 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #51 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #52 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #53 in lyon for 2016-10-15 with trivial\n", + "Predicting pixel #55 in lyon for 2017-01-31 with trivial\n", + "Predicting pixel #56 in lyon for 2016-08-25 with trivial\n", + "Predicting pixel #57 in lyon for 2016-06-29 with trivial\n", + "Predicting pixel #58 in lyon for 2017-01-31 with trivial\n", + "Predicting pixel #59 in lyon for 2017-01-30 with trivial\n", + "Predicting pixel #61 in lyon for 2016-07-19 with trivial\n" + ] + } + ], + "source": [ + "!umd tactical-forecasts lyon 707 60 8" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Parameters: city=\"lyon\", grid.side_length=1000, time_step=60, train_horizon=8\n", + "Predicting pixel #63 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #64 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #65 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #66 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #67 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #68 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #69 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #70 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #71 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #72 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #73 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #74 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #75 in lyon for 2017-01-30 with trivial\n", + "Predicting pixel #76 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #77 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #78 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #79 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #80 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #81 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #82 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #83 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #84 in lyon for 2017-01-31 with trivial\n", + "Predicting pixel #85 in lyon for 2016-08-25 with trivial\n", + "Predicting pixel #86 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #87 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #88 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #89 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #90 in lyon for 2017-01-31 with trivial\n", + "Predicting pixel #91 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #92 in lyon for 2017-01-31 with trivial\n", + "Predicting pixel #93 in lyon for 2017-01-30 with trivial\n", + "Predicting pixel #94 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #95 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #96 in lyon for 2016-12-22 with trivial\n", + "Predicting pixel #97 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #98 in lyon for 2016-10-15 with trivial\n", + "Predicting pixel #99 in lyon for 2016-08-25 with trivial\n" + ] + } + ], + "source": [ + "!umd tactical-forecasts lyon 1000 60 8" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Parameters: city=\"lyon\", grid.side_length=1414, time_step=60, train_horizon=8\n", + "Predicting pixel #101 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #102 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #103 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #104 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #105 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #106 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #107 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #108 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #109 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #110 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #111 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #112 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #113 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #114 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #115 in lyon for 2017-01-30 with hsma\n", + "Predicting pixel #116 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #117 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #118 in lyon for 2016-08-25 with trivial\n", + "Predicting pixel #119 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #120 in lyon for 2017-01-31 with hets\n", + "Predicting pixel #121 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #122 in lyon for 2017-01-31 with hsma\n", + "Predicting pixel #123 in lyon for 2016-08-25 with trivial\n" + ] + } + ], + "source": [ + "!umd tactical-forecasts lyon 1414 60 8" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Parameters: city=\"paris\", grid.side_length=707, time_step=60, train_horizon=7\n", + "Predicting pixel #125 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #126 in paris for 2017-01-31 with hets\n", + "Predicting pixel #127 in paris for 2017-01-31 with hets\n", + "Predicting pixel #128 in paris for 2017-01-31 with hets\n", + "Predicting pixel #129 in paris for 2017-01-31 with hets\n", + "Predicting pixel #130 in paris for 2017-01-31 with hets\n", + "Predicting pixel #131 in paris for 2017-01-31 with hets\n", + "Predicting pixel #132 in paris for 2017-01-31 with hets\n", + "Predicting pixel #133 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #134 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #135 in paris for 2017-01-31 with hets\n", + "Predicting pixel #136 in paris for 2017-01-31 with hets\n", + "Predicting pixel #137 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #138 in paris for 2017-01-31 with hets\n", + "Predicting pixel #139 in paris for 2017-01-31 with hets\n", + "Predicting pixel #140 in paris for 2017-01-31 with hets\n", + "Predicting pixel #141 in paris for 2017-01-31 with hets\n", + "Predicting pixel #142 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #143 in paris for 2017-01-31 with hets\n", + "Predicting pixel #144 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #145 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #146 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #147 in paris for 2017-01-31 with hets\n", + "Predicting pixel #148 in paris for 2017-01-31 with hets\n", + "Predicting pixel #149 in paris for 2017-01-31 with hets\n", + "Predicting pixel #150 in paris for 2016-09-08 with trivial\n", + "Predicting pixel #151 in paris for 2017-01-31 with hets\n", + "Predicting pixel #152 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #153 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #154 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #155 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #156 in paris for 2017-01-31 with hets\n", + "Predicting pixel #157 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #158 in paris for 2017-01-31 with hets\n", + "Predicting pixel #159 in paris for 2017-01-31 with hets\n", + "Predicting pixel #160 in paris for 2017-01-31 with hets\n", + "Predicting pixel #161 in paris for 2017-01-08 with trivial\n", + "Predicting pixel #162 in paris for 2017-01-31 with hets\n", + "Predicting pixel #163 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #164 in paris for 2017-01-24 with trivial\n", + "Predicting pixel #165 in paris for 2017-01-25 with hsma\n", + "Predicting pixel #166 in paris for 2017-01-31 with hets\n", + "Predicting pixel #167 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #168 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #169 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #170 in paris for 2017-01-30 with trivial\n", + "Predicting pixel #171 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #172 in paris for 2017-01-19 with trivial\n", + "Predicting pixel #173 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #174 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #175 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #176 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #177 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #178 in paris for 2017-01-31 with hets\n", + "Predicting pixel #179 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #180 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #181 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #182 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #183 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #184 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #185 in paris for 2017-01-31 with hets\n", + "Predicting pixel #186 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #187 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #188 in paris for 2017-01-31 with hets\n", + "Predicting pixel #189 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #190 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #191 in paris for 2016-06-02 with trivial\n", + "Predicting pixel #192 in paris for 2016-06-18 with trivial\n", + "Predicting pixel #193 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #194 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #195 in paris for 2017-01-31 with hets\n", + "Predicting pixel #196 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #197 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #198 in paris for 2017-01-31 with hets\n", + "Predicting pixel #199 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #200 in paris for 2017-01-31 with hets\n", + "Predicting pixel #201 in paris for 2017-01-28 with trivial\n", + "Predicting pixel #202 in paris for 2017-01-31 with hets\n", + "Predicting pixel #203 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #204 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #205 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #206 in paris for 2017-01-20 with trivial\n", + "Predicting pixel #207 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #208 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #209 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #210 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #211 in paris for 2017-01-31 with hets\n", + "Predicting pixel #212 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #213 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #214 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #215 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #216 in paris for 2017-01-31 with hets\n", + "Predicting pixel #217 in paris for 2017-01-27 with trivial\n", + "Predicting pixel #218 in paris for 2017-01-30 with trivial\n", + "Predicting pixel #219 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #220 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #221 in paris for 2016-08-23 with trivial\n", + "Predicting pixel #222 in paris for 2017-01-27 with trivial\n", + "Predicting pixel #223 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #224 in paris for 2017-01-31 with hets\n", + "Predicting pixel #225 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #226 in paris for 2017-01-22 with trivial\n", + "Predicting pixel #227 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #228 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #230 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #231 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #232 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #233 in paris for 2017-01-29 with trivial\n", + "Predicting pixel #234 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #235 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #236 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #237 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #238 in paris for 2017-01-30 with trivial\n", + "Predicting pixel #239 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #240 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #241 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #242 in paris for 2017-01-31 with hets\n", + "Predicting pixel #244 in paris for 2017-01-30 with trivial\n", + "Predicting pixel #247 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #248 in paris for 2017-01-31 with hets\n", + "Predicting pixel #249 in paris for 2017-01-28 with trivial\n", + "Predicting pixel #250 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #251 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #252 in paris for 2017-01-20 with trivial\n", + "Predicting pixel #253 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #254 in paris for 2017-01-30 with trivial\n", + "Predicting pixel #255 in paris for 2017-01-30 with hsma\n", + "Predicting pixel #256 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #257 in paris for 2017-01-30 with trivial\n", + "Predicting pixel #258 in paris for 2017-01-28 with trivial\n", + "Predicting pixel #259 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #260 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #261 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #262 in paris for 2017-01-30 with trivial\n", + "Predicting pixel #263 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #264 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #265 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #266 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #267 in paris for 2017-01-30 with trivial\n", + "Predicting pixel #268 in paris for 2017-01-30 with hsma\n", + "Predicting pixel #269 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #270 in paris for 2016-12-11 with trivial\n", + "Predicting pixel #271 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #272 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #273 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #274 in paris for 2016-12-09 with trivial\n", + "Predicting pixel #275 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #276 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #277 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #278 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #279 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #280 in paris for 2017-01-30 with trivial\n", + "Predicting pixel #281 in paris for 2017-01-20 with trivial\n", + "Predicting pixel #282 in paris for 2017-01-28 with trivial\n", + "Predicting pixel #283 in paris for 2017-01-27 with trivial\n", + "Predicting pixel #284 in paris for 2017-01-30 with hsma\n", + "Predicting pixel #285 in paris for 2017-01-30 with trivial\n", + "Predicting pixel #286 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #287 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #288 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #289 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #291 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #292 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #293 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #294 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #295 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #296 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #297 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #298 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #299 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #300 in paris for 2017-01-28 with trivial\n", + "Predicting pixel #301 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #302 in paris for 2017-01-29 with trivial\n", + "Predicting pixel #303 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #304 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #305 in paris for 2016-12-01 with trivial\n", + "Predicting pixel #306 in paris for 2017-01-26 with trivial\n", + "Predicting pixel #307 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #308 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #309 in paris for 2017-01-28 with trivial\n", + "Predicting pixel #310 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #311 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #312 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #313 in paris for 2016-05-09 with trivial\n", + "Predicting pixel #314 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #316 in paris for 2017-01-06 with trivial\n", + "Predicting pixel #317 in paris for 2016-07-03 with trivial\n", + "Predicting pixel #318 in paris for 2016-06-13 with trivial\n", + "Predicting pixel #319 in paris for 2016-11-11 with trivial\n", + "Predicting pixel #320 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #321 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #322 in paris for 2017-01-28 with trivial\n" + ] + } + ], + "source": [ + "!umd tactical-forecasts paris 707 60 7" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Parameters: city=\"paris\", grid.side_length=1000, time_step=60, train_horizon=7\n", + "Predicting pixel #324 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #325 in paris for 2017-01-31 with hets\n", + "Predicting pixel #326 in paris for 2017-01-31 with hets\n", + "Predicting pixel #327 in paris for 2017-01-31 with hets\n", + "Predicting pixel #328 in paris for 2017-01-31 with hets\n", + "Predicting pixel #329 in paris for 2017-01-31 with hets\n", + "Predicting pixel #330 in paris for 2017-01-31 with hets\n", + "Predicting pixel #331 in paris for 2017-01-31 with hets\n", + "Predicting pixel #332 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #333 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #334 in paris for 2017-01-31 with hets\n", + "Predicting pixel #335 in paris for 2017-01-31 with hets\n", + "Predicting pixel #336 in paris for 2017-01-31 with hets\n", + "Predicting pixel #337 in paris for 2017-01-31 with hets\n", + "Predicting pixel #338 in paris for 2017-01-31 with hets\n", + "Predicting pixel #339 in paris for 2017-01-31 with hets\n", + "Predicting pixel #340 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #341 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #342 in paris for 2017-01-31 with hets\n", + "Predicting pixel #343 in paris for 2017-01-31 with hets\n", + "Predicting pixel #344 in paris for 2017-01-31 with hets\n", + "Predicting pixel #345 in paris for 2017-01-31 with hets\n", + "Predicting pixel #346 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #347 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #348 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #349 in paris for 2017-01-31 with hets\n", + "Predicting pixel #350 in paris for 2017-01-31 with hets\n", + "Predicting pixel #351 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #352 in paris for 2017-01-31 with hets\n", + "Predicting pixel #353 in paris for 2017-01-31 with hets\n", + "Predicting pixel #354 in paris for 2017-01-31 with hets\n", + "Predicting pixel #355 in paris for 2017-01-08 with trivial\n", + "Predicting pixel #356 in paris for 2017-01-31 with hets\n", + "Predicting pixel #357 in paris for 2017-01-31 with hets\n", + "Predicting pixel #358 in paris for 2017-01-25 with hsma\n", + "Predicting pixel #359 in paris for 2017-01-31 with hets\n", + "Predicting pixel #360 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #361 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #362 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #363 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #364 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #365 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #366 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #367 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #368 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #369 in paris for 2017-01-31 with hets\n", + "Predicting pixel #370 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #371 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #372 in paris for 2017-01-31 with hets\n", + "Predicting pixel #373 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #374 in paris for 2017-01-31 with hets\n", + "Predicting pixel #375 in paris for 2016-06-02 with trivial\n", + "Predicting pixel #376 in paris for 2017-01-31 with hets\n", + "Predicting pixel #377 in paris for 2017-01-31 with hets\n", + "Predicting pixel #378 in paris for 2017-01-31 with hets\n", + "Predicting pixel #379 in paris for 2017-01-28 with trivial\n", + "Predicting pixel #380 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #381 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #382 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #383 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #384 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #385 in paris for 2017-01-29 with trivial\n", + "Predicting pixel #386 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #387 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #388 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #389 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #390 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #391 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #392 in paris for 2017-01-17 with trivial\n", + "Predicting pixel #393 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #394 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #395 in paris for 2017-01-30 with trivial\n", + "Predicting pixel #396 in paris for 2017-01-31 with hets\n", + "Predicting pixel #397 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #398 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #399 in paris for 2017-01-31 with hets\n", + "Predicting pixel #400 in paris for 2017-01-29 with trivial\n", + "Predicting pixel #401 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #402 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #403 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #404 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #405 in paris for 2017-01-31 with hets\n", + "Predicting pixel #406 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #407 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #410 in paris for 2017-01-28 with trivial\n", + "Predicting pixel #411 in paris for 2017-01-31 with hets\n", + "Predicting pixel #412 in paris for 2017-01-30 with trivial\n", + "Predicting pixel #413 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #414 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #415 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #416 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #417 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #418 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #419 in paris for 2016-06-08 with trivial\n", + "Predicting pixel #420 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #421 in paris for 2017-01-30 with hsma\n", + "Predicting pixel #422 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #423 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #424 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #425 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #426 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #427 in paris for 2017-01-28 with trivial\n", + "Predicting pixel #428 in paris for 2017-01-26 with trivial\n", + "Predicting pixel #429 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #430 in paris for 2016-08-01 with trivial\n", + "Predicting pixel #431 in paris for 2016-07-03 with trivial\n", + "Predicting pixel #432 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #433 in paris for 2016-11-11 with trivial\n", + "Predicting pixel #434 in paris for 2017-01-28 with trivial\n" + ] + } + ], + "source": [ + "!umd tactical-forecasts paris 1000 60 7" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Parameters: city=\"paris\", grid.side_length=1414, time_step=60, train_horizon=7\n", + "Predicting pixel #435 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #436 in paris for 2017-01-31 with hets\n", + "Predicting pixel #437 in paris for 2017-01-31 with hets\n", + "Predicting pixel #438 in paris for 2017-01-31 with hets\n", + "Predicting pixel #439 in paris for 2017-01-31 with hets\n", + "Predicting pixel #440 in paris for 2017-01-31 with hets\n", + "Predicting pixel #441 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #442 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #443 in paris for 2017-01-31 with hets\n", + "Predicting pixel #444 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #445 in paris for 2017-01-31 with hets\n", + "Predicting pixel #446 in paris for 2017-01-31 with hets\n", + "Predicting pixel #447 in paris for 2017-01-31 with hets\n", + "Predicting pixel #448 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #449 in paris for 2017-01-31 with hets\n", + "Predicting pixel #450 in paris for 2017-01-31 with hets\n", + "Predicting pixel #451 in paris for 2017-01-31 with hets\n", + "Predicting pixel #452 in paris for 2016-09-08 with trivial\n", + "Predicting pixel #453 in paris for 2017-01-31 with hets\n", + "Predicting pixel #454 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #455 in paris for 2017-01-31 with hets\n", + "Predicting pixel #456 in paris for 2017-01-31 with hets\n", + "Predicting pixel #457 in paris for 2017-01-31 with hets\n", + "Predicting pixel #458 in paris for 2017-01-31 with hets\n", + "Predicting pixel #459 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #460 in paris for 2017-01-31 with hets\n", + "Predicting pixel #461 in paris for 2017-01-31 with hets\n", + "Predicting pixel #462 in paris for 2017-01-31 with hets\n", + "Predicting pixel #463 in paris for 2017-01-31 with hets\n", + "Predicting pixel #464 in paris for 2017-01-31 with hets\n", + "Predicting pixel #465 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #466 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #467 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #468 in paris for 2017-01-31 with hets\n", + "Predicting pixel #469 in paris for 2017-01-31 with hets\n", + "Predicting pixel #470 in paris for 2016-06-02 with trivial\n", + "Predicting pixel #471 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #472 in paris for 2017-01-31 with hets\n", + "Predicting pixel #473 in paris for 2017-01-31 with hets\n", + "Predicting pixel #474 in paris for 2017-01-31 with hets\n", + "Predicting pixel #475 in paris for 2017-01-31 with hets\n", + "Predicting pixel #476 in paris for 2017-01-31 with hets\n", + "Predicting pixel #477 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #478 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #479 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #480 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #481 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #482 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #483 