Add OrderHistory.choose_tactical_model()
- the method implements a heuristic from the first research paper that chooses the most promising forecasting `*Model` based on the average daily demand in a `Pixel` for a given `train_horizon` - adjust the test scenario => `LONG_TRAIN_HORIZON` becomes `8` as that is part of the rule implemented in the heuristic
This commit is contained in:
parent
8926e9ff28
commit
af82951485
6 changed files with 199 additions and 35 deletions
|
|
@ -29,6 +29,7 @@ A future `planning` sub-package will contain the `*Model`s used to plan the
|
|||
`Courier`'s shifts a week ahead.
|
||||
""" # noqa:RST215
|
||||
|
||||
from urban_meal_delivery.forecasts.models.base import ForecastingModelABC
|
||||
from urban_meal_delivery.forecasts.models.tactical.horizontal import HorizontalETSModel
|
||||
from urban_meal_delivery.forecasts.models.tactical.realtime import RealtimeARIMAModel
|
||||
from urban_meal_delivery.forecasts.models.tactical.vertical import VerticalARIMAModel
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue