"""Fixtures for testing the `urban_meal_delivery.forecasts` sub-package.""" import datetime as dt import pandas as pd import pytest from tests import config as test_config from urban_meal_delivery import config from urban_meal_delivery.forecasts import timify @pytest.fixture def horizontal_datetime_index(): """A `pd.Index` with `DateTime` values. The times resemble a horizontal time series with a `frequency` of `7`. All observations take place at `NOON`. """ first_start_at = dt.datetime( test_config.YEAR, test_config.MONTH, test_config.DAY, test_config.NOON, 0, ) gen = ( start_at for start_at in pd.date_range(first_start_at, test_config.END, freq='D') ) index = pd.Index(gen) index.name = 'start_at' # Sanity check. # `+1` as both the `START` and `END` day are included. n_days = (test_config.END - test_config.START).days + 1 assert len(index) == n_days return index @pytest.fixture def horizontal_no_demand(horizontal_datetime_index): """A horizontal time series with order totals: no demand.""" return pd.Series(0, index=horizontal_datetime_index, name='n_orders') @pytest.fixture def vertical_datetime_index(): """A `pd.Index` with `DateTime` values. The times resemble a vertical time series with a `frequency` of `7` times the number of daily time steps, which is `12` for `LONG_TIME_STEP` values. """ gen = ( start_at for start_at in pd.date_range( test_config.START, test_config.END, freq=f'{test_config.LONG_TIME_STEP}T', ) if config.SERVICE_START <= start_at.hour < config.SERVICE_END ) index = pd.Index(gen) index.name = 'start_at' # Sanity check: n_days * n_number_of_opening_hours. # `+1` as both the `START` and `END` day are included. n_days = (test_config.END - test_config.START).days + 1 assert len(index) == n_days * 12 return index @pytest.fixture def vertical_no_demand(vertical_datetime_index): """A vertical time series with order totals: no demand.""" return pd.Series(0, index=vertical_datetime_index, name='n_orders') @pytest.fixture def good_pixel_id(pixel): """A `pixel_id` that is on the `grid`.""" return pixel.id # `== 1` @pytest.fixture def predict_at() -> dt.datetime: """`NOON` on the day to be predicted.""" return dt.datetime( test_config.END.year, test_config.END.month, test_config.END.day, test_config.NOON, ) @pytest.fixture def order_totals(good_pixel_id): """A mock for `OrderHistory.totals`. To be a bit more realistic, we sample two pixels on the `grid`. Uses the LONG_TIME_STEP as the length of a time step. """ pixel_ids = [good_pixel_id, good_pixel_id + 1] gen = ( (pixel_id, start_at) for pixel_id in pixel_ids for start_at in pd.date_range( test_config.START, test_config.END, freq=f'{test_config.LONG_TIME_STEP}T', ) if config.SERVICE_START <= start_at.hour < config.SERVICE_END ) # Re-index `data` filling in `0`s where there is no demand. index = pd.MultiIndex.from_tuples(gen) index.names = ['pixel_id', 'start_at'] df = pd.DataFrame(data={'n_orders': 1}, index=index) # Sanity check: n_pixels * n_time_steps_per_day * n_days. # `+1` as both the `START` and `END` day are included. n_days = (test_config.END - test_config.START).days + 1 assert len(df) == 2 * 12 * n_days return df @pytest.fixture def order_history(order_totals, grid): """An `OrderHistory` object that does not need the database. Uses the LONG_TIME_STEP as the length of a time step. """ oh = timify.OrderHistory(grid=grid, time_step=test_config.LONG_TIME_STEP) oh._data = order_totals return oh