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #484 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #485 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #486 in paris for 2017-01-28 with trivial\n", + "Predicting pixel #487 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #488 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #489 in paris for 2017-01-31 with hets\n", + "Predicting pixel #490 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #491 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #492 in paris for 2017-01-30 with trivial\n", + "Predicting pixel #494 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #495 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #496 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #497 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #498 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #499 in paris for 2016-05-09 with trivial\n", + "Predicting pixel #500 in paris for 2017-01-28 with trivial\n" + ] + } + ], + "source": [ + "!umd tactical-forecasts paris 1414 60 7" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Parameters: city=\"paris\", grid.side_length=707, time_step=60, train_horizon=8\n", + "Predicting pixel #125 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #126 in paris for 2017-01-31 with hets\n", + "Predicting pixel #127 in paris for 2017-01-31 with hets\n", + "Predicting pixel #128 in paris for 2017-01-31 with hets\n", + "Predicting pixel #129 in paris for 2017-01-31 with hets\n", + "Predicting pixel #130 in paris for 2017-01-31 with hets\n", + "Predicting pixel #131 in paris for 2017-01-31 with hets\n", + "Predicting pixel #132 in paris for 2017-01-31 with hets\n", + "Predicting pixel #133 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #134 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #135 in paris for 2017-01-31 with hets\n", + "Predicting pixel #136 in paris for 2017-01-31 with hets\n", + "Predicting pixel #137 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #138 in paris for 2017-01-31 with hets\n", + "Predicting pixel #139 in paris for 2017-01-31 with hets\n", + "Predicting pixel #140 in paris for 2017-01-31 with hets\n", + "Predicting pixel #141 in paris for 2017-01-31 with hets\n", + "Predicting pixel #142 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #143 in paris for 2017-01-31 with hets\n", + "Predicting pixel #144 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #145 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #146 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #147 in paris for 2017-01-31 with hets\n", + "Predicting pixel #148 in paris for 2017-01-31 with hets\n", + "Predicting pixel #149 in paris for 2017-01-31 with hets\n", + "Predicting pixel #150 in paris for 2016-09-08 with trivial\n", + "Predicting pixel #151 in paris for 2017-01-31 with hets\n", + "Predicting pixel #152 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #153 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #154 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #155 in paris for 2017-01-31 with hets\n", + "Predicting pixel #156 in paris for 2017-01-31 with hets\n", + "Predicting pixel #157 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #158 in paris for 2017-01-31 with hets\n", + "Predicting pixel #159 in paris for 2017-01-31 with hets\n", + "Predicting pixel #160 in paris for 2017-01-31 with hets\n", + "Predicting pixel #161 in paris for 2017-01-08 with trivial\n", + "Predicting pixel #162 in paris for 2017-01-31 with hets\n", + "Predicting pixel #163 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #164 in paris for 2017-01-24 with trivial\n", + "Predicting pixel #165 in paris for 2017-01-25 with hsma\n", + "Predicting pixel #166 in paris for 2017-01-31 with hets\n", + "Predicting pixel #167 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #168 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #169 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #170 in paris for 2017-01-30 with trivial\n", + "Predicting pixel #171 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #172 in paris for 2017-01-19 with trivial\n", + "Predicting pixel #173 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #174 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #175 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #176 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #177 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #178 in paris for 2017-01-31 with hets\n", + "Predicting pixel #179 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #180 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #181 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #182 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #183 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #184 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #185 in paris for 2017-01-31 with hets\n", + "Predicting pixel #186 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #187 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #188 in paris for 2017-01-31 with hets\n", + "Predicting pixel #189 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #190 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #191 in paris for 2016-06-02 with trivial\n", + "Predicting pixel #192 in paris for 2016-06-18 with trivial\n", + "Predicting pixel #193 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #194 in paris for 2017-01-31 with hets\n", + "Predicting pixel #195 in paris for 2017-01-31 with hets\n", + "Predicting pixel #196 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #197 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #198 in paris for 2017-01-31 with hets\n", + "Predicting pixel #199 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #200 in paris for 2017-01-31 with hets\n", + "Predicting pixel #201 in paris for 2017-01-28 with trivial\n", + "Predicting pixel #202 in paris for 2017-01-31 with hets\n", + "Predicting pixel #203 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #204 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #205 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #206 in paris for 2017-01-20 with trivial\n", + "Predicting pixel #207 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #208 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #209 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #210 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #211 in paris for 2017-01-31 with hets\n", + "Predicting pixel #212 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #213 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #214 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #215 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #216 in paris for 2017-01-31 with hets\n", + "Predicting pixel #217 in paris for 2017-01-27 with trivial\n", + "Predicting pixel #218 in paris for 2017-01-30 with trivial\n", + "Predicting pixel #219 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #220 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #221 in paris for 2016-08-23 with trivial\n", + "Predicting pixel #222 in paris for 2017-01-27 with trivial\n", + "Predicting pixel #223 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #224 in paris for 2017-01-31 with hets\n", + "Predicting pixel #225 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #226 in paris for 2017-01-22 with trivial\n", + "Predicting pixel #227 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #228 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #230 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #231 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #232 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #233 in paris for 2017-01-29 with trivial\n", + "Predicting pixel #234 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #235 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #236 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #237 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #238 in paris for 2017-01-30 with trivial\n", + "Predicting pixel #239 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #240 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #241 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #242 in paris for 2017-01-31 with hets\n", + "Predicting pixel #244 in paris for 2017-01-30 with trivial\n", + "Predicting pixel #247 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #248 in paris for 2017-01-31 with hets\n", + "Predicting pixel #249 in paris for 2017-01-28 with trivial\n", + "Predicting pixel #250 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #251 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #252 in paris for 2017-01-20 with trivial\n", + "Predicting pixel #253 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #254 in paris for 2017-01-30 with trivial\n", + "Predicting pixel #255 in paris for 2017-01-30 with hsma\n", + "Predicting pixel #256 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #257 in paris for 2017-01-30 with trivial\n", + "Predicting pixel #258 in paris for 2017-01-28 with trivial\n", + "Predicting pixel #259 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #260 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #261 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #262 in paris for 2017-01-30 with trivial\n", + "Predicting pixel #263 in paris for 2017-01-31 with hets\n", + "Predicting pixel #264 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #265 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #266 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #267 in paris for 2017-01-30 with trivial\n", + "Predicting pixel #268 in paris for 2017-01-30 with hsma\n", + "Predicting pixel #269 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #270 in paris for 2016-12-11 with trivial\n", + "Predicting pixel #271 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #272 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #273 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #274 in paris for 2016-12-09 with trivial\n", + "Predicting pixel #275 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #276 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #277 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #278 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #279 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #280 in paris for 2017-01-30 with trivial\n", + "Predicting pixel #281 in paris for 2017-01-20 with trivial\n", + "Predicting pixel #282 in paris for 2017-01-28 with trivial\n", + "Predicting pixel #283 in paris for 2017-01-27 with trivial\n", + "Predicting pixel #284 in paris for 2017-01-30 with hsma\n", + "Predicting pixel #285 in paris for 2017-01-30 with trivial\n", + "Predicting pixel #286 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #287 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #288 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #289 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #291 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #292 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #293 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #294 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #295 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #296 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #297 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #298 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #299 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #300 in paris for 2017-01-28 with trivial\n", + "Predicting pixel #301 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #302 in paris for 2017-01-29 with trivial\n", + "Predicting pixel #303 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #304 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #305 in paris for 2016-12-01 with trivial\n", + "Predicting pixel #306 in paris for 2017-01-26 with trivial\n", + "Predicting pixel #307 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #308 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #309 in paris for 2017-01-28 with trivial\n", + "Predicting pixel #310 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #311 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #312 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #313 in paris for 2016-05-09 with trivial\n", + "Predicting pixel #314 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #316 in paris for 2017-01-06 with trivial\n", + "Predicting pixel #317 in paris for 2016-07-03 with trivial\n", + "Predicting pixel #318 in paris for 2016-06-13 with trivial\n", + "Predicting pixel #319 in paris for 2016-11-11 with trivial\n", + "Predicting pixel #320 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #321 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #322 in paris for 2017-01-28 with trivial\n" + ] + } + ], + "source": [ + "!umd tactical-forecasts paris 707 60 8" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Parameters: city=\"paris\", grid.side_length=1000, time_step=60, train_horizon=8\n", + "Predicting pixel #324 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #325 in paris for 2017-01-31 with hets\n", + "Predicting pixel #326 in paris for 2017-01-31 with hets\n", + "Predicting pixel #327 in paris for 2017-01-31 with hets\n", + "Predicting pixel #328 in paris for 2017-01-31 with hets\n", + "Predicting pixel #329 in paris for 2017-01-31 with hets\n", + "Predicting pixel #330 in paris for 2017-01-31 with hets\n", + "Predicting pixel #331 in paris for 2017-01-31 with hets\n", + "Predicting pixel #332 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #333 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #334 in paris for 2017-01-31 with hets\n", + "Predicting pixel #335 in paris for 2017-01-31 with hets\n", + "Predicting pixel #336 in paris for 2017-01-31 with hets\n", + "Predicting pixel #337 in paris for 2017-01-31 with hets\n", + "Predicting pixel #338 in paris for 2017-01-31 with hets\n", + "Predicting pixel #339 in paris for 2017-01-31 with hets\n", + "Predicting pixel #340 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #341 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #342 in paris for 2017-01-31 with hets\n", + "Predicting pixel #343 in paris for 2017-01-31 with hets\n", + "Predicting pixel #344 in paris for 2017-01-31 with hets\n", + "Predicting pixel #345 in paris for 2017-01-31 with hets\n", + "Predicting pixel #346 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #347 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #348 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #349 in paris for 2017-01-31 with hets\n", + "Predicting pixel #350 in paris for 2017-01-31 with hets\n", + "Predicting pixel #351 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #352 in paris for 2017-01-31 with hets\n", + "Predicting pixel #353 in paris for 2017-01-31 with hets\n", + "Predicting pixel #354 in paris for 2017-01-31 with hets\n", + "Predicting pixel #355 in paris for 2017-01-08 with trivial\n", + "Predicting pixel #356 in paris for 2017-01-31 with hets\n", + "Predicting pixel #357 in paris for 2017-01-31 with hets\n", + "Predicting pixel #358 in paris for 2017-01-25 with hsma\n", + "Predicting pixel #359 in paris for 2017-01-31 with hets\n", + "Predicting pixel #360 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #361 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #362 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #363 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #364 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #365 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #366 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #367 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #368 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #369 in paris for 2017-01-31 with hets\n", + "Predicting pixel #370 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #371 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #372 in paris for 2017-01-31 with hets\n", + "Predicting pixel #373 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #374 in paris for 2017-01-31 with hets\n", + "Predicting pixel #375 in paris for 2016-06-02 with trivial\n", + "Predicting pixel #376 in paris for 2017-01-31 with hets\n", + "Predicting pixel #377 in paris for 2017-01-31 with hets\n", + "Predicting pixel #378 in paris for 2017-01-31 with hets\n", + "Predicting pixel #379 in paris for 2017-01-28 with trivial\n", + "Predicting pixel #380 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #381 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #382 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #383 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #384 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #385 in paris for 2017-01-29 with trivial\n", + "Predicting pixel #386 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #387 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #388 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #389 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #390 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #391 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #392 in paris for 2017-01-17 with trivial\n", + "Predicting pixel #393 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #394 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #395 in paris for 2017-01-30 with trivial\n", + "Predicting pixel #396 in paris for 2017-01-31 with hets\n", + "Predicting pixel #397 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #398 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #399 in paris for 2017-01-31 with hets\n", + "Predicting pixel #400 in paris for 2017-01-29 with trivial\n", + "Predicting pixel #401 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #402 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #403 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #404 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #405 in paris for 2017-01-31 with hets\n", + "Predicting pixel #406 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #407 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #410 in paris for 2017-01-28 with trivial\n", + "Predicting pixel #411 in paris for 2017-01-31 with hets\n", + "Predicting pixel #412 in paris for 2017-01-30 with trivial\n", + "Predicting pixel #413 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #414 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #415 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #416 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #417 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #418 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #419 in paris for 2016-06-08 with trivial\n", + "Predicting pixel #420 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #421 in paris for 2017-01-30 with hsma\n", + "Predicting pixel #422 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #423 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #424 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #425 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #426 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #427 in paris for 2017-01-28 with trivial\n", + "Predicting pixel #428 in paris for 2017-01-26 with trivial\n", + "Predicting pixel #429 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #430 in paris for 2016-08-01 with trivial\n", + "Predicting pixel #431 in paris for 2016-07-03 with trivial\n", + "Predicting pixel #432 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #433 in paris for 2016-11-11 with trivial\n", + "Predicting pixel #434 in paris for 2017-01-28 with trivial\n" + ] + } + ], + "source": [ + "!umd tactical-forecasts paris 1000 60 8" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Parameters: city=\"paris\", grid.side_length=1414, time_step=60, train_horizon=8\n", + "Predicting pixel #435 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #436 in paris for 2017-01-31 with hets\n", + "Predicting pixel #437 in paris for 2017-01-31 with hets\n", + "Predicting pixel #438 in paris for 2017-01-31 with hets\n", + "Predicting pixel #439 in paris for 2017-01-31 with hets\n", + "Predicting pixel #440 in paris for 2017-01-31 with hets\n", + "Predicting pixel #441 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #442 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #443 in paris for 2017-01-31 with hets\n", + "Predicting pixel #444 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #445 in paris for 2017-01-31 with hets\n", + "Predicting pixel #446 in paris for 2017-01-31 with hets\n", + "Predicting pixel #447 in paris for 2017-01-31 with hets\n", + "Predicting pixel #448 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #449 in paris for 2017-01-31 with hets\n", + "Predicting pixel #450 in paris for 2017-01-31 with hets\n", + "Predicting pixel #451 in paris for 2017-01-31 with hets\n", + "Predicting pixel #452 in paris for 2016-09-08 with trivial\n", + "Predicting pixel #453 in paris for 2017-01-31 with hets\n", + "Predicting pixel #454 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #455 in paris for 2017-01-31 with hets\n", + "Predicting pixel #456 in paris for 2017-01-31 with hets\n", + "Predicting pixel #457 in paris for 2017-01-31 with hets\n", + "Predicting pixel #458 in paris for 2017-01-31 with hets\n", + "Predicting pixel #459 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #460 in paris for 2017-01-31 with hets\n", + "Predicting pixel #461 in paris for 2017-01-31 with hets\n", + "Predicting pixel #462 in paris for 2017-01-31 with hets\n", + "Predicting pixel #463 in paris for 2017-01-31 with hets\n", + "Predicting pixel #464 in paris for 2017-01-31 with hets\n", + "Predicting pixel #465 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #466 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #467 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #468 in paris for 2017-01-31 with hets\n", + "Predicting pixel #469 in paris for 2017-01-31 with hets\n", + "Predicting pixel #470 in paris for 2016-06-02 with trivial\n", + "Predicting pixel #471 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #472 in paris for 2017-01-31 with hets\n", + "Predicting pixel #473 in paris for 2017-01-31 with hets\n", + "Predicting pixel #474 in paris for 2017-01-31 with hets\n", + "Predicting pixel #475 in paris for 2017-01-31 with hets\n", + "Predicting pixel #476 in paris for 2017-01-31 with hets\n", + "Predicting pixel #477 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #478 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #479 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #480 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #481 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #482 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #483 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #484 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #485 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #486 in paris for 2017-01-28 with trivial\n", + "Predicting pixel #487 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #488 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #489 in paris for 2017-01-31 with hets\n", + "Predicting pixel #490 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #491 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #492 in paris for 2017-01-30 with trivial\n", + "Predicting pixel #494 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #495 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #496 in paris for 2017-01-31 with hsma\n", + "Predicting pixel #497 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #498 in paris for 2017-01-31 with trivial\n", + "Predicting pixel #499 in paris for 2016-05-09 with trivial\n", + "Predicting pixel #500 in paris for 2017-01-28 with trivial\n" + ] + } + ], + "source": [ + "!umd tactical-forecasts paris 1414 60 8" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "%cd -q research" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.6" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/research/07_visualizing_demand_forecasting.ipynb b/research/07_visualizing_demand_forecasting.ipynb new file mode 100644 index 0000000..7bc2c2b --- /dev/null +++ b/research/07_visualizing_demand_forecasting.ipynb @@ -0,0 +1,1940 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Tactical Demand Forecasting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The purpose of this notebook is to visualize the time series generation process, the STL decomposition of time series, and a couple of exemplary demand forecasts using different forecasting methods." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[32murban-meal-delivery\u001b[0m, version \u001b[34m0.3.0\u001b[0m\n" + ] + } + ], + "source": [ + "!umd --version" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Imports" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import datetime as dt\n", + "import matplotlib\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "from urban_meal_delivery import config, db\n", + "from urban_meal_delivery.forecasts import methods, models, timify\n", + "from urban_meal_delivery.forecasts.methods import decomposition" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext lab_black" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "matplotlib.style.use(\"ggplot\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Settings" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Choose `\"Bordeaux\"`, `\"Lyon\"`, or `\"Paris\"`." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "city_name = \"Paris\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Choose the `side_length` of the `grid` and the `time_step`. According to the corresponding research paper \"Real-time Demand Forecasting for an Urban Delivery Platform\", we mainly work with `side_length=1000` and `time_step=60`." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[707, 1000, 1414]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "config.GRID_SIDE_LENGTHS # possible values" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "side_length = 1000" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[60]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "config.TIME_STEPS # possible values" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "time_step = 60" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Load the Data" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "city = db.session.query(db.City).filter_by(name=city_name).one()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "city" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "grid = (\n", + " db.session.query(db.Grid)\n", + " .filter_by(city=city)\n", + " .filter_by(side_length=side_length)\n", + " .one()\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "grid" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `OrderHistory` class abstracts away the communcation with the database when it comes to generating time series out of the `db.Order` model's table." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "orders = timify.OrderHistory(grid=grid, time_step=time_step)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pixel Visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Choose a `pixel` from the `grid` for which the order time series are generated." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "111" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(grid.pixels)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "pixel = grid.pixels[15]" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
Make this Notebook Trusted to load map: File -> Trust Notebook
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pixel.clear_map().draw(order_counts=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "24" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(pixel.restaurants)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "datetime.datetime(2016, 3, 8, 12, 0)" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "orders.first_order_at(pixel.id)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "datetime.datetime(2017, 1, 31, 22, 0)" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "orders.last_order_at(pixel.id)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Time Series Generation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Choose the `train_horizon` between `3` and `8` weeks (= length of the historic order time series used to train a prediction model) and the day for which the prediction is to be made (= `predict_at`)." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "train_horizon = 8" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "predict_at = dt.datetime(2016, 9, 15, 20)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There are three kinds of time series used for tactical forecasting: \"horizontal\", \"vertical\", and \"real-time\"." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "start_at\n", + "2016-09-10 20:00:00 10\n", + "2016-09-11 20:00:00 21\n", + "2016-09-12 20:00:00 6\n", + "2016-09-13 20:00:00 10\n", + "2016-09-14 20:00:00 12\n", + "Name: n_orders, dtype: int64" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "orders.make_horizontal_ts(pixel.id, predict_at, train_horizon)[0].tail(5)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "start_at\n", + "2016-09-14 18:00:00 1\n", + "2016-09-14 19:00:00 9\n", + "2016-09-14 20:00:00 12\n", + "2016-09-14 21:00:00 11\n", + "2016-09-14 22:00:00 0\n", + "Name: n_orders, dtype: int64" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "orders.make_vertical_ts(pixel.id, predict_at.date(), train_horizon)[0].tail(5)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "start_at\n", + "2016-09-15 15:00:00 0\n", + "2016-09-15 16:00:00 0\n", + "2016-09-15 17:00:00 0\n", + "2016-09-15 18:00:00 0\n", + "2016-09-15 19:00:00 7\n", + "Name: n_orders, dtype: int64" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "orders.make_realtime_ts(pixel.id, predict_at, train_horizon)[0].tail(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Time Series Visualization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Generate a vertical `history` time series used to predict the `actuals`. The latter are the order counts that are predicted by the forecasting model below." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "history, frequency, actuals = orders.make_vertical_ts(\n", + " pixel.id, predict_at.date(), train_horizon\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEPCAYAAABP1MOPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABYFklEQVR4nO2deXgURfrHvzOZZJKQmxACEcJ9yZmACIgiBBYVBRFQkUvcxYtlxV3P3yquLoogAh6IKyrLiggoIIIIAkJADpE7hBvCESAhJyEkk8xM//6I1XT3VE9Pd8/RYerzPD6Gmq6qt7qr6633rbeqTRzHcWAwGAxG0GIOtAAMBoPBCCxMETAYDEaQwxQBg8FgBDlMETAYDEaQwxQBg8FgBDlMETAYDEaQYwm0AFq4ePGi7jISExNRUFDgBWmMhVHbxeRSh1Hl0oNR2xQscjVs2FD2N2YRMBgMRpDDFAGDwWAEOUwRMBgMRpDDFAGDwWAEOX5ZLC4oKMDHH3+MkpISmEwmZGRk4N5778XSpUuxceNGxMTEAAAeffRRpKWl+UMkBoPBYPyBXxRBSEgIRo8ejWbNmqGiogIvv/wyOnbsCAC477778MADD/hDDAaDwWBQ8ItrKD4+Hs2aNQMAREREICUlBUVFRf6omsFg3KQcPXoUmzZtCrQYNwUmfx9DnZ+fjylTpmDmzJlYvXo1tmzZgoiICDRr1gxjxoxBVFSUS54NGzZgw4YNAIBp06ahqqpKtxwWiwV2u113OUbDqO1icqnDqHLpwdttslqtAACbzaarHKPea2/LFRYWJvubXxVBZWUlpkyZgqFDh6J79+4oKSnh1weWLFmC4uJiPPPMM4rlsA1l8hi1XUwudRhVLj14u00pKSkAgNzcXF3lGPVe35Qbyux2O2bOnInevXuje/fuAIC4uDiYzWaYzWb069cPp06d8pc4DAaDwfgDvygCjuMwb948pKSkYNCgQXx6cXEx//dvv/2GRo0a+UMcBoPBYAjwS9TQsWPHkJmZicaNG+OFF14AUBMq+uuvvyInJwcmkwn16tXDhAkT/CEOg8FgMAT4RRG0adMGS5cudUlnewYYDAYj8LCdxQwGgxHkMEXAYDAYQQ5TBAwGgxHkMEXAYDAYQQ5TBAwGgxHkMEXAYDAYQQ5TBAwGgxHkMEXAYDAYQQ5TBAwGgxHkMEXAYDAYQQ5TBAwGgxHkMEXAYDAYQQ5TBAwGgxHkMEXAYDAYQQ5TBAwGgxHkMEXAYDAYQQ5TBAwGgxHkMEXAYDAYQQ5TBAwGgxHkMEXAYDAYQQ5TBAwGgxHkMEXAYDAYQQ5TBAwGg+FFUlJS8PTTTwdaDFUwRcBgMBheZtWqVYEWQRVMETAYDEaQwxQBg8FgBDlMETAYDEaQY/FHJQUFBfj4449RUlICk8mEjIwM3Hvvvbh27RpmzZqFK1euoF69epg8eTKioqL8IRKDwWAw/sAviiAkJASjR49Gs2bNUFFRgZdffhkdO3bE5s2b0aFDBwwZMgQrV67EypUrMWrUKH+IxGAwGIw/8ItrKD4+Hs2aNQMAREREICUlBUVFRdi9ezfuuusuAMBdd92F3bt3+0McBoPBYAjwi0UgJD8/H2fOnEGLFi1QWlqK+Ph4AEBcXBxKS0upeTZs2IANGzYAAKZNm4bExETdclgsFq+UYzSM2i4mlzqMKpcefNUmvWUGm1zUuvxSyx9UVlZi5syZGDduHCIjI0W/mUwmmEwmar6MjAxkZGTw/y4oKNAtS2JiolfKMRpGbReTSx1GlUsPvmqT3jKDRa6GDRvK/ua3qCG73Y6ZM2eid+/e6N69OwAgNjYWxcXFAIDi4mLExMT4SxwGg8Fg/IFfFAHHcZg3bx5SUlIwaNAgPr1r167YsmULAGDLli3o1q2bP8RhMBgMhgC/uIaOHTuGzMxMNG7cGC+88AIA4NFHH8WQIUMwa9YsbNq0iQ8fZTAYDIZ/8YsiaNOmDZYuXUr97fXXX/eHCAwGg8GQge0sDkI2bNiAiRMnBloMBoNhEJgiCELGjh2LFStWBFoMBoNhEJgiYDAYjCCHKQIGg8EIcpgiYDAYjCCHKQIGg8EIcpgiYDAYjCCHKQIGg8EIcpgiYDAYjCCHKYIghuO4QIvAYDAMAFMEQQxTBAwGA2CKIKhhioDBYABMEQQ1TBEwGAyAKYKghikCBoMBMEVgGHJzc7FkyRK/1skUgbHgOA4LFixAUVFRoEUJGIWFhfjvf/8baDGCDqYIDMJDDz2E559/HpWVlX6rkykCY5GdnY3/+7//w6RJkwItSsB48skn8eqrr+L06dOBFiWoYIrAIFy5csXvdTJFYCyqqqoAgP+OdzBy6dIlAIDJZAqwJMEFUwQGIRCDMlMExoI9D/AWcVhYWIAlCS6YIjAYbCYUvBBFEMx9gFhFISEhAZYkuGCKwCAwi4DBuKEIWN/0L0wRGAx/vgDsZTMW7HkwRRAomCIwGEwRMJhriPVNKVWOKvx45keflc8UgUFgHZ/B+gBDjum/T8dfNvwFmRcyfVI+UwRBDBt4jEkwWwQE1jfFXLh2AQBQbPNNaDFTBAaDuYYYTBGwvulvmCIwCCxqiMGexw2cTmegRdBEbX2GFn9VNHfuXOzduxexsbGYOXMmAGDp0qXYuHEjYmJiAACPPvoo0tLS/CWSIWEWAYNRe/tmbZXbb4qgT58+GDhwID7++GNR+n333YcHHnjAX2IYFmYRMNjzuEFtvRe1VW6/uYbatWuHqKgof1VXawmkRXDo0CHY7Xa/1c8Qw3YW30DPe7B///5aOyAHCr9ZBHKsW7cOmZmZaNasGcaMGUNVFhs2bMCGDRsAANOmTUNiYqLuei0Wi1fK8TYJCQm8q0wLatqVkJDAX3vgwAEMHDgQL7/8Mv71r39prt8bcvkTI8kVGxsLoOacHSPJ5S3UtCkuLs7ja4XXrVixAo888gjmz5+P0aNHe10uJYQTKb1lCuWyWq0AgOjoaJ/0i4AqggEDBmDYsGEAgCVLlmDhwoV45plnXK7LyMhARkYG/++CggLddScmJnqlHG9BZjCFhYX8photqGlXYWEh/3dWVhYAYM+ePT65L0a73wQjyVVSUgIAqK6uht1uN4xc3kLNvS4qKvL4WuF1+/fv5/9/zz33eF0uJaqrq6lyaUEol81mAwCUlZVpLrdhw4ayvwU0aiguLg5msxlmsxn9+vXDqVOnAimOIQiUa4h0tNDQUL/Vz6DDXEMMfxNQRSA8d/23335Do0aNAihNYAn0YjGxQsLDw/0uB6MG5te+gd57Eah7WVufod9cQ7Nnz0Z2djbKysrw1FNPYcSIETh8+DBycnJgMplQr149TJgwwV/iGJZAWQTEpGXnwAcOtlh8A63vQaDvHVMECjz33HMuaX379vVX9bUG5hpiBHowCyQmkwkcx9XaAbW2ys12Fhuc0tJSVFRU+KRsmmuIWQS1A47jkJ+fH2gxfIbRXEMOh0MUXHGzwRSBwZB24Hbt2mHgwIE+r4u5hmoXS5cuRZcuXXDgwIFAi+JViDVkNNfQlClT0LFjR5SXl7u9jlkEDK9A60gnT570W12MwKHmefz6668AgGPHjvlKnIBitL65cuVKADdcqDcbTBEYhEBHDQWzX9ooqFksNpvNojw3G0ZzDREFYLG4X1b11fMwwbfvJ1MEDBE368BSm1CjCGrrKZ1yGNU1dLNaAgSmCIIYmkXAFEHgUHPvb1ZFYFQcDgcA5Wfkq/eHg2/fS6YIDEagwkeZa8g4BLNryOgTkkApAl/DFIHBCHRHCnT9wYyae08GzJvVImD90L8wRRDEMNeQd/n111+RkpKCgwcPaspPBnVPLAJvKIKUlBQ8++yzmvN7yokTJ5CSkoI1a9YoXmv0fsgsAoZfYF8oq72Qo9K3b9+uKb8aReAt1xAJi/Ql5ETQb7/91uM8Rosa8rTc2vpOMUUQxDCLwLv4c/AKCQkBUDtcQ2STYmVlpeK1tb0f1la5mSIwGIFeLK6tHflmwN+uIX9BPqqi5jsbesNHWT9WB1MEBoO5hmov/oy8qk0DHrEIPInFN+o+AkKgXENsQxnDZzCLwFhoWSOoDRYBUQT+sAh8DVsjYPiFQLuGGIEjEIvF/oC4hvxhEQSa2io3UwQ+JDs7GykpKaoOjQtUR6rtL6AR8OdisT8tgs2bNyMlJQVFRUW6ypEqgr/+9a8YOnSorjL9jfAZVVZWIiUlRVU0lCc8++yzGDlypLhetrO49rJixQoAwE8//RRgSegw15Bv0GpdGVURzJs3DwCQlZWlKT9pl7R9y5cvx65du9zm0Yo/wkfJ9wneffddr9axcuVKbNmyxatlKsEUgQ/RMrj6YyBmg74x0fI8asMagZZPcBq1bwrlornyjCq3EkwR+BC9A66vOxWzCIyFFougNkSZaTk6w2iTJ3f1kmdRm6n9LbjJEHZqfyoCf9XJkMeoikBvIIEWGY3aD5lFwFCN3lm2r8x+d3LV1o5sJPzh3w5E+Kjefqxmo5xRLQLaRI0pAoZb9O7+9PVLzhRB7UWvItDirtFKINYI/LFY7E9FwDaU+Ym33noLL774oub88+fPx0svvSRK0/IC0UxPTzh9+jT69++vKsTPk047ffp0XVERb7zxBj744APN+Wsj/ogaInWQD6aoxRuTjOnTp2PGjBmitKVLl+Lpp58WpeldI8jLy8OgQYOQmZmpKb8cW7duxbBhw3TfQ1/twfHnpIwpgj+YN28eFi1apDn/lClT8NVXX4nS/Olb/fDDD5GdnY1Vq1YpXqvGNTRnzhxdA/lnn33m9fC6m5VAzNL15JkzZw5mz54tSps8ebJLH9Rb14kTJ7Bv3z588sknHsnlKRMnTsSOHTtQUFCgSS6CcLHYm4M3UwQ3CVpcQ1otgkAMDAzf4I9nEYi+pXWNgKRVV1d7nN8f+HqxmCmCmwR/uoZo+dVcyxRB4PFndE0gFpmNOlnR+84wRcDwCH+8rGpeMhY15Bv8ucBpBNeQL/LR+ib5W+59CNRJpb7eRyC6Bz4+YsLi09IFzJ07F3v37kVsbCxmzpwJALh27RpmzZqFK1euoF69epg8eTKioqL8JZLP0RsKF4hZG1ME+vHHYrFealPUkJIi0Ive95OFj6qgT58+ePXVV0VpK1euRIcOHfDBBx+gQ4cOfvlsnj/RqwgCsSOztnbkmwl/PAN/Pme9+wh8NUnxluuWuYZU0K5dO5fZ/u7du3HXXXcBAO666y7s3r3bX+L4FekD/fDDD/mDvNyhxTUkrWvt2rVYvHixolw3gwLIzMzE559/HmgxAnqkyMcff4ydO3eK0vbs2YNZs2aJ0ny9/qQ3Hy2PGteQP9cTtFpMDocDr732Gs6fP+9xXb7Cb64hGqWlpYiPjwcAxMXFobS0lHrdhg0b+A+DT5s2DYmJibrrtlgs1HL0li3MTxRfZGSkKH3atGkAgH/+858u+ePi4vhrhR/yUJIrPDwcQI2/Unjtn//8ZwA1R/5KiY2N5a+NjIwEUHN2vC/ui9z99iaPPvooALjs53CHN+Ui97BOnTqayiT9JTQ0VFGuOnXqAAAiIiJE17399tsAxEc+P/DAAwCAqVOn8mkWy41XX0lW8mGZmJgYj/uGMC06OhpAzYCpdC3xt0dHR/PpJH9ISIhs/tDQUAA37qH0vtAgdcmVSyM+Pp6/NjY2FkDN8yJp169fp7aLxq5du/DFF18gOzubetqosA+EW2veb+F98SYBVQRCTCaTrGbNyMhARkYG/281cb9yJCYmUsvRW7YwP+kU5eXlHtdVXFzMp1+5csVjuciHwR0Oh2Jd5D4L6yovLwcAVFRU+OS+2O12rzw3T1BTj1w/0EJFRQUA+eetxNWrVwHUhEkq3S/St9Q8r7y8PP6j9yUlJW6vFULCNq9evepxXcI00i6O4xSvJbPg0tJSPp1MEKurq2XzE0Wg1I+FkLrkyqVRVFSEmJgYADXvD1BjqZD85GhqabtokHbZbDbqtdXV1XwdRLGXlZVp7q8NGzaU/S2gUUOxsbF8Q4uLi/kbfLOg129vt9u9LpNcXTeDayjQeOse+upZCC3MQLiG9J415O2oIaVyleoi+YRRQ2rKUjom5KZcI6DRtWtX3iTasmULunXrFkhxvI7exSg1ioAtFhsHo332kww4xGr0Bmr6iZajGLRGDWm593oVgbBOLet6RlAEfnMNzZ49G9nZ2SgrK8NTTz2FESNGYMiQIZg1axY2bdrEh4/eTOg9fVTrGShK+DMyg+E5vtqHEBYWhsrKStG6gd5QTL0TDi11GSF8lJZPqyIw0nen/aYInnvuOWr666+/7i8R/E4gXEOBjFhheAdvTxxCQ0O9ogi0uhL1Rg0pTVK0Wra+OAJGS8i3ESyCoNtZXF1djTlz5ohW932Nt1/s5cuXIzs7W5Tmz53FJSUlmDt3rsu1W7du9eiESAYduXu/c+dObNq0STGP3MSBRP0IFYHeDWVaBk+9+wh8ZRFIy/3pp5/w+++/U6/15hETShPFm3JnsVFYtmwZpk+fDo7jZK0Ub6HXNST3YpNQ0NzcXG2C/YFWRfDKK69g1apV6NChA3r37s2nP/LII16Rq7biK9fOQw89BEB8X2mDqtzEgYSK6l0sFqImv5o1AuIuEbZFjdvSG2sETzzxBADlfkxk1LpYrEYRuEvzBkFpEQBQdW6/VvzpGvLnLuaysjIA4oGFoR+9L7lcf/HWgKL1+BM1dZHwVpoiMELUEC2f3qghVe+sjyyDoFMEVqsVgH8GMX8uFqupS69riH3ono63ooW83V9oM2q9riEtMnpyf2iKgGCExWJvRg2pCR8lXyhjisBLEH+pP2ezbB8BwxN8ZRHQyjdq1BBRBMK2+DqiTa8VrXeNwAhHZwSdIiA7EP1pEahB+KDJrIi8HGrza7mWKYTAodddo+Qa8qbi99UaAVnPoFkEanzpnuCtb4prVQSaoqGYReAdiGtIGEHhK7y1WOyJItAS2aF3HwFTGmJ8tVhMQ81iMa18vd+68NUaAXGX0CwCNRvKtGx4A9TdQ3KtVteQlmgoZhF4CW+4htavX+/RYrPeBVxaVIKW/J5cq3cQCjaKi4uxfv166m+e3J9Lly5hwYIF1M8vejvKjKbk5Q549BRvho8K5SIWAWnLvn37cPz4cZc6N2/eTC1LryJQGhdoylTrYrGRLIKgCx8ls2tPvn9Ko6ioCI8//ji6devm8+8nkJfBE0VAewHkBgZvfaEsmC2CCRMmYPv27di3bx+SkpJU53/77bexfPlytG/fHl27dgWg/34qLRYLBynpPhRP0DpxULqW4zi+T0oXiwcNGsRfJ5T/scce87h+NfIpeQqU1ghqqyIIOovAWy/b6dOnFa/VFB6m0NHUoGax2dex2jcbOTk5ALRblufOnQNAD5PUiicDLoH0zbZt2yqWqzdqSGmNQFgWbbFYS52eQFsj0Lv2oeW+qGqXj+ZeQasIPOmUNLwVpqkkH6Dty05C1ESRuEtjyKP3s5TevN9a1oTU4M2oIzncLRbLDZzeXCxWcw+9tVisKmqIWQTeQYs5puc6tdd6Ix9ByxoBUwT68eQeuhsE9FqQnpSnd5LhqzUCTywCd3Vr6b9aFYHencVKefz5LgatItD6uxpzzlu7fbWe0aLFNeQJbEOZfvSGdGqx5gIVPqpGLk82lHmiCLQuFuu1CHy+RsCihryDGn8lDdJBtSoCLS+7VkWgxiJQIx9bI3CP3nP31eYjKM0s9a4/qXENaXUjEXlokxhSjrRfe9PlpWY3v68Xi6l5mGvIOyjNxKQP8rfffqP+7m3zXcu1SvnVRA1J63I6ndi9e7fq+vVQXFyMY8eO+aWuM2fOIC8vz6NrDx48yH+GUgt5eXkuwQXSfpSXl8cvQHuCryyCw4cP85+WJOi1ANW4hsjf3nYNHThwwOUZ0tYI9C6CszWCWoLSTEr4+/r16/Hggw/iv//9r8u1njxw2lkivl5bEM5o1CwWS+uaO3cuhgwZojm/FgYOHIi+ffvqLscT7rjjDqSlpSleV1RUhHvuuQeTJk0Spatpb1pamuiUVmF+8v+0tDR8/vnnHpepd5Igl3/AgAEYMWKEYn5vLkzTfqdFY5Hr3M3aaWXl5+fj3nvvxT/+8Q9qHr1rBN60CJTuG3MNeQklc054o8+ePQtAHCpKHr4nD5y2ec1XW/Np5ct1Gk/2EbibmetdPJTjwoULusvwNmQWuW/fPq+W660X2pPBWe16xKFDhzTXRbtWi6Vy7do1l+vk1giU6iIftJd7hlp3FtM2lHnTomAWgQ9Ro4VpSkNpjUCYTvKpUQTe9ONqudZXLq/aipZnoKZcrVFD3nINqVl/8meYpdQ9JSzHEz8+7T2Uq1PrPgJSnt6dxUppQpycb8J2g1YRCJF7eO40viediqDmy1BaB1fS2dVsUNK7WMwUAR1PrtWyUEjLr5QmVxetXWr6ixpFQPBk5kv+Jt+8oJWpdo1A7nlo6cdKCs7nriFmEXgHNeaYXouA/C20CHy1RqBm1qZlp6jiTMVHG4yMgq8sAm/6gfW6a3zVN7XU5c4icOca0lKnXteQJ3UolUVLo5blo/lW0CkCNVqYZhGoUQQEf1gEBDUL07S61LRLze/BhBrXTqAtAiFKEwe9fUuuLk8tAk9cQ+4sAulvel1e3tpQJlc+zb3FXENeQqlT0v4WHgOtFDVE6+BCReDrI2d95RpS8rn6ShE4HA7qt2NzcnJQUlJCzeNNWXy9RqBXVk+egd4ZM+13X68R+MI1VFhYSM3jzTUCuXbZbDaXcGVNz4C5hryDkjmn1NmVdjfSylKjCLS+QLSXRO5adwO53ABFUwRyv3uT9957D7fddptIGTidTvTq1QujRo2i5vGmm0pOEXhrANfqotE7kKuxCGh59AY9KFnkahaLlSxbUq/cXhB/7CyeNGkS0tLSFN9PtkbgJ7SYqTTXkJrNMcLZjZaX1duKwJ2rwBNLx52s3mbr1q0Aas7vJ5BnIBcO6E83lda6NJ08SalXjUWgVxFoHTC1vHMVFRUuR8WrOWJC+M4oWXPetHTk8v/0008A6BGEasJHmWvIS6iZnbhbI1BzRIXQheGr8DLaS6LHNeTOInBXv7chezGEm+O0RKxoRcuRJL4K96Xl06sI/Hkchlr3mtQ9RMpRu0Yghz/DYsknctWsFyrV702CVhHIzQKUFIFSp6a9LMKvQWnxw3rS0bTEWKuxCLQoFW9A+8a00RWBJyjdby359bprvLlJjJZPzcwXoK8T0ORUcw+E0Fykejd8yuWnfSJXSZmL3Fv4Q1bmGvIOavxyWlxDNKWi5gXS+rLRLAI1O02leTzxifvDNUQsAqGbwJ9KyVd1uXsGnpTpC9eQXH4tA6ZW15AQTxWBXL2eXC/9XYtF4MlisacWgdZnpBdDfKry2WefRXh4OMxmM0JCQjBt2jSf1aVllk3bR6DGIgBqOoDVatXkGnI3k5K+pN4KH3XnGtI7k1IDeYGEisCfFoGWE1w9Qe8agbsy5VAzOCvl9+aeBenf4eHhqKyspC4YA+pdQ2rcmr6yCLymCG72bxZPmTIFMTExPq9HyaQWuljcHSql1lVQWlqKpKQkTYOznCJwOp18aCvNf0qry263e8015CuLQKjgvOEastvt/Jev1KLmeWtxl3jTotBrEXh6X4XvhtK1cnW5a3d0dDQqKys1uYaU3hmCcM1Jq4LTskZQWVnJ51WzIY13DfnIImCuIdA7UuvWrfHxxx8DULdhRG5GThaMvblYLHwZPVks/uGHH5Camur2SGU5+fTO+E+dOuXxtUK5tRzcJ8y/d+9epKamIjMz0+P6hfja+vCHIqD97umAKbyG3Iv27dtj8ODBuupyFzVEJoS+sgh27tyJ1NRU/thvpZ3FajwGShYBUQQDBgzAyJEj3dYl+vsPS8AJ31jehrEIpk6dCgDo378/MjIyRL9t2LABGzZsAABMmzYNiYmJmuupU6cOgJrBnZQjNNfi4+ORmJgoGiyjo6P5a0n+kJAQqhwkv/BaQmJiIt8RyL+lxMbG8ukREREusgrz161bl1+EIgOmsNzY2FhR2qZNm0R1RUVFudQVGhqKxMREUXkAkJCQwJcXHh7ukl/4AtDalZ2djfvvv98lnUbdunV5S4fUJXwGwhePVldCQgKioqIAAFlZWQBqXv6hQ4e6XGuxWNz2JzIoSa8jk4O4uDg+nchap04dapm0NGG7hDLR5BL+mzwvq9XKp0dHR3tcV2RkJLVdtPykj5F2SQdoWv66devy947Wj4WTq4SEBCQkJPDyJCQk4NSpU9RBNT4+ni+Plp92X4RRe4mJidi7d69se2n3UChHTEyMy/OOjIykvvPC+0IsUpL/yJEj/G/CsURouQrTyTMQ1uVNDKEI3nrrLSQkJKC0tBT//ve/0bBhQ7Rr147/PSMjQ6QcCgoKNNdFzE2n08mXIyyvsLDQxY1QUVHBXyPsVDQ5rly5wv8tPEo3JycHrVq1Eu1upOUvKSnh00l+juP4NKGCys/P5zv+9evXAdT40sm1xcXForqkcdlXr17lryX5bTYbCgoKRMpRmp/MzktLS/n8Su2qqqry+LlduXKFfwZE8ZWVlXlcV0FBAZ+PtOv69evUa+12u1u5ioqKANTMFIXXkcGhqKiITyf3rLy8XFYuaX7h8yZUV1dT5RL+m7RL2DeF0WnCa8nMUvi8yXsgrEeYR/g3aZfwGcjJJUwj/YTWj8l9JdeS+1FdXY24uDgA4r0jhBMnTrjs0C0sLOTzk7qE90VaF7l3BOE9oL3fQiuB9n6SdwYQWzHC+0JcUcXFxS73SzgWCesXvstVtj/uZfk1zeNfw4YNZX8zhGuIaPPY2Fh069YNJ0+e9FldWqJA1KwRyJmt5CXVasorQVssls6o1JyKKcXdLmt3+Qhqvp9Mq0trmKPer2spPW+teMvXGwjXkDfkcidraGgowsPDqWsEhYWFLpMUWrlq7ouSa0jJXap1jYGWpijrzbqhrLKykp/lVlZW4uDBg2jcuLHP6tMyoOkNHwVuaHot0RTuFoulf2tRHsK/PVks1rIRR40iUPPiKuUnz07roq6vFot9sbNYTbiwlsViLfIJ/1azQz4mJsZjRaDUj6V1ufu3mh30tGeo1C5f7dXQS8BdQ6WlpXjvvfcA1Ayyd9xxBzp37uyz+pReACVFoDQwyJVFLAIt4Z2eKAJhRIdc+Wr3BiihptNqVQR6olsA32waEpanZEEqyajmGXCca7iwmkFIrwWqt294uqHMZDIhOjqaulhcWFjo4uKk1avVIlBaAFZSOmqCSZTwpmWrRMAVQf369TFjxgy/1afFNKNZBHLI/U6LGtIii9LsxF357hSB0oxFzUyJRqAsAl8pAlpdavB0cJbm0aIIaL97MiEidWlxDcnVS6uLdq07i4AsnLrLr6Ro5GRRCgkV/k07kl5vlJlcXfz7ebNHDfkLJdeQ0+l0eVh6LYLY2FiP1wiUTE9aXUuWLMH3338PQD4+moa72Y0781nL+fTuZnGeyKWmLuG1ehTBHXfcIXstWbDUalVpUQROp9PF1aXVIvCk7wmPX/dEVjlrVJrv9ddfx+effy77uzuLoKioiF9TpKHFNUSeca9evfgJm/Cdp9G7d2/Rt8wB4OjRo3jllVdEab///jsGDx7sst9HSX6XdKjvL2oI+BqBv1F6AYqLi93OXmkfo6D9Liw3Li7OY4uA9jUzYSQBrYO///77fJowokZ6rVRmtW4JghZFIPftAKW6aGlqZqakzVp2j545cwZnz54FoH2NQK+7Rgitb/lSEUj/Vrpvwr7rrn6hEpCTKzo6WtYicGeVq/HbS38XfuNCyTUkVAIkbc2aNS5lL126FID7D1p5dADmH4vE7KwhL6Hkr7x8+bJLR1MTNUTrNPHx8R4vFtO2oNtsNj7kTclHefHiRWr5QlNf7ne5MqXtoqUpvWz5+fluf1eqS6/5rVWRENQoAjV1qdldSttAqNU1pBTxosYy1ZufZhHQXEMJCQmiUFF3Zam5L0pRap4qUJoidOeGoiHrGiIbym7WqCF/o/SyXr582a0pqeXFFloEahSBVC5PZBHGXsv5fN3h6csqLV/pvkhjvz2VgeYa8ucagRJKz1NNJI8SNLefJ+3ylkWgVRGoaaPQIqBtXKMpAprcavoL7Xe50wTc3Tea+9MTRaDKqmMWgXdQegHy8vLcmp5aXUNKUUPEhyh3KBXNJ017wYuKivjNVHosAnfXavlCGW1zkBx6Z/TCa2nho54c1S3FE4tATVy5J7NaKbRvMugdcD2xCJS+062UX0npyVkE0o1fdevWRVFRkVs5PFF6embp7n73ZB1MjdVGswjYx+u9hFJ4GE0RKEUVyF0rVAQlJSXgOE62I5AjHeQ2y9AUgdxMjbhhtCgCuTKVZrtKHZz23WE59Lqh/GkR0OrVOktXQqtryN3g6CtF4E4Od+lCi0BK3bp1PXYNqZFDyTUk/V2ufm+7hkTpzDXkXZRmDLQ1AtpLoVYROBwOlJeXy75stA9XKLmG5DoNzQ2jpAiUyqQNrmrM70uXLnk86KkZsDyVVevMWQklWdUMzkp5lCwCLUpHTlZaP9U6m9WyRkBTBImJiSgqKnIJ5lDzDDy933LfGOA4Tnay5olrSAlZWXmDgLmGvILSzNbdGsH8+fPx6quvui3f4XCguroa/fv350+8JGenvPnmm3juueeoshBFUF5eDgD46KOP+GigiIgIXL58GT/++CMeeOABkdyVlZUubhfybyV3CPl91KhR+Oabb1zuBe1aIeTa48eP48477xT9tm/fPlGazWYTRQ49/PDD+O677wAA+/fvR+/evan1SutyJyPtd5oi8LZrqKqqCgMGDMC2bdvcygLURCL16tWLP//G3cB05swZ9OjRQyT39evX0adPH+zevdulfGlZ169fx9133+3y+8iRI12ed0VFBfr27Usti9wvNfed5B8yZAhWrVrlNh8N2pH0iYmJcDgcshFoL774Ir744gtR/dK/laxNAnne69evxz333CO6Vnjwo7B8T1xD7u7hqlWrqAcjAr6PGgrafQS0qID69eu7dQ1NmTKFT3N31tClS5eQnZ3NpxFFsGjRItG1wg5KDo/76aefMHHiRLzzzjv8b8nJycjLy8OTTz7p8rIJw0UtFgvsdjvVjVRQUCBrEfzyyy98Gjk0z535LHUjkeO6hUydOtXl6Om8vDzEx8cDALZt24Zt27bhoYcewjvvvCMKx9MbNUQL/9USPuoJHMfh4sWLOHz4sEd1ff755/zxxyQ/rUwA+OKLL3Du3Dk+3W63IysrCydOnODT3B1AdujQIRw/ftyl3C1btvBp586dg9PpRHZ2NtX1BGhfI+A4jldY7vJ7ahHUrVsXgPhgRyHC98tbimDSpEmi6KUrV67IWiRaXUPE+nj66aep5QLMNeR1yEMUbpYhN7xBgwaixVbp70LU7DQlg5+7a8nf+/btw6FDh/h0s9nMKwLp0dAcx4k6VmxsLKxWK1UR5OTkeOQaunLlCm+VKF3rDqFpfdtttwG44d6SvkjuokDUuFsINPea3jUCd8+bnDVPoLlwCNJr3Sk9aTtpCo7sc6CVJZ2h0u5bWVkZTp8+7dG6mBZFoFS/NJ38LWcRAK7KT8nKV+o77gZnaVDI2bNnZfurJ64hJTeU3LVsQ5mXIS8TLTysQYMGAFwjXJQUgZLbgVgEUqQdtH///oiIiMDChQtF9RBLRXo8ttPpdKmvQYMGvCIQdtizZ8961CnJtUqySsuXIqyrfv36AG6sXUhnTp4MGGpm9EJFTpvNanmZ3CkC6Q5cuZk1x3FUZU4rU5qXlCuV48KFC/wAJC3LE0UAAAcPHnTrd6eFZNKgyetJ/VLcrREA8haBXF1Kfcfd+y2932fPnpV1LWoNHyX9R/p+UydEbI3AO7j7/CRRBMJNWYD/FEFMTAyGDBmCFStWiOqpX78+Ll++TO0o0voaNmxIXSM4d+6cLkXgzjVEQ6hoiSIgFoHU4vKkLjUzeloIrtwz0jvDoj0Dd59BlFoE7hQBzSKQpjkcDj4iS60iCA8PR0REBPbv3+9WEXi6piLtz1osL3cWAXENeXIev97FYjlycnJkLQK5ndVKdZF3xd3nVJlF4GVIh6d1Dm8oAlrn99Q1ZDKZMGbMGNHHZ8xmM+rXr4/KykqXAdTpdD0XSWgRaHENAd63CMLDw5GQkMDLJY26cOcaol2jRhEoHQzm6WDlziJw58KRKjV3sz5pGm3Qp0Gel7Qt7gZ3oGYm2r59exw8eNAnriFPnqtcurs1AuG6mFx+NYrA3RqBcEJjMpncuoY8WSOg1U8sAnfWIrMIvIy7gSE5ORmAekWgNLBERka6zASl5RJF0LFjR9Ex3A6Hg5eLpghoFoFUESQmJlJdQ1JiY2MRFxeHnJwcty+9WkVA5JJaBHJH69Y2RSB9Bu5cQ7R+QCuTJpvdbhfJQSLNyOKzkkUgvcZkMqFTp044dOiQ2zP+fe0aog14YWFh/KcgCVarFVFRUaotDaWJmrs1AuH9btq0KYqKikRfghOW74krzl1dbl1DzCLwLmSWRHsgdevWRVhYmIsiUNpwIjWjpQ/LZDJR3UMcx6GoqAgpKSnIzc3lyxwzZoyoPKIIaPmlbo4GDRqgvLxc9JnMJk2ayK4RSNuWmprq1jX0/fff44cffnBptxTpTIpYKkuWLMFbb70F4EbH92SxmCaLHEKFqbRYLLx/hw4dwuOPP049F+ngwYOy8sm5hlavXs2HM5J6PXENySF1DTVo0ABWq5V/Xp64hoSyEkVQWVkp+oYukVXaHney2mw2TJ48WVSX2gH7nXfewfHjx/l+KrUKTCYTbxUIOX/+vEuaGuuDZmnR1giaNGkCAC6njspZBJ6uRxCLwF3f4CcHPjqGOugUAXnows5DHhhxw3hiEQgRPvDz589TO5bwQ/KEixcv4sMPP+T/TTqdNKae+Nil0F428l1S4X6IJk2aoKyszGUmk5ub6zIwyCkCUtYzzzzjkibl8uXLohfIZDLxFsHzzz+PdevWAQBSUlIAeKYI5AZvYZvq1asHQOzaosXAy5U1d+5crF+/XhTyKIS47KTtlpsJP/nkk/joo49EbZEuLKuJGpIOeBaLBY0aNZJ1DdFm5NLn3bFjRwDAb7/9RpVBWI6792Dz5s3YtWuXbF3u8pN04b0C6IqAdgT1nj17ZMuU/k273zRFQnMNNW3aFICrIiDjBa0fe7JYTCZE7qxFZhF4GTK7OXHihMv5P2Rh1hOLQK6jHTx40OV6OYtg//79ooGBdBpph/BUEYSEhPDrHFJFALhGQ+3fv59qEVy4cEExxFMuDQAOHDjgoggaNGjgEu1BlJY71xBtRi+UTThTJ4OEME3NngIy0Mst2pG9IUq+cLljzGkDg5o1ggMHDoj+bTabRYpb6eM/UlnNZjOaNWuG6OhoF0VAswjczfC1WG5ycpF7JF0wDg0NpVoE0vsirVtJEfz+++8uabTw0RYtWgCo2egn5PDhw6iqqnIp2+l0qgofZVFDfkT4spB4fXKTiUVAdn0SlDq58PcDBw5QFQHNIjhw4ABVEUhnjREREVRFIl0jMJvN/OCal5fHy9GsWTMArorg0KFDLoNHkyZNRJEotDYK66dx4MABl9joBg0aeBx9Qpuxy83ihYMAkVGYRqtTmEb7W65dRMFIn727NQIhHKfumxBSOWiKgLj9aG5C2gxVmmY2m9GhQwe3e2c8cQ3R2qBmsZimxKQWgdlsdlEEkZGRVEUgN/jTZMjOzhYFaAD0NaG4uDgkJCS4WARVVVU4duyYR4rAXfioW9cQ21DmXRwOB78IRTqQ0CKQ88dLoWnr8PBwHD9+3OUcdZpFYLVaceDAAdEsgHQa2oyUZhVIFQGZeQM1ioDI1bhxYwDiRfD4+Hhcu3YNJ0+eFOVPTU0F4Bo5pFYR0FxDUuQGPKWFSuGgQVMEwg+M0GazNLeH8Fq5mfX+/fupZUnllztqQCm6RZom/C0iIgJZWVki2cjzun79usuOV7mBWNpfAFC/ES53j+SgzXzVHOVBk8td5BChc+fOOHPmjOwCrru/gZp31ul0IisriyqXsF0WiwWpqakuFgFAt67lni1tDRHwzDXkK4JOEdjtdtSrVw9NmzblBxGhRUBTBEpuEZK/S5cucDqdop3BBKki6NKlC44ePeryYgOeKwJppzKbzYiOjkZUVJTINRQeHo7k5GRRZEiXLl0A1OxkFtZPFIFUmXk6iDVr1gz79+/3SBHIlaPkGiKDRrNmzVwUAbnPZPZOrpWL5KEpGNqCf5cuXfgypQOLp64hTxcPaYogPT0dlZWVoiMjiGsIqFHcUkVA89HTXDBknUBOVi2uIbVrBJ5YBICrIkhLSwMgdgdK63LnGiJKUPgeAHTXkMViQZMmTVzOOoqPj6e6hOVcgXIKw51FwJ81xNYIvIPD4UBISAjS09OpikBuwHWXRh4s6VR79+4VXUuzCDp37gyHwyE6k4ggdQ0B8opA6hoi1woVgclk4tcJCC1btkRERISLrMnJydSPg3uqCNLT01FSUoILFy7waUJLhYa7xVd3awRpaWnIzc3lNxhxHIdOnToBuDF7p83ylVxDtI1baWlpOHHiBK5du6bLNeRO6UnThPWkp6cDEPct4hoCaqwgqWvIU0VAswhorjh3gxAtQsmTtpJ02oSIpgiki8XkeUsHck8tguTkZDRs2NAlv1QWoOa9JIpXKsOBAweo7aW5huQUpEdRQ8w1pJ+srCysWLECFosF6enpuHDhgsv55nIuGHdpJESwfv36SE5OdulUtDUCmtJwZxHQLBU5RZCcnIw1a9bg//7v//hypR04NDQUHTp0cLEIzGYz70qStlduAXnTpk18GpmhSU3t+vXru/jH5Xzy//73vzFp0iS88847LoPQihUrMH/+fAA3Bsfdu3fj9ddfx6lTpxATE4OmTZvi4MGDmDVrFn7++WcANxTBjh07MGjQIJEMlZWVmDFjBh/14nA4XGTq0qULOI7D999/z99XIpenriF3g4CQvLw8jB8/HmvXruXTWrRogejoaNHzMpvNaNSoEb/RSbqRjfa8aC6YW265xUUGjuNQXV2N119/nbpBUYowYghwjUhzl1/OjeRudzEhPj4eTZo0cZnQkLq2b9+OadOm8enSesxmM9LT0/mJgzQ/zTUkpWPHjjh69KjLh3TkTvxVowicnBP/3vVv/J5Xs6DNFou9wJ/+9CcANTecDCIHDhzgXxiLxUIdcKWdDKg57+TcuXOorq7GjBkzANR0ms6dO7ssJpnNZheLoGHDhkhKShKZmbSQNYKcy0rOIgBu7MCkKYKQkBB07NhRJCuxRGidfe/evS6niZIBULi43r59e5cdkiaTCRaLhQ/vJBw5csTlGw0AcPToUWzatAkfffSRy7lJEydO5CNcOnfuDJPJhG+++Yb/ILrFYkGnTp2wa9cuvPfee7zMBw8ehM1mw9tvvy2qa9euXViwYAFmz57Np9ntdlkXwosvvohly5bx6bQXe//+/dRBYO/evS7ptL6VkJCAX3/9VTSwhIWFuTwvs9kMq9WKhg0bupyBI1cX7XgNk8kkCgsGau73yZMnRR+al3MNcRyH7du3i9J++OEHl/oPHTrkMlgSuTy1CKSKgITASiN/Dh06hKqqKkyYMEGkPGn3Oz09XXTKK1CjjHNzc0XWeUhIiItlDdyw7qX7T/bu3UsNF/bUNQQA58rO4ZODn6DKWbNHISHcNXzWGwSVIiCEh4ejS5cuMJlMOHDgAO87J750KVu3bqUO7l999ZXI7242m138rT179qRaBLRr5Q66AuQtFeEsi+STtkHoQiCEh4e7uATIIrpUEVitVixcuJC6s1lKREQE2rVrJ0ojcknbUFZWhpUrV4pm0D/88AN27NiB1157DcCN7zPQ6oqNjUXLli1Fcf9WqxWdOnVyifwqLCzE2rVrXQaiTz/91CVihKYIkpKS+H0PQmgWwcWLF7Fx40aXaxcuXOgyK163bh0uXbqEqKgo/PnPf0Zubi527NiBY8eOiUI6SbuEkPtKQkjJYBoTE4P//e9/LhbB6tWrRcczCPuZ0Moh7XK325hgNpuxe/duHDt2jE9LSEjAihUrXNaZSktL8f3337uUsXDhQs0WgdlsRqdOnVBcXCxKLygowNq1a13ShQc6kvxkUiiE4zgsWrRIZJ27swhoci5cuJB62qzc0R+08FGb/cYz6NGgB/7Z/Z8udXmDoFQEFosFMTExaN68OT9TBG5sYReSnJwMi8WC//3vf3xaYmIi+vfvj8WLF4s+sE0sAiFkcJVaBGaz2eVad0dAqF0jkEIb3KUdmKwNSJXG448/juPHj/Mf2hHWL4XMyJXaEBUVhbZt22LhwoUiRUBkIP8nA7dcXR07dhRFjNAGzHr16qFJkyYug0Dv3r2xefNmF0uHtlhMBhwpUkXQunVrJCcnu9R12223YePGjaKZ54gRI+BwOLB48WLYbDaXIxWkx0lI6yfPm4SQOhwOhIWFYfjw4VizZo3oS3V9+vSBzWbDkiVLXNpAw1NFEBYWhoULF4oG7XHjxqG8vJz/8BBQYwG3a9fO5b707dsXe/fuFS36q7UIpPelWbNmaNy4MbWubdu2iSZ1JpOJd2cSEhMT0bdvXyxevFiUHhISgqSkJP7bIYQGDRq4vHOPPvoofv75Z+pJqXKuIan1wHEcbI4bz8AEdV87U0NQKgJhtITQIqAtkiYnJ+NPf/oTli5dKso/ZswYFBUVuZwU2qFDB1F+UqZUEQh3dXqCJ+GjcoqA5hqyWq1o2rSp6GUjskqvHTp0KGJiYrBgwQJROm1gCAkJ8UgRWCwWjB49GllZWaJQVakicGcR0OqyWq1o3769yL0WGhqKUaNGYdeuXaJBf+TIkQgNDRU9Q4BuEcgpAkD8YoeGhmLkyJHYvHmz6JqxY8eC4zgsX76cT2vVqhX69OmDRYsWobq62qX/CQeG8PBwWUWQmpqKgoIClJSUICQkBKNHj0Z1dbWorrZt26Jbt26ifuwOp9PpkSKoqqrCmjVrMGzYMD4tPT0dt956q8s7M2HCBJfonhEjRiA8PFx0FAeBpggiIyNFCpO8c9Kzv0aNGoWdO3eK8o4cORIWi0X0xTSz2YzExEQ0atSIT7NarRgzZgzy8/NF4dUWi4X6LgGuVsGoUaPAcRxWrlwpSnfnGqKlixSBwllhejCEIti/fz/+9re/4a9//avLjfMlnTt3Rl5eHj8QSWdkwI1BX+rL7927N5o0aYLPPvtMlJ6QkCDqKOTlprmG5Ex9GklJSdRQNGn4KODqGjKZTIiPjxfJEB4e7uKeklMEMTExGD58OH9oHEFuu7xcu4RyWSwWPPTQQ6hTp47oWvIMiCxyZ+3L1WW1WlGnTh20bNlSdN3DDz8Mq9Uqsj7q16+PIUOGuJRLWyz21CIwm80YOXKkyzpPamoq+vXrJ3KXmM1mjBkzhr+v7hSB1WrFLbfcIoqaESoCoOboA4vFgpYtW6JHjx6iPkvqkrpr5OA4zqMPNDmdTlRVVWH06NFu6zKbzXjssccQGRkpyh8bG4vBgwdjx44dfJrczmKC0Cowm82Iiorid/0CNcrpkUcecVmrSkpKwsCBA0VppC7hsw0LC8Pdd9/tsohOXDdykUNCGjVqhLvvvtvlI0/uAgZo71Ol48YzuKktAqfTic8//xyvvvoqZs2ahV9//VUUeuhLpOes0CwCAOjVqxeaN2/O/9tsNsNsNmP06NEi04+8mLTBlbazODExUeR3dqcIQkND+Q9zENxFDQkR+pKlcgk7MEkTzo4A8LNMKXKz9BYtWojMZzlFEBUV5fKNVqlFIGwrrS7pegTJJ3wGISEhSEhIwH333Se61mw2Y8KECS7lVldXU6NLaBYcTRE0aNAAAwYMEF1nsVhEhwkS+vXrx4fWStssVCZWq9XFDULuq/AwNKI8pHWZTCbcd9991LN6aDid8t/mldKjRw+0atVKJPeDDz4ocrOaTCbExMTgwQcfdGkj7b4AdIsAECsC2l6Iqqoq1K1b1+V5k0mdtH7AdSAPCQnBqFGjXNIAZUVAyqS1i7Znwp1FUGkXKIKb2SI4efIkkpOTUb9+fVgsFvTs2VP20C890A6Wat++PUJCQvjQMfIiShd4aB0IqDFrpdcB4rhsUmZYWJioXFoHVHrQUpfPV199JTL/Sf6kpCSqXEqKQDobJ5BZZs+ePUXpe/fuxfTp012utVgsIhcZbbGYdtKqsG6pDDt37sS7777rUpfUX0vaIHwG5AUeO3as6Fqz2YzevXu7zPy2bNmCDz74wOXa2NhYFyW7bNkyFxcIrV0hISHo06ePi5K1WCx47LHHqG2WKgKAPuCQ5yr8eNHAgQNF/cBkMsFqteLRRx+FJyxYsMDFOt+zZ4/L8wbATxJI3WazGXXq1BG5i+TuC21dTa1FAIifN3FpSZ+3yWRCz549Rc+AZhGQgVl6rzy1CIhMffv2delbGzduxLx580RpV65cwfTp06mnmvprjQBcgNmxYwf3ySef8P/esmULN3/+fNE1P//8M/fSSy9xL730EsdxHGez2VT/t2HDBg4AB4CbOnUq53A4OJvNxt1zzz2c2Wzmbr31Vq6yspKz2WzcJ598wl/71ltvcTabjcvLy+PTRo0axZc7YcIEPn3dunWczWbj9u3bx6d99NFH/LX3338/B4CLjo7mLly4wNlsNu6///0vf+2HH37IX2uxWDgA3F/+8hc+7e9//zt/LQDObDZzZrOZ//e8efP4dsXHx3MAuISEBO7KlSuczWbj5s2bxwHgrFYrt2fPHs5ms3Hnz5/n87/00kt8Xb169eIAcPXr1+dKS0s5m83GrVmzxm39SUlJ/LXvvfcen/7NN99wDoeDO3XqFJ9233338XX17duXA8A1btyYu379Omez2bicnBwuISGBL19aV2pqKldeXs7ZbDbupZde4tNXrlzJ2Ww27vDhw3zaiBEjOJvNxlVWVnJ/+tOf+PRTp05xDoeDW7Bggdt2tWrVipf1xRdfdHvt+PHjOZvNxlVUVPBpiYmJXG5urkvf2rJlC2ez2bizZ89yLVq04DZt2sTX43A4uGvXrnG33HILl5CQwBUUFHA2m4379ddf+fwTJ07kr09PT+fMZjPXr18/Pm3mzJn8tV9++SVns9m448eP82l///vfRe/IK6+8wgHgwsLCRO2SewYAuPT0dK6srIyz2WzcxIkTuYiICO7IkSOczWbjDh48yF93//33833TarXy6dnZ2ZzNZuO+/PJLl3euvLycS0tL46Kjo7nbb7+dl3Pq1KkcAC4mJobLycnhbDYbd+jQIT7/Qw89xD/vjh07cgC4OnXqcGfOnOFsNhv3xRdfcAA4k8nEvffee5zD4eAKCwv5/I8//jhf17PPPssB4GJjY7nLly9zNpuN27t3L9e0aVMOAPfGG2/w1/br148DwL3//vt82ty5c932F2GaND0zM5NbuHchhzfA4Q1wf/vxb5rGPvKfO0wc56M9yx6yc+dO7N+/H0899RQAIDMzEydOnMATTzwhm0d6OqgWEhMTPfrkXW3DqO1icqnDqHLpwahtMrpcZIjW6xpyd8yL/Ecy/URCQoIotrmwsNBjPyaDwWDc7PhybYAQ8DWC5s2b49KlS8jPz4fdbsf27dvRtWvXQIvFYDAYQUPALYKQkBCMHz8eU6dOhdPpxN133+2yoMZgMBgM3xFwRQDUHFQm3d3HYDAYDP8QcNcQg8FgMAILUwQMBoMR5DBFwGAwGEFOwPcRMBgMBiOwBK1F8PLLLwdaBJ9g1HYxudRhVLn0YNQ2MbmCWBEwGAwGowamCBgMBiPICVpFkJGREWgRfIJR28XkUodR5dKDUdvE5GKLxQwGgxH0BK1FwGAwGIwamCJgMBiMIIcpAgaDwQhybmpFUFFRwX/UgS2F+J5r167x3101yv3Oyspy+fauERB+t9Yo9+pmpqioiL/nRrnfu3btwrVr1wItBgCDnD7qbTIzM7FmzRqkpqYiMjIS48aN88vHHXzNhg0bUFBQgKFDhyIsLCzQ4vBs27YN33//PVJTUxEbG4vRo0cH/H5v3boVq1evRpcuXdCmTZuAyiIkMzMT69atQ9OmTZGcnIxBgwYF/F55gw0bNiAnJweDBg1y+a5zINm+fTu+++47pKSkwGQyYfLkyQG/36QPtGrVCl26dAmoLISbRhFwHAeHw4H169dj165dGD9+PBITE/Hmm2+iXbt2uO2228BxXMA7gVpIuzZt2oTvv/8eoaGh6NSpE9q2bRto0QAAhw4dwrp16zB+/HjExcXh008/xaVLl9CgQYOAyONwOLBmzRqsWLECr7zyClq1ahUQOYRwHIfq6mqsXLkShw8fxujRo2G327Fs2TI0adIE7du3D7SImuA4DhzHYefOnVi1ahXi4+Nx8uRJJCQkGGKicvLkSfz444+YMGECWrdujcmTJ+P06dNo1qxZQOThOA6bN2/GvHnz8O9//xstW7YMiBw0bgpFUF1djdDQUFgsFjRq1Ai9evVCbGwsgJpYXPKN49qmBOx2OywWCywWC5o2bYpZs2Zh/fr1+OWXX3DLLbcgOjo6oHIBwNmzZ5GWloa2bdvi3LlzSEhI4O99IAgJCUGDBg3Qu3dv1KtXD3a7Hb///jtatWoVkE+gknsVFhaGxo0b495770VUVBTsdjtat26NkpISv8vkDaqqqhAWFgaTyYSmTZvi7bffxv79+5GdnY2UlBQ0bdo0oHIBQH5+Plq3bs3f50aNGqFOnToBkQuoGX+aN2+OXr16ITQ0FE6nE5mZmWjRogVuueWWgMkF3AT7CFasWIGjR4+iU6dO6Ny5Mxo2bMjPVMxmM+bMmYPOnTvjrrvuCrSoqli2bBnOnTuH9PR0dO3aFVFRUQBqOvr06dPRt29f3H777TCb/bvMQ+RKS0vDXXfdhaNHj2LJkiVISEjA0aNH0bhxY5hMJrRo0QLDhg2D0+n0uYzLly9Hhw4d+BlWaWkptmzZgq1bt8LpdCI1NRWlpaW49dZbMXToUL/IBNT0zdzcXNx66624/fbbER4eDgB833znnXcwYMAApKen+1wWb/Ltt98iKysL3bt3R/v27fkvCtrtdnzxxRe45ZZbcOedd/J91t9y3XbbbejWrRuqqqqwZMkSAMCJEyfQokULXLt2Dc2bN8eoUaP84iFYunQpWrRowX94q6qqCjt37sTXX3+NOnXqoHXr1jh79ixuvfVWjBw50m99U0qtXSzOz8/Hv/71L5w/fx73338/Ll68iI0bN6KiokL0cDmOQ5MmTUR5ja77Vq9ejWPHjmHAgAE4dOgQli1bhuLiYgBAWFgY+vTpg23btuHKlSsBlWvBggVo0qQJXnvtNURHR+Opp57CK6+8gtGjR+OHH37A1atXfdqpi4uL8d5772HVqlX48MMP+fTY2Fi0adMGXbp0wauvvopJkyZh7Nix+OGHH1BWVubzFy03Nxf//Oc/cf78edx+++3YtWsXtmzZAofDAZPJBLPZjKqqKoSEhLj0TaOzadMmZGVl4bHHHsPVq1exePFi5OfnAwAsFgu6d++O06dP48yZM6J8vn7nhHKVlZXhyy+/RJ06dfD8888jOTkZjzzyCP7+97/j6aefRmZmJoqKinyqBK5du4ZPP/0Ua9euxeLFi/mF6rCwMNx6663o378/XnjhBUyYMAF//etfsXnzZhQVFQVECQC1WBFERUUhPT0dkyZNQvv27dG1a1cUFxcjJCSEn3HZ7XYUFRUhNTUVOTk5WLduHQBju4icTidycnIwbNgwdOjQAQ899BCsVivWrFnDX3PHHXcgIiIC2dnZOHnyJLZu3ep3uYYNG4awsDCsWLECFosFhYWFSE1NBQCkpKQgLS0NRUVFPpUpMjISPXr0wIIFC1CnTh2sXr2a/6158+YYPnw46tatCwBo3LgxOnXqhLKyMp/KBAARERHo0aMHJk2ahK5du+K2227D8ePHYbFY+Kiq69evo7KyEnXr1kVOTg62bdvmc7n0wnEcCgsLMWDAALRs2RKDBw9G48aN8fXXX/PXdOrUCUlJSTh37hz27t2Ln376CYBv3zmaXI0aNcKCBQsAADabjXe9JCUloVWrVry72FdYrVZ069YNX375JRISEkR9Mz4+HoMHD+YX1ZOTk9GqVSsUFBT4VCZ31EpFwHEcIiMj0a9fPz6tUaNGKCws5GddQM1ikc1mw6JFi/DJJ58Y3hIgCiw2NhabNm0CUNNJbrvtNuTm5uL06dP8tXfddRfmz5+PmTNnorq6OiBy3X777Th//jyKi4sRHx+PTz75BBcvXsSCBQtQUlKCpKQkn8pltVp5k3vs2LFYvnw5P/MymUwIDQ0FcMNlUVFRgcTERJ/KBAAJCQmivtmyZUtcv34d1dXV/Izv9OnTqK6uxtKlS/HJJ5+IwkmNAO1dIe9VZmYmACA8PBz33nsv8vLycPjwYf66zp07Y8WKFfj000+93i5P5brvvvtw+fJlnD9/HrGxsfjuu+9w4MABLFy4EMXFxWjcuLFPZQoNDUW7du0AAMOHD8fGjRt5q95sNvNrbFVVVViwYAHKy8sDuk5QKxTBtm3bkJOTAwAiv15ERAR/zYkTJ1C3bl1RWnFxMS5fvgwAePPNNzFw4ED/Ce0B5eXl/N9Op5NvV0ZGBgoLC3H69GmYzWYkJSWhRYsW/D24fPkylixZgt69e2P27Nno27dvwORq3rw5jhw5grFjxyIlJQVffvklgJqz1CMjI30mEyEiIgIcx6FNmzZo164d/vOf/wAAP+Du3r0b//znP2E2m/H88897PZpFTi6yHgDU7GVITEzkFRNQ4z7KycmB3W7Hm2++iT59+nhVLr1IBzfy7yFDhiAvLw/Z2dkAgOjoaPTu3RsHDhwAAFy9ehVfffUV0tPT8cEHH2DQoEEBk+uOO+7A7t27MXjwYLRv3x4///wzAOC1115DTEyMz2QihIeHg+M4tGjRAu3atePXKwiHDx/Gm2++CcD774taDL1YfPDgQXz77be4ePEiRo0axb8swsVgh8OBkJAQrF69Gg6HA4MHD8bRo0dRr149VFVVwWw2o379+oFtiIR9+/Zh5cqVqFu3Lho1aoQHH3wQAPiFIrvdjjVr1uD06dOYPHkyAOCLL75AkyZN0LdvX1y7dg12ux1xcXGGkKtx48bIyMgAx3Gw2WyiQdCXMplMJphMJr4PlJSUYPLkyZgzZw5KS0sRERHB/+5t60SNXAsWLEDLli3Rq1cvnDp1CikpKcjNzUVERAQaNmzoVbn0snfvXqxfvx6NGzdGWloavwfD6XSC4ziEhITgp59+QmZmJt5++20AwE8//YTq6mrcf//9qK6uRmVlpdcj2rTKZbPZMHjwYADiiCJfywRAND5dvXoVr7/+Ol566SWUlZXBarWiXr16qKysDEg0mxTDWQQcx6Gqqgrvv/8+li9fjqFDh+L222+HzWYDANGCW3FxMe8Wyc/PR0VFBT799FMsW7YMFRUVaNCggeGUwMmTJ7Fs2TLcf//9yMjIwJkzZ3Du3DkAN2ax169fx5133olr165h+fLluHz5Mi5dusT/HhUV5XUloEcuMtM1mUxeVQJKMplMJly9ehUOhwMAEBcXh+7du+Mvf/kL5s6dy/vgva0EPJWL9M3KykpcvXoVc+fOxdKlS3H16lU0b97ccErg9OnTWLZsGQYMGIDU1FRs2bIFmzdvBlDTrpCQEBQXF2PgwIGwWq1YtGgRjh49ij179vCz4tDQUK8rAT1yCdcmvKkElGQi4xNxjcXExKBTp0547rnn8Nlnn6G6uhqRkZGGUAKAARWByWRCWFgYevfujTfeeAOdO3dGq1ateP9fSEgIHA4HvvrqK8yePRsXL15ERUUFdu3ahR07dqBRo0Z47bXXAh6XK8fRo0fRtm1bdO3aFXXr1oXZbEZycjI/i5g/fz7mzZsHk8mEcePGwWazYfbs2WjdurVP3Qd65PJVaK6nMuXn5/Mx2YcOHcJjjz2Gd955x2d9wFO5iouLUVJSgq1bt2LDhg1ITU3FK6+84vO1E60cPHgQbdu2RVpaGrp164a4uDisXbuWd38tXLgQM2fORH5+Pp566inUq1cPixcvRtu2bfHAAw8ElVyeyDR79mycP38eHMdhz549+P333zFy5EjMmDEDLVq08IlcWjGMa+jHH3/EuXPn0KJFC9EHGZxOJ44fP47Nmzdj2LBhSExMxMWLF/Hzzz/joYce4mOV169fjx49egRsk5Uc0nadO3cOU6dORffu3fHbb7+hfv36SEpKQv369ZGRkYGvvvoK48aNE8Vgkw1zN7tcemU6deoUkpOTvb5pSK9cq1evRp8+ffweV6+EtF0nT57Ehx9+iKlTpyIqKgrffvstDh8+jLZt2+Kee+7Bd999h2HDhonaIdxceDPLpVemS5cuITY2NqDrAO4whCLYvHkzfv75ZwwfPhwrVqxA586d0bNnT96tc/bsWcybNw+vv/66aDEY8E1H9BbSdnXo0AH33HMPOI7Dt99+y4e9XrhwATNnzsQLL7zAuwt8ubHEiHLpkYn4YX2BEe+VN5C2q1OnTujXrx++++475Ofn4/r160hOTkbPnj3x22+/4fHHH+eVvj/7phHk0iOTL/umNzHECHro0CEMHjwYnTt3RnR0NPbs2YOtW7di2LBhAIDU1FSEhoZi+/bt6NevHx85xHGcYZUA4Nqu33//HWvXrsWwYcNw+fJl3H333QCAhg0bonXr1vwpmb4eQIwolx6ZfPmiGfFeeQNpu3bv3o0tW7Zg/PjxKCgowMWLF9GxY0ccPnwYdrudH9hIkEYwyaVHptqgBIAArxEQn2rTpk2xZ88eADUbgVq1aoWioiIcPXoUQM0N7dSpE6qqqkTho0bdGCbXrtatW6OgoAAXLlxA+/btMW/ePNhsNixfvhznz5/nNz/5qkMbUS4jymRkufQi1642bdrg0qVLOHLkCBITE9GxY0cANdFRwoALX71zRpTLiDL5Cr/21vPnz6OqqupG5X+8LK1btwbHcXwMcKNGjRAfH89vwDCZTCgtLYXVajXkzVXTroSEBOTm5mLQoEFo2LAh3n//fVy4cAH/+Mc/vH5YmxHlMqJMRpZLL2rfOXIIXnZ2NqZMmYJLly6hf//+QSGXEWXyF37xq5w9exbz589HTEwMnnjiCT5kipjPDRo0wC233ILt27ejTZs2qFu3LkpKSmC1WvkyxowZYzg3kJZ2lZaW8tvbn376adhsNq8vbhpRLiPKZGS59KK1XeSdS0pKwp///Gf+QLmbWS4jyuRv/GIRfPfdd7j99tvxwgsvuNxkoGYHXtu2bWG327Fw4ULY7XaUl5eLogCMpgQA7e0is0aLxeKTAcSIchlRJiPLpRet7SJRd4mJiT4Z2IwolxFl8jc+VQROpxN5eXn82R9ATfxteXk5vwHlm2++wQcffIDIyEg8/PDDKC8vx5QpUxAZGWm4bfcEo7bLiHIZUSYjy6UXo7bLiHIZUaZA4fVp9vHjxxEVFYWGDRvCbDYjOjqa3+W3ceNGVFdXIzY2FikpKejVqxfy8vIwcuRI/iQ+YmpLw0QDjVHbZUS5jCiTkeXSi1HbZUS5jCiTIeC8xLVr17i3336bGz16NPftt99yFRUV/G/fffcd9+KLL3K7d+/mOI7jDh8+zL377rvcsWPH+GscDoe3RPEqRm2XEeUyokxGlksvRm2XEeUyokxGwmuuIZvNhk6dOmH8+PGw2Ww4cuQI/1t6ejry8/Nx7do1ADUhWHFxcX7ZoKIXo7bLiHIZUSYjy6UXo7bLiHIZUSYjoat1W7ZsQXZ2Nq5fv46EhARkZGSgR48eCA0NxYkTJ/gPk6SmpmL06NFYt24drl69iq1bt+LcuXP8YovRbrJR22VEuYwok5Hl0otR22VEuYwok1FRfcQEx3EoKSnBBx98AJPJhPr168Nms2HcuHH8Gd9Hjx7Fjh070Lx5c9x555183tWrVyMvLw+XL1/G2LFjDXUwnFHbZUS5jCiTkeXSi1HbZUS5jChTrUCNH4n4yXJzc7k5c+bwaZ9//jk3Y8YM0bU//PADt3jxYq68vJy7fv06n15dXa3NieVDjNouI8plRJmMLJdejNouI8plRJlqCx7ZPE6nE19//TW+/vprZGdn4+LFi7y5ZDabMW7cOBw7dozfeQfUfM2qsrISb731FiZNmsSbYUbaD2DUdhlRLiPKZGS59GLUdhlRLiPKVNtQVATZ2dl46aWXUF5ejuTkZCxZsgQWiwWHDx/GyZMnawoxmzF8+HAsW7aMz7d3716sW7cOqampeO+99wzzAQaCUdtlRLmMKJOR5dKLUdtlRLmMKFOtRMlkyM7O5rZs2cL/+7PPPuPWrVvH/fLLL9yLL77IcVyN+VVcXMzNnDmTy8vL4ziO43777Tfu8OHDPjJk9GPUdhlRLiPKZGS59GLUdhlRLiPKVBtRtAiaNWuGHj168CfxkdMX+/TpA6fTibVr18JsNqOwsJD/oDkAdOvWDe3atfOtFtOBUdtlRLmMKJOR5dKLUdtlRLmMKFNtRFERWK1WhIaG8j63gwcP8qvvzzzzDHJzczFt2jTMmTMHzZo1AwB+e7aRMWq7jCiXEWUyslx6MWq7jCiXEWWqjXi8MkI0bmlpKbp27QoAiIiIwKOPPorz588jKSmJ97MZ8ahoOYzaLiPKZUSZjCyXXozaLiPKZUSZahMeKwKTyQS73Y7o6GicPXsWCxYsQFRUFMaPH482bdr4UkafYtR2GVEuI8pkZLn0YtR2GVEuI8pUm1ClCM6cOYNt27YhPz8fd999N/r27etL2fyCUdtlRLmMKJOR5dKLUdtlRLmMKFNtQtXO4sLCQmRmZmLQoEH8ORw3A0ZtlxHlMqJMgHHl0otR22VEuYwoU21B9RETDAaDwbi5uPlPU2IwGAyGW5giYDAYjCCHKQIGg8EIcpgiYDAYjCCHKQIGg8EIcpgiYDAYjCCHKQIGg8EIcpgiYDD+YOnSpfjggw90lXH48GE89dRTXpFnxIgRuHz5slfKYjDcwRQBg+ElHA5HoEVgMDTBdhYzgpKVK1di7dq1qKioQHx8PMaOHYsZM2YAqPlcYXJyMmbMmIFffvkFq1atQmFhIWJiYjB48GD0798fQM3s/8MPP8TAgQOxZs0atG3bFnv27IHdbkdYWBgAYM6cObJfvzp58iS+/PJL5ObmIiwsDN27d8fYsWNhsVgwZcoUHDlyBFarFQDw9NNPo2fPnn64M4ygJBBfw2EwAklubi731FNPcYWFhRzHcVxeXh536dIlbsmSJfxHzwl79uzhLl26xDmdTu7w4cPcY489xp06dYrjOI7LysriHn74Ye5///sfV1VVxdlsNi4rK4t78sknPZLj1KlT3LFjxzi73c7l5eVxzz33HLd69Wr+9+HDh3OXLl3yUqsZDHmYa4gRdJjNZlRXV+PChQuw2+1ISkpCcnIy9dq0tDQkJyfDZDKhXbt26NixI44ePcr/bjKZMGLECISGhvJWgKc0a9YMrVq1QkhICJKSkpCRkSH6wDqD4S88PoaawbhZSE5Oxrhx47Bs2TJcuHABnTp1wpgxY6jX7tu3D99++y0uXrwIjuNgs9nQuHFj/veYmBjVCoBw8eJFLFy4EKdOnUJVVRUcDgf/FS0Gw58wRcAISu644w7ccccduH79Ov7zn/9g0aJFLlZBdXU1Zs6ciYkTJ6Jr166wWCyYPn266Brp167UfP1q/vz5aNKkCf72t78hIiICa9aswc6dO7U3isHQCHMNMYKOixcvIisrC9XV1QgLC0NYWBhMJhNiY2Nx5coV/rOHdrsd1dXViImJQUhICPbt24eDBw+6LTs2NhZlZWW4fv26ohwVFRWIjIxEeHg4cnNzsX79epey8vLytDeUwfAQZhEwgo7q6mosWrQIubm5CAkJQevWrTFhwgSEhoZi69ateOKJJ5CUlIR3330Xjz/+OGbNmoXq6mqkp6fz38OVIyUlBb169cLEiRPhdDrx/vvvy0YNjR49Gv/5z3/w/fffo2nTpujZsyeysrL434cPH46PP/4YVVVVmDBhAosaYvgMFj7KYDAYQQ5zDTEYDEaQw1xDDIYPefvtt3HkyBGX9AcffBBDhw4NgEQMhivMNcRgMBhBDnMNMRgMRpDDFAGDwWAEOUwRMBgMRpDDFAGDwWAEOf8PWx3Qi9u8kLEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "history.plot(style=\"black\")\n", + "actuals.plot(style=\"green\")" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "84" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "frequency" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "start_at\n", + "2016-07-21 11:00:00 0\n", + "2016-07-21 12:00:00 0\n", + "2016-07-21 13:00:00 0\n", + "2016-07-21 14:00:00 1\n", + "2016-07-21 15:00:00 0\n", + " ..\n", + "2016-09-14 18:00:00 1\n", + "2016-09-14 19:00:00 9\n", + "2016-09-14 20:00:00 12\n", + "2016-09-14 21:00:00 11\n", + "2016-09-14 22:00:00 0\n", + "Name: n_orders, Length: 672, dtype: int64" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "history" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "start_at\n", + "2016-09-15 11:00:00 0\n", + "2016-09-15 12:00:00 1\n", + "2016-09-15 13:00:00 1\n", + "2016-09-15 14:00:00 0\n", + "2016-09-15 15:00:00 0\n", + "2016-09-15 16:00:00 0\n", + "2016-09-15 17:00:00 0\n", + "2016-09-15 18:00:00 0\n", + "2016-09-15 19:00:00 7\n", + "2016-09-15 20:00:00 16\n", + "2016-09-15 21:00:00 7\n", + "2016-09-15 22:00:00 1\n", + "Name: n_orders, dtype: int64" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "actuals" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## STL Decomposition" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For vertical and real-time time series, a decomposition needs to be made. Due to the high `frequency` (i.e., > 12), we use the STL method, which, among others, has a `ns` parameter that must be tuned by the forecaster. To skip the tuning of `ns`, we choose the so-called \"periodic\" setting and make `ns` a big number." + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "ns = 999_999_999" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "history_decomposed = decomposition.stl(history, frequency=frequency, ns=ns)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
seasonaltrendresidual
start_at
2016-07-21 11:00:00-2.475451.924530.55092
2016-07-21 12:00:00-0.353941.93356-1.57962
2016-07-21 13:00:00-0.606631.94259-1.33596
2016-07-21 14:00:00-1.984591.951621.03297
2016-07-21 15:00:00-2.486421.960650.52576
............
2016-09-14 18:00:00-2.097593.068950.02864
2016-09-14 19:00:004.650253.068331.28142
2016-09-14 20:00:007.148913.067711.78339
2016-09-14 21:00:006.021623.067091.91129
2016-09-14 22:00:00-1.480663.06647-1.58581
\n", + "

672 rows × 3 columns

\n", + "
" + ], + "text/plain": [ + " seasonal trend residual\n", + "start_at \n", + "2016-07-21 11:00:00 -2.47545 1.92453 0.55092\n", + "2016-07-21 12:00:00 -0.35394 1.93356 -1.57962\n", + "2016-07-21 13:00:00 -0.60663 1.94259 -1.33596\n", + "2016-07-21 14:00:00 -1.98459 1.95162 1.03297\n", + "2016-07-21 15:00:00 -2.48642 1.96065 0.52576\n", + "... ... ... ...\n", + "2016-09-14 18:00:00 -2.09759 3.06895 0.02864\n", + "2016-09-14 19:00:00 4.65025 3.06833 1.28142\n", + "2016-09-14 20:00:00 7.14891 3.06771 1.78339\n", + "2016-09-14 21:00:00 6.02162 3.06709 1.91129\n", + "2016-09-14 22:00:00 -1.48066 3.06647 -1.58581\n", + "\n", + "[672 rows x 3 columns]" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "history_decomposed" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1.1904761900081797e-07, 0.0040629613095238245)" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "history_decomposed[\"seasonal\"].mean(), history_decomposed[\"residual\"].mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEPCAYAAABP1MOPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAClzklEQVR4nOydd5zcxNnHv9L262Wv2OfeG264ADbYmKPXgCGEDoFAQiDUBCcBEqrpLSGUEHgpSegQOhhjuo2Nbdywce/2+XrbLr1/aFcrrbS3u3e357O9v88HfDt6NHo0mplnnjLPCLIsy2SQQQYZZHDAQtzbDGSQQQYZZLB3kREEGWSQQQYHODKCIIMMMsjgAEdGEGSQQQYZHODICIIMMsgggwMcGUGQQQYZZHCAw7q3GWgvduzY0eE63G431dXVncBN90N3fbfuyhd0X966K1+dge76bt2VL+gYbz179jQtz2gEGWSQQQYHODKCIIMMMsjgAEdGEGSQQQYZHODICIIMMsgggwMcGUGQQQYZZHCAIyMIMsgggwwOcGQEQQYZZLDfYMfXO9jzw569zcY+h312H0EGGWSQQSzeO+s9AC7bftle5mTfQkYjyCCDDDI4wJERBBlkkEEGBzgygiCDDDLI4ABHRhC0B7KMtXnl3ubCFBbPVoRAw95mw4iQB0vrur3NhSmsLWtB8u1tNgwQAnVYvNv3NhumsDavhMwpt8lDCmBtWbO3uYiLjCBoB7K3/4vSRcdgr/92b7NiQNmCQyhdOGNvs2FA4aorKftuGoS614QrBOooXTidgjU37m1WDCibfwhl8yftbTYMcFR/QumiY3DtemVvs7LPIG/DnZQunIHFs3lvs2KKTokaevzxx1m8eDH5+fk88MADADQ3N/PQQw+xZ88eSkpKuPbaa8nJyTHcO2/ePN544w0ATj/9dKZPn94ZLKUVtuYVAFg8W6Dg0L3MjREW/y5Ce5uJGDjqvlD+kIN7l5EYiKEWAOz185H2Mi+xEEPNe5sFU1g96wGwtazGs5d52Vdgb1gEgBioIeTqu5e5MaJTNILp06fzxz/+UVf21ltvcdBBB/Hoo49y0EEH8dZbbxnua25u5rXXXuOuu+7irrvu4rXXXqO5uXt2/gwyyCCD/RWdIghGjBhhWO0vXLiQadOmATBt2jQWLlxouG/p0qWMHj2anJwccnJyGD16NEuXLu0MljLIIIMMMkgSadtQ1tDQQGFhIQAFBQU0NBgdmLW1tRQXF6u/i4qKqK2tNa1vzpw5zJkzB4DZs2fjdrs7zKPVam1XPRaHE4Dc3ByyO4GPdKC975YuCIIAdD++aFFMQxaLBbG78RZGd2szsTYbAJfLhb2DfKXr3TpaZ2fzZbUqU21BfgFycffiDbpoZ7EgCOpE0F5UVlZSWVmp/u6M04Pae9JPgc9LFtDU1Iynm51iFDl/KBgMdqsTlsplGQEIBgNU1zftbXZUWLx1lAGhUAipm7VZd/2W2S0t5AMej4fGDvKVrpPAOlpnZ/PlDgaxA/UN9QTkvcdbl59Qlp+fT11dHQB1dXXk5eUZaIqKiqipqVF/19bWUlRUlC6WOg+ZsLl2INxm3a3tuhs/+wIyTdYOdO9GS5sgmDBhAp9//jkAn3/+ORMnTjTQjB07lh9++IHm5maam5v54YcfGDt2bLpYyqBboLsOiI5prAcmMm2WOrpnm3WKaejhhx9m1apVNDU1ccUVV3DWWWdx2mmn8dBDDzF37lw1fBRg/fr1fPLJJ1xxxRXk5ORwxhlnMGvWLABmzpxpGmKawf6E7ioIuitf3RmZNksd3bPNOkUQXHPNNablt9xyi6Fs4MCBDBw4UP09Y8YMZszofhug2kQH/R0HJsJtJnezaP3Mt0wdmSZrB7p3o2V2FmfQxeieK6IMMjiQkREE7UHGwdgOZJzF+w0yTdYOdO9GywiCDLoY3XVAdG/VvXsi02apo3u2WUYQZNDF6K6CoLvy1Z2RabPU0T3bLCMI2oOMg7Ed6KbO4m46MLs1Mt2/HejejZYRBO3BfmJXrllVg6e6q/JHyjH/dhd0N372AWSarB3o3o2WEQQHMN44+g1eO/K1rn1odxOiqobSvVds3RNd02aL7ltEzcqaxIT7BLpnP8sIggMc3lpvFz+xmwmCbsdPBlqE/CGWPLyEt095e2+zsl8jIwgy6GJ0t4m3u5qs9gWkv80iySqlQHfzLbUX3bOfHZCCwL3oOIqXztzbbBjgqP6YnvMqEH279zYrBvScV0Heuts6XlEnO4tzN95Pz3kVHaghPQNTCNTRc14Frt1vpaX+jqBo+YWULjh8b7NhgK1xCT3nVWBtXm28uJfnz7JvxlOw6sq9y0QacUAKAnvzchzd8Lzh7B3PA9GjMLsbcrY92Qm1dO6Izt38UIfuF9I0wVg9GwHI3vZ0eh7QAThr5mD1bNjbbBjg2vMuAI7az9QyOexTkqW9Kwks/t1kVb21V3lIJw5IQWAGIeQhZ9NDIAX2Jhfhf/Wd3ln1P2yNi7uenQSweLeRve2Z1G7qImdx1rZnsXi2JkGZLmex+be0NS7Fubsb2rulIDmbHkIItqRwU3raTNC2Wfe0pAAgBGrJ2fy3FPt0xlncrZGz+WHyNt1P1q7/7m1WDCha9WtKFp+8t9kwoGjZ+eSvuwXRvyeFu7rArhxspGDdnyn+4cy9yI/5gC9ZfCJFP/4mTc9sP1xVb5G36X5yN96z13iQu+kkGQ8Fa/5A3sa7sXdD60KqSOsJZTt27OChh6Kqe1VVFWeddRYnnniiWrZy5UruvfdeSktLAZg8eTIzZ3a9/V6QfMq/Ka2I0oT2rpq7ODRTDCknjQmSP4W70sSjLGs2+inrG9GfRMhhutusu4XLxoMcBEAMNu5lRkDbR+Ru3H6C5NH9mxy65/ukVRD07NmT++67DwBJkrj88suZNGmSgW748OHcdNNN6WQlIWTBBoAQHhB7Bx1dEXVtJ4u0GXIK5rS0DWwJsOhKkvuW6dYIuufAN0AITwVyaG8yEeZh3zANRdospTmjmwq2LjMNLV++nPLyckpKSrrqkalBHQh7UxB0EF2dvqFdbZYmHnXvHsl0mgxfaeJnH0tD0j0WQvsWoguhxG3WUm/n63cPQ96rgjY+uuTweoCvv/6aKVOmmF776aefuPHGGyksLOT888+nd+/eBpo5c+YwZ84cAGbPno3b7e4wT1arVa3Hsls5UznbZceZoG6L0wlAbm4u2Z3Ah8qP3Q5AXl4uskm9Cd9Z4+jWvlsipNKWWlrR5gAPFOXnIue3XUckHtxqsXTKtzPwVVwEFofywx9eqSElfJZgLQDAYrEgptBmiSBYlHrjfYdUnpPKt0wF2joFbyEADruY8FliTRYALpcLewf50o3BnS4AsrKz1TEYaI326fb2047yFa9ei1Nph7wcFzkJnvfyQxPZsKSE3hdYKB+UHt46VGen1hYHwWCQ77//nnPOOcdwrX///jz++OM4nU4WL17Mfffdx6OPPmqgq6yspLKyUv1dXV3dbn56aviK1JPj9ZMHtLY00pSg7gKvlyygqakJTwJaIdhI9vbnaO7zWxDaVsCKAgGcQGNjIz57tN4IvwnfWfKbvlsiJENnxkNJSFEp62r3EAy0XUe5rLgCg8FAwudZWjfiqP+a1p7npcDXHrAoAloI1NPDhF8zWJvqKAVCoRBSojaTZbK3PY2n9BQkR3mb9dqa6inB+L4qv3uqEvaHVL6lrWEhFn8N3pLj2qTT8aCp09nsoQjweVupS/Cs7JZW8gGPx0Njwj7pI2fL4zT3+Q2IDsNlt9ut8pHr8ZILtLY00xwu0wqCVMZ8MrTOPR8SshcTyDeep67lC8zbrMAfUuaBhjo8rraf52lWptrG+kasCXgTfbtxVb1NS6/LTDXLWN5SQc+ePU3Lu8Q0tGTJEvr3709BQYHhWlZWFs7wCnv8+PGEQiEaG/eCwyole1/ydr68dX8lb+M9OGs+0ZVbvNsRArWxTCRdb0f5igvJh7VlTXJPS6HNom+WmMeSxSdR8NMfDPZUS+s6hJC5Y04XcpiCuUdIoc0sng3kr/8rRSt/pa8j0IDFs8VQc5tIxa+SBEqWnEbRyl8ayq1NK5IyGcqC4l/p7P6fve1Z8jbdT85W/X4K0bcb0VeVdD3pQNHKX1Ky5DR9oRzC2rwyuQrCbZacCVJps2RGeOHKy8lf/1esret15RbPJoQ0OfO7RBC0ZRaqr69XIwPWrVuHJEnk5uZ2BVs6yKq9u3MHqBhqVv4IRyVFUDZ/EuXfHGx6TyqTkw6d4CPI/+mPlC6cgehPYsXRnjZLwlkmBusjxNFCKUjZd9MojJmEo/VG3z2lTWIptJkQtu/GDsaS74+lbMGh5vfE+ZZCF+xXsTUspPT7Y8nemsRGQNVH0Ll8xYusKf92POXfjotz195zFuds+Ruli45BqP0+Ia3crjZLpv+H+1eMgClbMAX39yel8KzkkXbTkNfrZdmyZfzqV9EB/PHHHwNwzDHHMH/+fD7++GMsFgt2u51rrrlGtSd3KVKKmugc/gRZH3Ypm0VNpFJfRxkCHA3fKXUF68Heth1SFiMDIXGbyUT4S+HdZEljPlGe4aidF4fYxFmc3ENSoDWH1WvcuJbwW8qphNy2DxbvDgDsTT+QKChaTml1m67xaYy06urwUVvTcuWP1i3g7Ns2sZhKsETk3Tq2WLN51pOOnpN2QeB0OvnXv/6lKzvmmGPUv4877jiOOy6xXTPdSE01btcTkqDpaMhhxwdNtB00HTbeYFQnj+RXREJKA1u7MlT4EeINJN3KPpXB1p4267igEaRA8rW0dzKMCNFUFjdpi2pJpf/vRaj9P4nFjWoa3Ztt1jnI7CyOQJ3UOjucMDLAkiHt4EDojNWT6cowXr3hQSOlIjxT4VFr7kn0XZIQXB3mJwWNLdG3TGnB0V5BENlXkUyfDtuw0zWppfJN9uI+gtQ0o+QFbfSVUuk7GUHQzdFdc4t0RseJdG7txJpoIkn83FScxVGziva5bQ82vabRzkknIRJN7snXlVqv6JggSG5yT7PwTIq0O2zCiwiCA0szygiCjiCFFXxqDuD2DoSOazPm6m4iftIz8epaNxWNIKV2CNN2xrc0NZHFe990CSvNbULyk1pUkLZn4k6KmxRoO35bu5FCm2luSoG2a/1XyaLLNpTtl0higMoprXL2vmnotTsPZduq47j4u2RMQ8leT5VWUOjkFExDyfg04jwp2XvkKLF5XVIAWbQnV1/azFdapDKpteMZKZnI2inMuthZnJppKHWkNMK78N0zGkEEaUsl256BsPecxWu/64GnOUuvEcSdhCOpHJIx9ySqSwuzCItEk1k7o4ba9d0TRwIJCdsmxeip9iBtpqH29P9UaDt/Akz6SNZ2aQQpIKnYZpM2S7NQyAgCA5LpuGlOVNbuj96JfOnCGzuuEaTiI4iSpuCn0GoPe0n91u8NkGP+7chz27maVv9KYlILt19yqaDT2/+FTnYW//TyT7xw0AvUrEgiG21EEKQSAJGKiazdYzu9ecQygkBFOz5QUh2go5N78kglNDORyq2d1OK/ZZpCL83MCQlWaPrDTNoRmZTSt4xzVesjSMhD+gVBVCtJPmootQd0dv831tcZpqFtX24DoHZN7E5+I1Lxq6S7/wsp9P+OIiMIYtHpm9naU18XaAQJ5yntpNb2RJLSCjylCSGVVb72egqrp06NGtJqBIk0mPQ7iyOTR1KmITl1p3ly2Pt7A1LboBqZElNZgXfuO8pmJrI0ZxbOCIKOoJNX+SvnFvPXc/9C0872Oqo6TyNIqd5Od3yamQgSTGZmaahT4adT9gaYhbDuPdNQpM3UVW5nP6OT+79pYEVKzZSonyZVSfjfTp4aZcMfbcDYz+JupOwkZASBik50Graz/lWfKikdaje0N99L52kE+hV4osmss53FJs9NuKrtgg1lcgqTeyq0CZ/b3kkg8ozusMrvigiYtp+RzOJHjU5LkBk2mefF1Bz+fzu11YxpqKuRvLMsKZNIgpBDXa0dHbeduUJLaYNWZzuLzTaUpRA+mrYUE6lM7t3ARxCZPJIwjUTDczvZWWxm7+7M+jvlPi1SaYcIOtvBbhY1lNEIui9iJl7Rt7NjqaU73I/jdBYpgLVlbYrPSsU+2f5BbmndGDe1dLtTTKTAj2p+ipkshWATFk9sMrnk2yFR+GhKGVJj3sfavDq5iUFdRXb26jaMmDYT/dUmqaU7Fj6akgkzXpukpMBH+kPnTo2yHBGIeli825JMLZ3RCLox9D2r/NsJ9Pj6oMS0cTp3vM7SXn4iyFt/O6ULp2Pxbtc8K5EancTEqi6Q2+/4LPtuKkXLL4xHrPnTfCDIJv6EjkyyEbgXn0rZgkN0ZdF6k5jc5URaY/vazNq0gtJFR5Gz2Xh4kxFpWuXHQfk3Y5JLLZ0KOuFb2lqVRZDVszGJKpJvs9QSKKoP0P0qmz+ZkkXHJKRNvBDqGNK+s/jKK6/E6XQiiiIWi4XZs2frrsuyzLPPPsuSJUtwOBz85je/YcCAAelmqw109nZxswO5E0j39kZuxOmY9nBqaTFQQ8hZEaZNUJWu36XXzOGo/1pfIAgKWVLmnvAu5HanmDBfudtazQ7nScGxnKY2s/giqaWXJLwrMnnI8Va3shztaymZhjT3JyJpT/h0J++jEQL1QGFyZ2y0Y8JNbu9FlDoWhjTmpk7zfVwQANx6663k5eWZXluyZAm7du3i0UcfZe3atfzzn//krrvu6gq29IinwgdqQbAiW034T2mXrBZxVreqlSKx9oAcwuLbScjZS1vYNg8afhNpBFJQuxpJzVks+nYjWfPVoyP1t0gaVT2OZhTmWEhlICSjwYQ8iMFGJEeZhrQzbdfa65JJWfy6LJ6tipA2m7R172bmP4n3iIiPIF7UUKSl4/MpBBtBDiHbChM/z7yGdtDGMQ3pBJeMxbuVkKuP/rpZreotqQjw9gt70V+NLLqQrdkmVzt3zugs7HXT0KJFizjiiCMQBIEhQ4bQ0tJCXV1dl/MRT4Xv8fVBlH81Ks5d7VV321rdJhexk7P5McrmT8bSGlV345ohBJPY6ASsS8FUbO6xJrLxFC+/IAna5GPt48fCm6SjiNO+xSsupvzb8TGlqcTPp+AsThQ1pHk3i2cTZQsOIWfzI4nrVb9lMn0vwSo/CY2r/Osx9Pg6Tv/v7KRzZvXJ5j9cu1+nbMGh2Ou+Ucvq1sSZN1II2BASCnCze2L6/zdjKFl0tJ4oFfliuGk/MA0B3HnnnQAcffTRugPoAWpra3G7oydhFRcXU1tbS2GhfgUyZ84c5syZA8Ds2bN197QXVqtVrUesywLA6XJhi6lbIKR7niV8xnJOTjZZJnzoaV0A5OZkkx0pDzab0grhQZ6V7YqWayZALa31R8U0UGSvQ3aHD99uidarfTerTUmEVpCfj1yslAVaoikkzNoyy5WDM1LujcODTTmhLC83l5yYOhz1X5vWa7GIuIvC5Zrdy2btUFiYDzlKuSDmmdJGzEiF+fnIhWFaa4Eprb3uS6WsuFBdJQsB5VhUiygiatrMlC/bbpXW7N0KCwqQ88M8SHnh97WY0xZqaGvWAZDT+AVO950GWqvFgtutjAchqLyb3WZer7ZMbFb6tN3uiENbBOEkeaJHaQebza5/53CqEV29NUq9LpcLeyIearPDtE5TWt0Y3KPQZrlcOMJlzbqxUqx+N8t25TzfAnkDkvsUtn27jdeOfteUB4tFmeacdnvCNrM4wu2h/cYaoa2j3arMA9nZWbhi6rV6Nxv7KZCdk5WQB6tVGVfa8RpvbHcW0i4Ibr/9doqKimhoaOCOO+6gZ8+ejBgxIuV6KisrdUKkujoJe18c9Az/GwwG1XqyW5rJB7weLw2auiO02ucVeL1kAc3NzbQmovX5wrRNKq0QbKSHCa0UUjpca2tLtFwKmtZbGLLiAprqduO1KuUWTy0Ro4f23dzBEHagvr6WgKyUBVqiZyibtWVTQyPN1dXUr6+n5vv1HF5qpC0O+HEATY2NeBK0Q+R9Qxq+kPymtOWysoirq60h5FUmVFtDDSVt1FtfX0sgpJRbm2spNaGNPKtm92bV1OdoaKAYCEkSkoY3la89e9RBHKlXkoKm9dbV1RIMKOX2hjrcQCgYSkhrbfZRCoR8Taa0wWCA6nql3NHYTDEQ8PuoSdDmWY0NFAD+QJBaM9o9Var5ztXYSCEQCAQS1pvT0kIe4PF4aExAm93SSj7g8bSa0gYDAaprlBxAOa2t5AGtnlaawrStNa3qPdV79qjHQ+b6IBdobaymubqarT/o7exaHkKSspr2er2m7asf2x6yACmk+cZyyJQ23+MhG2hpaaYlQb0RYdLa0pyQB3cwaBivFk+16dhOFT179jQtT7tpqKioCID8/HwmTpzIunXrDNe1L1VTU6Pe06Voj+rVwa3/8aDzEcRR2WVR0TSEUKu21Jw2/JmFWHtrmzwq11878jXmXru4bdokIqLMaZMPCY2vGpvYzOP5HiKHjWtWmYl19XaayFLZUBY5AyJuGK3GZh7H+dralMWKb2NNOCH9PTEQUjHTxeFHizn/PYq/nvuXFOqJX5d6Nc5+FtkS7v+Sx4RODyEF05Dpd9tLKcVT2lnfQaRVEHi9Xjwej/r3smXL6NOnj45mwoQJfPHFF8iyzE8//URWVpbBLNQ1SH1ST22TjOa+uOGjZrzEoVUHQmJBEB0JGmexlMg+H/4nlKLTLGGH1dg9E/KbykSVuN6I8BRDzabXzW9q37kMgslfelJjm+m/pXm9Zt8S4L8PnM3rf5tJ6x5NHQkjgVKZ7BIL2q/fObztOhLxkBBRHmq2ulgyb1zMQigelPeXpRT6cidvqFTFS1K+YmP/b1+oavJIq2mooaGB+++/H4BQKMTUqVMZO3YsH3/8MaAcYj9u3DgWL17M1Vdfjd1u5ze/+U06WWoD7WnoxF/VfAXXtiDQ+cwSHhyfTKpmEwdjwiic9g6aFHICJXKaJzUYzVbe8TSCSIphzbkBiRLqyaFobbLZ+5rxEp8HtV6zbxGPF1155ChRff01u4vj8xPPqZvKZCeHzIMOEiJB+Ggq+YE0tC+dDyH/qdxwzqakWWj/yj2VvgctjVn4vXZzVtqZdLF981PySKsgKCsr47777jOUH3NMdAOFIAhceuml6WQjOYQ/kJxKJEQ7U+sm/Kga01D8YxHNcqIkWGGncopX2qIbkhlgZpFAKajncXgwb8skJsD2IIV2iKaCiKegazUC88k4FFCEnCi2N5In0p+SoU1szolm/EzET+qTc82qGkJhWa7ukWizmlS2FpvQpLiz/sHfXo8UsnDZWWaUKcwZ7U6kmDr2evhod0H7zDydvMJQdxanshpJQhCYpNZNpCYnp0abPDdhltAUzD1JrVhTWD2FB1Zy7Ru5HDUNJewjKa2wzbQo/XCs35PPZ68dGWPGMw8fDQas4WpTSb6XCm0qZqREVaUmVCIQgLq1dbxx9Bua60kIvg7nO4p/n6/VYZATUqiNbK/tHVf7skawb6E9HyiJe0x3CSYyDelpX7j7fDasGMhl27XERo0gfmoFs7TObU/CSa1cTB2i8cwbJrSJHMBJqcay7o62ac1ixBOYcGRJ56pN5p7kaEyEZ7ivyLLMtnnb+PCaawEY9dcWKHZFOFL50iIUDAuCkMbBnpIwSsRuihpB5IuY+ntSea7+h6dK71BPShBo+EqBWP0z3hPqt1n452WzOPKGEIOuTVSf4Y82SNuhwXcQGY0ggvZssU9FzUvpPv3EumHFQJNaw+kDdPXHiTBKaRNSpKp2ThIpOItTyyjacdOQWkcKAlHnLE7lgB45eVOLmgoiTLz2tbV8eN6H6nWLXTC5L16CQW37R2gTO4uFRJvPUtKitD8S9P8Opp6QpcikGf+2qCxqr5Zr3ta12xQ/wIYv0yOMUtJcO4iMIFDRjoZO8qM+f9cFzH8q8RnA5tXFM3OYDfIEpqEUVhhJ5W43eV48H8GWNRWsXzZQx0NKyeFSMV0k8quk4oSTzSbWROa6JOo1Nacp36l5W0xUk2TCbzytUmovDwk0I53gao9ZMd6z2slvGJKUzBTW0fND4o3XsDaayiza3vM4MoKgi5CSRpCazbFmVzF71iQzUUVqT2bFalIeN8Io8pk1k1rC8NH2rp7MNYLn/noBL95zvp423qpWtelqzRzxHm2cnFPLjZTINGQiCNobAROXtm1nsWyqwcSbnELaH4mY0PydKB2FSZvFbQftj0QRYBrDmwwfv3QM1RusmrIY2hj2ZCmJ09fEVMJHNcyY8qtBWBsRxOTNnfpq443XjLN4L6I9E19ypiFZEvDUpaAOC0l0QlP7fKLVbfJJ52J5bItcLxBTcBanskkspdWiOa06Gel4SFSt1jSUPA+JD3oxo40jCELadmg71FRIQSPQa2Ttad+2V8oKRfKmodY6+Pb9w3jtWpMEj8DmLVa2bNFP/BGNoC2fVjR+qXNNQ+bh3m0nlIz1eZijHVFzHUTGWdwRJPlxZFmgtV5X0mZ1QjKCALMImHgr7MjO4uQnNYOgkIX4thyduSeVULvOCDWNXE6+zXSTcAIeTDWC+EyY/J2EGSnhSWJmk1KcySmUivDUTzTvPnMSg2YI5I1NlodkNIJEBEahHAyKLFxoo75e5OUnLUwOXz708IH0ZRMXa+4e8rM7EHNyGCPt5AhtrbJmYa2uxjvZNKTmK0ysEesYi60gGdo048AWBNrIgHZl90tSEMRoBPHNHMYr8cwcKr9JpY0wSUOdwDQU2xwybfCdhGnIlDYFDaZNNVqGZLKPmk9gkb/jvZ3ZxJrE5J5oNa67LWRWGr2s+VaJVrdJHShkel3i+7kT+H4uXHZxItpUNGKT+02EtizDW3MOAtZT25jNaacpmaX65NaoguDh+7cjbG+k7qHo3ecdv4C6nCk4VgWhLlrev38PCgok3G6JX4g9US4mw6+s+8fkh+Y1wqYhzWdLeCZxSiHR2jkjoxGkEfE/iqfGw6tHvMoF1/ek54AdSdwfB4KALAv4myHkD2GxW+Lel5pGEClPRoDJNNXlpBZjHntZFpLghdQEQTyVO6W9AamYyCJaVKL79dxEIJiUxUfyGowaARbPR6Az95hFi2kva79xIhZTmFzMBEz4/to1tdSuqtVUq6m3jfDRhtY8tv4ksH6zjZdeyuaDV0/lBh4kP8fDS0/WkJ0t0Su7hnfDGZ3PmlnP9oV+3tMIgj9e8gHSwaNY83IrXyyOll9+eTN1dSJr11r57rv+TKCOt+ceRNCfS3a2zOGH+zBPv2b68ualkWLdVp7OiJozCxHOCII0Iv4qZ8dXO/DV+/jmvcOYedVrMfelcDgI0ZWDt9ZLdnl2EgOwfWaO2jorn317Fj9sGYOw0kIgkIPDIZPz40l4X59K4ek5lP/cTlGRRHECn3iszdU8Xls/IShIXjVOtMpJLsWEsd54tNFzhNsblpoKbQrhmInOFjZNyxFPe2inKSulPqkve33G6/riBE5ZAXjkw6u57sUHkeSozf+ms9+F/4LTHmT6dCU7buMm/bcSYsxnsmS+s3jWrCb17zdmrqTmW1iwrC9fL85R+/LZh/6b22begksC0dD0WmtBgoWbaPYtzWHu+I+HjI8gfYg3sGPMBpFVmGBqFzdfRdbsKsJmD8TQCmqss7cmLAgSrTASrJqbmgTefuFwvvvqdJY4TqA5UExrq8iuXT2Q5RlYxCCh/1kAxel2EEdyBm/yxRsuXn9DyWNeYHFyTbi+b76x43DIlJdrbf2xgsCUZQO/iUxsvuYgOOK/m1JJ6puQ9Kv8TvQ9pMk0ZCoI4mkEZs7ieLVqJuHE5gSjVpIMbSItSjZt/yjtP57M5/YXHuGkce9wxpXTsDkD9OoVYnDdZzz93zz9x9SaxUweJ0liwji/itJ6anBx1+/eY8A1famvF3j66Rye+sep/PfbXyDcIJOXJ1NYKHHi+Ev49eS1DBmZxLdUfQTRonj9PyJ8NmwuQFhsw+sV8LWC+N3Z1LUUUrcxC1kWkGVwbT0Li2cyzd+PIpCdjSQJCJ7+ZG27CRmBa05L8MLtwIEnCOIO1vDEr0aWKP+YCwJz/O36qwG47HRtqRDVCGq8Js81YUeCQABaWwWWLcxRLx98cBmtrQLNzQK3SF76sZXtU5rpXZhPdrZMv9Jt/Mx9PhMGLCJ4poddu6oJBAR2PvYQcx/tR+WUzZx9TTW1tSJLPmuE/yr1nnmmW33XWyOsxK7q2tzBmfyKaOG/ahl6o8l9OqQSNWGclBIHALdz5W6qASWg7QQeDMc1tlltO3lIqJ1FKSJCI26Yrs7/JPDpihnM+ehn7LHlsXWrhY8/dnHW5Jd58TfnIZ+xg+qG8OJpQWTQtTFGY5pIkiBxAGl0TAsCFBbK/P73Tdw4aCKvLjiTze7baWoS2LbNwlP/O56/v3EK/AGcThmnUybL5aZP9jf0KNiJ98VCQiEIhQTKNp7EEL7ny8UDeWxmMZIEUiifE8NPPeSQUmXC9wmc2ziQMvZw1R0nsFk9WQPgPyb8XmNSlgfcDcBvn/abXO8YDjxBEDf7pX5CUSfCNmeVZISEoIa4eWoj2+Oj94VC0NwssGuXhV21hYj4OO5XF7EpFLVg/iX877RpPnJyJPLzZXhQKXvloVdorbgIAFvjWkoWKwfVhwSw2cBmk8l2KQIoL8vHYYcpnWjGQbt5KSwIXn21Gp9PYN48B/xTKbvqtmORehaqjro4az+TorYFQfV6H0NV2q4NH41eTsU23j6tRJBlGmtzcfWIQ6wzkbXtLDZ3XMbzEZjtI4hXbyqmh/hmVGO1Sr2SBLOfmso9/5yFIEjk5UFursTll9Xy9yPOwSJK+E3aV7vC1grBhs1NRNXJMMJp0pM5jyDWr1JRtINrjn+EHdN/r5YFvrmJ99/PZoftbGosB+P1Qkujj5rVLfy0awihZiuiCBaLTHarwktIEpFlxbxkt0Tbf9IkvypMSl6rgwb40+XzcE09CYdDxmltYdC64yjMrmPP4UsRBGUxVrziElxN31A37AECZSciCGBvXkLp0tOVhamjieYUMqkng7QJgurqav7+979TX1+PIAhUVlZywgkn6GhWrlzJvffeS2mpcp7U5MmTmTlzZrpYCiPOwI5Rd9Vdg9pVYIx9Mtkc4VqNQJbh2wW5vPK3l3hv6Yk0evJVuisooJzdnHH0csSDCsnKkunfs4pNlyvXH3ygTuXh6Qdj+Y59Nw2fZlqN5r6IcDjySB9PhwVBc6uNXRusqiB44L3r+MNp98Z7weizEkyWdZu0q5lUTDiJSJOIGjKtt+1JTTDpI/EzwkbLm3YFefaq65l61lKGH5qAB9nExqCFZoXt8wr855uzWVZ1JHv+l0dLi8DmzVaODV+fcdwQGp0lOBwyuY4bGeI+ktHDG7D2zyEnR6ZHjxA/F3LIdTXr96TLEm1vKzITGubt8I8ncmkO5bJ8uY2lX+VyycR/cu/tX+M7SDmGUwg2se3p3qz9YTBHnKKpw8y3oPmWTdtaEVyOeJdj7jOOV8N1E5QUNPLryhcIjiynqmQwAKJvF+XfKh7rHdOjCb+2PfoaH9zTk6MO+Ylb/6WcsiZ6d/BkOCPMo4/Wq7RvflJDdUM+h47dStEMxf8hBFrp4VkNgFSsvMjihxaT318iv6CRUHYAb7bCpy0QwmlX7vOnkgUnSaRNEFgsFs4//3wGDBiAx+PhpptuYvTo0fTq1UtHN3z4cG666aZ0sWGCtk1D6r+RsSlqy2Nt121POIEAvPXlwfgDtYjIPHK3hTl39MDv70l+Vm/OmvwKeePPJjdXIj9fQnx4K/Vb7Fx6xnfknaAcsm7x1vOEjscYYZSMw08wrpoSxVT/6863cU65kKcrlN+3vnY78346kgFf55GXJzFsWIBzik0mxgSTcO2mAJE0xQkFqXZ/QmdqBDozUir1Ji9gmncrK8MNSyoYnmS98SKB5n2VRd1SJ1u2WHn2mZns3nMhFjFIdo5IdraM2x1dhf5iZjUtBdn4fAKenZv48ccyHntzOoGgTaW50lrN9OHzKBjcD2dOFi6XTClTsaAcBP/55w4kSdFWC5edhCSJVDfkEbI4kSRw7jyY4I5fssc6g/q8HLJi+P3b3wqQnQ7y82VuYDYsBKc9QPRwVJnn7lBiVI/QtIP5prBombfGi6tXzNW4jmnjWNGaN0P+IA//7hqOv/B9cqeb3Z5EfzLZR5CwP5lEgEUQ9AT5/v7vWZE9kZue+jjGb5PCoqgdSJsgKCwsVE8ac7lcVFRUUFtbaxAEXY446rDa6GoCsNiGj689ANTURFdTJ53kpqlJoLraQn39b7mZ2wGZob2aGHBsM0P67OCX7nFkOTzsmH6iet9bj4WPFowXWSBLJg7FxBNV1fqc2NdNaAqIHWB/Of0W/vbZVXz+bBZer8LDqjN+yz0/+yWpTMK+JglvrRdXsasNWpMUHu1KlxCPNPkonMhzN3+8GXexl7aPDDfRHuK6HpI3y1z1+z5Uoxzfevik7bx46alMnVxD7cT3VJqIwP7lBbspHKeMu5zN/yVv47143Cewa/DTtLQo4ZRfPv08c1ZUsnJ+Hh6vFa9XwNN6FLeGBcE552gPuXnHhKPLwv8p+EvM1SWLNpLbo0DHl/7d43zXiDVWMKf11vpw9dZXFQrI2DT3GiojOlFrSVp3t9BQXcAHz53AWddFywUzbSeeA1gy+8YdX7CEgia5wfZVQaBFVVUVGzduZNCgQYZrP/30EzfeeCOFhYWcf/759O7d26QGmDNnDnPmzAFg9uzZuN1tD8m40JwLa7Va1Hos25VDvJ1OBza3m+3ZigoY0QjcxcXqwdnrq/ryr3/fy6qGk2mQy2logNWrBf4crtftttK/PxQUyJw84h8s+30QWRKZNNLL6Q84oMmP/SNPmFb7HkqPcjkd0fKWaBic210Mog0tsrOzcIVpFz3ThDW3gMLSeqxWq1rH/Ff6AGDTvK+1ulZTr7Ets1xZFGvKrzv+YWadcQ/+mT68Xrj+egv3/fMSnNI2brk9yoMg5LF7SxmSJMT9RkKdgHuoG8FWZcqDGI7ly8vLRY7U68ttk9+8XA2tv23a/Pw8lVZszAbAYhERNW0WQUFBHnKRm6cvfhqAW18CQTB/t/z8fLVen8sFNCEIiXmQ6nN56INrmLPmZzS7yunxU45Oi/jv0xtwT8wnLw96yV9gm/8pkv1g03pzc3PVcnGPslZ3OOxUVChlQ4bAzzzXA+A/fjVk9wegZeHDPDpVqWPevACiqNi8nfMOQRQkQke8i5hVisUiY11zLzk7nyZ3xMnYD32QB3L1PJSVFJAVw1tkXCkPjrp3lTFYAECjXTH7CGK0fYU9mrTTrSIF+QW6er/8ew6/+IWbnJwcXbl2vFqtyr92uy3a/xvDhDHfx+JQeBBFMVreGj0OU0u7w6qMRavdEme8Rmmrt+Sr7aCW+2Qdrb9F7wTOzc0hO9IORE3IVpN+2lGkXRB4vV4eeOABLrroIrKy9Epk//79efzxx3E6nSxevJj77ruPRx991LSeyspKKisr1d/aA+9TgRDyEPHfBQN+qhuUD5fnaSUnzG9DdTVNjUp5TVMRt7z2V7Z+HKSxCbZvt7BgwUPYLH6GD6gi2x2gokLi8KlBIjac557bpT4vb+0ifpAV4daws4Hq6mqsLXWUmrxHZIXh9XjUcosnOmFXV+8BUX8EXktzMy3V1fjqfXxyy3oWllzI7x5+hGAwaGijgD9a1lxfp6nX2JYtrS3IWt5iaG+9FUKbF3D7m7fwwne1FJWB2x3it+cLLJ71awAuu8j8G21ZsgXnICfW5hpDO9SsqGGoX8AONDbU47Mq5c7GhvCaWM9vjzBnjY0N+OxKuaOxgWIT2oj7vbGhAZ9FKc9qbqIACIUkJE2bRWjr6+sISPr3kGXJtN6Ghnr8glLe2tKitlw8HjxCNStX2vjDNSfzw+pLGdZrPYW9A7iy9A73YYNbEEqUOpqq6ikCgsGQ6XdrrKvHGi7PaWkmD/D5/NSZ8FBXW0PIo8ziLrkBUPrW4MF7orSblV1auyp2ITmUhUpe/SZygltosdbR0GjkobamhtaYmSUyrgCEQLTvBYMBquuUcqnVA2Tr2rehNkpbt72eosYGXb07fxSorq6mOcZ7qowVW/gZQcCB3+dX622sVcaVIOi/T6HPhwuQpGj7Wry1lKn1RmkDfmXiDoWCccarsW08rV61XPRXU66h9TfrBUFTUwOeMK29vl7VRs3GdrLo2dN8G11aBUEwGOSBBx7g8MMPZ/LkyYbrWsEwfvx4nnnmGRobG8nLy0sfU3HULUmSmbdqGssWHsmenGx83zjIBt5afBrvLTmR/ALIy5MpKJC4+YKX+M3k68kefSZNA2aFKwjy9BMYIMuCaptMFD6qKqVxN52Y3Rc2ZYWFiM/jMKGJ1Ku9LZF9Pva33sYhivD339zJ0OL5LKo9j92eIfzwg52zv5zM75nTZtWNGyPLMb3K3bS1iTeOfYODj53KSRe8FnM9edU4Jbt/op3F7YwwUr9hjGnovSUncP1LD7CtYSAtrcpEVVLUwqtXz+TkGWuomfgRix/y8P395vUmTgGdQqoUbV0Js9HG31ncZr3mBJpqJSIBoKamFs1zPbV+g2/L15zE8Z7Gqgw8Nm5q5OUpL3P6X/M5aFBMO8czDZmmiEo0rtqoN+JzMOVxHzUNybLME088QUVFBSeddJIpTX19Pfn5+QiCwLp165AkidzcXFPaTuSMupYCPv9xGnsa7eyutrF7t8i7r9/Jnp0uWslCRmSiYOdE4JBB83n+9xfQetxisCjmo8KVL+Pas5umJD5U466oGuypMYaPxmTHMqkqkZ1cX9bWiU3aCdJ800/8R5k92WKR+MPJ99Iw0ElL78upqhI58/Rs2KhcD4XAYhLk3bCxwfQhvgbFnbj9pzLj9QSTS0r+hJQGmEk7JbOPIOIjEGVkWQkRvu++XJ555j2G91zFeaevI6ukF4WFEuce+n8MqHodv3CQea1SKOn0Foa0zW1Tx7nPiJj9vOGyeJun2m4z/TYBrVAw4UHnI2gjft6wcNEEGgjGsojAjPgPqpYoZspVnxVy0KDYCuMs3FSfRmKhEb0n/uLG+P77gSBYs2YNX3zxBX369OHGG5UdRL/4xS9UleaYY45h/vz5fPzxx1gsFux2O9dcc41hC3lnQZbh7bddvPVmHvM+200gpDexzBizgYt2vsXQ41uY8Oi1bHqtga9nwUG9V1CQ3UCrqTMysYNy3uMF6t++eh9SSML4gSPZERPtqDUbKOF/k2g2XQqYhPOfnmDFt6MYN21JnIcr/5aWSrz5r695/UiltG/fHuTny4waFaBSc1fjpsYwy/pnRI439Lbaee/ZEzj4jhAhf4hPr/iUSef5KDJd/IVzIKXkWDOjNW/AOFu84tSrmbTCDvX5a8Zxeb8eBINKTVcf+wj3nP0HWg7+J75ixe6btcMDVcbaouyaTTRxPrj2qMpUHOwp0EZ3z8a5x1S7MO/HWg1GnQi1bGnbtNZnOj8EWmN385s/Tz9Hm2ts0Uk9BUEgJqaNvSwFJWR/UH8pZszF5hpqrs8hGLAYorQ6A2kTBMOGDeOVV15pk+a4447juOOOSxcLOggCPP54DrU1ymD82YQ3cZ/5FgFCZGdLOBf9jafO6sX27+wckSVH076rB8prPrFZPHm8/PAxZ8v76nzYnfFU6khVcUwBSWgEbUH1QdR58TYk2J0Y86z3nz2J+j0FjDy6bRbKS6OOtWuvbaa6WuTVV12qILA6BRo2Nigr0Ng2C7dV/e58Fu2ehGNUI6XH17H5o830GZ3LiLGmjBqZaFe6BD0aavLIyW8BWU6wUjOWr19v4ebZlRzJ2xRkN3LFBc3k58uMHetnpv8aAFpM+04SO4sTpZho5ya8hCYlM00jbg4eY3m8Yxe1bWtqTtOahmrM+2zsOcaRKmTtDzA1DSWzJySukDQxZSU03YUv/3vCvwm0+PnT05prhk2s+siyB668AYCwC65TcUDtLH7++RrKCmup+FbRUPz9QlQ3qjM+AFJIn7vcfJWOsSyeIIj57anxkFsRZ1CY1Ztg0opueGuDzZiqXhj1QhtE8Z/V0pATS2Ty0Ojf11+vONxPP93D0tOUsmqpiIKmGi4+y8nPTivnip7RgSSI+taSQrKa1bKt06VqdhUhD0thl6zm+rLXQgwrLqVocPRy0BPk4auvY8zhS5k6QUYKRuuWJMGQ02Dh+gn84b/3sKV1Ak2t2dTWioxwKHwP77OOYzUJ0JinMqFlyKRMc9VUI4gD0/MIzOsVZJACEs/0e4bDr7SZ0hjrSlxvKhv6tHmUzPL7azVXb33AtB+0VrWaCB9NHRFBYBKqahigsuEP4p790A6NICIoPHuMwsuQ32x/Cx/tLigvlxAC5oMqFIgIgsiliDrZRroD2bxD6xBjzvDWeEErCGTZuE9NB81ACUkIMeM1diXnbXXxyb+P5ojTjZWlcjDHrlUyAyv1ZaLFPH1EW5pRyBcid+2yaEFhDuyuoXFTI7/5/Tj+NeA7jh/zAeJP2bia9INDlmRqVtWYVavC77Xxjz/8hvGXNDH21khp8hPRZ/fJfMZv+NPr/4rW2aSsPNf9MIipSMihKH1zfQ5inoOqKpHGRoF33nHx8EPfUJa3m4mT68gutlDi3UZlvw9Y9EAbFrt2OKFD/pDaT+OTJp6w92x3s/ybgxg5IUSgRTGrfPWE3lQaee6OjT3IL24glZ3F5oEI5gsa3SZHk7Qu+tTpijYbi9bdrYYys/Y11Qji2kgTT+5mzu2gL2hKm6gubX1mtIl8eh3FASUIFMR+YOUrhsJap6oRRASBmUZgYiOVg3EmyZiZQIkciqMRRP6MmHBqvdR9Fw1HkyXJuIBRBVa0nm/em8Kw5VVYKpI4zzUOlr0OA6/Wl1lt8fIIxR80i+5fxLLHo4LgpDNq+OpxuOHEJayrW8Uri3pw+5u3wJtQgp8rNfe+/XE/cpsayAIW/VDKwD796F+6SVd/0G8lFLSy7L8tjLwxgMVmoXZ9QA01bQvxBGPQGwy/b5CWFpHquijdUXfMYdHuSQA48XAeL3HOOCsP//papEMfx1c0jacr/suiyA1JTDSJjrWM8Pn8yOcRhSCznmrrpUwm7Jj3fP6uC2muz2XQrACEYzPkkHma8af/fDlFZTWcVdlBjSCOE1vnIzD7HjFl3moTQVDVisUR29dNnqc1Q4XiaZDGNkt0MF9EmEgBiWcO+spA9+Zxb5o/Kra+UOzF6O+QPyMIOhVGm3tYEIT9TUkJAvVvjckgGJPsK3IAe/h2m0sm4BEUQRB3UKg6LLIs88JBehOOmVqsmrBirjVuaaSwojCG1nB7XNRsMJZZrDGrHZOJJuTXC4vWXfrVWkGFiGARWPn0cgAWv/QXgiEL6yZuZdfyej4/K0q7c1cWec3rAXhvbn9mzd1IecFOsopKyMqSKCiQmZ7zB6zI+Bpl5j++Fv+eJja8WMvVD+dTWKKPOY8gosEEvFG+//Hh+TSvEdmzJ5eWzQF6AhtqBtBv0s9w0cofwnT5jkZuP+svWMZeg23FClr+vZ2xeUsozK6nxuxZ4U/aWtXKts+30bPEhChRJFB40gq2ato/TlCFdoLzt8o0N2RjKdbXHwqGJ01T/4eGLry6rd1djGn/T8FHEEOh4VdWTW1CbPikyTM81UaTiqfKQ06vWLOlceLUV5WcOad5RzPUNav7XZBlWqs8vDLtFQZPCrttw6ahUEDf9yOpVKqXa2L+21jZx7ab1lkcaE504E3HcMAJApBpbXLRUJNPsVbiBpTuF/TpD7rQTs4RCCYDQa8RRAVMxH7ozJMIeCzhDKQOQkFLeEAaNQJvk8Ciyz81Yd2kc5tEWgA0bGmg8FC9IEg2SV7kUbGThFYjaNrWhKvegd0affi6N9fx2W9/0tcTs8qx2CG3d64aOQRgtYTIy5MJFuk7+zmVP7DqTWUF+JtzlzBTfJUftoyhJv8XtLYKVFWJ/O2r33INjwHw7UMr8eCiJ3DEDV9SneMmYCklFBIIBWX6eZeylsGEcBAKCfSXN3B++FlXP31H+K9cBjgbuQAoyK3nlst+wG53E5ytXH3h8vMpG9DIriN+xU+vBvn83yBFUgJgnFgjq8WPLvqI6h+qmfh4Ntn5LebmtHgRc6l8Nw3t8xcV0LjzRv7w4ddxadsSBL56ZdIVxJhItw7vvYjRCFS5FGmH+CaRaAh2FK1VrUZBYLLY0vtatKYhOcpSTNTQfyYqaaLP/cNAqreX0GeazJY5Wwg0BVj1aWQ3vXLHTy/H9H1JRrDEBN620TZtmYYCLRmNoJMh88LdF7Brcw9uujK6mSWkiUBr2tqUpEYQhRTSagTRnECRTiKKYM+3h01DDp674yK2re3NZVuUulY9v4rG3cpmsHf+lI1g3WTk3MQPEZloYztR3fo6+tFPV9ZaS0po3q7frSlaos//7+T/Aidy60sLibTHpveNPGsdraAMvPwBBTpBEEHsO1Svjq6AN75Ryym//JTf/epRdkxXIs0aNzXy459msWzeWFwjCmFVHYXUA/Az55vsGleOt9e5WCU/+asXU/D9V/hG2WiddAK2bX5yPv5ArX/rPyeQ9bNvaG2tZt5vP2P929C3fDOnXvwjtd7x/CcsCDzNWYCiaYg25RtrV9ghX8zKLfz9W7a3hEmMC4uEGkEqm8Q0tI07I+YSs0lcKTeaI6KI7OtwZsUzZ6ZgGorrIzBzFmNKC/FNQ20/z1hV5LmCICfmF3jpHmXJcNndRtqIsP/mz9+0VUX8ssilyLcw2fcQ9KVXELSVd3a/gyzJLP7banZtVpJMeOui+RBDmsi0LXO2mAiCtp1lcsDcw68mvJLBWeTEW+NFQGbb2t462q9n6Vdtp759qpF/UwdYfEEQi+r1hqI2Ubs6WckRfnZMb5Il2SgIRMjrH905rh+c+nfYsyYqCAIeeP1vZ6q/f/jHD7w85WWWzRsLwNSzA7p6exTs4qlLL2f27AZmNL9HwfeK7faYIR9z3c/nU7RAr3GVF+4hJweWPrKY9W8rDdWj/w4E9MLshbsv4H9PnMD2L7YjWpQX9nnVI9cMprHIyl8K6Tcw6WcEiY0r+1G3MxszmK8i45iGEmzK0gUfSFKbgiAU9pVYrCGdNhl5p/hHOKZmGgr5Q3x4/odUrTVxWMfMnGamodbdrW07Ws3GSJw2Md/VG1OvYe9BHMo2TLlt0UfrU/hqrWply9ct5jd1Eg4ojWDn/J0sfGC1+rt6dS2u0YpKKWk0gs2fbKbHIYqwiJiGtCc0ma2ItGfFSqEQYjjPiSoIJMgqdoVV23gdUkFBrxAlY02MySl0rNp1xklcCkYnpGRQ91OsMGnbFBC72Wf5U8sNgkAUZfL6RSfsxZ8dzNgjluJv9mtScISrlSCrPMvgZ5BlmVXPrtKVWWww+vLRfHWTMuGHQspq2FPjYeP7G1U6qz3Ip3+t19vbw6hdV8vihxerv+0OPyDRtLlJR/fD5wfxw+fvq7/X/TCYlsYsIL5GEBnkkmSiYcrw/F0XAXBZNN299oVNCpM3I0X6iBSU2Phe1PkjB2Vkm/k3DflDvH2aojGJBtNQog1lbfOr41ySqFldw9a5W9k6t9Rwl34XZBxBUNXKjq92xN7YNrsRzUlQniEbFndtCIJYxPUmJ1kW95pS8PYpb9O8tZNPoonBAaURxMapf//0GvXvYFgQ9BvfyM5vd6ohhG2ZhrTOHEnjKNr+hWY0azWCYifeWr2z2DBxED+kzTSELI5pqGFTg2ESBgyTWluoW60XBPE3fceotGEsnL2Q6h9ikmOJMvn989Wf7z5zMndceDP/N/T/+OCcD4hF0XBj/E/V4iqD2UoQoN/x/dTfAb8iiNe9vg5Jo60t+2oMW77xMfGmiYZ6v7j1C+Sg1mwhgCyz4R295zyvuJEj/36knqetpZgJAjWGXf1OUX9CFDHfOzaNfkjCVx/VXv967l9Y+53JpIm5+TDi91r2j2XM/c28sHlL0QjiLQwW3bMIKRypovi5zPiNs6gwMWVJumbRr9bj+VUUgujfzgKbqSDw1nqNq3RdWKr+X+0PAVnnr6nZ6uJff70Ef2sKgiCuhSyRdpaAPkybbiEAB5ggsLr0CtDqtzerE0rNZkW9HzK1DskvsW3eNiCOIIhZPTRvb+bfh0cTrW14d7P6d9kQZZV7/B/rcRY7qVtdx45FUft4RODoEG/CNVHjo51cf00KSjRvM3ag2jXJOwqS1gjC0Ara8Ud+j7PYaRi4goBOEICyP2HyzZOxOI3hrrGCQJZhw/+MIU2iRdbd31iTzw9fjmbNf9fo6PZsK6XXJDujLh2lK9/+Uwk/vvYjjoJo0j5ZFggFJJ1GAYrTfNBpg3AURmn9XgfIcpx0B1FBIMUEH9SursXXGDNxGuYDmW2fb9OVvXb7JNPnNG032tADYUEQKzzlkLmPINASYNkT0ZBfUZRiJjATo3sMvy07W/j011Hz29J3CrUE0T8lue1tHxpal9uGT2PO1bKj8xNEHMDA0xVP88M7+dFnqfdEMsahkxC71+Wy9ac+bFoYJ/TaNMQ1Me+JiTF8i3i5nNKBA0oQbP5os6FsxTMrAPj6OWWF1WdcI/Z8e3RHa5vOYuXfHV/r1dJNH25VbcViOCauqE8AV5ELgLfOj5qnqhYnn07W1OYYx0cAilYQi7o1sZN7fNSvq0+WM+UfjQDLymth+iPTDZSCIOMqdenKRFFi9BWjTc1hxcOLdb+DASsb391ooBOsYHXoBf1bT5xO3Zo6XG798wZVOhCt+q4/94UJZJdl6wSELAlsW9BiMvmENUKN4PN57YBsMFFEfUQRQaDXCF4/6nX+e1kiC62sJkXTwt8YXUQUlir9ddNnxm8eCOc9ijUjyiFzH8GGd/WCVgkSaEODMbArs/njzTqBHfDoPMDRvyQZwyFQcVJMuIrj735u2Rm1oQsaQaBnS6vtSW3S6ncL62oxlsSJvJIlk5DPNpouuqGubUGbDhxQgmDJI0t0v4ed2ofV/16tWynZHEF6T48ejhO7s9i1+y1szSuQQqL64WI3s/gb/Wz/UjEPqWcfCxLOYqeBJ632EEE8hSA2X7nCVjjGvGqTWubKUVZH0XTPUaQiCELe2I4cJzGbOqj0duCKqRX0OlJ/Ip1okQ2TcDAQ8acY64/VCLas6UPLrhYKh+pDY0VRQrAa77e6rPQ/ub+e1sT0tmVVD6b+eapOaMiywNoPW7Dl6iegSP4obWigP5z+e/1bMR75GNPQzo2RfPCSulio2xI7DGPi0UMye5buIRabP472nciCZduCJnW3cAQRQWDQNELm4aNr/qPXopTJUvnGjuqPsTcsjNRguFcplgz9zGIzD6aQJanNEFYtbVYbgqB1V4wgSLSzWGe+kgyvsm2ZuXAWTJzFcUWGWZRfW6Yhw7WMRtAlmHzlUAJNAd498121zC400qeyj/pbsf1C5HMX/ngl/voWbr/gFha+rKicsYJAtIkse2IZT1c8zebvs9T7zQTB5k+3qztZVcSRBNs/NwqNyCB64/Tv1LLcgiZs2bZouucw8ivkuIJAlmVqVkS3ROWVGzusFDLvLkKw0cB3ZEU18Ur9QRiCgEEQRO8xvnj+QL0ZacW3o7A4LPQ+Sn+SnWgRTAVJ/5P64SyIaXeTxztzfIy5eIxucg/6bWz4rIV+x/aLoTZqBH6fjcZtAaoW61fusT6C1x47k4aaPMRgI4FmczOSvVG/YJGCkn5TUhha34UsC+QX1yMFjGYkVRDEQIoTNbR74W7db61pqHjFxVi9WyNPNa1XlmWDWTEiCOrX1bN5XpWONna+i5cuPavQ+LxIvZLGtxNvla99jqAu0OQYCaHg6+dchrIwQ8aykIm5KkIbW3dbgiD8LXzNNm6/4GZ2rYpL2ulIuyBYunQpv/vd77jqqqt46623DNcDgQAPPfQQV111FX/84x+pqmorH2/nosfYQsoPKdc5UO3SNt0qtqGmIHyGqDJR3nHRn1n3g3Lk5vL3w4LArhcEvaf3YOc3OwFY+5VCI4jmGkGgOWgYuPEG2JZPjSElZv5jQZQpHFigagSFPRUNYciMEPXr603rXv/Wet449g31d3F/E4efZN5dLL7wsZ5ajUCIDLRY56lsOuErfBvLY9t21YKR9J7R2+hftZi32fAzSg2agpkz3pnlx2Kz6ITZumWD8DfJDDx1IMe9FM2SW7OjOFxPlPiTfx/Lj2+ZOfVkAi36ZGmNNflYvNtNNTwAJH35njUeE+0Mtn2+jdY9rYpGK0OfYVtw5Ils+WSLjm7HaiVKK3blLYfMncWG9jIxk9TvySfgjbNikWRD6LHFqvD/6rRX+eDSpToeDM5iXcbe6LXsfON+gazCeMEWyZmGlO9tvvJu3GLUqE3NSAHz0E5Zkgzfss0UE5p2kEIWlr3VdUGdaRUEkiTxzDPP8Mc//pGHHnqIr7/+mm3b9JPe3Llzyc7O5rHHHuPEE0/kpZdeSidLMZAZctYQXYk9tA1ngf6Ur1ce+TmB1iCf/vpTQgErb/x9JhDdjRy7wh10ivHcZQE5fGB7FANHr8NRaDdEpcSLztm2oIVgawDrjo+ib2DSsQRRpmhggaoROHMCDBq9luIBki4qRovaH/UD15Ylk9tHf0hQxNEZq8JavIog2DonaruPTLaikHgSVhHTG92DjA3h9zoYcPIAnX0czA/AAag4yIMomkfy6O4P75rWCqOG6gKc+SIVh1fozIVqPTGCa+HTjZQeXEr55HK1bNuaEl4/+nUdXTBgxeLbjj9OKvAdy/Qvs32xeaSXFJB4aexL/GfSf5AkEYs1SJ+puWz5dItugp/zhNLHk/UR9D2qJ/bc6CQkilLMKh0eueZa/nfXYMO9AK3VXoNfxWKNZ0c3CoKiPkaHN0B2rnFitlhlndMewoLLbBe+zs0R/t7IcaM/Y8dl+EaD5ikEzaN6ZFlGkAOxheYPwyioxTiLm3QgrYJg3bp1lJeXU1ZWhtVq5bDDDmPhwoU6mkWLFjF9+nQADjnkEFasWJHEhpTOgqyLEgGwiB7EgD5rzE+Lh7Lgnh9p2KA3tUhhi86qF/Q6XK8jyoiFgISzSK8R2OwB+h9bwZaPt8QSmyLkg6r332PV3f8XfQOTiV0QFI2gaWsTOxfsZOfaPARRprh/nHwlJqkGBBEKh+jt8FJIf6QgwPplA5VJrcmPt16bCydMI8ZuKIv/bS1BfbtXjDNviD6VfQxmlXj1Wv07yGr8LCGtmSAAGDDDhWgT6TmvApsjZuI2GT0DTx3I0c9ED23wNDpBhtFXjFbLAn4rFu8Ok6gsZRW6+Tv9SnDHD62GVAWALq2CFBKVENrpOXhrvOxZvAebK2zXzwp/l1gfgWQeNTT8Z/kQjK6+teGjPo+dYDg0d/0C89R+tT8ZJ8Z4mWtlSTbwZXdp+ozGlp+bazSPyTJklZkd1RLfR1C89CyKVlymuWKuEWx8xxiUYKqtBz36jUhh+Bu8CDEaQVuCwNKk981Y4uzxSAfSKghqa2spLo5GfRQXF1NbWxuXxmKxkJWVRVOTcQU0Z84cbrrpJm666SYA3G53yv/FwmqxUOiOTnZHn/MxggDFTqOqt/KFzbhjIlikkIh/k9+QWqG0ooS+h+o7p9Nlo9fQWMepxJizhxuce6IgmPJrz5LY9qWXz9+IxrA7HA4DrSDIuAcXIQdl3j39XZAFBEGm1zCnqfnF7S7G6YgRUjYrFeMqdGV+rx23201RfnQCqN1dhCVQi61R7+cQUL5RQV5MhJBFNH03t9uNPeaQ+Im/cJnS9ujbg76H9tWVZecotJcuuZSRJ0adinmWOvas1r+zy2lsM6tNwmq1kpefpyvvNzFXpT3z6ld1/FptRtV9woUT6DW4Fz1GRMsuW3wZQ48dqv4O+m3YAzvxbDTGxH99gzEvUON2P2WjjYuLkWeNVP8OBS2IosSo48oRrSJ7vt5DbokywfUbV4fb7cbh0C96sl3Z5OXq3xdgTKVNt6AWRYmC/Hy8P3mZfekfueuSPykXBNn0+7RsMk6KTqf5d7cIouF4WlFUaIuLipEbo21cWGAUBIIgkF+RH1MmU1RUqJt7ACyiRWmH+q/V+VgQZYqKCsjJjU1ah6lfpqigkJyc2LxG4M42+gkW37Ocwnz9PGC32+P2/xz/Wl2Z02Uxn7es1nbNf2Z1qXXGvdLNUFlZSWVlNEF+5MjLjiAYDNDii6qhh52o5App2r3SQFs4MJtx1wznk8ujaWaDAfjo+o8MtPX1tYw+L4fN30ZXVT6fF19zvY7OYgmRO9KBo9ChU6VlWTJ9v/7j9vDDa3rZ7W31EIihFQSZvH65hjJ/qIW8fhUGzWbPnipaW/T212AogLOPXjj4PA6qq6t190ccyDuWLtfRSpJAdXU1TU16wS9LIdN3q66uRo5Zmfl8rUZaQaa6upoB5w7APcXNK4crp+B5/QqtUCrg0NiNvbVraazWb77y+r2Gei3WEMFgEE9QPzn7Ax6qq6vpCTqNoLq6GinG/JDf24LX6sVb7cXqDBHJY9Xka6KpNbq4Cfit4NnOtsWxviHY9rWxDKBobBG7luzSlfWo7AEPht+p1YUM+IVmyiaV8e193xIZ3rXbncx/ej4rXlyhu7+poQmfT6+VVAzchqfWodn4Bg6Xj/r6Wla8rY9cEkXZ9FvuXG7Mwypb/Ka0wUCAhnp9fwwFlf7//QPfs/jB6E5vp3UToD/XOb/ch60wJqpLkKmrrSVg0/ffYCCofkvt2d61NTU0NeoXn9lFIVpqjfbG6qo9NDfH7MeQBRp36tvWmeVh7bsb+O4ZvSDw+3xx+39rcwDtqUeSHDDQihaln7Z3/uvZs6dpeVo1gqKiImpqop2ipqaGoqKiuDShUIjW1tYuOMA+AlkX8ROyK6uuiM1bixkPHITNoVfV/C0Wds3fZaAVRBn3cH3emIht/NDry+kzXhE+siwg2kT6HdcvpgJzboeM/8lQJpmo9oqPIN9QBjKFwwoN9HIwBKGYFb1gNA35wiGSO7/dqZb5JYWmdau+HUJBZRISiVkdtuEjEMTY7mjybuqubh+leQs05Zp8MRr12+LdTkjSr3dMfQRhZ2bfY/vqdh1rHZdijJnr8NtG4B4YfdbwU5VBb6//joJyvVYpat7NLxchyEFqV5oI+5P6G8oAyiYYNQL3aP0Kr7EmHwGZvkdHtaWs3Bb2bMrls99+ZuIsNpqGeg3ZjsW3XTdRWm1BQGb3In00EYI+ZYkQbp/ata1YHDHfMm6svUkIa/j76XboA3nO2P0NIU65eYvBNBQJH419N/3OYm0nkAw+hfzykGmb65JLatiNnTPK++2ibEIJX932o/7+eBGhsozfExt9aGwz5Vt0PtIqCAYOHMjOnTupqqoiGAzyzTffMGHCBB3NwQcfzLx58wCYP38+I0eOTNsB9gbIkk4QSLZCJDELi8+4KisZlYcc6/jBGN4I4YnGEjP5hCeqY8ZfwYhRcwHFaSjI0H9iUwytOYaM/N7kHYxFgiCTXebEmmXVlQmyZJjcAZq2NmJt1K9oBAHyB+nfzdviZMunW5h/+3yyeyiCLiIImrfqV5ahsKYgEmsyaksQxDjhzGy3YZLcTQ9SvOJizb2aejXCxurbTvEg/QAz9RGEBYFoERl71VhTWm32VYDR+bO48ra/qr+HnaCYwdxLf8ZJZzymo9WeXBWQi2luyMZTHdUCew/eQm5xK1PvnmrgDcwFgSAIDJu0LlogA7KE+6DoN/7dw49w6T++4szPz6RiqH6l7qkN8MPjPwAw8ljFEStbsrF4t2tyIoGMgBSQ2LPEGBqr3XToylG0qUBLiKIhsYs58xlQlkH07TGUmcFuqcOWFZ2yho5fgzM3hKskJtQzHAlkEASy9u9wDrFw+Ki1Qd//AQacMsDIhMnei4bqAoK1ekHgyvYw/f7JSDEnyoX8sfdGxpiMr1XfT80c7LKcnrkxrYLAYrFwySWXcOedd3Lttddy6KGH0rt3b15++WUWLVLOcJoxYwbNzc1cddVVvPvuu5x77rnpZMnIo24PgEDIWYHFG5vACkBGkIzSeNKfTLb6yxKiNVZdjQ4Eh1MxMQQDVkCmoE+shc58JOTk1ps8ytxZLAjokrtFQupiN2IBvHLEWyx9LYYHAaxOfdmuLeV8dOFH5PXJ4+S3TsZiC+EP5SEj0rwjxq+iDjTzWHlTxC4ATLQHNRopGONoNd+4isW7nenX6bu5QfEg/ulrWpbEGAGi7p8w4dfu1L+3NsopZClk9xb9xH7Cxe/xy0c+MQQUAOT1tJFdbp6ZtM/IqHYmh49sFzWfze704+7dQsGgAs783au6ez/+/VZ2fL2DKXdNoWSAIpQkMdegEciSQO3aVgIt+v4vijLVS6NazUGHRc2DxcNi7OjxVsImE6u6OI/5ToIALk33/XHhCEAmq9REI6CNetELBSXLhHFs9z/RqJ2ZRVqtXTqEp07U+1+kkEh+/xwO/3MffXnMcHj0uqsjNeNv1b+wuglPdz6D0HYMajuRdh/B+PHjGT9+vK7s5z//ufq33W7nuuuuSzcbphBkWY1Tz8oPAAIhR4UaF6+DLBti4gH6HtPXSIuMYI1R80KavQouZdAF/YogsGTHDJo2hP6gI4Ks+yL62WTZuOM4YgbK75evpspY/f0wjqORomFR09wx533I0PFr+G7Xk6x6bjlNVVGeY8M8bQ4/AZ+dAacMYNqD07C6rNjsQQI+GyFHOc27AoAxjbAY22ZtmIZyS2PC56T4ybYkm94RqIs9RybSiGKwHpu1GdC0sWCclWLNPiqphl8dTYp5ZLTpqSVLAbu3lOuuO1w+snL9mEWk9xzjMo0aAggGowsOWRIQg40GgRXhS3boFwHZJVZmPH0iJaNLWHvHmwqNVdEIIoLcmeVBlgV2LTXhTJCpWlqFLcfGxUuPo+Hv/2HBh4cAUDw0RnCFWnUbFqM8x99ZbGYZyMoP0LhdM7Zk2WAa8jRn4W8MILviC4L/u/MiALav74UQbFBTD0WfDdnl2QiipPOXxKbu/sN7n7JzpcjyL4bw05f59Bq4jTWLhymLPFlixOkFfPbnaL3BALTuifrjpJBF6UqyTGud/n2togcpqITuHly5CFGU+P6zg82aqsM4oHcWg0xOzxwGnDyAY65ajyyIYY3ALBewhCVmh/tRv90Wx4wl6zQAAFtrNDTM7lCWBcoGLRmrfjHRRpZPOOWP+sgCKSSzZ4letfY0uUCWyRuQp6GzgCyR3z8fh8vLjLPmcOjx8ykqq2PC+SHOf06/uo3l4fBTv+ScG19ixt+PVJP3WawSUkgRnk279Teo82TshrI2JsupV3g47YropjZLqzF8TzXVCDEaVxv1RnfCRmiNiLe/IZ5pSPTvNtK2IeQGnz6Y4ecp8fyS4GDX1l7kFEeXh2Kc2HeAnmOcCIKAaDcOV1nWr+WsLatNTF/Kb2uMsnHmy/0pGV0S5l0pk8QcLL6ov8diC6mCIFYYCQLs+WEP7tFuBFHWPbdomH5ytnh3sPrfens5wIe/X8YPz+i/c1sL3qzc2E1lRo0A4IMrlhqi8WRZRgpJeFqcaig0gK1lDTuWmmuuo6cs0/1u3NLCmlc0YZ6CSPmYLI7/5edc//hDHHL8fCCq7cdKmJBf0DnAQYnGA4mNX+ppbaHdNGxoQJZFeg/eis3hD6e86XyN4IAXBKJN5KgnjmLolD0oGkFPLAEzj7xMz4n6lbvTYbbzEMU0FLMZxOrdhBBSOrHVHhYEIRFkGasj+Q9rD+knNSSjE6+xNg98e8hyx26TV9738rueYPKxUUerreVHnTkBjJPasINXM3jsWp2AEEQJOSQQsFXQVB1r0oiYhmL2EQTqARh3eS+GVuoHn9VpYczh0YFn8xhP0olM+LIQa+7R8qvn3eLdyomXvKPhW7l+9nX/0UQC+UEKIoRasdd+oaHVPEMjCGzNP7YtsWNgcViY/KdxCneywO6tPSntX695TrTu2PjxodMVs8Wvl46mdFDMmQ2yRfO3oHzLOILAkSXx+yfvUUud+do2VJ4vW7IRNLmOrNYgsqQIgpKDCnS1SiGoXVVL6ahs7A3fqwI2q8RGVqG+QwVbg6x7Xb+IAcW02bIzJvRSXUTEFAs2snJix5wxiSHAzu/qmXPZHF3Zqk/yeKbPM9z7q5t05aFdq1n/aewmNoUJZZKO4n8//zImh1d4zvBtB9FGQYlisuw3YiNmgqBmvcTql1bryjzNLho2NrBntZ5W9O2idpUyF5X12a0RtBlB0LnQhxEQ8RGYQZCNzkurb0tcE4EQY2oQRRlri7KSiHj+IxqBxW4+cLWwZYlIlmwsMatbWYbd3+sFgYyAWLeYLNk8WUlhab3Ohm1rXoXVroy6w076CmeWh7Ez9QOjpFdY69C0mSDKSuhcS29DHqJIsxh29YY3zZxyxKVMnfp/6KGvw+rfjhCM2VMiGP4I8xI/QZfFu5UJR0Ud7REhN/TgNUw+bn74ySGExh/JW/cX3Mt+oacNv7PWNGRrWWXkIU6yM/Xtws7wkB+qt+VR3jvqi9Jm+Dzp9ug79xywneI8xaHrXnIallBMOK6GB1kWsDavQohxamuC5nHleDjpl+9w5My5pieMSRb9YsdiC9FUn0vjVj89D9FH/AX9VqSAxKC8pyhadblq9isa7DIsAFYuGIm/OcjBR0U3lB520ldc9MEUzvtM72eLd757yNGTnGy9eUmQZew5dmxOvY3/4PMwZGydeGYt46/Xm6kB1n1QS9B8M7NBEBQOyuFnH/5Mw4AyZ4ihFgTJS0FJA9c++iBH/OwLQEaIEQQr5xRidVq59LanKO+r+HeCASsb3tkEwIkXR/OeEQpQt3wzoiWEu2c1giArGkEafAQHtCAQGmNUVUEk5DAXBGKg1iAIRKkFi9eYCE5AVtNPRyErq0jAEh6oqmnIHrNqlvUrpKsefITz5oxW/BcxjmzZ20TV9/oOHwpYEOoWIWvO37zoz8+ajrCgo2dYIxC49aW/cPQv5vCHp++hZIC589TaGg1hFQQZSRJoqDM7JEVACNQbNYLmn9Qt2bEmjNhVvoBi6tCVRTSVmNW41btJW5PmL4uhzbS+h8jkLggyQt0iLL6dOlptugKtRmBt/hGDIADMvKIRTTAyUdZsFJGCIuU9oxqPKMqIgVqQZQYe5uPS254GlL0mQt33Kg/HnR9zeI/GqSvhwOrbgUWKMfPFLLEPnvE9R/zsC/23jGhaMYLAag2yZ5vyfSsmm+8k7t1bEVSRT1I00GX4tmu+H0ZhH4kTL36Pi295BoD+IzZhtmqOCP9Ys2vI2ZPsrGhfL+5RrbQZUDG8Xkd78HE/MuRkvR9p+uW7Ofg6o419xYf5FA20ctBhyxgxSb+HKFYQnPFcKXl9tZvwBMOckVfcqPme0XcTLSGQBcZcPoSKgTuYeuqXgDIPbHhnEz3GWJlQuUillyWB2hU7KanYoxwXKsjIsjJndDYObEFQpTm3VpZQNIJeprS2xsUgx8bay9gbl6q/L7/zCS6740nFsRyzQpVtWVhbFEEQuaasomWDKi+GWnUr4aKyOlyFdkLOXjq1HaDuxyr8jX7dFv5g0IpQuwi/V1GZJx6zgL7DN5va0QM5o7C2rDUMxnidzVEXNZuIorJCaag1nyDsjYsNwlOQveoEZLSpx4aJKMIzkmu/LVpHozZ1SbTekKOHoc1snmjIZaTtZcGGULvQ6IQWZCJpofUagdHerZxnaow+sdcrWkek/fesVSa48j5RoSOIEhZ/FRbfdgQ5SM8B25l6ypeccuMShIblCCHFWdt7sD60WZkYFFiylO9t865DD3NzmkNjAosIKcmid/JGUm9YbDJlY427kLOKIKcksnCJaARO01TfY47bgSBAn6Fb+eOzdzBozDplrBgEQStC81bdfhWAkKMXuQWKkBs7bTG//Os/sTUtBTnE2XfoQ6vtzasoOSgmhDXOSnr72jJGngSnX/mGauOPIHoedfh9W2J3fsefM+yNi9GmFLfaJHIKmhj/c2WBFulPVVvLqF1dz+Cj9UJHkgVqfmqlrLei8UfPtuj89NQHtCAQd38Ksoyj+mN1JRhylCMjcNBheieRvfF742Qp2pSOGEZhaR09++9EUdj1HyuUPRRbs2KqiawsIz4C5BDn/v5FzrrmvwqxIGOv/1b/LEGxRcZi+0qls/cZoVn1ygJC/RL6TlUmhnFHRHg0DoRgzkgE2Y/VE5tgyySGWXTiqP0SpADOqrepr8pj1Zx8GquNoY2yDPbGRYaoIQGwN/2gvqf+Yox5yZKDreVHrn7oUU751VsKiaBf3UZgC2zH4tmErXEpFn/UeW5m6rN516qTQuRbhKyFCHXfI4vGswcEM42gdZ1pQjHBZJA66r5ACDTgqn0PgNpNAhY7FPeImjkik4Kt4XsghCDAUT//FNeg4QhyKNrPYtpM1gzho/+s+Avs3lhbfOQeTfSL4FD6mOTHUfsFor82XG5FshZE3zNsxiwfWI8t29gnegxpRBCVCSwnvwUEmbIx2aaHsow5LNqnbfaIwDRqBI21ebxz5seG+0POCkZOXsVZ17zMqb/6H65sL2KoOWxyjTUrbsZuV/Y19B+5gWsfe4B4ixvREmLUEeH+rx4Ko/wTqxE46r4AWeb0p4s47y/vqKYhM9gbFumE3LifNXDypf8jO6SE2UYsA8u/PggEGFSpfL+jzv4EgBZvD5qrREr7hAVBZNGSwrnjyeKAFQSH/mIrgmcb9vqvKV5xsRLVI4gg2pHsZZx+5RtccffjKr29cZFh5RJy9cKm0QgcWeGVkew3dO5A7gh1FZmTr6zuhowLq+ZyiEFj1pFXFMnrL+Cs/Vx3v4xo2uG2rOmDs1DEXVGvKxdCHkpLfuLWl/5Cj/7hlZVJYqxAjnIiV0RItQVv4RE4GubjrPmUolW/UcurVks4smKcmGIW9obvsbtCutQMsjUbWzjfvv5sWkUj0yKYPVDlK5rWOl6ooYyj9nNKFp+IVeNkNjP1iVIzljBNRDsLWQqVlXdMkjBRCJqahgQ5iNWjj3YRBEw0K2XlnbP1HxSu/b1aVjTIpY9CEmUkMQt74yJdHf48xZRhb1gUfYYGkY1f007/DFdFOSFrIXavPnlZlMHocPcVHYEoteKo/5biZb9Q/F0Asrnw7D3wJ8QYkyVARb/1ar09+u/khsfvwz3IamqGzLeZaFFgaLPt63tRu8GYmTXkqMBqDzJ8olKPLCiTtL3RuNFSEGScKGbbrNxW8oqawGRDKCjjMN9h3FAWuaaFvXkF9rovOSjragYO/h4ZEclWjCzoNYeQvUzRCDTvNuXXMgMOC6hCPfL9f1oylB6T3OS4lW856WhFu925RQlNL+sToxHE3Z7cfhyQguCWF//CpGuVXYOuPVqba9iZ51RW3lqTjcVfhcWj9weEXH2xNS+n/0j9atpR943BDBPMGY4YVHKqZOW2cv3j93HU2XOwejZoVpHhUW7N1plg1OeFJ7WeA6LhrfV7CqkY0WqaqTB2gDjqvzHQBLIHIws2g0ZgbVV+9xm6mcFjlcHgK5qGIHkNvDXv8JHv1jt1Q/YybE1LsDkC3PT0bOzO8CSSNwxbU8SmrNmA1bCQ2BVbMGtQ1JwWmQAFJZoi9hSvkLMMR92XhveLfEstBEFWJ9bISlwSC5SVd4zJx96yCjPTkBmsvs2mgsDWugZb0w+69y0aEbsPQiKQN9awigw5eiI7e5pOdqJ/j2oaEkQZWbAQzBmOrVX/DhbP5rBfJipFfAVTkBFxVn8UbpMofVAjPPdsV8JLew/ahK1JryUD9O6zEiEU9blk57Vir/8G2aQdzHaKC81rdeUlfRvoP7GJy+/VBxK4hzkMAirkKCNkcyvfUpYoLIuaEAUBSosUe39kInXUzzf9PqNnrFf9dypkRZs49ryPuOHx+3SXXNXa/GKC4lt09tDR+PMnYG1ZjRio5+zr/sOoQ5eDIOLPHaeak7Xm3KFHBdTvHlmcVG1UTHEG01BGEHQMM697m0nHLEAQIOTsg5w9AEfNJ+r1SARGZMKNdXg5Ghbofoey+yFKXs6/6QVufv42tdy153+GDhfMGaH7nZPfgijKuKr+Z7ArS9ZcrJ4NXPe3+/ndww8phRoV9OKbn+Xn1/5Hpe8zeCNjj9aHWsq2grCNMgpby4+KP0BLJzoJZhnzyjtr5yIEm7n4lmc558Z/A+AvOAxZsOKo0YfltexsIa9Uv4IL2coQQy3YmlciWiTs4d3Uct5wbGEHsHbyUdohZnLPHogYto2rGgEyrj3vGVac/vzJOOqMmTtNnf/WbBwNyoluEWEfsuQDYGvWOwvtzd+r+ea1K/jYFSCAs/pDYgWUWk/DIt37Fo6qQNYkGBMtEv68CdiaV+rz2wsW5KKDDd8SwLnnPYgIgjBtIHs4NrlOR2cJ1GCv/0bX4JItn0DeWMO3jNUIvC2KeTGvqNHQ/wF6DtiBENN/XVXvICQ5WYlbX9V990sfm8fJT/SlMF8fHTf4+FzDtxSkAP78CWEtKshv7/ubei3k6kWfsi+44u7HmXKykijS4t+NveE7YtHvcJduwycAgSZE305Ei0R2fnQznWQt0M0ZkTaN5c2fNxEBGXvjQoYevIYzfvs6IBDIHYPFr+zT0PankWM+J9J3In29eY9IVl4LOQVKf3Bme8nt5QQxzulpHcABJQiGT1rH8RdGNAABqawSq3YXcVjFjQwErcNXsmRjr48RBK5+YTpZ/ai+/EOx189H9OlDOgPZQ4lF0NkP5573EeTwJBkxT1qVlUBuYTMFJZHMjNGIJqs9qNtY07fPQkp67ObGJ6Ix4nLheFUDUfiajIyAc080nl6p1kEgZ7ieL1c/BMmLU9vhw23gz5ugbzOgeUczuWUxER42JdLEXq8feHL+cHXi0K6QnXveM0wowaxB0R8RQSAKuKr+ZzDTBYomI4bCpjVNJI2ZmSOQNVj9lqq/RnAgx6zqAEQ52g5ajSCQPcRAa/Ntxt603FAeshUjSvqNUHl98wk5ejBojCKYBUHGnz8BgZB+0hesSIUTdN8yAlfVu+riRRBlZNFOIGeETpMN2YqRLNm49ryD3vQm4CucpvmWWgd7BRff8gzTTv8s2g65RYZvCcYNXr6CQ7G1rsHSGutzAilmAgu6+iHs+sjwbr7Cww33Bn0m2p3kU/qjZxMWf5VuYg3kjkIMNlDWpwpRlPHnjkUSnbiqYvo/EMobbigTUNo3Fr7CKTH9Xz9nRODPG4+MqGszQfIRyBur/rZo+C2SPkQI6hc9oGgDEfk9sXIR586bZkj90hk4oASBbiAIIlJZpf5y2OmlagSaDxLIHYfVu4lLb3tKLZMcZUjWfF0VntJTwqvWd/jDU7PVctmaR9DZ20BrCdbhiPgDIhOYxalmQlXvF+1hR3Y4mZtmsPfsvwWLf5eaOA1ALpqou1+yl+HPP0RZeWvrFWwEsvXaij9vIiFHD1xVb+vKEUTTQYoMOT1icq1YcgnZS2PCOhVBEK1PY3oL7DE4yEPZg6ITXUQtttixNy4yhO36CyfrYurVOkw0goBrsMqXKuwlkIsmGGhle57aDtqJJphjnDxkRFy73zCUm7WZo1AxdZx1zctc/dAjCIIyeYA+FFYWRFO+AOwN8yEQSZstg+AgmD1ct4CRRRfe4mNx7Xk/RuMS8RUeYXwHWSbk7EmfoVuZfobGT+UeZviWg2cOJujS5+PxlJyEjEhP1/+YePR3Os01mD1MT1t6KoLkw7nn/WihICI5SglkR9s3313PiDNLkS1ZhKzRNBkCMoGwD8Ua0x+CeSN1v2VLFr7iSkWLioFuIRQeg7I129j/wdBmcsycEYFkKyKYPVTXZoLkIZAzStUEdT4iyYuzRnGQa8d2ad/YiLl9MOlct4MuKkVALpmmi7qQRWV3bDAcDqb9IP58ZTBWDNxB7yFhx5ooEMgdrXtEMHsYgayhOBoW4MzWO1BjJ1xf8QwkSy7OakVLiT5NwFeoz0Ipi04QbUiOsvCrRKkjERhaQSAV6uOlZUHEU3oyttZY05DdYLZCEPGUnIyjdh4xF/AVGScPgOyKPIaMizopZcGKP884gQnOUlXIaQWtJGYZTA+yNYuQq2+YNlwoKgLHqbPTAo5CAjnhXPWaes00Ar8ruppXw0clGanQyG+g6FCVL0GnEYww0PoLDlG/pRZmE66z0EnIWYHNHqSwVDHlyLZCAlotCECwIhcaY99BmQjHHqKYPUZMXoUs2ghkD4np5gKe0pMRg/XYNRFuCAL+vHHqBjK1fWUlTNMA90GGopGXjMSfO1ZXJtnLlHZo+o4TLnqfkoroLv1ATuyC42DkrD4xbaYwom2zax55mOweipYcG6rpzz0IOSbdCEAwb1RMiagsvEyyBph9SxzF2JuWGIqNgkA/Z6jlFqc6Z0QgSF5ki4tg2Dqg9RGE7KXR/q/pv+7Bhi3/Rl47AQeUIIh8NADJ4gJ7gU5Vi1yPhGlqJyrtpCZozBT+3DH6Z4QHnhliV5Gy6MDrPla1g6sagWAyeYTV6lhtJbtHNkGnkuFQq2oaV5Ei3pITdYJPKbYbTEMygqLZxERZyJYsArljDFoQQHZvNz+/9mWOPicS9ifgzzeZwATUNtO2r9d9tCltdJCG29xiwZ87JtpmEVLBXEjJ1lwDv0H7AI1mFU6tIMumE66/KCqQtWMwts0AvCXHG/gCc43Alm0z1VaMwlMEeyHBsBlSi0D2cEp7V3HrS3+huLxWWZ1aXIRy+oYZVnbL+4qmIVn0ewBkMQtEG/6CQzW0CrTCMyL85FJFWxl68GrNNcXmrYOgTLjR3xqtOju2zUSkXmfo2kyyKHmDYr+lHF4AaHmTEcDiUiPftAjlDNf5YGRBxFs0A0k05iUKZg/W0QJgN98bE3L1Iejsp3kF/ZwR5ddp+JaRbLX+8JyjNTV6Sk6K0gmo7RYbVLBPaQQvvPAC11xzDTfccAP33XcfLS1mORXhyiuv5Prrr+fGG29Uj6BMJ2SLU/O3shLSTriqIDDxEUTUdtCGMgoEcsfpHyJY4wqC2IEgWbL0g0atwzh5RHgPxvBmy7GpHU7n3HZVELJrMlwKFiS7G3/BYTHPsiDZSwjZooecyJZsArljVQGjLUew4CuYYmA5q29PRIukhorKstmkpiAifLUTq7fE2GaCIKgTbjTZnICnxNhmgiiYm60wDlJJcKirU/UbyyAXGQVBMHeEvh0j5YZJDXzuGaarU8nZ07DSFyzm8eeBmFVkxH7uj+1n6CcPpVJlspRyFI1HQFa+mejAW3KcniersvfDTFuR7KXqexxzrqJ5ye4RSKKLs6/7L/nueqV+UVAntQhkwYLXfYI6sWqnLcNCyJKN1OvMmDJlXPrzJ3Phn57jhHDKhegiTSOkwqau2JU3gGx1EczRmKIEK1hceN3HGGgRHXp/FIrgMWtzAF9RtJ9FxmXst5RFo0YQ2d8SCGtRFmt0font/4Ko9JG8EfozESKCsrORFkEwevRoHnjgAe6//3569OjBm2++GZf21ltv5b777mP27NlxaToLWo1AtiobsVp7/EJz3R6+VoAkZulWrLItn0BWeIDpNAX9ikiy5hPKGmSqbhpW3pYcfIWHqxt4tBsfJUcZLT0vMPAeGQiR1LhWp9V85Q06bUWyKatiU8GDfpAqE76AJ3ZyFpTB3dL7V4b7nb3DJhy1EgjkHqTGekcPAhHUgaDTCIqONOS5QYhOuNoUQ14TQSuIAv78Seo30iIySCOrWVmK2pYjdlpZksFeZFh5CxYRT8mJhjole7FOeILSR3xF0wy0AE399KnWBYsxNQFE9w1EEAybxrQr75yiFsZdM87wLSP9N5gXngCF8LcEg/CULUr/95Seqi+XZSUc0qE4zg85bgG/XnM4os2hfreIDVMQBYIxq3HJmo9kL8ZXGF4s6DSCYTG02ciF4wk6+2r4cqn/Fp50PhPDKReii7SoUBckJSQ5ts0ivGnNVhGt0Bun/5tpePEWdC09L4ryG0cjQHQQcvYlpNmp7ik9TeE3/C21GoE/f4JuwSGK4UOvimN9HcazlTsDaREEY8aMwWJRJo0hQ4YYDqzfa9DMtJGt9CFnLxoHhA/jjkw3goCvaLoh9UNEwvvzx6nkkqMHIXs0145kKwDAU3aa4fGhmElGtuSCaMfjPl73/EiOlcaBN0eJw4Zff8FkIHzuLUpWy8jKu7nil3p+I2o/qMLGU3I8ZtAKLtmqdLZ4QsOfPxFfQcxJWtk9lDq0G75ER1gY2JDsJeorqgJKS2tx4nXrV62AZuUe3gksKhvrDINfBEQ79cMeMtThC2tBqsM5JKvf0lNxtlIWzonvi9GYBItg+i1BEXQ62jjaCoA3ZsIVLSKBnJG6mH1QIqUkaz6B7BHsmLZV9ZH4Cw5RaX739MtMuHECoawB+HOiPqrIruhQrjKp9ei3U13Z+wqn6hytkQlFshdTN/RBg8FBr10pbRNZcIRs4dTVFgHZ4tJpfnKkn4UnPa3WJ9sKdCYq2ZKj+jCiiN7Q0ucKDa0zzMMk9T0iObkifaE1/EwICwJt/w+PS2/hNH77wKO6oA8whncr3zJG41Jph6ljTV1cWlz4NM9TlvSC2jY7p6ygpdclyv1hH0F2frOOXieURYHi4cUG4Ylo1Dg7A2k/mGbu3Lkcdthhca/feeedABx99NG6w+ljMWfOHObMUWKeZ8+ejdvtjksbD2LPSli3BqniZxSXD8RqteJ2uxH8Y2EDOMoOjtY7/U2CoSvVe91uN6LnRORdr2BzZAH15Bfk43a7CR3zPZZ3lYig4vKBysq5aBZS8wLd/QCBQ/6Dbb6ihRSX9VFGytg/I323HilPWT3Y7DaFXpaQHSVgy4vy5T4bf/9jCC5XVlyuXBcFfaciryjFWdCXSNIzq9WKa8yNSK2LEHe+S1ZRP5xuN+AmcPgH2L48XscX2X+AbU8CkJVfptAWTyPU+kfELf9BqjhN1+Zizxnq37m9cnGXliMfvwQ+OR0Ap8OJ2+3GUnEcbNqlntlrtVop7jGIwPTPEF6JZnF0u90w+W/I70WjOoqLi8np0ZdQzW9hoZIXyj3MrXyzcfcg/XBj9P4SN/ZsO+SMQjuZuN1ucP+JQMUUxEf+CUBOTg7Z/Y9HXmPHVVAGbMNmsWG1WmHyY8gfRsMmC4sKyR8wnKD/Tqwr/qSrVxh/H8yJToJFxUU4+15AqPVbhPqlhm8vVWjet9SNI68CqWIDvOZAzu4fbd+yo7AEGnCXlKptlt//SILSo1iXXI2YOyBKe8Tr8L6yD6SguBxy3VB0Fhfcewbl+Z9js45XaeXxjyCtvgdcFRT0GgvhyVVgLM7sfynvUFEUbrN/EfxxCNaVt1JQPhicbgTpZNjyN0SLFQhQVFREsbsYpr8D/1M0iILyweBwQ/GvCbUugKqoU9/tdhOa8iriF8cqbVvaR2nzg24AngPANug8XT+Tc4eBdzfFpX1AtIL7GEL9d2J53Umoz7lhWjdy7jAceVGHbbG7GHufSwn5V2BZ/wTO/F7Yw/UK58+h+JOoqdftdkPe1cjbosJBEASKeo0hOPoeLOufNHxLsfFg2P4MrrIx4XEFVM5D+vJkxN0fR+l6H4/c8LXCvyUaWec/dgWOj0Yx/sjv6XPZ7Qp9wWzkhs8Qmn7i4J876X/WBIrL+xMcfQ/WZX9Qnx+ZtzoT7RYEt99+O/X19Ybys88+m4kTldDFN954A4vFwuGHm9tub7/9doqKimhoaOCOO+6gZ8+ejBhh4sEHKisrdYKiutrszIAE6PVH5T+AmlrcbrdSj/0wOGKDEpGiqdfX5w/AS9HnOachHrKA4D+UOO+mpqYwHyL2sW+C7MdfE93MIw64G3hfz6/zCPJ6/xqQaayJ5JopgNFvUuPZCbxLIBiI0k9eFHlh3as0jPsXMA9nTyfVtfWIB3+KZM0B/o9Bpw8iGAwq5f3vwpF/NN6so5EjdVhGkzX4biRbIV61Xgf2Ma+Sve2fNNrGEYqUl12p/BfLQ+nlgJIh01XqUvlt7HMVMB+P16OUlVyKWHg2kqS0QygUCtMOwTfsPmC7rn2sY98ClDDS2rpavDYv9LwOT7YSry7miAqtMBzGvqvyUFtbi9VjBay09LkcWKFvd3EU3pJjgW001jdS3VqCOHkBTZ82A9vw+/1Km9V7sYx+FVAWHQ0NDVirrVB0Djn9o5uOlHp74Br2CFCn8mAP2GHA/WGqp/U8DHoMUIRRbX0tNr+yuhMOX6s4r8N0Qv/ZgKR+L7Wf5p6Ca7gFf9746PchC8fof2NrXkmztxB8Srlr5h2w9hbqy2dGv3HWUTD+KOXvumYgsiIdSuGNbzO190aGnDkkyq/7lwhTzkButkJzNYijEA/9npA0V6mioQ65WtEWbOPfRwzswdcENCn3i73/THB3dHKurlbqyOn/eyze7TQ0yrgdQapboqvcPbaJ+n42/mNl82BtPVoIU39UHN6RNhv9etih/KL6LaweK0KP3+G0DcdbOCPa/ynDNexRoFb3fWwHvYh3i/J9ZFlWyovOU/6L/ZZ5p8IRxxnmDIY+hTDYG31W/hmIE6ch1TUB2k1rhThG/4dD/u4ikF+i1msZ/k+ydr/JuL8eh2TPU8oLzyG/x3JCjh40V1dH+0M70LOncac9dEAQ3HzzzW1enzdvHt9//z233HJL3MPoi4oUz3x+fj4TJ05k3bp1cQVB2iEad4oKMQfQIwhIjvLoglPzWv4C49nFkrMCR6EDX50+R0vjwD8baOPzZf6JyqYMYvoj0XNVpXCUw2XbL9PzYC/GUz7TcH9rxQWGMn/hYfgL42tv8aA7Tzeiuqp5zuwKbya54gLFRwDROHOAYO4oIoJApRUdNPe8EPgM0WJuzdQdfC9YzGlsyjeOHDUoOUoRrUocvva4xFBWNDZerVe009z3KiITQgRK2z5teDdzBqIEWn7lGAegbDU/nxjRZmqm8hVNM/gmJEcP6kY9baCNy5rVyfDzYuzkgoBsK9QVSY5y9Vtqv0UgxlcGSp9s6XMZ8F9deXPf3xloR102iuKRsREyKN/S5HtGNl2qv8OmH/U2UVDpzPq/p/wMYr9lIPcgmgbOAt5JLjjHZM5AtOkTF4b3RZjBLMotlDWQpv436AsFkYah9xhoOxNpMQ0tXbqUt99+m7/+9a84HCaNBXi9XmRZxuVy4fV6WbZsGTNnGj/Y3kTkaD7dJAMpRXDN/HQmTVubEhNC1AmXRKywIAgMnmlMDbE3YHFFB6o1S+lSthxzW6bu3RK8ppZWPSc2jlfL8I1MUDqulPVvrSe3dzQ9ceQby3FSFMc7K9iUNoUY73gCbZ9CEq+QbJsc+pdDExOlgvREWe63SIsgeOaZZwgGg9x+++0ADB48mF/96lfU1tby5JNPMmvWLBoaGrj/fkWFDoVCTJ06lbFjx6aDnfZDXQzGHJgSmXTM5w4dssqyDIdrx4XJqnlfgHawDzh5AK27Whl+gTEKo637zAmif0YEQdwJP4lJaeQvR9Lz8J4UDY3GiItW5ca4B6gnIWCixCmQpiBguhtkEnyLboD28hYR0Las9DhluyvSIggee+wx0/KioiJmzZoFQFlZGffdd58pXXeBxa6sdCf9SW/2iUxg8SaP9iLeqrTbQzPmRIvI6CtGJ0WbaLDqNIJwW8c1DSWpRWmFgI6HODnSYifs/if2p3iUiQkjSR4Mz92HkdQ77K3XbOdzS8aVMOH3Ezjst4fhwZP4hv0EaY8a2pchWkWDzR1QO1lnC4JUTEPdCcnwGxFyOtoUrCOqRhBvJd3OJkuoEcQ8r/Kp+JFtBxqSFb57A+0VtIIgMO5348h2Z+Op1gsCi9Pc97Q/ICMI2oF0de59TSMYcfEIVj27KrVJWKsRpNCOUvhUpngDvL3fJJGPYL+w5Xc2UjFh7qU1TWeP0Z9/+3PsOfbEhPsoMoKgHVAjEtI1ce8jCoEa5dFOfhOu2rQ+AimBRtBOqN8ySY2g7co6g6PuD1PtLg72Ne02HvL6GM9r3p+QWe60B+FWS5dpaJ9BO0xZ7aWNZxrK69exARoxDcXzEajXk8D+Mul1KkxCrTPofshoBO2AOuA7+cS40vGlFA4rZPKfJnduxWmCKgiTGeQmQi4ljSAUTTGhxSlvn0L9+vokGIjzCEsCjSBNUUP7NFJZsBwobbKPIyMI2oOIs7iTTUO2bBszP+1eeymSQaqr/GTDD82ihmI1Apfbhcvd/qP7EkWAdUQjOOn1k5IPHd6XkIKPINImGW2peyNjGmoH1E69r5lyOhsdff+EO3Gjf6rO4mRs9qnMOREzX7wNZdb2T2A9DulBfn/j2Q37OopGKCG4kfDqtrA/hMkeCMhoBO1BusJH9zGok2d7o4ZSmCQSho+2E4k2B2ZMQ0ZUPllJzcoaHAXmWQMy2PeQEQTtQGaVE0bYR5KS2i/E+TsB7ciLRlK7qpbRl7exWS2MVCI8EkUNpWIaSspUIgr7/ALCnmenx6E9kiPOOIv3Cew3gkCWZbxeL5IkJT0x7d69G5/Pl5gwBv3O6of7MDfZQ7NpbW1N+f6uQLLvJssyoijidDpTtuPKtEMj0CDR87TX7Xl2jnriqKTqHXrOUL78/ZfJ8dCJ4aPJtN+5S87FW+dNSLe/IOMb2Dew3wgCr9eLzRbOKZ8krFareoBOKigZWEJeUR65Zbk4s5yJb9gLSOXdgsEgXq8Xl6t9TtdUdxYnnasmTQLG7BlxBUF7tZ046Khze59DRiPYJ7DfOIslSUpJCHQK9m0NX4XVakWS2hEL254keSmYhrpiNZlKAsGEdWVWvwZkoob2Dew3giDT0TqG9rRfSvsITJ7THXwtiUxDGXQQe/8TZ5AE0raEfuWVV/j000/Jy1Mcd7/4xS8YP368gW7p0qU8++yzSJLEUUcdxWmnnZYuljoNQqZ3K+hokrwUnMXpQkYQpBldbBrqf1J/Nr67sWseth8hrbaUE088kVNOMT/MGxRzzjPPPMOf//xniouLmTVrFhMmTKBXr15x7+kOsDgU27to27cUqpkzZ3LzzTczZozxNKn2IKXwURMzUiobytKFiL1+7G/H6sotDgshXyjtz9/f0dWaerIBBRnosVedxevWraO8vJyysjIADjvsMBYuXNjtBYGr1IU1y4o9d//NRpgUVDnQvsia7mDOs7qspqnGz/z8TBo3Ne4FjvYzhD9xV33r7tCn9kWkVRB89NFHfPHFFwwYMIALLriAnJwc3fXa2lqKi6OHfBQXF7N27VrTuubMmcOcOcqB4rNnz8btduuu7969u13O4vY6mG2F+hOMWlpa+NWvfsWOHTsIhUJcd9119O/fn1tvvZWWlhaKiop49NFHKSsr44UXXuDFF1/E7/fTv39//va3v5GVlcX//vc/7r//fiwWC3l5ebz99tt4vV7+8Ic/sHTpUqxWK3/961+ZOnUq//3vf/noo4/weDxs2rSJE044gVtuuQWA3//+9yxduhSv18tJJ53E73//e0AZJBaLxfSdHQ6HoU0TITtLOVvXleVKeG9k9W+xWihwF+iuDTlliOn97hJ3UrtX20Iq72S1WlV6t9sN49L3rFSg5WtfQ6A1ACh9z+wdusO7dVe+4iEdvHVIENx+++3U19cbys8++2yOOeYY9Qzil19+meeff57f/OY37X5WZWUllZXRQ0Gqq6t1130+nxoumbf2FmzNqxLWKQhC0vmCAjkjaBx8W9zrc+bMobS0lP/7v/8DoLGxkfPOO49nn32W4uJi3n77be68804efPBBjj32WH7xi18AcM899/Diiy9yySWX8MADD/DSSy/Ro0cPGhoaCAaD/POf/0SWZT799FPWrVvHL37xC7788ktCoRArVqzgo48+wm63c8QRR3DhhRdSUVHBjTfeSElJCT6fj5///OcsW7aMESNGIMsyoVCIYDBo4N/n8xnaNBG8ISUePigGE94bscGHQiEd7blLz8WR5zC9v6ampkPmt/yB+Sm9k9vtTrkNtOjIvW2ho3ztTQQ9Sl+TkU3foTu8W3flKx46wlvPnj1NyzskCG6++eak6I466ijuueceQ3lRURE1NTXq75qaGoqKigx0+wKGDRvGbbfdxp133kllZSX5+fmsWbOGs88+G1D8IaWlpQCsWbOGe++9l8bGRlpaWpg2bRoAEyZM4Nprr+Xkk0/m+OOPB2DhwoVcfPHFAAwaNIhevXqxYcMGAKZOnao644cMGcL27dupqKjgnXfe4d///jfBYJDdu3ezdu1aRowY0fnvfM4wvHXepHb7RhCrumeVtJGUrQNa/i83/zITsZJBBkkibaahuro6CgsLAfjuu+/o3bu3gWbgwIHs3LmTqqoqioqK+Oabb7j66qs7/Oy2Vu5aWK1W09VxezBw4EA+/PBD5s6dy7333suUKVMYMmQI77zzjoH22muv5ZlnnmHkyJG8/PLLfPvtt4CiHSxevJhPP/2U448/ng8++KDNZ9rtUR+FKIoEg0G2bNnCk08+yUcffUROTg7XXHMNXm96drKKNpHx1xgjwdpEe/ccpIiUUkNkkDbsa6fuHahI22h58cUXuf7667nhhhtYuXIlF154IaD4Be6++24ALBYLl1xyCXfeeSfXXnsthx56qKnA2Bewa9cuXC4XZ5xxBldccQVLliyhtraWRYsWARAIBFizZg0Azc3NlJWVEQgEePPNN9U6Nm3axPjx47nxxhspLi5mx44dTJo0SaVZv34927dvZ+DAgXH5aGpqwuVykZeXx549e/jss8/S+NbpRcbxt+8jEmE34cYJe5mTDNpC2jSCq666yrS8qKiIWbNmqb/Hjx9vur9gX8Pq1au54447EAQBm83G3XffjcVi4ZZbbqGxsZFQKMSll17K0KFDufHGGznppJMoLi5m3LhxNDc3A3DHHXewceNGZFlm6tSpjBw5kkGDBjFr1iyOOuooLBYLDz30EA5H/KyPI0eOZNSoUUyZMoUePXowceLErmqCpNDZKRsy6N4QLaJpVFYG3QuCvI/qbjt27ND9bm1tJSsrtUNAOtM01N2Q6ru1p/1Swf+N+D/8DX6uXH8lfqe/TdqnK54G4NJtl3apVtBeJ1yE33RNeN3ZcdlR7M13a+u7dec2T4ezOGNIzaBLkczEPv2R6eQPyM+YhjLIoIuw32QfzWD/weCZgxk8c/DeZiODDA4YZDSCDLoWmUV+Bhl0O2QEQQZdioy5J4MMuh8ygiCDDDLI4ABHRhBk0DVozyE2GWSQQZcgIwg6CQ0NDTz33HNpqfubb77hggsuSEvdXY2MaSiDDLofMoKgk9DY2Mjzzz9vKN9f9ym0Gxk5kEEG3Q6Z8NFOwl133cXmzZs5+uijsdlsOBwO8vPzWbduHZ9//jl33XUX3377LX6/nwsvvJDzzz+fb775hgcffJDCwkLWrFnD6NGjeeyxxxAEgc8++4xbb70Vl8vFpEmT9vbrZZBBBvsx9ktBcMsteaxaZUtIl0oa6hEjAtx2W/yDSv74xz+yZs0aPvnkE9WUM3fuXPr06cOLL75Ibm4u77//Pj6fj9NOO03NOLpixQrmzp1LeXk5p556KgsXLmT06NHceOONvPLKK/Tv358rrrgiuRfvxoi0c8Y0lEEG3Q/7pSDoDhg7dix9+vQB4PPPP+fHH3/kvffeA5TEcBs3bsRmszF27Fh12/fIkSPZunUrWVlZ9OnThwEDBgBwxhln8OKLL+6dF+lsZORABhl0O+yXgqCtlbsW6cw1FJu354477mD69Om6sm+++UaXStpisez/PgWBaARRBhlk0C2QFkHw0EMPqUnhIsnM7rvvPgPdlVdeidPpRBRFLBYLs2fPTgc7XYLs7Gw1i2gspk2bxvPPP8+UKVOw2WysX7+eHj16xK1r0KBBbN26lU2bNtGvXz/eeuutNHGdQQYZZJAmQXDttdeqfz///PNtZrW89dZb1VO29mUUFRUxceJEZsyYgdPp1J0pes4557B161aOO+44ZFmmqKiIf/3rX3Hrcjqd3HvvvVxwwQW4XC4mT54cV8jsM4gcdC8IGY0ggwy6GdJqGpJlmW+//VY9VH1/x9///nfTclEUmTVrlu4cBoDDDjuMww47TP195513qn8feeSRHHnkkelhdG8i4yPIIINuh7QKgh9//JH8/Pw2zSCRye/oo4/WHU4fizlz5jBnzhwAZs+erVtxA+zevRurNfXXac89+wpSeTeHw2Fo085EJFrIarXiLkzfczoCq9XaoTZIV/t1lK/ujL35br9a9ivsOXZy3bmGa925zdPBW7tnwdtvv536+npD+dlnn62eivX1118zZcqUNusoKiqioaGBO+64g549e8Y9ZL2yslInKGIPZvD5fFgslpTeIXMwTRQ+ny+tB3FEwkdDoRAN1Q1pe05H0NHDSNLVft35kJSOYq++WzH48OGr9hkudec2T8fBNO0WBDfffHOb10OhEN99912bDuCioiIA8vPzmThxIuvWrYsrCDLYx5HJNZRBBt0WaUsxsXz5cnr27ElxcbHpda/Xi8fjUf9etmyZGnefwf6L/XFD2dR7ptL/xP57m40MMmg30mYgNzML1dbW8uSTTzJr1iwaGhq4//77AUV7mDp1KmPHjk0XOxlkkDYMP284w88bvrfZyCCDdiNtguDKK680lBUVFamRM2VlZaZ7CzLYz7H/KQQZZLDPI5N9tJvghhtu4KeffjKUv/zyy/zpT39qd72DB3ePs3+TzemUQQYZdD3239jJvQxZlpFlGVFMTtZGzGQZZJBBBl2NjEbQidi6dSuHH344V199NTNmzODhhx/mhBNOoLKyUp3oW1tbOf/886msrGTGjBm8/fbbAMycOZMffvgBULSAqVOncuKJJ7Jo0SK1/muuuYZ3331X/R1Z7be0tHDWWWdx7LHHctRRR/HRRx911StnkEEG+wH2S43g21u+pWZVTUK6VNJQF48o5tDbDk1It3HjRh5++GGam5t57733eO+995BlmYsuuoj58+dTU1NDeXk5L7zwAqAcaKPF7t27uf/++/nwww/Jzc3lzDPPZNSoUW0+0+Fw8Mwzz5Cbm0ttbS0nn3wyJ5xwQlLv1dXYH6OGMshgX0dGI+hk9OrVi4MPPpjPP/+czz//nGOOOYZjjz2W9evXs3HjRoYNG8YXX3zBnXfeyYIFCwx5lpYsWcKhhx5KcXExdrudU045JeEzZVlm9uzZVFZW8vOf/5xdu3axZ8+edL1iBhlksJ9hv9QIklm5Q3p2FkcS7MmyzG9/+1vOP/98A82HH37I3Llzuffee5k6daouSV8ifiVJAkCSJAKBAABvvPEGNTU1fPDBB9hsNiZPnozX6+2kN8oggwz2d2Q0gjRh+vTpvPzyy7S0tACwc+dOqqur2bVrFy6XizPOOIMrrriC5cuX6+4bN24c8+fPp7a2lkAgoPMJ9OrVS6X/+OOPVUHQ1NSE2+3GZrPx9ddfs23bti56yxSQCRrKIINui/1SI+gOmDZtGmvXrlVNO1lZWTz22GNs2rSJO+64A0EQsNls3H333br7ysrKuP766znllFPIz89n5MiR6rVzzz2Xiy++mMrKSo488khV+zj99NO58MILOeqooxg9ejSDBg3quhdNFRkXQQYZdDsI8j4a4B05+CaCyAE4qSCTdC6K9rRfKnh20LMEPUGur72eRk9yJ8h1NbprorHuyldnoLu+W3flC9KTdC5jGsqgSzD5z5MBsDozSmgGGXQ3ZEZlBl2CEReNYMRFIxAtmbVHBhl0N+w3o3IftXB1G2TaL4MMDlzsN4JAFMX91t6fbgSDwaRTYWSQQQb7HzpkGvr222959dVX2b59O3fddRcDBw5Ur7355pvMnTsXURS5+OKLTVNMV1VV8fDDD9PU1MSAAQO46qqr2n10pNPpxOv14vP5kt696nA48PmMpxPtD0j23SL5kJxOZxdwlUEGGXRHdEgQ9O7dmxtuuIGnnnpKV75t2za++eYbHnzwQerq6rj99tt55JFHDKvOF198kRNPPJEpU6bw1FNPMXfuXI455ph28SIIAi6XK6V7unNkQEexP79bBhlk0LnokD2gV69epuFICxcu5LDDDsNms1FaWkp5eTnr1q3T0ciyzMqVKznkkEMAZQPWwoULO8JOBhlkkEEG7UBaooZqa2t1efCLioqora3V0TQ1NZGVlaUeOG9Go8WcOXOYM2cOALNnz8btdneYT6vV2in1dEd013frrnxB9+Wtu/LVGeiu79Zd+YL08JZQENx+++3U19cbys8++2wmTpzYqcy0hcrKSiorK9XfnWH22J/NJ9313borX9B9eeuufHUGuuu7dVe+ID0byhIKgptvvjnlhxUVFVFTE00DXVtbS1FRkY4mNzeX1tZWQqEQFovFlKYtxHuhVNFZ9XRHdNd36658Qfflrbvy1Rnoru/WXfmCzuctLTGDEyZM4JtvviEQCFBVVcXOnTsN+W8EQWDkyJHMnz8fgHnz5jFhwoR0sBMXN910U5c+ryvRXd+tu/IF3Ze37spXZ6C7vlt35QvSw1uHBMF3333HFVdcwU8//cTs2bO58847ASWa6NBDD+W6667jzjvv5Je//KUaMXT33XervoBzzz2Xd999l6uuuorm5mZmzJjRwdfJIIMMMsggVXTIWTxp0iQmTZpkeu3000/n9NNPN5TPmjVL/busrMyQfTODDDLIIIOuxQG9nVTrfN7f0F3frbvyBd2Xt+7KV2egu75bd+UL0sPbPpuGOoMMMsggg87BAa0RZJBBBhlkkBEEGWSQQQYHPDKCIIMMMsjgAMd+LQg8Ho+aZz/jCuk6NDc3I0kS0L3afcWKFXi93r3Nhim0KdS7U5vtz6itrVXbvTu1+YIFC2hubu7SZ+6XJ5R98cUXvPfee/Tt25esrCwuuuiipFNT7wuYM2cO1dXVnH766djt9r3NjoqvvvqKt99+m759+5Kfn8/555/fLdr9yy+/5N1332XcuHEMGzZsb7OjwxdffMFHH31E//79KS8v56STTuoWbdYZmDNnDps2beKkk06ivLx8b7Oj4ptvvuH111+noqICQRC49tpru0WbR/rCkCFDGDduXJc+e78RBLIsEwqF+Pjjj1mwYAGXXHIJbreb2267jREjRjBp0iRkWe4WH7w9iLzf3Llzefvtt7HZbIwZM4bhw4fvbdYAWL58OR999BGXXHIJBQUFPPnkk+zcuZMePXrsNZ5CoRDvvfceb775JrNmzWLIkCF7jRctZFkmEAjw1ltvsXLlSs4//3yCwSCvvvoq/fr1Y9SoUXubxXZDlmVkWWb+/Pn873//o7CwkHXr1lFUVNQtFi3r1q3j/fff51e/+hVDhw7l2muvZcOGDQwYMGCv8STLMvPmzeOJJ57gjjvu0CXs7CrsF4IgEAhgs9mwWq307t2bKVOmkJ+fDygxtzt27ADYZ4VAMBjEarVitVrp378/Dz30EB9//DGfffYZvXr1Ijc3d6/yBbB582bGjx/P8OHD2bJlC0VFReo32FuwWCz06NGDww8/nJKSEoLBIIsWLWLIkCEp5bXqTETazG6306dPH0444QRycnIIBoMMHTrUNMHjvgK/34/dbkcQBPr3789dd93F0qVLWbVqFRUVFfTv33+v8gXKYVhDhw5V27p3795kZ2fvFb4iEASBgQMHMmXKFGw2G5Ik8cUXXzBo0CB69erVNTzs6/sI3nzzTVavXs2YMWMYO3YsPXv2VFcloijyyCOPMHbsWKZNm7a3WW0XXn31VbZs2cLBBx/MhAkTyMnJAZTOfe+99zJjxgwOOeSQLj9qMsLX+PHjmTZtGqtXr+bll1+mqKiI1atX06dPHwRBYNCgQcycORNJkrqExzfeeIODDjpIXVU1NDTw+eef8+WXXyJJEn379qWhoYGRI0dy+umndxlfoPTV7du3M3LkSA455BD1VLhIX7377rs55phjOPjgg7uEn87Ea6+9xooVK5g8eTKjRo2id+/egCL4/vWvf9GrVy+OOOIItf92NV+TJk1i4sSJ+P1+Xn75ZQDWrl3LoEGDaG5uZuDAgZx33nldZjV45ZVXGDRoEOPHjweU8Tx//nz+/e9/k52dzdChQ9m8eTMjR47knHPOSXs/3WedxVVVVfz1r39l69atnHzyyezYsYNPP/0Uj8ej+5CyLNOvXz/dvfuK7Hv33XdZs2YNxxxzDMuXL+fVV1+lrq4OALvdzvTp0/nqq6/Ys2fPXuXrueeeo1+/ftx8883k5uZyxRVXMGvWLM4//3zeeecdGhsb0z7Z1tXVcf/99/O///2Pxx57TC3Pz89n2LBhjBs3jj/+8Y9cffXVXHjhhbzzzjs0NTV1iRDYvn07f/7zn9m6dSuHHHIICxYs4PPPPycUCiEIAqIo4vf7sVgshr66L2Du3LmsWLGCc889l8bGRv7zn/9QVVUFKLnzJ0+ezIYNG9i4caPuvnSPQy1fTU1NPPvss2RnZ3PddddRXl7O2WefzfXXX8+vf/1rvvjiC2pra9MuBJqbm3nyySf54IMP+M9//qM6q+12OyNHjuToo4/mxhtv5Fe/+hVXXXUV8+bNo7a2Nu39dJ8VBDk5ORx88MFcffXVjBo1igkTJlBXV4fFYlFXWMFgkNraWvr27cumTZv46KOPgH3DRCRJEps2bWLmzJkcdNBBnHHGGTgcDt577z2VZurUqbhcLlatWsW6dev48ssvu5yvmTNnYrfbefPNN7FardTU1NC3b18AKioqGD9+fJsHDnUWsrKyOPTQQ3nuuefIzs7m3XffVa8NHDiQM888k+LiYgD69OnDmDFjaGpqSjtfAC6Xi0MPPZSrr76aCRMmMGnSJH766SesVqsaXdXa2orX66W4uJhNmzbx1VdfdQlvHYUsy9TU1HDMMccwePBgTj31VPr06cO///1vlWbMmDGUlpayZcsWFi9ezIcffgikdxya8dW7d2+ee+45AHw+n2p2KS0tZciQIaoJOZ1wOBxMnDiRZ599lqKiIl0/LSws5NRTT1Ud6+Xl5QwZMqRLzkXYJwWBLMtkZWVx1FFHqWW9e/empqZGXWWB4hjy+Xy89NJL/OMf/9hnNIGIIMvPz2fu3LmA0ikmTZrE9u3b2bBhg0o7bdo0/vnPf/LAAw8QCAT2Cl+HHHIIW7dupa6ujsLCQv7xj3+wY8cOnnvuOerr6yktLU0rX6AMsIiafeGFF/LGG2+oqy1BELDZbEDUVOHxeLrsBKqioiJdXx08eDCtra0EAgF1pbdhwwYCgQCvvPIK//jHP3ThpN0FZuMnMta++OILAJxOJyeccAK7d+9m5cqVKt3YsWN58803efLJJzv93ZLl68QTT2TXrl1s3bqV/Px8Xn/9dX744Qeef/556urq6NOnT9r5stlsjBgxAoAzzzyTTz/9VNXyRVFUfW5+v5/nnnuOlpaWLvET7BOC4KuvvmLTpk0AOhue9rD6tWvXUlxcrCurq6tj165dANx2220cd9xxXcd0CmhpaVH/liRJfb/KykpqamrYsGEDoihSWlrKoEGD1LbYtWsXL7/8MocffjgPP/xwp6fxToWvgQMH8uOPP3LhhRdSUVHBs88+Cyi507OystLKVwQulwtZlhk2bBgjRozgqaeeAlAn24ULF/LnP/8ZURS57rrr0hLFEo+3iD8AlP0MbrdbFU6gmI82bdpEMBjktttuY/r06Z3OW0cRO7FFfp922mns3r2bVatWAcqhU4cffjg//PADAI2Njbz44oscfPDBPProo5x00kl7ja+pU6eycOFCTj31VEaNGsUnn3wCKAdw5eXlpZWvCJxOJ7IsM2jQIEaMGKH6LCJYuXIlt912G5Ce8WOGbu0sXrZsGa+99ho7duzgvPPOUweH1hkcOeHs3XffJRQKceqpp7J69WpKSkrw+/2IokhZWdnefZE4WLJkCW+99RbFxcX07t2bn/3sZwCqYygYDPLee++xYcMGrr32WgD+9a9/0a9fP2bMmEFzczPBYJCCgoJuwVefPn2orKxElmV8Pp9u8ks3X4IgIAiC2h/q6+u59tpreeSRR2hoaMDlcqnX06GhpMLbc889x+DBg5kyZQrr16+noqKC7du343K5uuWpWIsXL+bjjz+mT58+jB8/Xt2LIUkSsixjsVj48MMP+eKLL7jrrrsA+PDDDwkEApx88skEAgG8Xm+nR7e1ly+fz8epp54K6COKuoIvQDdvNTY2csstt/CHP/yBpqYmHA4HJSUleL3eLo1s63YagSzL+P1+HnzwQd544w1OP/10DjnkEHw+H4DOwVZXV6eaQ6qqqvB4PDz55JO8+uqreDweevTo0W2FwLp163j11Vc5+eSTqaysZOPGjWzZsgWIrmBbW1s54ogjaG5u5o033mDXrl3s3LlTvZ6Tk9PpQqAjfEVWuIIgdLoQSMSXIAg0NjYSCoUAKCgoYPLkyVx22WU8/vjjqv09HUIgWd4ifdXr9dLY2Mjjjz/OK6+8QmNjIwMHDuyWQmDDhg28+uqrHHPMMfTt25fPP/+cefPmAcq7WSwW6urqOO6443A4HLz00kusXr2a77//Xl0R22y2ThcCHeFL65vobCGQiK/IvBUxj+Xl5TFmzBiuueYann76aQKBAFlZWV0e3tztBIEgCNjtdg4//HD+8pe/MHbsWIYMGaLa+iwWC6FQiBdffJGHH36YHTt24PF4WLBgAd9++y29e/fm5ptv7rL42/Zi9erVDB8+nAkTJlBcXIwoipSXl6urhn/+85888cQTCILARRddhM/n4+GHH2bo0KFpNRt0hK90hugmy1dVVZUah718+XLOPfdc7r777rT2h2R5q6uro76+ni+//JI5c+bQt29fZs2a1SU+lPZi2bJlDB8+nPHjxzNx4kQKCgr44IMPVBPY888/zwMPPEBVVRVXXHEFJSUl/Oc//2H48OGccsopGb5M+Hr44YfZunUrsizz/fffs2jRIs455xzuu+8+w5G+XYVuYxp6//332bJlC4MGDdIdvCBJEj/99BPz5s1j5syZuN1uduzYwSeffMIZZ5yhxiV//PHHHHrooXttc1UixL7fli1buPPOO5k8eTLfffcdZWVllJaWUlZWRmVlJS+++CIXXXSRLu46snEuw1divtavX095eXlaNgt1lLd3332X6dOnd3lMfTKIfbd169bx2GOPceedd5KTk8Nrr73GypUrGT58OMcffzyvv/46M2fO1L2LdqNhhq+2+dq5cyf5+fld4gdoC91CEMybN49PPvmEM888kzfffJOxY8dy2GGHqWadzZs388QTT3DLLbfonMGQno/b2Yh9v4MOOojjjz8eWZZ57bXX1PDXbdu28cADD3DjjTeqZoJ0biTZH/mK2F7The7aZp2B2HcbM2YMRx11FK+//jpVVVW0trZSXl7OYYcdxnfffcfFF1+sLgC6sj/sD3ylu5+mim4xgy5fvpxTTz2VsWPHkvv/7d1rSJPtHwfw76ZzKTk7yFpa+WiQFqGQRieJjtALIYosKjxkURpSvejw0hdBVHZAI4gyCqODadFJxCDEDIvMgnCblhLlDs5caTltu+eu/wuf3f+nenxSd/Dy3u/zLjfvvr8bt2vXtesQHo7GxkbU1dVh06ZNAICYmBgoFArU19dj9erV4swhxhj3jQDwe32vXr1CVVUVNm3ahI6ODqxcuRIAEBUVhfj4eHGHTF+/cUgxl69fXLzeM2/4tbaGhgbU1tYiJycHXV1dMJlMSExMhFarhdPpFN/U3BM3KNfwc/HUCABj/B2Beww1NjYWjY2NAAYX/8yZMwdfvnxBc3MzgMEbl5SUBIfD8dP0Ud4Xhg1VX3x8PLq6umAwGDB//nxcuHABdrsdd+/eRXt7u7jwyVd/xJRLWtk8NVRtCQkJMJvN0Ov1iIyMRGJiIoDBGVL/nIThq9ch5fIfv/51tre3w+Fw/P8///vFER8fD8aYON935syZmDx5srjQQiaToaenB0qlksub6DaS+qZMmQKj0Yi0tDRERUXhzJkzMBgMOHjwoNc3a6Nc0srmqZG+Dt0b4el0OhQUFMBsNmPt2rWUa4xzeZNfxlU+fvyIkpISqFQq7Ny5U5wa5e4uT58+HTNmzEB9fT0SEhIwdepUdHd3Q6lUitfIzMzkdhhoNPX19PSIS9rz8vJgt9u9/sUm5ZJWNk+Ntjb361CtVmPXrl3ihnKUa2xy+YJfegR37tzB4sWLcejQod9uJjC40m7u3LlwOp0oLS2F0+mEzWb76Rt/XhsBYPT1uT8tBgcH++SNg3JJK5unRlubeyZeZGSkT97UKNfY82lD4HK5YLFYxH0+gMF5tjabTVxscuvWLRQXFyMsLAxbtmyBzWZDQUEBwsLCuFxm/0+81ke5pJXNU7zWRrn44fWP2e/evcPEiRMRFRUFuVyO8PBwcUXfkydPIAgCIiIiEB0djWXLlsFisWDbtm3ijnvurvWv00R5wWt9lEta2TzFa22Ui1PMS3p7e9mxY8dYRkYGq6ioYP39/eJjd+7cYYcPH2YNDQ2MMca0Wi07ceIEa2lpEZ8zMDDgrSg+wWt9lEta2TzFa22Ui29eGxqy2+1ISkpCTk4O7HY79Hq9+FhycjI6OzvR29sLYHCq1aRJk/yy6MNbeK2Pckkrm6d4rY1y8c2jKmpra6HT6dDX14cpU6ZgzZo1WLJkCRQKBd6/fy8eSBITE4OMjAxUV1fj27dvqKurw6dPn8QvVXi9mbzWR7mklc1TvNZGucaPEW8xwRhDd3c3iouLIZPJMG3aNNjtdmRnZ4v7eTc3N+P58+eYPXs2li9fLv7uo0ePYLFY0NHRgaysLC43huO1PsolrWye4rU2yjVOjWQcyT0eZjQaWVFRkfizy5cvs8LCwp+e+/DhQ3bz5k1ms9lYX1+f+HNBEEY3iOUHvNZHuaSVzVO81ka5xq9h9W1cLhdu3LiBGzduQKfTwWQyid0iuVyO7OxstLS0iCvsgMFTrH78+IGjR49i3759YneLx/UAvNZHuaSVzVO81ka5xr8/NgQ6nQ5HjhyBzWaDRqNBWVkZgoODodVq0draOngRuRzp6ekoLy8Xf+/169eorq5GTEwMTp065feDFoaL1/ool7SyeYrX2iiXRPypy6DT6Vhtba3470uXLrHq6mpWU1PDDh8+zBgb7GZ9/fqVnT59mlksFsYYYy9fvmRardZHHRnv4bU+yiWtbJ7itTbKJQ1/7BHExcVhyZIl4o577t0WV6xYAZfLhaqqKsjlclitVvEgcwBYuHAh5s2b59tWzAt4rY9ySSubp3itjXJJwx8bAqVSCYVCIY6tvX37VvyWfe/evTAajTh+/DiKiooQFxcHAOIy7PGA1/ool7SyeYrX2iiXNAz7GxB3y9rT04OUlBQAQGhoKLZu3Yr29nao1WpxPI3nraKHwmt9lEta2TzFa22Ua3wbdkMgk8ngdDoRHh6Ojx8/4urVq5g4cSJycnKQkJDgy4x+wWt9lEta2TzFa22Ua3wbUUPw4cMHPHv2DJ2dnVi5ciVWrVrly2x+xWt9lGvkeM7mKV5ro1zj24hWFlutVjx9+hRpaWnifhtSwmt9lGvkeM7mKV5ro1zj14i3mCCEECIt0tk1iRBCyKhQQ0AIIQGOGgJCCAlw1BAQQkiAo4aAEEICHDUEhBAS4KghIISQAEcNASF/u337NoqLiz26hlarRW5urlfybN68GR0dHV65FiH/hRoCQrxkYGBgrCMQMiq0spgEpHv37qGqqgr9/f2YPHkysrKyUFhYCGDwWEKNRoPCwkLU1NTgwYMHsFqtUKlUWL9+PdauXQtg8NP/uXPnsG7dOlRWVmLu3LlobGyE0+lESEgIAKCoqGjIU65aW1tx5coVGI1GhISEYNGiRcjKykJwcDAKCgqg1+uhVCoBAHl5eVi6dKkf7gwJSGNxGg4hY8loNLLc3FxmtVoZY4xZLBZmNptZWVmZeLi5W2NjIzObzczlcjGtVsu2b9/O2traGGOMNTU1sS1btrBr164xh8PB7HY7a2pqYnv27BlWjra2NtbS0sKcTiezWCzswIED7NGjR+Lj6enpzGw2e6lqQoZGQ0Mk4MjlcgiCAIPBAKfTCbVaDY1G86/PXbBgATQaDWQyGebNm4fExEQ0NzeLj8tkMmzevBkKhULsBQxXXFwc5syZg6CgIKjVaqxZs+ang9QJ8Zdhb0NNiFRoNBpkZ2ejvLwcBoMBSUlJyMzM/NfnvnnzBhUVFTCZTGCMwW63Y9asWeLjKpVqxA2Am8lkQmlpKdra2uBwODAwMCCelkWIP1FDQAJSamoqUlNT0dfXh4sXL+L69eu/9QoEQcDp06eRn5+PlJQUBAcH4+TJkz8959dTrUZyylVJSQn++usv7N+/H6GhoaisrMSLFy9GXxQho0RDQyTgmEwmNDU1QRAEhISEICQkBDKZDBEREfj8+bN4vKHT6YQgCFCpVAgKCsKbN2/w9u3b/7x2REQEvn//jr6+vj/m6O/vR1hYGCZMmACj0YjHjx//di2LxTL6QgkZJuoRkIAjCAKuX78Oo9GIoKAgxMfHY/fu3VAoFKirq8POnTuhVqtx4sQJ7NixA2fPnoUgCEhOThbPvR1KdHQ0li1bhvz8fLhcLpw5c2bIWUMZGRm4ePEi7t+/j9jYWCxduhRNTU3i4+np6Th//jwcDgd2795Ns4aIz9D0UUIICXA0NEQIIQGOhoYI8aFjx45Br9f/9vMNGzZg48aNY5CIkN/R0BAhhAQ4GhoihJAARw0BIYQEOGoICCEkwFFDQAghAe5/6MF9iVKlviwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "history_decomposed[\"seasonal\"].plot(legend=\"seasonal\", style=\"orange\")\n", + "history_decomposed[\"trend\"].plot(legend=\"trend\", style=\"blue\")\n", + "history_decomposed[\"residual\"].plot(legend=\"residual\", style=\"purple\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Prediction Models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A heuristic derived from the findings of the first research paper determines which forecasting model is used to make the predition. The heuristic is a function of the average daily demand in `history` and `train_horizon` (currently, only `train_horizon=8` is implemented)." + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "30.5" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "orders.avg_daily_demand(pixel.id, predict_at.date(), train_horizon)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "best_model = orders.choose_tactical_model(pixel.id, predict_at.date(), train_horizon)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'hets'" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "best_model.name" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### *hets* Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The *hets* model applies the ETS method on a horizontal time series." + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
actualpredictionlow80high80low95high95
start_at
2016-09-15 20:00:001611.528545.5310717.526012.356220.70088
\n", + "
" + ], + "text/plain": [ + " actual prediction low80 high80 low95 high95\n", + "start_at \n", + "2016-09-15 20:00:00 16 11.52854 5.53107 17.52601 2.3562 20.70088" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "best_model.predict(pixel, predict_at, train_horizon)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### *pnaive* Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As a \"naive\" way, we could simply extrapolate the seasonal component of the decomposed vertical `history` time series linearly and add to it the last observation of the trend component, ignoring the residuals." + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
predictionlow80high80low95high95
start_at
2016-09-15 11:00:00-2.47545NaNNaNNaNNaN
2016-09-15 12:00:00-0.35394NaNNaNNaNNaN
2016-09-15 13:00:00-0.60663NaNNaNNaNNaN
2016-09-15 14:00:00-1.98459NaNNaNNaNNaN
2016-09-15 15:00:00-2.48642NaNNaNNaNNaN
2016-09-15 16:00:00-2.48824NaNNaNNaNNaN
2016-09-15 17:00:00-2.49007NaNNaNNaNNaN
2016-09-15 18:00:00-1.99189NaNNaNNaNNaN
2016-09-15 19:00:002.38152NaNNaNNaNNaN
2016-09-15 20:00:008.25440NaNNaNNaNNaN
2016-09-15 21:00:004.75164NaNNaNNaNNaN
2016-09-15 22:00:00-1.00155NaNNaNNaNNaN
\n", + "
" + ], + "text/plain": [ + " prediction low80 high80 low95 high95\n", + "start_at \n", + "2016-09-15 11:00:00 -2.47545 NaN NaN NaN NaN\n", + "2016-09-15 12:00:00 -0.35394 NaN NaN NaN NaN\n", + "2016-09-15 13:00:00 -0.60663 NaN NaN NaN NaN\n", + "2016-09-15 14:00:00 -1.98459 NaN NaN NaN NaN\n", + "2016-09-15 15:00:00 -2.48642 NaN NaN NaN NaN\n", + "2016-09-15 16:00:00 -2.48824 NaN NaN NaN NaN\n", + "2016-09-15 17:00:00 -2.49007 NaN NaN NaN NaN\n", + "2016-09-15 18:00:00 -1.99189 NaN NaN NaN NaN\n", + "2016-09-15 19:00:00 2.38152 NaN NaN NaN NaN\n", + "2016-09-15 20:00:00 8.25440 NaN NaN NaN NaN\n", + "2016-09-15 21:00:00 4.75164 NaN NaN NaN NaN\n", + "2016-09-15 22:00:00 -1.00155 NaN NaN NaN NaN" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "seasonal_predictions = methods.extrapolate_season.predict(\n", + " history_decomposed[\"seasonal\"], actuals.index, frequency=frequency\n", + ")\n", + "\n", + "seasonal_predictions" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "start_at\n", + "2016-09-14 13:00:00 3.07100\n", + "2016-09-14 14:00:00 3.07143\n", + "2016-09-14 15:00:00 3.07081\n", + "2016-09-14 16:00:00 3.07019\n", + "2016-09-14 17:00:00 3.06957\n", + "2016-09-14 18:00:00 3.06895\n", + "2016-09-14 19:00:00 3.06833\n", + "2016-09-14 20:00:00 3.06771\n", + "2016-09-14 21:00:00 3.06709\n", + "2016-09-14 22:00:00 3.06647\n", + "Name: trend, dtype: float64" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "history_decomposed[\"trend\"].tail(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
predictionlow80high80low95high95
start_at
2016-09-15 11:00:000.59102NaNNaNNaNNaN
2016-09-15 12:00:002.71253NaNNaNNaNNaN
2016-09-15 13:00:002.45984NaNNaNNaNNaN
2016-09-15 14:00:001.08188NaNNaNNaNNaN
2016-09-15 15:00:000.58005NaNNaNNaNNaN
2016-09-15 16:00:000.57823NaNNaNNaNNaN
2016-09-15 17:00:000.57640NaNNaNNaNNaN
2016-09-15 18:00:001.07458NaNNaNNaNNaN
2016-09-15 19:00:005.44799NaNNaNNaNNaN
2016-09-15 20:00:0011.32087NaNNaNNaNNaN
2016-09-15 21:00:007.81811NaNNaNNaNNaN
2016-09-15 22:00:002.06492NaNNaNNaNNaN
\n", + "
" + ], + "text/plain": [ + " prediction low80 high80 low95 high95\n", + "start_at \n", + "2016-09-15 11:00:00 0.59102 NaN NaN NaN NaN\n", + "2016-09-15 12:00:00 2.71253 NaN NaN NaN NaN\n", + "2016-09-15 13:00:00 2.45984 NaN NaN NaN NaN\n", + "2016-09-15 14:00:00 1.08188 NaN NaN NaN NaN\n", + "2016-09-15 15:00:00 0.58005 NaN NaN NaN NaN\n", + "2016-09-15 16:00:00 0.57823 NaN NaN NaN NaN\n", + "2016-09-15 17:00:00 0.57640 NaN NaN NaN NaN\n", + "2016-09-15 18:00:00 1.07458 NaN NaN NaN NaN\n", + "2016-09-15 19:00:00 5.44799 NaN NaN NaN NaN\n", + "2016-09-15 20:00:00 11.32087 NaN NaN NaN NaN\n", + "2016-09-15 21:00:00 7.81811 NaN NaN NaN NaN\n", + "2016-09-15 22:00:00 2.06492 NaN NaN NaN NaN" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "last_trend = history_decomposed[\"trend\"].iloc[-1]\n", + "pnaive = seasonal_predictions + last_trend\n", + "\n", + "pnaive" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEPCAYAAABP1MOPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACVi0lEQVR4nO19d3gc1fX2O2WrurSSZbl3GwPuYDBgg00NvYdmQhIChBBIqPkCJLRQYuoPAoQWwBA6hBaDDdgQU4wx4N4blm151VZabZud+/0xu7NTd8ruSmtr3ucBr2buvefceso99w5FCCFw4MCBAwe9FnRPM+DAgQMHDnoWjiBw4MCBg14ORxA4cODAQS+HIwgcOHDgoJfDEQQOHDhw0MvhCAIHDhw46OVge5oBO2hsbMy5jEAggGAwmAduigvFWi+HL2soVr5yQbHWqbfw1dDQoPvOsQgcOHDgoJfDEQQOHDhw0MvhCAIHDhw46OXYK/cIlCCEIBqNgud5UBRlKs/u3bsRi8UKzFn3Ix/1IoSApml4vV7T7enAgYO9F/uEIIhGo3C5XGBZ89VhWRYMwxSQq55BvurFcRyi0Sh8Pl8euHLgwEExY59wDfE8b0kIODAGy7Lgeb6n2XDgwEE3YJ8QBN3tvqASLQCf6FaahiA86HgQyONlsvloV6ZrI7zBeXngJr/wtCwC27Gip9lQwb/zZVCJ1p5mQwaK64C/8YW8jq18gO1cA0/zJz3Nhgqe5vlgw+t6mg1LcNRoq+A5sNHtILQPXMnInuZGBB3bBSaxB4T1AHRZT7Mjos83RwAA4qPP72FO5Kj58ecAgPiQ4tknYjtXo3LttfDu+RDo+0FPsyOiYt1N8De9Bc4/CvHKg3qaHRF1384EADTO2NHDnMhRs3w2gOLjKxv2CYuge5HSigjXs2woQJGk8CP9rwbOPPNM/PDDD93EkQOroHhBKNGJ4jrcxKT4ofhoD3PioFBwBIEDBw4c9HJ0m2vosccew3fffYeKigrMmTMHANDZ2YkHHngAe/bsQW1tLa655hqUlpZ2F0t5RVdXF37zm99g586d4Hkev//97zFkyBD89a9/RTgcRnV1NR544AH06dMHc+fOxdy5cxGPxzFkyBA8/PDD8Pl8ePfdd/HAAw+ApmmUl5fjzTffRDQaxU033YQff/wRDMPg1ltvxbRp0/DKK6/g448/RiQSwZYtW3DC0dPwlz8K7pcbb7wRP/zwA6LRKH72s5/h2muv7eHWceDAQTGj2wTBjBkzcNxxx+HRRx8Vn7399ts44IADcOqpp+Ltt9/G22+/jQsuuCAnOuXrb4Grc5VhOoqiYPYrnYnS/RAacVvWNJ9++inq6+vxwgsvAABCoRAuuOACPPvss6ipqcE777yDe+65B/fffz+OP/54nH++sGjfc889ePnll3HJJZfgwQcfxNy5c9G3b1+0t7cDAJ577jlQFIUFCxZgw4YN+PnPf47PP/8cALBy5UrMmzcPbrcbRxw+Db8+7xg0DBuEG264AVVVVUgmkzjnnHOwatUq7Lfffqbq6sCBg96HbnMN7bfffiptf8mSJZg+fToAYPr06ViyZEl3sZN3jB49GosWLcKdd96Jr7/+Go2NjVi7di3OPfdcHH300Xj44Yexc+dOAMDatWtx2mmnYebMmXjrrbewdu1aAMDkyZNxzTXXYO7cuUgmBV//kiVLcPrppwMAhg8fjv79+2PTpk0AgMMOOwzl5eXwer0YOXwwtjc2AQDeffddHHvssTj22GOxdu1arF+/vrubw4EDB3sRejRqqL29HVVVVQCAyspKUQtWYv78+Zg/fz4A4O6770YgEJC93717t3iOoGvMXQXhVWyoVGw9BcjOLowaNQrz58/HggULcN999+Gwww7DqFGj8MEH6uiPa665Bv/6178wduxY/Pvf/8bixYvBsizmzJmDpUuXYv78+TjhhBPw0UcfgaIoMAwj0kr/zTAMvF6v+JxhGCS5JLZu24EnnngC8+bNQ2VlJa666iokEgmwLKsqywgej0fV1nbBsmzeysoniokviq4EkBpXRcQX63IBAMorykFy4KlQbZ1rmb2NL01a3ULFBCiK0o1bnzVrFmbNmiX+rbyaNRaLWT5Ny7IsOM5G5A+fhAtC7JA0/65du1BZWYlTTz0VJSUleP7559Hc3IyvvvoKkydPRiKRwKZNmzBq1Ch0dnaipqYGkUgEr7/+Ourr68FxHLZs2YJx48Zh3LhxWLBgAbZt24YpU6bg9ddfxyGHHIKNGzfip59+wuDBg/H999+D53kJD4Kbq7OzAz6fD36/Hzt37sSCBQtw8MEHg+M4EEKQTCZN1zsWi+V8DW764luO44rqqt9i5MsVakUtUuOqiPiqicfhARBqDyHG2Ocp79cqp/7Ntcxew1eWa6h7VBBUVFSgtbUVVVVVaG1tRXl5eU+ykxPWrFmDO+64AxRFweVy4W9/+xsYhsEtt9yCUCiEZDKJX/3qVxg1ahSuu+46nHjiiaipqcGECRPQ2dkJALjjjjuwefNmEEJw2GGHYezYsRg+fDhuuukmzJw5EwzD4IEHHoDH49HlY+x+o7H//vvjiCOOQENDA6ZMmdJdTeDAgYO9FD0qCCZPnoyFCxfi1FNPxcKFC/fqRWvGjBmYMWOG6vmbb76pejZ79mzMnj1b9fypp55SPfN6vXjggQdUz8855xycc8454t8v/vN+0FwLCIAHH3xQk8fXX39dvwIOigBFesGfc/HgPo9uEwQPPvggVq1ahY6ODlx22WU4++yzceqpp+KBBx7AJ598IoaPOnDgwIGD7kW3CYKrr75a8/ktt9zSXSzs4yiue2Ac2EGR9mGR3THkIP9wThY7cODAQS+HIwj2GTh+3L0fRdqHzh7BPg9HEDhw4MBBL4cjCPYZOH7cvR9F2ofOHsE+D0cQ5Ant7e147rnnClL24sWLcdFFF5lM7Zjxez+Ksw8dcbDvwhEEeUIoFMLzzz+vem7r9HJOcKbr3o/i7MPiFE8O8oGiuWJi74H2JL3rrruwdetWHH300XC5XPB4PKioqMCGDRuwcOFC3HXXXfjyyy8Rj8cxe/ZsXHjhhVi8eDHuv/9+VFVVYe3atTjwwAPxyCOPgKIofPrpp7j11lvh8/lw0EFmvgrlTNO9H0Xah85m8T6PfU4Q3HJLOVatchmms3IN9X77JXDbbaGsaf70pz9h7dq1+Pjjj0VXzieffIKBAwfixRdfRFlZGT744APEYjGceuqp4q2rK1aswCeffIL6+nqccsopWLJkCQ488EBcd911ePXVVzFkyBBcdtllJrgsTi3SgRUUaR86ewT7PPY5QVAsGD9+PAYOHAgAWLhwIVavXo33338fANDR0YHNmzfD5XJh/Pjx4mVQY8eOxfbt2+H3+zFw4EAMHToUAHDGGWfgxRdfNEnZ0d72fhRnHzriYN/FPicIjDT3NGzfPmoSfr9f9vcdd9yhuoto8eLFcLvd4t8Mw+SBJ2e67v0ozj4sTvHkIB9wNovzhJKSEvEWUSWmT5+O559/HolEAgCwceNGdHV16ZY1fPhwbN++HVu2bAEgfMnNGM403ftRpH3o7BHs89jnLIKeQnV1NaZMmYKjjjoKXq9X9kGJ8847D9u3b8dxxx0HQgiqq6vxzDPP6Jbl9Xpx77334qKLLoLP58PBBx+sK2QyKE4t0oEVFGkfOnsE+zwcQZBHSL/HLAVN07jppptw0003yZ4feuihOPTQQ8W/77zzTvH3kUceiSOPPNIGF472tvejOPvQEQf7LhzX0D4HZ7ru/SjOPixO8eQgH3AEgWUU5yQt+mnquBdMoEj70Nkj2OfhCIJ9Bs5Cu/ejSPvQEeL7PBxBsM+hWLU3ZzExj+LsQ6cH9130PkFACOj4HoDwNvPnlx0RfBxUoqVAhduHu+1ruNu+ykNJ+W04367XwUR35LXMnMHHULL9SYDv7vulsoPp2gxv0zs9zYYK7pZFcLUv7Wk2VPDvfBl0rKmn2ZCBCodR8tRTBbPOel3UEJ1oARNrBKEI4KrraXZEsF0bQZE4EmwlQOUin/M7UALfnw4AaJyR46KbzwHMc6ha83skPX2x+5Bv81dujijd9hjKt/wdhPGhq+HCHErKbx/WfTsLFB9FY90pOZWTbzsl8OPPAeRhbOURdLQRlWuvRbxsAoKT3utpdkSU3347Sl54AdzAgYgdc0zeyy8Ki+C9997DH/7wB/zxj3/Egw8+iHg8XkBqKUuAJAtIwzooktEipddOf/TRR/i///s/3XzK66937WrCr3/964LxWRwQFspi09poTjjVTnHhHuZEDoqP9jQLew3S85CO7+lhTuSg29oAAFQkUpjyC1KqBbS0tODDDz/E3XffjTlz5oDneSxevLin2coC+9paMqkvfPRKPeaYY3DllVfq5lNef11f3wf//Oc/7bJYQPQGD3O+dGZnj6DnUJxtX+jIrR4XBADA8zzi8TiSySTi8Tiqqqq6nQc62piTFrB9+3YcccQRuPLKKzF9+nT8+te/RiQSwcEHH4w777wTxx57LN577z0sXLgQJ510Eo499lhceumlCIcF7fGTz7/FocdfimOPOx4ffvihUCjh8doL/4f/96frAQB79uzBL3/5S8yaNQuzZs3CkiVLxOuvZ550Ef5y79PYtn0HjjrqKABANBrFNddcg5kzZ+KYY47B//73PwDAK6+8gl/96lc4//zzMW3aNNxxxx2W6sqG1yLw3ckWNd98LiPaZfl2/hsVa6/PI538oGLt9fDvfLmn2ZCBSnYh8N3JYDvX9DQrMrhC36Fm2ZkAX0ivgHWU/PQMyjfc2tNsgNpX9wiqq6tx0kkn4fLLL4fb7ca4ceMwbtw4WZr58+dj/vz5AIC7775bdn0DAOzevRssK1Sl9M9/BrtypT5BPg4kYwDtAhhv5nmiQ/jXVabKwo0di870YkkJdChApAkIF8Zt3LgRDz74IA466CD8/ve/xwsvvACKolBTU4MFCxagubkZl1xyCV5//XWUlJTgkUcewVNPPYXf/va3+OPND+LN5/6GweN+hkt/cxkoigJLcaD5KGguDJZlccstt+DQQw/Fv/71LySTSYTDYdx8881Yu3YtPnn/eVDxZmxtFvhhWRYvvPACaJrGwoULsX79epxzzjlYvHgxGIbBypUrsWDBArjdbkybNg2//vWv0a9fP1m9PR6P+Fva5uyaX4IOLUWArAQJnKDf1hKwDKPqN9sQFwkiK9P92R8BAK5p+td3qPhi2bzxxezwAQBKSnzwyfiaC+ycC/8Bv8uan6IrUzwxQB75SkNaHrXzQ7hCSxHYfg+4w9/Nmo91C9e6V1SUg+TAk15by8bWsj+Bbl+OWncQpPJAU+Xm2k4yvsLCVS4MQyvG1s3Cv1O1bw8oNF+MV1irysrKUJLncQEUgSDo7OzEkiVL8Oijj8Lv9+P+++/HokWLcMQRR4hp0hpwGsFgUFZGLBYDwzAABOsi23cGpBJVmo7SeJYGz/OZW0GTHFwQdFLpTaHJZBINDQ2YOHEiOI7DaaedhmeeeQaEEJx44ongOA7ffPMN1q5dixNPPBEAkEgkMGnSJKxZswYD+9dj6OB+SCSTOO200/Diiy+CS6Yjmwg4jsMXX3yBBx98UKTr9/vR3Cys/ITnU3UQ+Oc4Dl999RV+8YtfgOM4DBkyBP369cO6deuQTCZx2GGHiTekjhgxAlu3bkWfPn1U7arV5tWJJLwAQu1tiLnkfaFEQ+pfjuMQbG3NmtY0+JhYrpQvrWem+DKR3gzKo1GUAugKh9Fpgy9XqA21KZ6QR7606Hs6wqgBEI9H0WJApyaegAdAqD2EGGOfp0AgYNhfgSSBG0BbazMSnLmxlWs7Sfliom3oA2E+5zq28slXZSwGP4COUAgRm+Wmr7vXQo8LguXLl6Ourg7l5eUAgIMPPhjr1q2TCQIrCN12W9b3dHyPEDXkqQPn7is+d3X8AABIlI3Ty2oISuHHS/+dXnAJITjiiCPw2GOPydKtWLFC8leupp85X6L0+muapi1df01SHkXK0oZ7Hk1aUVgXm9c6Vz9uuj6F91Pb6cPuae2Ut7rHgzls1rZQh+/Sa0uByu/xPYJAIID169cjFouBEILly5erXBR7C3bs2IFvvxXCGd9++21MmTJF9n7SpElYsmQJNm/eDADo6urCxo0bhWund+zG5m07xbwC5AvCYYcdJm4MJ5NJhEKhrNdfH3TQQXjrrbcACFdf79ixA8OGDcu9opRgfVmbrIXfI9jr0Z0neMU+tHmeplCwNbbyykCO+QssCAqEHhcEI0aMwNSpU3HDDTfg2muvBSFE5gbamzBs2DD861//wvTp09He3o7Zs2fL3tfU1OCBBx7Ab3/7W8yaNQsnn3wyNm7cCK/Xi7/f9nuc/5tbcexxJ2R8i4q+v+2227B48WLMnDkTxx13HNatWydefz39+PPxl3uflqWfPXs2eJ7HzJkzcfnll+OBBx6Q+f1tQzznYGGy5nGRK9K4jjygwIJA2gfpBRfFJghSlkqx8WUae6eS0uOuIQA4++yzcfbZZ/c0GzmDZVk88sgjsmdff/217O/DDjsMH3zwgSrvUYdPxswPn0SidP/MJOXjOPf0o3HOGW5wAGpra/Hss8+q8j766KNgIttAc60g/n745JNPAAjfNXjggQdU6c855xycc8454t/S8FMzICn+qB7TJvfOydbzIMiIUTvuvcKD9LhFUOTYV11DPQe7DdqNWlt30bSMtB/XiiDIfx2oImsXkgk5sF1CYSEJlKCKxRevhJ2xlX/YHlvOHsHegsI4FgYMGCBq4vs8RLdCT28WFxtym6wFd3ntFa4hO2MrfxBbyPYYK9axmR37hCDIFi7aoyBEuEjOFH/ZloE814+Pg0pdh5ANuu0quobyu0fgCn0HtnOVmcIMXud3cfPu+aB7LgS0Mo75GHy7Xre4YEnapUAuGCayDe7Wz23nJ3bGlgm4274BG15vImX3bhZ7m94BxXXkSDN37BOCwGr4Y3eBTuwBG90OOtdFJM+Cju1aDzayOWsajuNA09rDo1B+3NrvTkLdt0ebSGkkCPLHFx3fg+qVv0b1il/lrcx8oHzzfaha83t4mj+2kEviGirQHkGfrw9B4Idz7RdQoLEV+P401C2ZkdcycwXbuRrVq65A5dprzWfaV08W5wNerxfRaBSxWEwVy68EE26Eu+NH8GUjECupFJ/79vwIAIgwI7LmpxJtIM0/gqe9iNGDs6ZlQ5vh6lqHRGkSXKkvU0Z8DwjlA1ylmToEl4MiHCIYkDnxzHXCF/wRhGIRZYZmpeVq3ww2sg18jQ8xlytrWl/TdwDUdaUj28F7+oJQDGiahtfr1cqO7twjoLgOeFoXIVr7M/NlEQ5A9jYwjdQpZja6TfaYDW8AxbUhUTE5P3QAWGkjOr5b+Fdh2blbv0DSNxhJb3+N4qWuobQbqxtcQ4TA1/QWUH2xicQ2xhYhtsIrqUQL3O3fAoHzpIVZLkfBjHn6SeGKFibWKHvOdq4GxceBwExJ4sI6DvcJQUBRFHw+n3FCAP6Wpajc9mckh12G3bVTxecN224EADQOzX59MNuxCXXbbkTS3Qe7B5+VNW3Zzvko2/4YQkNuQmfdxAytb4QP1kuv363/6S+gk53Y1f948G7hABoT2YM+224Ez5Ri15CfZ6VVufUt+He/Bq7un2jyj8yaVquurvalqF1+MsL1P0f76L9nzZ8JHy28IKhc+0f49ryPpimfgStJCS4DrYgiyfx7ahU065ZMB6B3hXJ3+pfleQI/nANCubBz+pbsacX6mO9Du0uRNzgPVat/hyTZAdRnv2bDXvioNBrKPKqXXwJPaAniQ47NkLdcipIVG32oHFvfCuHz8aExw7T5wj7hGrIEKtfIDkvELNDS0tBS+bohsoNOaSdsdLthWlt+XJsDmIn+JNBKah+a06aVz/aysDTkPLas5NOnRZFE1hzytIXf8Ke4duFHxPi7A/bcjvb4YqNbhR+8xoKrS8pIQNnpQzNJnaihwsB2ZIeFfJbMOY2JneLRXLx+bgOEWNLyuzP0UMtVYGwR5A3d+eF2S2PSBl+SNhTHcTeMLdGCNEWrWMaWTp1J9r1IS71iZWzt6yeLewesTCSi8bs7QvwsaBy2Qg9tLibiBDAvCIwmqz0Ub2SahcQav7vjLIgFJcPO2LKrJWuNLRNux/yj58eWIwgso/sO/WQemRl8OWoMokVgRhCkI066bxGR186orB5yDYnoTtdQjuVbGVu2F1zzFgHpxrFFRItAS0DqZTJqr0L3YWHgCAKrKPSZBQsukNxpScu3YpLbcUvYnKwaJ2Apo6J67FxJkV5YplW+rTbKdcE1s7h3o+DVPF1tOLgMXjsni/cS9MQ1AGa0bIEva5qv3bQaeSxFa3TnQlscVw5YqnOxnkq1ovnKM+ZGV9O9VyBalpDNZVWc60Oh4AiCbqFlJW2Gr4zmW6hBID1gZL1diCW+cvXjWlnE8tm3dvqwWKFlbXZDH9o6vNaNY0szUk+vzJ4aW4VFLxQEuaJYtbYc3TWWIjvsIMeNRgvme/FML4uwYknY0hBzHVuF3yOwBdsWmMbYMirLkFZh14dCfbPYEQSW0Z2bxd1Jy8JkzcOhGdPZ0mcW8tkuBd9DsBuaXFjI9la6sQ8zy4xxfnsLXY5ji5dGmeU6NgoztoizR1BkKPgE0jBTTWl/+ZpAVrS27tC9Ncz3nLWyAvVhzn7cQi+CGsK0YGNLktvGldfW3I52kR5bVgRBATaLu2VsZYcjCCzDim81T9E1BTtoJC1XWGgLF7aXo1vB0jmCfAoCg/bMq4aW49iyU2/b5xAswIZryMrBTdtLZCGihpzw0b0EeTOxCuVe6MYQP6JFqxvqZQk9HTVkJHSK6YCRlUWqO6NzCn3BXa5jS+sAYk+FIBtgX759NBwO4/HHH8f27dtBURQuv/xyjByZ/eI0+yjO8FHtqB0r5nuum4epSWppslqgmfPpzzxGDeVTwBIOmWmUo4Zngy+Z5mzUd7IrJtI/zI8t+1+Es35JoSXXUK5ji+fEBsnso9iNGto7w0eLQhA8++yzGD9+PP74xz+C4zjEYhYugepmFOwuERF2tTY7i4jEGVFwi8AexHvz8xo+mr92pcBrpCi8kqG9UFq4EK07XELK/D1+FkQOIo0aojJPs4EiRikKHPm1r24Wd3V1YfXq1TjqqKMACB+ALykp6WGuskDsiMJIaHnUhJ1Oz22PwJyro/siOzJ+XIn53q1uPYO0vPSmz3xtFtssx9LNmN0ZNWTF2uyJsSXtw9zGluGpdyuQtleBo4Z63CJoampCeXk5HnvsMWzduhVDhw7FxRdfLPsoyvz58zF//nwAwN13341AIGCbHh0SPgZDU7RmOUZlU6gQ8tOUYVpmtyDQ/H4/vAa00l8Dq6yqBMqF5xRbKVI1pJVqLzN8pVFTUw2wQntQpByAIIiN2oXZIXz7oaS0BD6TtFiGMc2XNB3rdgMAysrKUZp+3hXRTJtGVVUlUJqFVupjM4B+fUVEBOtUr11ramoAdyUAgNktfEfCTH9rgUqk+4ABDPhK93dpaQn86XTJ7O1SXVUF+FNjK9XfjIl+YVMfOiorL8v0gQGkZVLx1BgzMecYjwcAUF5WappWTU014Cq3zBfLCsuftA0oVxMAYT5qtmFNFeDJwpfEmWHY30xVig/tPpCOzUx/l2b6O4/ocUGQTCaxefNmXHLJJRgxYgSeffZZvP322zj33Mzn7mbNmoVZs2aJfweDQdv0/J1hVALgCS8rp8Fk2e62NgQA8DxvmLasK4IyAF1dYXQa0OpDCBgAba0t4OLCc7ajFXUm+aqMxuA3yVeafnNwDwgbTdWrFQEAXNK4XcojXSiFsLcTNkmL4xIIhsylldKqikXhA9ARakc09ZyOtqBeI206f2tLC5LRCn1CfEzCF5e1vehoM+oB8HxSk1ZzcxDEJVgrZV1dKAMQCYfRYWNseULtqEnxBAO+KqIxlADo7OhAVyodlexCXw1aafotLc3gu4QFxd0ujONk0ni81CQ4eJDqA4/1PvSEQqgBQEAMx5bY3x0diJgdx81BEDZuKq2UViARhxtAUtLWbFiYc3r93dLcDN6tb7HR8WbNsakFtqMddQCSXEKTFsclEGxuBQBURKNCf3d2iv1tFQ0NDbrvetw1VFNTg5qaGowYIXx9aurUqdi8eXMBKeZqYhXKh67my9rmXK4mddoMLa4rFbTaoHu/ImUnHNDmGMn1ZLGB64Xqzj0C6TgW+bKy3HTHXlWWcNqiWx/Sxe+jewSVlZWoqalBY6Pw3c7ly5ejf3+N760WDaz7cSnNME095Lqhlmv4aKHueMl1YvXUZnE6i3EUCcnbgTK75RQiWspC+bppU2PaUvvYHMcWQBX72NL8xvQ+ukcAAJdccgkefvhhcByHuro6XHHFFT3Nkj4sRddoDfwCx3rb1PTESVGwMLVctWQrwtQo0sc8eubIj80Ft6g2i7Vo7QVjK1dhWpADhugd4aODBw/G3Xff3dNsdA8MY73tmu9iJntpSYFdQ3k1tbszxLUAGmBekGP4aKGjcwiReMpsjK1uCW/t6bFVPOhx11DPIc8+QJ7L8hFsLV+8FVo5aAN8LEtIaK4Lg31QkggXc+gG853wssgbKfT2a/IZLqi7J8QnZJFO+rBjbeYwtpJRk2OrwK4hBSyPLQ3lS39/Lv9jS7/MLHsYeUbvEwSaJ1WtQHsC1S49Hg2LhspTWtrQ0zq9mbvW1rBoKKqXX6xNUZY0PVnNDInc+GI7V6Pv58PhbXqnILTsfsGsbPO9aPh8OCgubJhWh3I6k738Ovs0dV8fioZFQ/QyZagbui2sXNyXnRYANHw+DJVrrrHAV+EvT3S3fY2+nw+Hp2VhwWlZeV+x7iY0fD5c/tD5eH3PIfdbDbU72hVelVN+7ftY8uPH9bZ8YsxLiq619rGn4bk6Vwh8NS8wkS19GEm7LHvQzu/f9RoAgOLaLdAyci/k7uJgY40m85t3DdmbBWr+/LvfMJHWjvVhvt2kgt/dvkT4t/V/Jkik26tAfn0JSna+qKBppqju2yPodYIgf8hxU9ZMud0YyUPZmqxWSEn5shIBYcc8tjmxKS2rLFcUep9Hms3OHoEVv70VXjT2n0xZm7aIZX6KfWjvFLOl+WkHRXbNRhqOILCKXK+EtjRZsz3LB3IVOnZh3j2XnpjdcddQ1ov/bNOyglwtwOz5tV1m3TC2bJ1RsQsrrl+i+NdEPptRQ5mxleN3NZw9gjzDRINSXBjutq/lzzR+WSRs4b12WiayDWx4vc3ypUlz3dCTwxVaBjreokcs89PKPo2dED9Ffk/zpyZdblqWSq4aoHZ+KtEGV/u3ysRyPrIiVyVDZ2x1bQLTtUmHogV3jRZdK2NL0W6u9iWguJBeYskvC9am1uExK+HhhIen5TOT4yXHq7gd11C+Yb5BK9f8HoHvTwcda5I8zdHU1xsImgdGtBeGPl8fgrolM3RI2TSpbYWPylH73YkILDvJmJaFTxfas5Ay77173kXN8gtQsuM5yWud/FQ2vvRoGmlt2vlqls9G7bJThGgzI75Mwnih1tJGFWPrm8PR55vDdfLbHVs5Wpt8ArXLTkXNjxca07KgZGi3l/mxVbLjOdT8eD68e96VlKlHLH2Lrtb8Nz+2nG8W5x3GDeoKrwEAUEktTcRuhxhpBBp3xluCzclqRRvNMhjZyBbDPGmtzdygtqChadBi4nuEfyObTWS0EfWjtfdhQvNmUxvmlGbIsd2xZYXXXBUa87QoK64hzXKF/K7QUhN5cnUNZeNDXgMmtYnPRreboKW2CAwFt3TOON8s7jkQWrgJkZLFcBfKj0tJ/q+VrxDI1TVUmAgsozRWYvcJJdycKV9wbbjnbH9XViefOLas8KVFy4S1qVl+rmPLQhum287uOYJUvfJ/95Ydi0CSkhZuxoWl9UHDRel8s7i4QSiho2WCwJKZq05jHOutMVkLdkeLRDvpzruGLO0RpP+1sohJNClLwtzOHoGV/pQ8ptKLiPSQkZ2xpSHM9ZlR/7bU3Vbahdf4beF+Lkn51iJ5rOwRaOW3MLbE9UEizHXpanwfuVDRbzbQiwWBiUamU9pkzh+usDJZ83+OQA+aG3rdch+MlY2z3Py4SGttpvowm4DK1eWmSEHbsVSMyBoJpTweKLOi0OS6/2RpwcxRkTHaLCbqsWVqfUiHtWrWxZ7bM5/oxYLAGBnTL1fzXZq9O909FtLaOlCWqy/dDLQO/Vgw30XXUMYi0HUtFeL7yHpILyJ8NOeiMih0jLrddhF+W7qdVSuizQytrBv+SuQ4tiy4hjJPrSh6WlZ0YeAIgizImH4Jg5RWkEc/bq5CJefwUSuTVQJb4aNWIHUNpbU2M3f1qLW2XO8S0mtNTbdCjiVbiyjpxj0CW9amlb0PKdJ9aCJPrmNLQ8kw4ivnmwMKhF4oCKxo9EwqiyTEL2fXkAX/tKGWrSWgcnVh2DXfrQg4K1qbRn4r1ofYh9LL0fS0NjuuISNLR89VIPAlVTJyP9GcPX9+y7cgCHI+rGj+xt7sfWic35qWnrq82cTYylgqWpf0mXBDFRi9ThDYmgxSLTnXk8W6yNEXLj7KVSu0MoGkf1jX2qxpevbMd20Bl92Pmzst6SM7mrMVkvYWC1vzwIKSkvutrFKrzI4LxW67WAFR0ESWdrFjETiCoHCwo510w0lT7fJJdoq5bjxZ0bIN8xt8JlHjAi37Gmqum2t6+TUiO2y550wIHc33uSoZ3amlm6dlr5/Nux0pzb9sji3DdrHb3xpjvhs1fiP0PkGQq4ZXcORR6BiSyt9CbM32sbH4WLlTR6sNTV14pnEfjCFNu1pdD4ytPCo0xj1oV0nRsqrsWJu5ukj1kuYouDXr0vNjxBEEgP6gyfma2nxpbSbSmi7fblo15NpNN16mZyVEVit00c5ZDtuwMLZsCGb7l/EV1gLMr8urOy9qtGJtaoXFGrgdrVibmjQLIxyKQhDwPI/rr7++Bz9XaV4i57rhZu/crnYuzac5a0KFihqSps3xAi5DqPkiFiYrZeGGSMPW0s1PNN6b7zvtjx7Z6Xt7h7zsac4FihrScDtaQq5zhjLvGrIUPtrbNos/+OAD9OvXr5uoWdAmU2kt+fW03lvpUEs+7W60CKwcVjLKX+CYaOPF1WCyatUl75OSKP5V/i4Echwv+TxxbQlWaOW4R2CrXhKVzSC75sa3lbFVoLnT44KgubkZ3333HWbOnNk9BK0stLY2Y7UGpfn82qd9zcD6AJMOWlsf5LBkvsso65dpgr4lq0zzoyhGgsCK+W7zfc4b/TnyUvDostxcXrb7W9zwt1k/W0qb8djS+h6BvX2WwoDtNko6eO6553DBBRcgEtH/4PT8+fMxf/58AMDdd9+NQCBgmx7dXiL8S1GZciRXAUvLZl1C85SVlaI09ZyKlQv5aVqTj0BNlXg1BR0UaPn9PnjSacOdmrRoWhhM5eVlIGlaXJnwL6VNq6amGmBLAQCMx6vmS6LZauWvrKoAyoXndIdQjotltesVqBFj35mfBFr+Ej+86bQxaVp1foahEahM16sSAOB26dGS9oHQlmWlJShJtwtTkb1elRUg1al6RYR6edyeTNpIhllWUl8mRauyojzTB6zAKyUdLxJUVVUBJSlae9L97c/0dzyzSMjqxQjLQIWEFt1ZJvIEjX6Q/s1sF/qgpMQPX5pXV1X2dqmoAKlJpY0KtBjGTB8Ih99KS0vgF+vFaqZNo7q6CvCl6tXiF/6ltdtQRsudolUioRXuyEqrqqoSKE2PY6FeXq8bLgNaDJMazxK+KF6Y35QOr1VVlUBZilarT6Dl82Voufdo0qIZFuCAqspykIoULQi0WJbRpCWMTaFPGW+qv/2Z/s4nelQQLF26FBUVFRg6dChWrlypm27WrFmYNWuW+HcwGLRN09/ZgUoAPCGZcvgEGjTKrknE4QHQEQoh6hGee0PtqIawryFNm8nfJN4sWdrVhXIAXV1d6EilZSKt6KNBqw+fBAMgFAohxgrPPe3tqAFApLxKaDUHgyCscEVBZSwGPwA+yWXSkqRmvfqCAgWCttZWcHHhub9DaJcEl0CzZr2CoiAoj0RQCqArHEZnKi0dD6Jeg1Y6f1LClyfUgRoA8XgMLXq0UqhJJOAB0NnZia7Uc1eoFbVZaLW1tSLBC899oXZUAYjFE2hN8xptFnnluAxfAS4JN4D2tlbEITxjO1tRB4AQ7f5ubWlBMiIIgNJwp6q/qUQL+mrwWpdMggXQ3t6GOJ3itSOEqhRPkPCl1S7l0RhKAYTDnQgH07y2oC5ru7QhQeTjOJlM6oxjrT7oEPuASrRp1iudv6W5GbxXmAcl4TAqAPC89jiWPquKx+AD0BkOi7SYSLPmnBH7oLUFyaiwqPo6w0J/RyNoM6CV7oOkZC6729sQAEB0eG1raQUXC8rqFYnGEEr3QbhVsw/68AQMgNbWZnCJFK22dgQAJCV9LaXFcQkEQ8Lz8mg01d9hsb+toqGhQfddjwqCtWvX4ttvv8WyZcsQj8cRiUTw8MMP46qrruoG6jobPIRoHEqxskkmdZFoxcvnM7LDwGTPeriFQPtwi47BSojGK5ubh0Rj78UItiN5rITrZdvQs0LTjM9Ya7PYCnKMSMs1asjQxZkjLc1L60yktRE+SmmNLVO+eDv7T1rtYsF9WKA9gh4VBOeddx7OO+88AMDKlSvx7rvvdpMQAEwNas1+NvK787l59mxHW+S6n2G+fO0NLxunhAsWFaGxiEj2CHRbk8rXVcE2x1bBwwmJ6qe5Mx2FHlvSbFr5CnSPlWU+FOVqHT7TyyfePuqEjxYHDHfttTZA86mBGmmjevm0YHMRsvAlLfP07cSVF+iKCc1NbCt3/Kv50s9td0FMf2zFAuxErElAyX7bKMvKZXxGFpwhrwSJBNDeTmH9eh9aw5XZiMlyCrA5tiwJfisXNaaX2uI8UNbjm8VpjB07FmPHji04HWvRMVqaq3nXkLa2ZdTpdt0ladPTDC2t9zYWNCvmu02hY++7stKkWlZVdgGZ+3dhrWjZksXVVB8UOPRWk1aO13ObtH6+/tqNJ+/+K35Y9wz2dPQBl0xdGIi+cDG7MXnot/ANqIbfT9CnTxKXD5mISUO+U5SV2/1etu4asnKlSK63jxbIIigaQdB9sNB5mh+pMOqIXA9J2dVOtPJb8a0awViDM03L1olte+2SPhxGLF0caOG7snbfa40tM2c1VFdl2FUccrU27Zz2lb9v7qjGk59civXzy9HSQmPePC+qSwmOPuADBIYOA1N3IPx+girPDvz0v/fx7abJaG6msXUrhfnzPXg6uhS/mP4MZnZVorTWhT59eIxymySvy2vqt66WryXgrNwtZeXjQBqC3xEE+YKBFiDZFKUsmXFZ3lu5Wtq2u8aCdkNR6uS23A5WLAJNRgxTaF8rbEUbtaO1WXdl6Jarmy/HsaWxUNmydk3BTntkp9XSQuH8uz7Bj9vGobKSR1UVj8MPj+Ofv7wSg5Kvon34XxHuPxQAwHY2om7Q9QCAxhk7AAguo+dveA53v3sTnl2YKfd3F03Dg0dTJlX7bBu4etVSKxnmzqjIKCrKzE5Sj34+0QsFQRp6nW+04GUvlSJyfTQ73VxhpLXlqMVbgnkNMb90jWDhPhjN93YEpF5ZRvlztT6MYMX6IAaLqZUFU65lx2LAhRfWYu3OAObdcAz2v+o5MW3V8nagWcGfhpJRUUHwt3P/hCuOfgwr+v4HrfGB+OADLx55fhJ2rH4N/7jlzez8GcHSgluge6xI97kCe58gsKTtabmGDAlYZEifF+UEMkWrYNaHQVortOxoNZZuH5UmtfO93Bx51StLAipvYytHLd/u2LIotFo6q/DpoilY8UkJFi924/sfPHjj6tNxzIEfo9GAbjbFYUDNT/CMC4EriWH69Bj2q1+KP99/Gt486QyUlgqWxumnR3D/ZAo0bTTPlXU0qpedsdGdgt88ep8gMNwjyD4oCuYzNklfxovE+ghHvHh14Wx0rpyIRMAHjwfwssCAzbPQp2I3+CYa1dU8WGmPW1xc1SmkT6zsR5gf4Frtbe2it7T5LktgVEAe0+rkt3PFRI5RQ/brldt5mGiMweF/+RLrdo4CAPh8PK78bRtOn/KWOfomAxEoCrj8vGU4zPdnfLz9CuxkT8TmzSweeqgMuw+Zi+d+c7E+DeUzU3sEJPXESvBljoLEcQ3lC1a0KqKRpdBagDEtQoBvN03G6q4ytHT6sHUrixeffRTB9gpFyioAHws/bwIoiqChIYk7TroIsw97Jmde5N/2LbTVZFNL17oPxkyMuKV3AqxdKKZhEdh1R5iF7UN5uVmA9z4zA+t2jsKLtzyEcWedg6oqHhSJAYvM0rQWCnrEmM8xeUYt2sYcAUKAxx4rxV13/RwrfxqLke9WorSUYOBADteO9qYuebDbLurw0dw/wpP9ee4RbdpwBIGJtLZPBhfAvfe//7lx3y1fY8mmg2TPjznoO/y/Y67G0Bkno7HsQkSjQLyrC57FF2F3ex+s6/MUgkEGCxd68IvHn8bcL87FET/rB2+NH1VVPE4aw+hQNAs74aN2G8h8H1B29ghsu0DsLK75dBXk09WQmxsqfc5g5UoWD809Ahcf8SzOnbUYu6vPEl7wVoS5hbGlCA6gKOC3V3TggNCluPe96/HNN250dlJobWXwYt0CPHbxb3DoAQyIL72e59bfhBBs2DUMa3eOwrZ2LyIRCl1dNDq/uwnbdgXQ5psKjqkGzwMkejjY0H+RpPyIlNaAEIDnAablC/CExv8NdqHv4O5xD/U+QaDZrjpamWb4qFH55iaIXj6p0NnT4sFdc+/DorUz0EbXIhym0NjIYkBNF/75q1+h/0k3oKK2HFVVPAbuuAv+3Z+DqzkKdJ1wepFKRNG35QsAQOOMhwEAf/hDB9655W/4f6/cjvn3VIq0pk08F+9ffhe8FVmumMj8ofgXNierFdhcMIlaaysYLSuLe7oNrFyFoFmaTUGUY5RYttZcv2s4vlxQjZ3tfjz9dAlqKsP4+3nXApglSWWlXXMPgz73kFdw7iGviFFHX37pxp+u4nD8vf8F7hWsZb+foK7mVEzp+28Mrm9Ex2flSCaBZBLwbX8YSZ5B5zujwTEVSCYp8K3noqXxGLRyI9CFWsRiFJqDM9HRuUFFn2Uux8CabfBV+gEXA4YhYHgP3JEK0CyLpBdgGOE/nzsChk6C1losHIuggNDVAHMzibM/k4PnKbz37cn4celY7EmUoamJwXv/OQeRKI0Z+32O2kEc/H6CAw4I4/qBI+F1x7DrwN+BdwsXnmGHOf5pGrji6Cdx2VGPYfOI99DGTMDnn3tw/XX9Mf32hfj3LX9FSVIYkPp10FrwCrNHkDusWAS5uYa00lo7kWxlbNmxpvLpDtIu651vT8ZpD74FQgRXnM/HY+5dr6OmrAVJzRzG5C19vN5kux5ySBxL/34MXv/scDSWXYkmbhS6uijs2tyCb344CG992w+MywWaJmAYgOXPB0MnQXnKwbAsaJrAS/dHva8LtYEOsFW18HoJKr17cIj/duzffwWi0/8Dn4/A5yMYtXoSPMlGBMe9injVNACAp2URan78OTjvQDRN/VLkreGzowEA8f22IBh2KariCII8wcoEzNV8NxcD//XXbtx+08dYtvlAAADDEFRW8jh+xibccdSJGDGgEbsOXyum936WukbZwsEoJRiaR0V5Av4KHuecE8Fg5kNceP3JGPOrt0BRBBUVBD/7WQTPH6cRbZHzXUN2InlkxMy/Fzf0zLuGtD9EpJ1HrrTlOrYMIGl3jqMRjXsU2e0smPpfv8tamkZ/b97M4KLHn8ekIUtxx70UAoP7o7aWR+WOdcBmdfnadLWomh9bmp8m1amJ1x3DxdP/BW7KdDSVCDdzeoKfoWbFL8CzFdh12CoxbcNnwoezmibNA1e2PwCgbPPfUbb1AXQM+j06hgjnHFyhlaj97mkAQOPIzPX2LJOEIAmNLOtcFVF76HWCwOjKAs0JkMdY72SS4P4PrsHTn/0SLck+CIcpdHTQ6F8Tw9wrzsOh5x0H1+BZoCjA2/QJqletA49SA5o6ddFlRR0FctTUTVhy+xS8v/5SNJb+CqtXs5g7twQjo3/GLaffDsMBbIEve/tpFlxLBv2V8z05pvJleWYlfwpb9gzC8qUeNLd7sGkTiycfvRtNrY+isiwKX6kbPh9BZck0TO3zCE4Y/wHcdSz8foLaWu1FNPdNTeF3Z7QEu3fTaG+nccUVVWCZEF676iz4D3gaXGmDRj6tsszRyk9ao/zZoblfmNc9pe60ljPodYJAbGjd74wadY6VjqIQ51zYvqsKu5Ismppo3H3nRHy/fAaOGL0Q4yZE4fcTDBiQxB+GHYoyehtaSo9CVGTNutDRvFJXlSh1sliRdky/NRi63ytonnAOCAF+/3uCv7z5F0wd/hUOOCz7ImclrDb3A2V2Jq7dA2XpR2bcSdYXBsqgXZqbafzm7//Be8tOkj0/9MD1+M30B7GTPhbtzIGIRCi0NiXx3KKL8ejHVwL3Cen8fh5/PPavuPaEv1sTpgbzYPMWD2bf8yHm/Xhchn+K4IPrzsfg2q1oMmpjJS+KPRxLn4fN2Z2rRdfefVG23I5WotgciyBP0DoboLde2lmwJOW/+9kY3HDPZjS2Zr7HXFMdx7+vPAdnT30VO48UHfvw/y8CJAAr5nvuQkufFkUB99zTjnXfbMDZj7yKQ7+nUVfPYPToBH47xSwv0tdEUg0tYZwdhfumgzRprhpa7gtDR6QUX22ZhLYohc2b/XjggTK0Nh+N28/8M4ae9BtUBrwIBHiMid6Psp8eR/tQDuGBAwEArvZv4fvyPCxedyi2Dvs3wmEKCxZ4cftbt+DheVdhwAACf4VfCJ+snIUj6y7EoIEJtBA3eF6IWKlecRR4QiOY9CFJeZBMAp51M9C49WDs8U1HrKwMra00Xn6pHm66E38+9XaUTv0dSkoIRozgcGzzPHX9DNuVQNuNatSGWuXnmL87D0YaXtviCIICwkBrs9M5AKJxD95YcgY2rq5DOF6K775zY/78czBu4Pe44ZIFcA8/EaWlBAeNWomR61+1xKq5BLma32r4fARvXn06rnnxAazffDS+/NqNf/2rBPQVx+D6aXNhf1IU2iKwsghlz5/7d2XNL0KbtlfizD99j01Nw1JPKjF4MIev/jIV4wf/gJ2HXQDCCrv41MY0f/LyS71h4bTuDOHLdWefHUHjM4fj8QWXYQeOQyjuRzBIY8nXY/Bc+HkNhhZoPLtT9hfDEJx4XBCPHT8ODVU70Tjjl5mXn6nrpa3QFFqY57r/pEPTMHrOyALUoqVXfvehFwoCI1hfOD791INbb1yBjbuHi8/KynjcduVHuHHKzxAbNBuhEULoHNvJ6RWTImVzIBDVD92yMvqXcdrh9Rvx7rUnY+e0leDZSvziF9W49alzceaIv6B2oE0tPefw0Vzz5eYWMYI1S1JIu3y5Cxf++mLwiShevO5GjDjzdhDSgvr6JAb974dUUmm55u+xmjx0KZ4a+ms0H/gSYtXTAQDen15E46fPY1vkIHSMuRc0LUSU1f1wGmiKR+uEl0G5fKBpILDxWgxzvwtq/9+ha9BvQFEA07URfb7ZaaGexm0gf2RTEBRAISo8Lcc11APQckuY19o4Dpjz/h/w9rKz0ELVorOTwrZtLEb2DeK/NxyLIefeBU9VX7hcQMn2/8G1kZN+192YlhVfutZksXyplfnyKQr429/aMOPwClz1r4fx0qR5svcGhVlIa1SUDVpWrqHO2VVgnD8YqsZvn3gCy5tnoiUkXMPcUNeO+X+ahiGjSoDxtyEYVAZc5s+SommC/QesxCh/AnsOiou8NsSEcyc7J0ZAUveR1JAN8LS1op3mJc1opPlabLdsCryhlp2rZayVtjvuYMrVDZY/9F5BoPtMPYkJAbq6KGzaxOCmP5yL71b2xeRh36Pf0CRKS3nMnh3G/xt2IDyuOHaX3YakS6vcfPFq9L6wg7JvXx5/uuh1/OmJC3HDw6UYeagPgwYlcegoEwPY9CZ4dl6t3TWUq/VhQxjrliWgrY3C+Xe8gZXbR2PW4Y2Y0s+Nujoelx71NEaF1iGOCSb4Uj+z1C6m/PZyyDa2DZvVoHwLAjZn91yh7mDKdY+gYJaKdfQ+QWC4AZP5Pf/7Q3D1E29iw+4R4HnhgEx1RQT/vvIcnHHEIjRNWyqm9XwWz0ZU53duaQ39jXkVBJnfV5z+IT5bXIcn3jga5HWhXS448wC8cJoBOdN8aWWxubjnuEdghaa4UGrwmuBY7NpJIdjM4MYbK7Hqp2r8548n46DzzkC09mcAgJLtHUDIkIyCLZvWSx4XakO+bCks+exvC3ls7XWZEFpZy82jtWwTPS4IgsEgHn30UbS1tYGiKMyaNQsnnHBCASlqDzqep7C6cQw2LPEhHPPggw+8mDv3KYxuWI1rfvENfH3HoKyM4LTxL2FE8FUkqXrj8jX7VK+js7kVbIay6Q4+kx/4loaHkkxqF8Nh3o3Hobn+Kqzx/An//Gcp/vWvQbh0zGE4fPQXBvxlyjX34XSDsjRgX0DmS5jKn93/wTW4/uV7keSF6cayBK9efQGOGzcPLeR0W7S0P9hjBRpjq0CaM6U5jrNb4fp0tV5LF+LUbyuuXyu0NFy35kJdzc5Pg/f7qmuIYRhceOGFGDp0KCKRCG688UYceOCB6N+/f7fxsHK1F2fc9jkWr58mPqNpgj+e9jTuOPm3iB5wJ7r6CiF6/sYwEMxWWo7Snej+kTWxONmsxPbn6Nt0uzgMGZLEzTeH8Ol84LJnHseyu8y4NawIOLP8WUlrYbLm6Fp68z+1+OPc+/Gz8e/hsHOmIRAgGDUqgUN3fghw1mjJP3qklSefrgaDRcjSN6pt0LKdX32yOPfIL2lSY8Fvnpb1/tpnbx+tqqpCVVUVAMDn86Ffv35oaWkpmCDgOBr/WnQRlrx5AZpdFWhro/Hxx31R5Q/ioQuvQt0xf4S/3I++fXmMb5wDVziGqCUKdk1uG18zs+Hn1aVow3pJCxqfj+Bvf16O8y+fijvf/n8472AKZWWKvFYFFJVF4y10iJ1G8fo8a/dtVxeFr75y4+obR2H6mM/wxtVnoHnWBoBKhX/uzE3AaD+zsLDYGju5LngW8ndLbH+OAihP0W+mLAoNRS+f6HFBIEVTUxM2b96M4cOHGye2CEKABQs8uPsv12D15nqUl3TBX+aB309w4c/3YM7ho1Fd2oqd0y4DcaV2exslmTMlGRNKwc6BNDuhh+rfal6UVHTzWClfgmOm78bpU97AbW/ditveAioreRx5ZBSvnU6DoRXao6mJrRSMedS6rEShWJh4HEfh/EdfxLvfn46OLh8AYPiQLrx1zWnwuPT2kIjmT8O0mt/bNcpeWG1Vn5aWZmuXLyPYWdxzrHc+I/Usuczyh6IRBNFoFHPmzMHFF18Mv98vezd//nzMnz8fAHD33XcjEAhYLv+99yjMnu3CiIFBvHH16Tj1rApwk58QXnZ1wv1BKwCgpqYacFcDABhWEAilpSXwp2jSIeG2T5phNPmoqqoEylJpg0I9fF4v3Km0FFMpppXmp2lhYpeVlaIkTatTuGOIoiltWtVVQInwnPG4xXLEtOEOTVpUStsuLy8DSdNqFhYul8uVSZvMBL5WV1cB3jQtj1Avn6ReKMfcK47He8texvr6f2PFCgovveTHA75rcO3P5oBhaLHcdBu63S7NegUCNaLmzKb6oKSkBL40rUSZZr3SkNaL2S3Uy+v1wqXRB6ykH9lUuKS0Dyi+PCutqspKkErh+fVPnY2XFh+J2T/7CiMOmYz6euD4wzahammbkL+mBqAFGhQt1K+8rAylij5gXS6AZVX0ZH2wU0jr9/vhTfNKsvNaXl6e6e82YWwyLKPZ3zXVNYCnJsWPW02LzbShFq3KygqQmnQfCLRoSpI2RiT5awAmVXe3Bi2D/q6syNCiWwRaHq83k5br1MzPpPqApiVjMyLQoijtOVdZUZEZWzu8ABTzQKcPaFoIqpCOTSpemnon7YOImIdlMmMgPef8Ph88NtY/IxSFIOA4DnPmzMHhhx+Ogw8+WPV+1qxZmDUrc5d5MJjVSa+JKVOABx/04cLxd6N6x1tIYrZYDh1tRnrrt7k5COISNNhajgMNoLOzA12ptP6ODlQC4JNJGR/p67VaW1uRjAnPS7vCKAcQjUTQnkrr6mhFrUY9+vA8GAAdHSFEUs99HSFUASA80abV0oJkauBWxaLwKfhiIi3oo0GrnghbjaH2dsRY4XlJuAsVABKJBJrTaZNRkVZLczN4jzBxKqNR+AFEuroQSqV1t7Uh4I7hzIPfQOOMJhACNDdX4f+9eicmDv4Ohx/OiTz4O4U2jMcTaNGoV3DPHnHBDHAJuAGEw50Ip9J6Qu2o0ahXOn+oPSTWq6wrjDIIioZWH3BcAsHmlhQtDm5FH7jb25Gedpp90NYKjgvi5Zf9eOjlI/G7Yx7GXdf9iNAIYU+JDe8R8wSDewBaEGzp/g6FQoimyi0NC+OFSyQALtNeYh+0tIB3M6l6RVAGoKsrjE6TvIZC7Yi5U/3d2YkKAElOMo6V/e0WFuuaRBweAF1dnSIttqMFdVlotbW1IkHkfcBLxjEdl8y5YBAkJQiq4zF4FfUy6m8prZKwUK9YNIq2VFqKC6OvRv46PgkW8jnjC6XmHNGec23tbUikNgnLI10oBRCJKOaBBq0+fFLs73QfeEMdqAbAJzN9TSUjIq8clxCfV0QiKAHQFQ6jw8b6BwANDQ2673pcEBBC8Pjjj6Nfv3448cQTC0aHYYCzzorAtTmZJiy+K9id8VoHjOzAwvdTTZm5Gv53o1tZjZ/Ln1EUMGdOG849LoiT5/wHx/0QQmmgAn37JnHZMW5Upqgal0+pH9kxr3XNd3umfnNHNW55/TaseXwC9rSVY/VqF2ZOWYH7L/gDorjYkFdr7a1RltYeih3/uKnLF637p7V71ooLRprUypwzoiuFuWvitXLopy3QHsO+vkewdu1aLFq0CAMHDsR1110HAPj5z3+OiRMnFpiyducbR2bYK9d0WQU7GSxFejhLffd2fJfZea2qIvjoxmNw6dNPYvmaI9HU7ENbG40P3joXC665A6VVerSs8GWHV22YXZy7uiicft/7WLZ1AvYbE0VtLY/Jk8O47fQnwIaSOvS1y7K/J5TKT8y3ldHeh/Eip1OWFqR8GSpERu1eqD0CG2NLcxPbioC0sj70oj2C0aNH49VXTV7ClhcYaYBaWSxoDLLXNmgZaulGyJ8g0V8YzNerb9UuvHvtyUgc9i72sBPxySce/OqXAYy+dg3OmP4/lIwsQ1UVjxHDEziHpBTUHKOhDPmycsJW8T6RAC67rApLNtXh9d+fiWmXXS5+qKR8fSR1IMwKr1Yme44aqO2yrGvOlsZLzouces5YO6NiV+iks9idcxbWh33dIuh2GLpQcp1seZyshgfKjMx3CxPbwkEeyrANtSC8P+qoGOY99S/cM6cvXlt4JFrfz2wE3tn/R/z+uIdQTntRUeVCdTUPe9tiar70NbHsGl5Lmxs3P/MYPvj+BISS9WhrEzb9/vGLy3DalLexB5fplGtAy/R7nbR2+kBzbOgdKMvRGtW0XqwoVOYVou5119hdK7JZDyYsFkcQ5BtGC2Y+J4CdQZmr1iWZQLZiqs0sDLktQuNG7cIH1/8K0eojsWfsi2hvp/HJAjee/DuFXz/1FPBUJtvU0U/jD8fcgUlVPrANAMvaPShn3N88T+HrDQdh4+4h6CzxorGRwSMP/QztIQanTX4LpfsFUFLCY/LkOC52P6FFGICi3W1fAaH12q7g13pvxRLSasNcv1FtYWxZsdi1PlWZR4vfkqVjJ383uoOk6L2CIGct30y2fGkMugRyem/5hsiceNGmyzBAdTWPM88M48qaA7Hyp7FYP+xDtHf6sXkzg7lPVePsh18DHhbSl5XxGD/mWFw19QycPOk/pmlK+ScEWLdzBJZtmYDmVha7dpdg504G897+GNuDfWXZpk5swpNnzcQBA1egcUbmQ0LivfuagjefGqg2qIKPl1z7287ib5eWFbp28mvDUn+bvi5Cp6x9fY+gOGDBZM15AhhltzJBtPLZtW5sLBK2tV0N6wPCtR4HDFyBwMEREFZwwdw06Qx89r8arEhegSZ6OpqbaXz833Kc9c3rAACPh8DnIygt5TGyYj5G9FkPrvYgRNkKJBIU0HoRSOhwdFLD0EbVoLOTwq6dM7EnuE5C2QuXi+Docd/irrOuQ8MhJwD9ZsHnIxhR+gkCy1cY1C1bXY2e57og2tQgLa0rqa/W5dO60UtrdnG1a9Eb0beUVsMKt0XLxHhxXEOFggXzPZ+bQbr5TV4xIfWdyl5bcRWY/Syg+QXN2gQw38YMw+P48f/FtCET0DloEgDgniv/i69fehNLN09CU/216OqiEQpR2PFDCd5YcgZ4pgys2wWWJXBjMDykDB6/B74AUFvLY8zQPZgZuB1Th3+FsjP/h3iyE34/Qf13v4UrvAqtoyYi0lf4gBDVYsCr0QlaxSKhTmF+cbUS1aMNK2Mz+4JnSWhpLe66dTVLS+e9JSvcoCzNpOq0VvY+bK8PjiDIMzQb1K4GZzKP3QgJC9Ezmq6CPPor5fcS2WgXK5E6BmUxDI8TJ76PEye+j8YZvxGfN3x2CACgef9nEQscAwAo23gnyrY/hq4+Z6BtjOBfcrUvQ+2yfwIA4v14BFuzaKE5u/cKNLY0xrGV7xFoWrZ6c4JoPMvngmdrcbRiEShoZftWtq19NaNneu811iKdtijUZXNp0AUtvShhfRGydveMRlmmPtKeoyaUr4XFUhSJFQ3RiK/80ZJr4da1WeNYbwO+LFgMltrN0ia4YWHZnxlaOtmh+V5XaGn0lyUrXYsBye2jsqQ2ypIn1sjXDetDqtxCCYReJwiMF4YcJ6uhFM9xEcpZy5c8t1KW4SJkBLsaolbSXLVRg7LsCkCjfRo7C5oBXdsH0nJ1oVgYO5bmXEH2uqwLdv1zCPlbH7Sz6bRxgV1DvU4QaC1i1j67Z6UjUqFsee28PE4g2wKwAALK8ISszT4QJ1DmkaW4c8N79y2UZSu/XtI0X4Xqb43ftoMLtF5bGFsWeNVWvrROOWuXZU+wGreLVrmUxrcT9PhyBEGhYGkgWnhvxXy3pSEaaOmm9iNy1egFWNokM9CEct8I1cuvUddcNUi7kV1G1qCdSJycfdpS+pLfmvly1dLtLv45Ci0b/WXq+xN23hPdP7Lnd/YI8gwjkzjXqCFZPrU2aSm6JsdNVWPY1CBtWR8GdPNqEVgQxgb5bV0OZ8YFYvq9XloNiyCvG51WxqFB+UZauNHiqEnKipJjYWwZzX8j5ctI2GpamyY+q+lYBPlGbguDEbR9/Pa0C+PIjuxlUoanP7Pzou8ys7EwEC2+pBMgw6v9sFhNwqb50tYmczxBaxgSakWxkC6edrR03T/M5ddcxEwRSz0yw6vGOLTBl5krRTQ3plPPiJXF2fZ4tOJ2VNLMLxxBkO23pnZgtnxJfs2bGE3kNxyUBkLHcBGyMpm1tGSb2qihhmlFgBkkMFww7SgBVrQ2O1q2mUUyvf9kfjHRjn7TGVtGoaaGQsemhSc2gQUBa5iW1/6tCQPrxSitbdduqnwi/W1zftlArxUEeo2c8z3qGpqvqQvP7NCybb6rFxzDCKdChy7qLhxmv50gza41wey2q9bCYUEYW3E7WBJKOWr0PULLzOJtVsu2MLYlb+Viz+Stqnqx/Tlaxrba1bEI8oQc/J1UMgI60So8sn02wCCtgRagdbCLSrSC4iMaefI5KK1rJ3Rsp3FZhuXb6S8tpNs3CSa220L55mmlFwblaWIzfFHJLtCJdvM0bUUNGZWpLouOtwB8TP0+5wXJrnIkgJGMLaMzC3pKhnnXq0mhw3Ng4nskr7PXy9ZdXwUSBL3vZLEInU7iNT4ynnodWHoCXF3r1O/1yiVa4aOKzs26UqStF047fwp9/7e/znudQZPVt2lBaPEJ8YlyULPh9ahbMkODpiS/7NBP/hY0iiQkf8nLKtt8L8q2/Z8OX1rQsAhsCluKJDRSC0/qvjoETCKoLj+vQlGjLIOxVb/4AM33xgfK7Gj5mTQUkcxDRR+52pegdtmpmnzZOsthZUHmNfhK/Vux/k8o2TlXkU/ZUhrrg+5X4qSPCyMA0uh9FoEI7YaluTbdNDIhYCr81GgCSJ/r3/9DJzMfoc/VB6lP37xJLPIlbSsFLSayxSJfVgRB9vdUQsKXog+8wY+Ny5ItxNk5MQ6zzIDW5EuAKARU76SCRPo45Xa0oqVrvKe5dmkCXf4AiyeurbjBtPjK0lauztXKgjV+S5/Z/RKfGtnWB9+e902UZW+cO1dM5B1aJlbmt+j60cpjpXwAeT30I2oiUq3M7qA2axEYCAJZWyneZ3WdadHNMcQPAEkNZ5rL8KWKrjHh0pO7dvhUbrshfpKxxdkZW0b9YW9sptuFTrRqa9F2zjTovbci+KV86dHK0ofGgQzWFR799SG3PkivD7pjS0vIO3sE+UL2gUAnWlSvNRdcvcFoa9NVhy/NAZjroJY8tzABtEI65W2V48Jhyf+s855i9PkyY8GZdBvoX8CntTBkH1t2xwuldY7AxoJEkTioZFdWWsZ86Zev90zv7ABlZ2wZ8p3jN7B114dUG1px59gNN+4NewTff/89nn32WfA8j5kzZ+LUU08tGC2jj0mkF1w2LN0LsCnxxRA/C9l1iqITreDZcjCRraYzWflqq6VDYgqtjY4HQSeadcpL8ZLjZDW3hyDni4lsyWx06sFoIdc89KNbWNZnVEr7ZrvWZ81DgUie6mnOWoLACn+SxY1rBQ+Aje1QJCdZ/s6jxaDxPG090bHdOla6Tlnigpl5ZOw+03iv47cXx1bXRlA8p3pvWK7me/NXTBTKRdTjgoDneTz99NP485//jJqaGtx0002YPHky+vfvX2DKai0EEAagp3kBapZfZJA9S4cQHuUbboErvEZFy65GT3OtqFp9H3zB/5rjIcWHFHRsN8o33w2aj5qkL3uh+k1zbQAhqF88LjsfivyUYnH1tCyCN/hh5r0hfT0SEkHAx9Hn62mW+FI+K9n+JNztSwzymNec6UQrfLtfQ9WaawxY0lAmxD85VKz/U0YhsLQw6Fkqraha9Vu4Q9/K38s2kpX55XwxkW0o3faIJKmRpZSdr/QeQf2XE3XyGPElPPMEP4K3+WOdtFme6YSU01wr6HgQfb45wiJfchqlWx+GO/SdOV4U/BQCPS4INmzYgPr6evTp0wcAcOihh2LJkiUFFARaJpZ8UrBKrdviZGOiO1C641nN8vUnQ+orUHoCKtEKT+vnKlpGvEhRvvE2+Jve1izfilDKuBU4UNKNbNOQLww1P/5c572SBy1e1M8Fv7cy2sdCH6ajQDb+VfLQzDdws1tVdKJVwz1kJMzlbeHqWKYRmZLm0FpZUr7kQiBVrkoQ6JQFoHLNNfC0f6XJlxVhKWq+XDtAkvr09RmT/Vuz4hf6dDVgdDZAUDIUVqYNYVy++R4ZVW3+rChquaHHBUFLSwtqamrEv2tqarB+/XpZmvnz52P+/PkAgLvvvhuBQMA2PWabBwBA0ZRYDkVXiO+9dBdIRZ0sj7/ED6+CJs2wmnxUVlSA+OXPPR53hhafoRWoqQEYr1BeyhQtKS2BL5WWDvrFtOWeBCi2FEiGM7QqK0CqMm0nlIMMLVKeoRUIgPH6ZWlLS0vgT6VldvoAAC6XpF5dkQytqiqgXHjOujLDpqZU1QQIBAKgEhWyZ7SkvZldAi23y6XZhlVVlUBJihYr0PL7ffCk26UzQ1SeX5gkLr4dgZpqWZket0CLYRjZc5ZhEAhUCXyxwruSEr/YByKoDP/gvOLjiopykHS9PMLY8ni8kv7O9IGfjYD4BsiKLS3J9EEaDMsAbKofkpk+qKqqBDi3LK3X64ErTSum1y4CysrKUKLoAwCo8KkX/KrKSsBXKXvm83nhTtOKl8losW6PLG15WRlK07S2C+1FScemq0lMW11dDfjl/U2BIFAu76s0LTokH3Tl5WWZPvhJoCWdc1LUVFcDHmHO0HRqT4mmxbR0q1/1DFynmN9FOlAd6CMr0+P1CGOelm+5CvM7td6k5ndZaYnYB2kwDJOhFYnLn1em55wLAOD1ZPo7n+hxQWAGs2bNwqxZs8S/g8FgltTZURGNoAQA4XmxHFeoFbWp91znLoTLeUiXka5wJzqDQTRInvF8UsZH+l17Wxu4WDnqJWnj0ShaU2nd7W1Id2MwuAdghAnZh/BgAIQ7OxFOpS0NdyK9jHS1boef8so6rK2tFQlut4KvTL3cbVJaQVTGEpCKgs6ODnSl0pZFulAGgEskxPxMtAXpId/W2gIuLjyviceRnvbtTZvEtksjGAzC094OqYjik5n2KusKowxAPB5Di6JdAaC1pQXJiDDZAxwHN4Curi50pPL7OjpQJaGVRkNKEJBYM5qDeyD9DH0sFkNrMIjaZFIWIcFxCQTbhDJqOeFdOCz0gZKvNC2K6xTLbm9vQ5wSnldGo/ADiEWjaNPo73jHTsTpAZCKyM7OTnQpaCU5DoTjEAwGQSUjIq3W1hZQfELW3tFoFO0pWt5QhzhutcZmR0cHIoo+AIDOlm2ooDygSEbTbWttRTLMyNowEulCKJXfEwqJ/RsMBlGTSEIqCkId7Yim0lZE1HOO7WxBWt1qaWkG3yUs4AEugbSoa929AfIlV6Dl7+xEpZRWeztiLqHc8kgEpcjMOWUftjQ3g3cL46QPnwQD+dgsCXeiAgBPiGZ/k8getDQHZfM7Fo2gLRhEPc/LdHthfgv1qidCbFB6zsn6W9IudKxZLDuZGgMAUBWLwQcgGomI/W0VDQ3K1sigx6OGqqur0dyc2Whsbm4WNIRCIctmMQEFmmsFYUpyISBGr8ieWcmvy5dfI3k2P668LEIp5b6R20XfRZMOedPfyFOWbcY9li2tufwEFOhkJ0AMNomzlqX1LLeT5AQU6IROH2alL/9NlGMrDxu4dKIVvAZflNI1I/ObG4wtwyGv7YMX3hiNLf2yrO1HaDzL4noR5mFblrIt0hJh4XsEBUKPC4Jhw4Zh586daGpqAsdxWLx4MSZPnlwYYoQg2x4B76oWIjsolzKjFSIanZbyXcd2gu3aJD4Vu59I8ujwJSwiCgFFiHqyZuObUna38J7tXK096XTv/yHgXYKw1o6Nl24IZ+Mr+2R1t32l9vUTkrVskS+rvniTaSguDFfH9zJ+Mv9q1Itk70PLfn0dJYOJ7gAT1Ygoy7p4u8AzZToCytoegXJspWmxHStAcSEZrwJMjC3TgkDGmPF7QuBuXayuAyHQvvBQsj7wUVAS96w5mubSUol2uDpWaGTRWx/yhx53DTEMg0suuQR33nkneJ7HkUceiQEDBhhntAqSRMPCgXovAQgdzUR/gmowWG58ZX7h7/ov1QLO3fo/BH4425AvKtEKXmWpEEB2nYKSVwNBkOKr7ttZ0ocAgIp1N6Kk8QVdvnhXNZhEs/5kzWqpGIDw8DR/iprlF0ieCfnrv9gPdDKkkUfSh4lmMAq+LH1oJAurVasug7flE3nZXCf6fjFKM31a2POuasGqM2OVWejD9HmCPl8dpCrGu+dDVK/8lSZfAg0KvKtKW8mAVSVDKaBSY2vpsaqcVSsvg2/Pu7p8GY6tLDAKDwfh4dv9OqrWXC19CABoWKgXoJJ9bOmRomSvjMd/zQ/nwt35o6xguqkJ9RMmSB7to4IAACZOnIiJE82EieUA1aDW1tpcXetBJaP6aRV5VL9B1FqsPlMGkUBybZJ3KzeJtCZrFneOhUVILQQULgq2QnR3aIFSCgJLpyQJmFijJn1NISB5L2qT8WbN9+psZs13AeqQP2KgIWb4YiNboNY4jegr3yuFuT6v3uC8LGklgkDLHUo0lIysbkcNl5XOOQSVEFDwZWRtqs6oWHQNqaMCdZIq6FkeW6ZdQwLkQkAA06icB4VBj7uGug1ZwwkVHa08HGVcuOQngbqz9TufsOXKJ4qyJNqkxT0CtefRfHcTVVoi+0koFoStsGkRmHMNWYPdPlTzpW09ZNkjUCyCWoffeFc1KJIALYlAscJThi/zY4vPMrYoEICiwLNV+nsXFvaf1GNLi1c9KJQMphSEYrNYBNksdmMlwzpsji3TfOnfUsCXaoTlFQC9RhBk98UqO1rjKoBsUPjSVbT0LARCwLNlyoeafNGJVhDaK0tJARqWjhQKuqoFS99yUQkoTW2yEpSu1qbPl/b1CFK+hPIVBeqWJ+VPtw9F/nM7IUy0+MqmZJjmS48VhS9dRStbHyrHlpxHAmRcQ7RH9T7rPo/ynZZryPRZDqWAosGzlVmsTQt8ab63OLYM1wcrwsWalaC6yqZArqFeIwi0Nh3TyPhxhaBEtcQ3N1DE3wpa8pslFTkVi7sWhMnapuHj1xI6+q4h5WSlbfNFAAqiNqmbRu/v9KEhnXbNxldWnmCmD00sAhqTjSKJLIuM8ca4tbGlo3lrbGaq3RSS5Ko+VJYl2SPQchsq6pvtmg9lfoEve59iJBK+tGFs3evNWca0pag+5GXUh0QnGMPomb7iSdRXSjiCIFcYayd6HW349S7Vb3l6tb9bmlYp8dWpeFcVKCS1fdHZ9ggM/LhMVIuvVB7DWzqzT1aV1mbBfNfmyxwI7QOhPLrmu2qyagpOHQEV36PRLgYWQQqWBEHWE91mxxZgLPRSfZgMaQhltdDJNraUSgoTa7RlEcj4Mm1tmteytdvL3OJqvD7YCxunk52Zi/9URG0IUxvoPYLAkvmup4lIs0sHo6IsjTt+wGuF4hm5QMzwpVxwdfgSSpD9lW0RUbpAtDbksmttyhh0Lb6yTFZTX4CTEUgxaqRNKgWB+WsMNNtLyyqz3IdyUJK2U93SqRCewoKrs+BkdSuk+GKFxY3S2rtQCXNJW6nWboWSEWvUtVZV7jUdvuTfJNBLD4MxLwcdbQSx9HVBSR9QbvBMiX4fqtpb2l52lB+iFgSORZArTJjvqUlhJiqATrQI3wjgY2C7NmelRYEHE98NTWS7W91MtILSfI/uSqVtETRYMSnRmKyK2ybTZaa41oXUraCrtSnaO8UXE9mmr/1k48twAmT45l1V+n2oDL9M8cWG12qUpeArugOa7WLizISViBM61iQImGREdTaAUrqGkmHhXh4VWS0lQ0GXokDSWq4yGosQNa14U+rfPSoXC4HS2tyRpV0MFmKKEvfFtHMrXK8pvpiuzaDSFyrqjBfVDatZ0koSpP6f2lzX7UOFohUX+lF+k7E2dMc8n809lz8URfhodyC7ry3V0YwXPO0zZb5T4IXL5bb9H0p2/VvyXDu9vklqQvNms7kVFAMlLAgl+ScGtWkxsV0a2pWeIJBoSCCZSaFyV6nTi3zVAn2+PkQ3jchXtBHxsvFZy1OTkwqCSjCRbbrvlXx5ujYqLicz71YQSsuitaWFOVsJQKMPNUjRfBcQ24PKVVfA1/yRPLHGQqA3trJGfiEjzAEovuqWTiKvFxsV2rR+8Xh1Wko5thqhr3wZWcEGVp1yDy6yFUhG0eebw3TKzICONYL3j8hCX4tHpbWpp2Qo2iCyFa7QMlSt/YOkVCsuKzgWQf6hvM5XegWBQps0GRXARrcrblwU0mpJbdqs31uDr4xvUh1xoqLV9ZP2d5dBVCYxxUf1N2ZVaRV8UZlFRDO70lIJK62mVDkayO73VhahjEBKh0Tq9KFyjyC8RVzgMkkt8qWsq9bYolzgmXLTY4sKb4andZEGX+rFVZcvxXor44vIBYGSL0pDyWAi27IsRIpFMNEMSnJhnjxplrGV4ou4qmR3H8mh4Cu6XXWeRnfBNTkPNfsQyLo+KAUvG92u8Y1ztTAnoHRdQ4X+RGUavUcQKCdrh8QVINEWiasKNC8fwHRce7FkolvBM1rhnxlanKefkFbHv6zSuro2yMoi0smq5CsRhKYbKqpn/mYmoMhX9CcN/gHlxM7GlxJUolXNV3iLhvWhzst5+ulo3tncNRJu01qboq3SkVvKDXMqvFmnD/X40tJmlX24Uc2oAV+q5OEtIFp8EenYEi4R09/0z9aHQFpoAhpjKx5UjU2a7zIVQ58Z88pxaG5sAdBXMviYjqVivIGsN7Y03XPJztQ4hsLa1FofUm2iCsbYCp5RngOQjxdCseDddaBNWASEZdHx299qp8sRvUcQKBem2B7JAi/XJpVgI2ptllBuMJFtIKyioxWLO2HLwTPlWbRcOV+usFJAUalTvOquYiNbZLSSbuHeQpWGKxQG6QRMeoXj9GpBkIZismrwpTdZ2chmNV9d2wHe+MR20tsfNNcO2mAfQaTVleZLPlmVYCJbUnxn2jHprgcV3qzuQw0kvf11tUml1sZEt4raMGXEl2p/KQVNvuSLCO/uAwImy9hS9qHiq3tZrDo2slkmfNNjS/cLeRJLy+rYcmnxpTEPBb62AQq+mMhWqDb9NTTppLc/mNgug3uwtPiSKIpZ1wf52BLWB4UwVyl/FJKeBn0BJREE8QkTkBw+3BTvVtF7BIFG52cWN7kPUAkmskX1LOntDza6DYRSH8SRL3AUkt4sHa2yCDYCfCLzHhSEAzYVav4jm2UTgPMNEvjVFASQmeRJ0SIwqbXJNlOF9/qTdQtkVpFvMCjwGgJKa7IKfNGxnYZpAYnglESkaPUhnQynNs8lVpFvsKB5U25VehVfnn5gYjuhbBfNfRpIPkdpwBerNbbcdYKAUhzyohTUCe1C0lOvb22qFty1kgUypWQwJSCqSxbTglPeh4Dg7tCGibGls0/Dil/yy/ClJ6CYyGaZG4jzDQLNR8BIAyN0kPT0A4WkuOmt5ksOVvmFQb31Ib5bCICg5GOLjW7XGFvK9YHOsj5AvkdgOZLOPHqNIJBqN3zqoE16EZFqCJqTNdYo+0AIIAxAJrJNu3OIvPOSngZtd42QWMKXDxSJpzR9+YAhOgJKVi93HxDard4oFelQkrQBEMqtP7El1eJpr2TBzUxCXW2ya7NscomLiMaip0TSk9ImTewT8LRXMlklfGUTUIrJiq7twmExGbQFFB3frZEWsv5Ojy2zfLHRrSplIOkdmNpTMYpQSo8tc21FJ0OCgCV8xorRWdwELVdi1fmECxs1bzhN8ZLhX3BZ6Y8tyTikfRklw8zYUvE1WPJcCn0lw9zY8lka80xks8xq53yDBUsll/VBGTXkCII8QDpZ3fUg7mqw4bUo23SP5FOJ6kmRPjGp1GaT3oGpZ2oNUbo4E9BIevrqWgRSIcSVjBZohdcgsOxklG37P7HztfgSFlypv5EC/IOExUWDlqy7KSZlksrNd0rDIuBKxoCJ7wbTtQl9F42Au2MZhNBD9XcjCMWmBJR6sjJWJquuNpkBVzIabHgdvHs+RN8vxoh8Z5usMvPdNyS1pyLvW60NuqS3PyiQ1H30Sr6kdR0CQnngCq9D+fqbUb3yUvGdVh9SfFRl/XC+gcKeima8vVQQZNMm5YoEVyK0j6trHWqXzERJ43MZvliNsaVw7/FMCZLuPjpKBmQH9QjtQ9JVoxpbmU3VDLiS0WAjW8B0bUbfhUPg6toAvT4U+NqisFSGANAaW2qILisT1mZ6bPl2vYZ68WbXbK60LXL3mG9wak9FvbEsXx8EQaDcdxDfSseiIwjyAalkBUj5fmDDa1G67f8gfaGcFJxvKACozgpw3oGguTZQnPybvcLpX4VryNOgc7RdsbFcMgIENFzhtZJbLrUFAecbCiaxB5Qk/psiPEjJEDARtSZGJcOygURAIentq7vgSrWbREpAeVo/l0RyUCCMT3WNAecbqt4j8PQFod2qNkyHnkppJT19hSgKE5M1UTIarvB6eKTXQlPaWpu4uEkXx5QrTcmX+gR3ZhFRQ7EnRLHg/MOEsbXjGUmh6kVEHFuKRSzpHSTsqSgjYZJhuUCkAN7ToNFWKb4kYytRIlyTzYbXiJEsJNvYiiotJRpJ7wDt/adkFDKhpavlpnmXjy0KSXhaF0kO0lFiuK2SL3UfCpaKlT40O7bY8Br49rwnLVW1PvC0L0NfslmctoKV+yTCGRr1+qALxyLIMxQmNSnfL2X6yTtFPSnSGscW2fO0qaw0f10dyxWmHy2aykqwikM3hPYi6Rus8MenJqtKQAl8ST90A5IEKRmsOVndHcsViwitOVnFk6pSF0pqEXF1rlSVq5ywnG+IynwnlEuwVBQLHhtep1pECO0G765TTVatjUeuZDQoElO4RrS1tqR3gIovsQ0VfLk0rgNO+72VYKI/KSKaKHERkUN/bMn6EADnHSBYKoqoG4EvhUXgaQBF1OHCTPQnWX/zrmok3XXyYAQda5PzDQFFOJX2z/kGaloEwriQLlLaY4vq2iajCwBc6WhJGQIIRQG0SxXNxfmGqPYuCFOCpLtOow9XqAQpz5YLJ4MVVp3Il5RWySgwXKvidLOGx4D2IumqTa0PUrdjemzJrXNXx4+m1wewpc4VE/mHQhBUjFXfsaKhtRG2DEm2CmxEOVlTPtP4Ltlzd8cyFS29RcQV+k6VNlEySlsQKPhK+tPapFIQDFG7LwC4Qkq+IJikihOlNNcGJrIJ0kGd9DaAZ8oUgkCfL5prk5vEFJWyVLbI0lIkIUxYWWy/oCFRinBAoV3lELVc2SJAgbBql1VmEZEsjilLRcmXMFnl9PW0NnfHMpXPlysZJewryaDWJpPeBhDKAzYiDzdNpiwVOim/9sEdWqZSaNKuNBVfoWUy9xyQ4svS2MrwRZEkkt5Bmm4od8f3Cm1VCJBQji2qa5twalq2YA4FoVymxxYT3ZE5PQxAsFQGqvqQToY1wmVpzX6kWr5RPUukBBQjnV8a6wNFksLGcGSzwjWUWh8UfLlV81B7fWgd8yhI5YGORZBvKP2+pHysKg1B5iqAzMMkkv4hqo3OdEcr4er4URbVQChWfxEJLVP5vrmSUZrhqkq+xA1Y6acvSQKkdKg2rY5lkFk/lCs7X5BPbK5kFFxSLVfUJpV8aWm5NEjpEO1FJLQM8r0Ll6aGxMR2go7JhS5XMlKgJdsTocC7KqC8z0awVLbIFnhCsYBfvbjRybBswSSgQdgSzcgtLQGbFlByaFkqNDjfIA2LQGdshZbJ/cu0fh+6lAIqxZdLUxCY6EMSFy0VLb7kVh0LPpvglKZNudJkY0vXZSXs6cjmIsUIlorG2BL4klRBZy5SoTWSz2mmaKXcoYxEoREiv5TrQyKzPmhYKkq+mMQemXUrnCOo1YzcAuAIgvxD0kkp15AaWhKfS0UAyBdnwpar3CLx8ompRUS6YLJIevqqKHGeBrg61FpbomSU7FnaJ6+yVBg/ku4+ckHAx4GSISpa8bIJwqRQ+LKV2iTPCKazliBIlIxSaGL6kxVQHKqiaJCSIaq49KSnr7BgSfcuUpvYUqTbz62c2EwJOO8geWUpCqAYEMWinfQNBp3slIcZavAVL5uQorVUlk7gQ84X52kA27UBtOyuH0p0pSn5Ui0iSIUZKg6g8Z56EFoedhgvmwAmEZRvbOssbJynQa15UhQ4v7IPU/SUloq7Fjztl/FF8XHRUlHypRovFCseKhPLdNWCUGzKCpbvJ+iOLRPuUGGva5CsDznfUPBMufprcrRLNeY5TwMoELhD38ue8+5aJFX9RYkfzRGfpCwCJr5LsS8hWCrGY4tNuWnrZZTSikyv2Cx+4YUXcPXVV+Paa6/Ffffdh3BY796aPEBhvsNTg6S7Tp6GYtQhfiQpbFJpaBycYmLEy4XPbcoGIM0CjBdJV40sbaJ8IlxdG2Q+SEJRoiaihEoQgBEGoHRhIAmQksGqvPHyiWASzfK9A41FhFAMEmUHqhZnrcUtfUJXLQgGp47MS/ZOKAZER0C5Q9/LtXcNSyVeeoDgPlAIgrSAkvEFfb4A5RkLwVKRpfMPBc9WKBYRgT8lX4nyCaBAFHxRSHr7g6eVX/xiNEOAk74h8rYCBMHjNx5bhGLBu6pVG/aJ8glwda5UXfGgtlSERUZlqVAMkr7Bcr5IQtNSiZdPBBvdIrsXiFAseIVVRxgfSOWBgtAwGFtpwavqQ/8wAIo+pGhwXvk3zglFI14+Xq04aCgZidSdVi7p4pymp8WX8rAbSWb2EaX7WBQlbmSLtEr3A6E86vUBGq7HdBP1BovgwAMPxJw5c/D3v/8dffv2xVtvvVVAanLNG1B3NKFcIGw5lDcppsMflUgqBiDnGwKerUxpPekytTs6PbFdHfJFhPMN0TQTVQKKdommspibjwOuCg1LZZJAS8GXljYZL5sIV+cq+V0rlHrBRYpHVeghW5by8cstMJWlQlGpRWSrLHROa7KC9iBRuh/cHQoND5ToHsqkTfGlY6nI+KJoEP9gRZk04mXjZW0lCgLF4qap4QHC4qQcW7RLcxM7fdhOCaXgTC8iMr4oBkKEjlybjJdPzOy/SOqgaqsU1GGtLnB+5dhKCJaK4oCUOLak41hnbJHqKXB1/KBwhwqWiixdyhpS8sW768CzFfL2ohgNS4VConyC+hCkBl+8qxKkdIS6D5GJlhP5orT5SmqMLUAIMZfXy4NE2VhT60OGQUV4eIHQo4Jg3LhxYBhh0R05ciRaWpQxt3kEUQuChF+5iLhTJnylJCklLiJKqNwS6UVEukmV0py1NBECSq150i5R85FCa7IqBVQ6ekRpqXClY0Bor4ovkoqiyDwTJhBFErJ9CqJpEWgvuIRixYkhrZfSUiGgkSgfr6onKFZjj4BComwCXKEfFI/VFhTREVBJb3+VgAdFq/dUKFrQqGUbjdoWAWErkPANk/chlVYy5GOLUKz40RwZ/37tsaW0VEC7kSjbX8aX3iKSSC3OyrFF2DKFy0bgVWWp0G7VmKf4mODCUITRJsrHCSHPCr6S7j6Ka1EokOqDQCc7FZvIWkqGUC+VK01zLtIaloowD5UBB9puWgp89UFqNxIATrU+aIx5ihKtTVV+FV+U4KaVjS3t9UE0CXqDRSDFJ598gvHjx2u+mz9/Pm688UbceOONAIBAIGD5v6rKjM+YcXnAsiy89ZNldCqraxEIBEB7A+Izj9uDiv6TVDwFAgH4auX7DKVlZXDVT5M9c3v8CAQCcFfJF/eK2kFA2SiZf9nnLxXoVx+oolXZR56/vLIGvj7jZM9YKgmWZcFUyO8jqaypA6maKHtWUlaJQG0tKH/GqqFpBqWDZ6rqWl5Rheq+o0HcknbxlyEQCKCkWj7YA3UNYKvli3N5eQlYXw2IOzOxGYZF+eAjVXcoVVYHUNFXfoW22+uFp98RwvXMEtQE+qC031TZs7KKagQCAbjK5BM+UNcXKB0sfxaoA1MubyuP1wdv/+nyBqAoBAIB+APyBau0rAx03SGyPmRdPqG/6+TtXR2oR6C2FvBkXIQ+rw/lDfJ0Al8BUGXy/i4rKwdTd6icV58wXtgKxdioHwPi6yfjy19SLoytqkzb0jSNQCCA8lr54lpRFYCvVtEHLBHyK9qrqnYgSIV8HpSVVyJQVw/4Mn3AMAzo2kOgREVVDaoGTARhfOIzr1/g1V8pFzqBQABMpbwPKiqrUN1vf9meCsOyKBs8S0WrqqYO5X3lQSJerxdU7VTFPo9Aq6TfwfJ6pcdWSR/Z85r6ISAeuZs5EAigtF4+j30+P7z95GOLYRlhLQnIhU5ZeQVYlkW55OP1bp/P1tqX/i8bCv49gttvvx1tbW2q5+eeey6mTJkCAHjzzTfBMAwOP/xwzTJmzZqFWbMyHRsMWv+mrSvUgtrUb45nAY5DO99PfAYAre1hJGNB1FDlSOttsXgcraEk+rBVYCQfYQkGg/Bw1ZB6/js7w0h6RsmexRJJtAaDKOGrId2+bG1tQ2nJgfB3ZDaWu2IEHcEgSplBKJekDQaDAE8g1RnaOyLg2WpIh18yHgLPcYhR9ZBGYLe2tqHENxalWJzhtSuKrmAQ1Ww9vBB44HmCYNiNPp6+sjj+9s444s3NqPGPgCd1UV80lkR7MAhPlJXVN9jcihKqr6yuna27UNLAAZ4BcMcFqy/J8wi2RVFbMgqu8OoMr20dSPqq0ZdyiQeaYrE4OqjhkE8/INgSAkg1+oIRtb9QZxTRYBDlSR+kV7YFg0FUuwfCi8wGaLC5BYHKAZA6O6LRGDrIMEidLQQUgsEg3IlySKdTR2cYlHsMKiXP4jyDlmAQHgyQtUtzaweIi0EtUwEXhP2mSDSKUJcPfSmP7MrlYDCIWt8gmYjs6OgEcY2BVEeOxji0B4MoQ7Wqv8tLxsEXycTxh2M8OoNBlLmGiml5nkcwGAQdp2T1bQt1gUoGZHXlom0IBoOoYOohsSHR0tKKMt8BKGnPuKE6OiOIBIMIuOrhTvGQ5HnwviFg2QrZotvWEUMCrQj4hsPduVxol1gSoWAQ3phbVt9gMIgyukFW1/bWIOJoQZ2nvxhKnUzyCHbSqPMOkJ3zaWkNgTAlkKoI0WgM7opJKo04GAyCSvSRpQ11RhELBlHBl0jaQBgbNZ5B8MSaZPnpWLmsXSPRKMLUMNk4TiaJsJYkymXjpSPUgVKOQ2d7u9gGMZpGq421L42GBv2DawUXBDfffHPW95999hmWLl2KW265BVQBTR/l1a8UtMx3DdMv5VJK+oeACbXK0is3gwQXxnjNMlVuBdqDeNkE+He9KnsGQHvDmPaAp/0ZrZh2q1wwNNcJHlqhrRTi5RMUj1JuBYkbJk0/XjYBPokgEPnyj4Kn7cvUM20XDJA5MSuSSp2+TnoHAh1p947Q1/HyCTJBANolRlGIk5j2IOkbCp6tlJ+RoCiA8oDzD8mY2zr+ZYGvIQA+lTyhxT0VsVyKAu+uASdeIZKB3t6F8hkAJJT+eHFsVWaeEV7YT/ANUt9br9gjIKDUrjQdtyOhPUiUT4Av+IHsGaAe8wBUYbGC21HhGkp9ylLtDhXcidj1siS/1GW1NEXfC1CCy8bbulCDr1GiIEjn19pcV7msUmctON8g1VmfRNl4mSAgFAPC+JCUKHWE9oBUHgCiEMYC/UrhFtHUWSGj9QGhJbL86T2VzIE/IcIp6aqWhaVm2kpSbPrCQekegVceFJBP9Khr6Pvvv8c777yDG264AR6P8hbPPEPj9lFhY1Mi81MdLRuARPjWsJYfMOnpJ3NtEMaXWkQkkyUdXaOMoqA94oZx5pnQ0YlS9RkHQD4ACcWCsCWyyKe071XpmyS0D4kyBS2NRSRNP70BqHpeJnEX6OwRAOrNdTolCKR7F2lTPlEmF1C6fFGUxlfLBCRKM3ylFxEtAaXa9E/782V8CS4KqeBMnwtRhfjRHiRKxsiidsSNTrcyrVpwUlnGlmpPhfEh6R0oD2nU2SMgtDfL2NpfRQs0KxcGlEvYmJVEPtGpOHulkkEYn76S4VErGQlFWvG5ZGzpbRYD6rYS+ZKM+bSbSY8v6VwkjC+1/6L8oh9SfEnaS2N9SFuimvsEFCPbUyGMT9iHk47j1BhQ7otpCoICrpE9KgiefvppRKNR3H777bjuuuvw5JNPFpCa9lHt4LhXxN9EYzMoM1kzWm644SLhh+JAD0lNHNkA1JusjBdcyWjxtsr0MwBI+gYgNORGdQ1km1Rsii9BQyIUi9Yxj6byKyerH0lvfyRdEmNfy1JJL87KCZTiMdLnTMQqD0nR0xcEnHegGBKa9PRFpM+pwm9FlBWgP1nNLCJphIb/JZM2G18SbVK6UEr5Si8iUgElanS0R7ZgEtoL0C7ES6WLSGpKURT2THxXUi8tbVJwfUm1784Blws/FNFfmUUkw5feZrEQnXKgbHNc1LxLx6BzwGVQQiqgCO0SopFSixtPe9E28m9CfpWS4QVXMkomNERh7tVSMpSCQHgebrgQiZKUdSVuFmv0oWRznfM0IFY9Q8WXKPSUwjDL2FKNwxTaRt4rSWtubMWqMi5uOV/p9SHDF5X6mqDqOwfpPZNusgh69JvFjzzySLfR0juYkZRE6KQXEc6TkeLpjkpPivZhNyMsmUhJ30CwqVsWCSN0dKJ8AtD0tvAsvSC6FR5u2gvQLBJlB8LTnjriLrl/XqnRAalLs9IhgWkt1TcYaP8aeyZ9AK50LEqgvhdHXETKJ4Bp/jhV17TmLbGIUnVNLyJpbSctoECziJdPFtxDqUlB2ArwTKn8OgTGK4SQJruw+5BvxcdacehcyUiZ+ZxZRDJ10FtERLYlm9hpYaZ1SVxaa4vUnozWsf+Q8CWxCFJRVHq0ON9guFPuLamA8ijcAkLdJC4+Kh2Cqh5bab7aRt6LrobzJbQGwd3RpuLL27IgVUDavae4ooBygdDu1GnwVSleM4tIvOIgYPvjsixJbz+w0S1CWlHJGAxXeBX2TPlUVC5UbkeKAsAgUTYOnvYv5XxJBVSqX1UWYHrM0x4kyg6AK7xKEqZZA0J7ZYfNCFsFnq0Az1agaeqXGf5lfAnCOK60frT4Mhpbnsy8zawP6ish0sI83Pc8tI+6T85XyqMsWx9EAil3FEWB82ZuDhbbRbpuuXROH+cBRRM1VHhIj38rPwGYQmpx6+r784wmkNLaMhJfHoLYOfDKDIWUFI8GjhOfZbRJFklXZmta1EQqDpI8y0ROQHGyFADaR94jHp6hVHxJupJ2oWPg7zJ/pyZhV/25kmepyS4J3UufHSCMT2GqSzSRVFniJx8pGnsm/VfFa9I3BMpP98UrDtI8xCfTUFN8JcoyERdGWpsU6UUsUT4BTZM/kr1LegeAgJFdmQwAXX3PzuRPT9ayAzRvwEyUZSK1RAEl7UNJ9IvWeZBw/18hNPjaVIJUH/rTVp28vToGXS2hJfAVrT0pkyBVD9VXsFJCRz62JJanyFdGIWod84iYJn0alkvdOSS9Q4ew5Qj3PU9Vr64GybN0H0j2T9JCj3fXIOGTKF+0hpabOmRFGB+aJs9T1U0Y8/I+jFVNF28CFRU9xodww4WSvEL7xmV9mBbmmQhCnpGGakj5EtotXnW4amxlXENyvsINF0jKTVsEUzIsSS4MlLpkxb6QWgSOIMgdnH842kbchXDDxQgNlbtdolUzECufklm4GC+iNUKUUqTu5FT+YeCZUtVCFqueLt6SmBYwSW9/tI0QTGmpRG86WPIx8hStzoG/Q+uY/0No8B8RTZm5gKClct4B6JAKGndAdB1wKc0yXjYudcJUblp2SgVBup61xyHhHyGwlTa/PX3QMlZwyUkHZet+j6NtxN/QPvx2mcYdL5+ApLtOtlAn/UOE9pMgXj4evLtW9gyMF20j70nVJaNpdQy9QdIuAl/RwAnoqjtd4DVlkRBXNZomzUNoyPVoPuAFWdEdA34LzjtAdriIS+21pPsStAuJsv1VfCX9w9HV50yBr7SSQHvQPO7fAl3Jgtk+4g7xd3oRiQaOQ/P+zyI0+Fp0DpB8U5ZiESufgmjVjEwexo9InbCYx2qOEfgsGQ1Ce+WWDYBY4JhMvtRiz5UMR2jo/0s9zCwSu6aqLZLQkOvQOvphhAZfi3hlJvSU8w8D5+mHcP9LxGe8pw86Bl0l/GaFhTBRNk7gS6E4dQy5XkUr0ud0UXCKVp1vMFpH3Z8ikNmIbTnwebQNvwNtI+/OuEAARKumI+nuI9sjS/qHI+EfLnNzJcrGIanoQ8KWoH3UvSn+K8Xn7el5CIgCLVJ/dsbFmVpwk95+2DPxXYQGX4uW/f8pK7uz3y/A+YZkrGeKEsdWetwQtgwJ3zDwivWBKx2LaPWRQprU94sJW4LguNdS9DMutbYxD2bqk1Z+Jk9G+803o/PSS9F1fsZazDcoQnS+01bEaGw0/sKQEQKBgHEYKh8DKLeoYVCJdmFCKjRKV8ePcHWsQFffn4tpmehPKNt8D7oaLkK8IrVIEoLA0uMA2oPgxP/YY5wQgMRlbiQq0QaSikaR1su750MQxo9YdSZ22dOyCL7dryE07C/g3ULAGhPZgtqlP0O44UJ0KISkeb6SwsKU0prAx0HxCRC2RM5XMgr/rlcRrzwUXEkmJr1k+5Ng4rsRGvpnsQ19u99Exbob0Tr2SdEXbBl8QhC6qT6juLDg601ZXGm+6OgOeIMfIVJ/BkhqIQQfQ8X6WxCvmIxI/VlikRVrr4O3eT6apizQ/DiPOb5iij5sF+im6p7my9X+LdjIZhl9pmsjyrY8iPCAX2cEMs+hdslRSHr7o2XcS/Z4IkSwUtLWKCGguHZxbEnh3f0OeHct4lUZAeMJfgTfnvfRPuIOUXCxnasRWHY6OgdeAe+kv9oK/RbGFhEtBfAxUCQpWm9pUFwYvt2vIVY9QxYYULr1YVB8DB1DrhOf+Xf8C+Wb/oaWA55H+fAT7PHFx5G+K0ig3yks4LRcc2ciW+Fp+RSR+rNFnimuE+Ub/oJY9XRE6zJWXtXKy+AKLcWegxaips9Ae3zpIFv4qCMI9jEUa70cvqyhWPnKBcVap97CVzZB0GtcQw4cOHDgQBuOIHDgwIGDXg5HEDhw4MBBL4cjCBw4cOCgl8MRBA4cOHDQy+EIAgcOHDjo5XAEgQMHDhz0cuyV5wgcOHDgwEH+0GstgvTXzvY1FGu9HL6soVj5ygXFWieHr14sCBw4cODAgQBHEDhw4MBBL0evFQTSbyDvSyjWejl8WUOx8pULirVODl/OZrEDBw4c9Hr0WovAgQMHDhwIcASBAwcOHPRyOILAgQMHDno59mlBEIlEkN4CcbZCCo/Ozk7wqW+sFkt7r1ixAtFo1DhhN4PjOPF3sbTVvoyWlhaxzYulvb/++mt0dnb2NBsAALanGSgEFi1ahPfffx+DBg2C3+/HxRdfDIqijDMWOebPn49gMIjTTz8dbrf64/Y9hS+++ALvvPMOBg0ahIqKClx44YU93t6ff/453nvvPUyYMAGjR4/uUV6kWLRoEebNm4chQ4agvr4eJ554Yo+3VT4wf/58bNmyBSeeeCLq6+t7mh0RixcvxhtvvIF+/fqBoihcc801Pd7e6TEwcuRITJgwoUd5SWOfEQSEECSTSXz00Uf4+uuvcckllyAQCOC2227Dfvvth4MOOgiEkB4fBFaRrtcnn3yCd955By6XC+PGjcOYMWN6mjUAwPLlyzFv3jxccsklqKysxBNPPIGdO3eib9++PcJPMpnE+++/j7feegs33XQTRo4c2SN8SEEIQSKRwNtvv42VK1fiwgsvBMdxeO211zB48GDsv//+Pc2iLRBCQAjBV199hf/85z+oqqrChg0bUF1dXRSKyoYNG/DBBx/g0ksvxahRo3DNNddg06ZNGDp0aI/wQwjBZ599hscffxx33HEHRowY0SN8aGGfEASJRAIulwssy2LAgAGYNm0aKioqAAixuOlvHO9tQoDjOLAsC5ZlMWTIEDzwwAP46KOP8Omnn6J///4oKyvrUb4AYOvWrZg4cSLGjBmDbdu2obq6Wmz7ngDDMOjbty8OP/xw1NbWguM4fPvttxg5ciSqq21+aD4HpNvK7XZj4MCBOOGEE1BaWgqO4zBq1Ci0tbV1O0/5QDweh9vtBkVRGDJkCO666y58//33WLVqFfr164chQ4b0KF8A0NTUhFGjRontPGDAAJSUlPQIX4Cw/gwbNgzTpk2Dy+UCz/NYtGgRhg8fjv79+/cYX8A+cI7grbfewpo1azBu3DiMHz8eDQ0NoqZC0zQeeughjB8/HtOnT+9pVi3htddew7Zt2zBp0iRMnjwZpaWlAISBfu+99+Koo47C1KlTQdPdu82T5mvixImYPn061qxZg1deeQXV1dVYs2YNBg4cCIqiMHz4cJx55pngeb7gPL755ps44IADRA2rvb0dCxcuxOeffw6e5zFo0CC0t7dj7NixOP3007uFJ0AYmzt27MDYsWMxdepUeL1eABDH5t/+9jccc8wxmDRpUsF5ySdef/11rFixAgcffDD2339/DBgwAIAg9J555hn0798fRxxxhDhmu5uvgw46CFOmTEE8Hscrr7wCAFi/fj2GDx+Ozs5ODBs2DBdccEG3eAheffVVDB8+HBMnTgQgzN+vvvoKL730EkpKSjBq1Chs3boVY8eOxXnnnddtY1OJvXazuKmpCX/961+xfft2nHTSSWhsbMSCBQsQiURknUsIweDBg2V5i132vffee1i7di2OOeYYLF++HK+99hpaW1sBAG63GzNmzMAXX3yBPXv29Chfzz33HAYPHoybb74ZZWVluOyyy3DTTTfhwgsvxLvvvotQKFTQQd3a2oq///3v+M9//oNHHnlEfF5RUYHRo0djwoQJ+NOf/oSrrroKs2fPxrvvvouOjo6CT7QdO3bgz3/+M7Zv346pU6fi66+/xsKFC5FMJkFRFGiaRjweB8MwqrFZ7Pjkk0+wYsUKnH/++QiFQnj55ZfR1NQEAGBZFgcffDA2bdqEzZs3y/IVes5J+ero6MCzzz6LkpIS/OEPf0B9fT3OPfdc/PGPf8Tll1+ORYsWoaWlpaBCoLOzE0888QQ+/PBDvPzyy+JGtdvtxtixY3H00Ufjuuuuw6WXXorf/e53+Oyzz9DS0tIjQgDYiwVBaWkpJk2ahKuuugr7778/Jk+ejNbWVjAMI2pcHMehpaUFgwYNwpYtWzBv3jwAxe0i4nkeW7ZswZlnnokDDjgAZ5xxBjweD95//30xzWGHHQafz4dVq1Zhw4YN+Pzzz7udrzPPPBNutxtvvfUWWJZFc3MzBg0aBADo168fJk6ciJaWloLy5Pf7ccghh+C5555DSUkJ3nvvPfHdsGHDcNZZZ6GmpgYAMHDgQIwbNw4dHR0F5QkAfD4fDjnkEFx11VWYPHkyDjroIKxbtw4sy4pRVV1dXYhGo6ipqcGWLVvwxRdfFJyvXEEIQXNzM4455hiMGDECp5xyCgYOHIiXXnpJTDNu3DjU1dVh27Zt+O677/Df//4XQGHnnBZfAwYMwHPPPQcAiMViouulrq4OI0eOFN3FhYLH48GUKVPw7LPPorq6WjY2q6qqcMopp4ib6vX19Rg5ciSCwWBBecqGvVIQEELg9/sxc+ZM8dmAAQPQ3Nwsal2AsFkUi8Uwd+5c/OMf/yh6SyAtwCoqKvDJJ58AEAbJQQcdhB07dmDTpk1i2unTp+Opp57CnDlzkEgkeoSvqVOnYvv27WhtbUVVVRX+8Y9/oLGxEc899xza2tpQV1dXUL48Ho9ocs+ePRtvvvmmqHlRFAWXywUg47KIRCIIBAIF5QkAqqurZWNzxIgR6OrqQiKREDW+TZs2IZFI4NVXX8U//vEPWThpMUBrrqTn1aJFiwAAXq8XJ5xwAnbv3o2VK1eK6caPH4+33noLTzzxRN7rZZavn/3sZ9i1axe2b9+OiooKvPHGG/jhhx/w/PPPo7W1FQMHDiwoTy6XC/vttx8A4KyzzsKCBQtEq56maXGPLR6P47nnnkM4HO7RfYK9QhB88cUX2LJlCwDI/Ho+n09Ms379etTU1Mietba2YteuXQCA2267Dccdd1z3MW0C4XBY/M3zvFivWbNmobm5GZs2bQJN06irq8Pw4cPFNti1axdeeeUVHH744XjwwQdx1FFH9Rhfw4YNw+rVqzF79mz069cPzz77LADhLnW/318wntLw+XwghGD06NHYb7/98OSTTwKAuOAuWbIEf/7zn0HTNP7whz/kPZpFj6/0fgAgnGUIBAKiYAIE99GWLVvAcRxuu+02zJgxI6985Qrl4pb++9RTT8Xu3buxatUqAEBZWRkOP/xw/PDDDwCAUCiEF198EZMmTcLDDz+ME088scf4Ouyww7BkyRKccsop2H///fHxxx8DAG6++WaUl5cXjKc0vF4vCCEYPnw49ttvP3G/Io2VK1fitttuA5D/+WIVRb1Z/OOPP+L1119HY2MjLrjgAnGySDeDk8kkGIbBe++9h2QyiVNOOQVr1qxBbW0t4vE4aJpGnz59erYiCixbtgxvv/02ampqMGDAAJx22mkAIG4UcRyH999/H5s2bcI111wDAHjmmWcwePBgHHXUUejs7ATHcaisrCwKvgYOHIhZs2aBEIJYLCZbBAvJE0VRoChKHANtbW245ppr8NBDD6G9vR0+n098n2/rxApfzz33HEaMGIFp06Zh48aN6NevH3bs2AGfz4eGhoa88pUrvvvuO3z00UcYOHAgJk6cKJ7B4HkehBAwDIP//ve/WLRoEe666y4AwH//+18kEgmcdNJJSCQSiEajeY9os8tXLBbDKaecAkAeUVRongDI1qdQKIRbbrkFN9xwAzo6OuDxeFBbW4toNNoj0WxKFJ1FQAhBPB7H/fffjzfffBOnn346pk6dilgsBgCyDbfW1lbRLdLU1IRIJIInnngCr732GiKRCPr27Vt0QmDDhg147bXXcNJJJ2HWrFnYvHkztm3bBiCjxXZ1deGII45AZ2cn3nzzTezatQs7d+4U35eWluZdCOTCV1rTpSgqr0LAiCeKohAKhZBMJgEAlZWVOPjgg/HrX/8ajz32mOiDz7cQMMtXemxGo1GEQiE89thjePXVVxEKhTBs2LCiEwKbNm3Ca6+9hmOOOQaDBg3CwoUL8dlnnwEQ6sUwDFpbW3HcccfB4/Fg7ty5WLNmDZYuXSpqxS6XK+9CIBe+pHsT+RQCRjyl16e0a6y8vBzjxo3D1VdfjX/+859IJBLw+/1FIQSAIhQEFEXB7Xbj8MMPx1/+8heMHz8eI0eOFP1/DMMgmUzixRdfxIMPPojGxkZEIhF8/fXX+PLLLzFgwADcfPPNPR6Xq4c1a9ZgzJgxmDx5MmpqakDTNOrr60Ut4qmnnsLjjz8OiqJw8cUXIxaL4cEHH8SoUaMK6j7Iha9Cheaa5ampqUmMyV6+fDnOP/98/O1vfyvYGDDLV2trK9ra2vD5559j/vz5GDRoEG666aaC753YxY8//ogxY8Zg4sSJmDJlCiorK/Hhhx+K7q/nn38ec+bMQVNTEy677DLU1tbi5ZdfxpgxY3DyySf3Kr7M8PTggw9i+/btIIRg6dKl+Pbbb3Heeefhvvvuw/DhwwvCl10UjWvogw8+wLZt2zB8+HDZBxl4nse6devw2Wef4cwzz0QgEEBjYyM+/vhjnHHGGWKs8kcffYRDDjmkxw5Z6UFZr23btuHOO+/EwQcfjG+++QZ9+vRBXV0d+vTpg1mzZuHFF1/ExRdfLIvBTh+Y29f5ypWnjRs3or6+Pu+HhnLl67333sOMGTO6Pa7eCMp6bdiwAY888gjuvPNOlJaW4vXXX8fKlSsxZswYHH/88XjjjTdw5plnyuohPVy4L/OVK087d+5ERUVFj+4DZENRCILPPvsMH3/8Mc466yy89dZbGD9+PA499FDRrbN161Y8/vjjuOWWW2SbwUBhBmK+oKzXAQccgOOPPx6EELz++uti2OtPP/2EOXPm4LrrrhPdBYU8WFKMfOXCU9oPWwgUY1vlA8p6jRs3DjNnzsQbb7yBpqYmdHV1ob6+Hoceeii++eYb/OIXvxCFfneOzWLgKxeeCjk284miWEGXL1+OU045BePHj0dZWRmWLl2Kzz//HGeeeSYAYNCgQXC5XFi8eDFmzpwpRg4RQopWCADqen377bf48MMPceaZZ2LXrl048sgjAQANDQ0YNWqUeEtmoReQYuQrF54KOdGKsa3yAWW9lixZgoULF+KSSy5BMBhEY2MjDjzwQKxcuRIcx4kLWzpIozfxlQtPe4MQAHp4jyDtUx0yZAiWLl0KQDgINHLkSLS0tGDNmjUAhAYdN24c4vG4LHy0WA+G6dVr1KhRCAaD+Omnn7D//vvj8ccfRywWw5tvvont27eLh58KNaCLka9i5KmY+coVevUaPXo0du7cidWrVyMQCODAAw8EIERHSQMuCjXnipGvYuSpUOjW0bp9+3bE4/EM8dRkGTVqFAghYgzwgAEDUFVVJR7AoCgK7e3t8Hg8Rdm4VupVXV2NHTt24MQTT0RDQwPuv/9+/PTTT7j22mvzfllbMfJVjDwVM1+5wuqcS1+Ct2rVKtx6663YuXMnjj766F7BVzHy1F3oFr/K1q1b8dRTT6G8vBy//OUvxZCptPnct29f9O/fH4sXL8bo0aNRU1ODtrY2eDwesYyLLrqo6NxAdurV3t4uHm+//PLLEYvF8r65WYx8FSNPxcxXrrBbr/Scq6urw69+9SvxQrl9ma9i5Km70S0WwRtvvIGpU6fiuuuuUzUyIJzAGzNmDDiOw/PPPw+O4xAOh2VRAMUmBAD79UprjSzLFmQBKUa+ipGnYuYrV9itVzrqLhAIFGRhK0a+ipGn7kZBBQHP89i9e7d49wcgxN+Gw2HxAMq///1vPPzww/D7/TjnnHMQDodx6623wu/3F92x+zSKtV7FyFcx8lTMfOWKYq1XMfJVjDz1FPKuZq9btw6lpaVoaGgATdMoKysTT/ktWLAAiUQCFRUV6NevH6ZNm4bdu3fjvPPOE2/iS5vayjDRnkax1qsY+SpGnoqZr1xRrPUqRr6KkaeiAMkTOjs7yV133UUuvPBC8vrrr5NIJCK+e+ONN8j1119PlixZQgghZOXKleSee+4ha9euFdMkk8l8sZJXFGu9ipGvYuSpmPnKFcVar2Lkqxh5KibkzTUUi8Uwbtw4XHLJJYjFYli9erX4btKkSWhqakJnZycAIQSrsrKyWw6o5IpirVcx8lWMPBUzX7miWOtVjHwVI0/FhJxqt3DhQqxatQpdXV2orq7GrFmzcMghh8DlcmH9+vXih0kGDRqECy+8EPPmzUMoFMLnn3+Obdu2iZstxdbIxVqvYuSrGHkqZr5yRbHWqxj5KkaeihWWr5gghKCtrQ0PP/wwKIpCnz59EIvFcPHFF4t3fK9ZswZffvklhg0bhiOOOELM+95772H37t3YtWsXZs+eXVQXwxVrvYqRr2LkqZj5yhXFWq9i5KsYedorYMWPlPaT7dixgzz00EPis6effprcd999srTvvvsuefnll0k4HCZdXV3i80QiYc+JVUAUa72Kka9i5KmY+coVxVqvYuSrGHnaW2DK5uF5Hi+99BJeeuklrFq1Co2NjaK5RNM0Lr74Yqxdu1Y8eQcIX7OKRqO4/fbbcdVVV4lmWDGdByjWehUjX8XIUzHzlSuKtV7FyFcx8rS3wVAQrFq1CjfccAPC4TDq6+vxyiuvgGVZrFy5Ehs2bBAKoWmcddZZeO2118R83333HebNm4dBgwbh73//e9F8gCGNYq1XMfJVjDwVM1+5oljrVYx8FSNPeyWMTIZVq1aRhQsXin//85//JPPmzSOffvopuf766wkhgvnV2tpK5syZQ3bv3k0IIeSbb74hK1euLJAhkzuKtV7FyFcx8lTMfOWKYq1XMfJVjDztjTC0CIYOHYpDDjlEvIkvffvijBkzwPM8PvzwQ9A0jebmZvGD5gAwZcoU7LfffoWVYjmgWOtVjHwVI0/FzFeuKNZ6FSNfxcjT3ghDQeDxeOByuUSf248//ijuvl9xxRXYsWMH7r77bjz00EMYOnQoAIjHs4sZxVqvYuSrGHkqZr5yRbHWqxj5Kkae9kaY3hlJS9z29nZMnjwZAODz+fDzn/8c27dvR11dnehnK8arovVQrPUqRr6Kkadi5itXFGu9ipGvYuRpb4JpQUBRFDiOQ1lZGbZu3YrnnnsOpaWluOSSSzB69OhC8lhQFGu9ipGvYuSpmPnKFcVar2Lkqxh52ptgSRBs3rwZX3zxBZqamnDkkUfiqKOOKiRv3YJirVcx8lWMPBUzX7miWOtVjHwVI097EyydLG5ubsaiRYtw4oknivdw7Aso1noVI1/FyBNQvHzlimKtVzHyVYw87S2wfMWEAwcOHDjYt7Dv36bkwIEDBw6ywhEEDhw4cNDL4QgCBw4cOOjlcASBAwcOHPRyOILAgQMHDno5HEHgwIEDB70cjiBw4MCBg14ORxA4cJDCq6++iocffjinMlauXInLLrssL/ycffbZ2LVrV17KcuAgGxxB4MBBnpBMJnuaBQcObME5WeygV+Ltt9/Ghx9+iEgkgqqqKsyePRv33XcfAOFzhfX19bjvvvvw6aef4j//+Q+am5tRXl6OU045BUcffTQAQft/5JFHcNxxx+H999/HmDFjsHTpUnAcB7fbDQB46KGHdL9+tWHDBjz77LPYsWMH3G43Dj74YMyePRssy+LWW2/F6tWr4fF4AACXX345Dj300G5oGQe9Ej3xNRwHDnoSO3bsIJdddhlpbm4mhBCye/dusnPnTvLKK6+IHz1PY+nSpWTnzp2E53mycuVKcv7555ONGzcSQghZsWIFOeecc8gLL7xA4vE4icViZMWKFeQ3v/mNKT42btxI1q5dSziOI7t37yZXX301ee+998T3Z511Ftm5c2eeau3AgT4c15CDXgeappFIJPDTTz+B4zjU1dWhvr5eM+3EiRNRX18PiqKw33774cADD8SaNWvE9xRF4eyzz4bL5RKtALMYOnQoRo4cCYZhUFdXh1mzZsk+sO7AQXfB9DXUDhzsK6ivr8fFF1+M1157DT/99BPGjRuHiy66SDPtsmXL8Prrr6OxsRGEEMRiMQwcOFB8X15eblkApNHY2Ijnn38eGzduRDweRzKZFL+i5cBBd8IRBA56JQ477DAcdthh6OrqwpNPPom5c+eqrIJEIoE5c+bgyiuvxOTJk8GyLO69915ZGuXXrqx8/eqpp57C4MGD8fvf/x4+nw/vv/8+vvrqK/uVcuDAJhzXkINeh8bGRqxYsQKJRAJutxtutxsURaGiogJ79uwRP3vIcRwSiQTKy8vBMAyWLVuGH3/8MWvZFRUV6OjoQFdXlyEfkUgEfr8fXq8XO3bswEcffaQqa/fu3fYr6sCBSTgWgYNeh0Qigblz52LHjh1gGAajRo3CpZdeCpfLhc8//xy//OUvUVdXh3vuuQe/+MUv8MADDyCRSGDSpEni93D10K9fP0ybNg1XXnkleJ7H/fffrxs1dOGFF+LJJ5/EO++8gyFDhuDQQw/FihUrxPdnnXUWHn30UcTjcVx66aVO1JCDgsEJH3XgwIGDXg7HNeTAgQMHvRyOa8iBgwLirrvuwurVq1XPTzvtNJx++uk9wJEDB2o4riEHDhw46OVwXEMOHDhw0MvhCAIHDhw46OVwBIEDBw4c9HI4gsCBAwcOejn+Pz1T5JaQ0AasAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "history_decomposed[\"seasonal\"].plot(legend=\"seasonal\", style=\"orange\")\n", + "history_decomposed[\"trend\"].plot(legend=\"trend\", style=\"blue\")\n", + "seasonal_predictions[\"prediction\"].plot(legend=\"prediction\", style=\"red\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### *varima* Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The *varima* model applies the ARIMA method on a vertical time series. Any prediction method applied on a vertical time series allows us to predict *all* time steps of the day to be predicted at once and, more importantly, before the day actually begins." + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [], + "source": [ + "varima = models.VerticalARIMAModel(orders)" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
actualpredictionlow80high80low95high95
start_at
2016-09-15 11:00:0000.38215-1.998512.76281-3.258754.02306
2016-09-15 12:00:0012.541130.121544.96072-1.159326.24157
2016-09-15 13:00:0012.40134-0.033144.83581-1.321876.12455
2016-09-15 14:00:0001.02338-1.414593.46135-2.705184.75193
2016-09-15 15:00:0000.52155-1.919912.96300-3.212344.25543
2016-09-15 16:00:0000.51973-1.925222.96467-3.219494.25894
2016-09-15 17:00:0000.51790-1.930522.96632-3.226644.26243
2016-09-15 18:00:0001.01607-1.435833.46796-2.733784.76591
2016-09-15 19:00:0075.389492.934127.844851.634339.14464
2016-09-15 20:00:001611.262378.8035413.721197.5019215.02281
2016-09-15 21:00:0077.759615.2973210.221893.9938711.52534
2016-09-15 22:00:0012.00641-0.459334.47214-1.764625.77743
\n", + "
" + ], + "text/plain": [ + " actual prediction low80 high80 low95 high95\n", + "start_at \n", + "2016-09-15 11:00:00 0 0.38215 -1.99851 2.76281 -3.25875 4.02306\n", + "2016-09-15 12:00:00 1 2.54113 0.12154 4.96072 -1.15932 6.24157\n", + "2016-09-15 13:00:00 1 2.40134 -0.03314 4.83581 -1.32187 6.12455\n", + "2016-09-15 14:00:00 0 1.02338 -1.41459 3.46135 -2.70518 4.75193\n", + "2016-09-15 15:00:00 0 0.52155 -1.91991 2.96300 -3.21234 4.25543\n", + "2016-09-15 16:00:00 0 0.51973 -1.92522 2.96467 -3.21949 4.25894\n", + "2016-09-15 17:00:00 0 0.51790 -1.93052 2.96632 -3.22664 4.26243\n", + "2016-09-15 18:00:00 0 1.01607 -1.43583 3.46796 -2.73378 4.76591\n", + "2016-09-15 19:00:00 7 5.38949 2.93412 7.84485 1.63433 9.14464\n", + "2016-09-15 20:00:00 16 11.26237 8.80354 13.72119 7.50192 15.02281\n", + "2016-09-15 21:00:00 7 7.75961 5.29732 10.22189 3.99387 11.52534\n", + "2016-09-15 22:00:00 1 2.00641 -0.45933 4.47214 -1.76462 5.77743" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "varima.predict(pixel, predict_at, 8)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### *rtarima* Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The *rtarima* model applies the ARIMA method on a real-time time series. Real-time models are *re-trained* after each time step and predict only one observation into the future." + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [], + "source": [ + "rtarima = models.RealtimeARIMAModel(orders)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
actualpredictionlow80high80low95high95
start_at
2016-09-15 20:00:001611.260668.8948213.626517.6424214.87891
\n", + "
" + ], + "text/plain": [ + " actual prediction low80 high80 low95 high95\n", + "start_at \n", + "2016-09-15 20:00:00 16 11.26066 8.89482 13.62651 7.64242 14.87891" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rtarima.predict(pixel, predict_at, 8)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### *hsma* Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For pixels with low demand (i.e., averaging between 2.5 and 10 orders per day), a **simple moving average** applied to a horizontal time series is a more robust model." + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [], + "source": [ + "hsma = models.HorizontalSMAModel(orders)" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
actualpredictionlow80high80low95high95
start_at
2016-09-15 20:00:00169.928571NaNNaNNaNNaN
\n", + "
" + ], + "text/plain": [ + " actual prediction low80 high80 low95 high95\n", + "start_at \n", + "2016-09-15 20:00:00 16 9.928571 NaN NaN NaN NaN" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "hsma.predict(pixel, predict_at, 8)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### *trivial* Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For pixels with practically no demand (i.e., averaging below 2.5 orders per day), predicting $0$ is the best option as this model is *not* distracted by the noise in the time series." + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [], + "source": [ + "trivial = models.TrivialModel(orders)" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
actualpredictionlow80high80low95high95
start_at
2016-09-15 20:00:00160.0NaNNaNNaNNaN
\n", + "
" + ], + "text/plain": [ + " actual prediction low80 high80 low95 high95\n", + "start_at \n", + "2016-09-15 20:00:00 16 0.0 NaN NaN NaN NaN" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "trivial.predict(pixel, predict_at, 8)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.6" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/src/urban_meal_delivery/configuration.py b/src/urban_meal_delivery/configuration.py index 8e43cf5..e303523 100644 --- a/src/urban_meal_delivery/configuration.py +++ b/src/urban_meal_delivery/configuration.py @@ -49,9 +49,9 @@ class Config: TIME_STEPS = [60] # Training horizons (in full weeks) used to train the forecasting models. - # For now, we only use 8 weeks as that was the best performing in + # For now, we only use 7 and 8 weeks as that was the best performing in # a previous study (note:4f79e8fa). - TRAIN_HORIZONS = [8] + TRAIN_HORIZONS = [7, 8] # The demand forecasting methods used in the simulations. FORECASTING_METHODS = ['hets', 'rtarima'] diff --git a/src/urban_meal_delivery/console/forecasts.py b/src/urban_meal_delivery/console/forecasts.py index 1a7bcf9..fd1f707 100644 --- a/src/urban_meal_delivery/console/forecasts.py +++ b/src/urban_meal_delivery/console/forecasts.py @@ -105,7 +105,12 @@ def tactical_heuristic( # noqa:C901,WPS213,WPS216,WPS231 # Continue with forecasting on the day the last prediction was made ... last_predict_at = ( # noqa:ECE001 db.session.query(func.max(db.Forecast.start_at)) + .join(db.Pixel, db.Forecast.pixel_id == db.Pixel.id) + .join(db.Grid, db.Pixel.grid_id == db.Grid.id) .filter(db.Forecast.pixel == pixel) + .filter(db.Grid.side_length == side_length) + .filter(db.Forecast.time_step == time_step) + .filter(db.Forecast.train_horizon == train_horizon) .first() )[0] # ... or start `train_horizon` weeks after the first `Order` diff --git a/src/urban_meal_delivery/forecasts/timify.py b/src/urban_meal_delivery/forecasts/timify.py index b0b6497..6260808 100644 --- a/src/urban_meal_delivery/forecasts/timify.py +++ b/src/urban_meal_delivery/forecasts/timify.py @@ -542,9 +542,9 @@ class OrderHistory: pixel_id=pixel_id, predict_day=predict_day, train_horizon=train_horizon, ) - # For now, we only make forecasts with 8 weeks + # For now, we only make forecasts with 7 and 8 weeks # as the training horizon (note:4f79e8fa). - if train_horizon == 8: + if train_horizon == 7 or train_horizon == 8: if add >= 25: # = "high demand" return models.HorizontalETSModel(order_history=self) elif add >= 10: # = "medium demand"