"""Test the code generating time series with the order totals. Unless otherwise noted, each `time_step` is 60 minutes long implying 12 time steps per day (i.e., we use `LONG_TIME_STEP` by default). """ import datetime import pandas as pd import pytest from tests import config as test_config from urban_meal_delivery import config @pytest.fixture def good_predict_at(): """A `predict_at` within `START`-`END` and ... ... a long enough history so that either `SHORT_TRAIN_HORIZON` or `LONG_TRAIN_HORIZON` works. """ return datetime.datetime( test_config.END.year, test_config.END.month, test_config.END.day, test_config.NOON, 0, ) @pytest.fixture def bad_predict_at(): """A `predict_at` within `START`-`END` but ... ... not a long enough history so that both `SHORT_TRAIN_HORIZON` and `LONG_TRAIN_HORIZON` do not work. """ predict_day = test_config.END - datetime.timedelta(weeks=6, days=1) return datetime.datetime( predict_day.year, predict_day.month, predict_day.day, test_config.NOON, 0, ) class TestMakeHorizontalTimeSeries: """Test the `OrderHistory.make_horizontal_ts()` method.""" @pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS) def test_wrong_pixel(self, order_history, good_predict_at, train_horizon): """A `pixel_id` that is not in the `grid`.""" with pytest.raises(LookupError): order_history.make_horizontal_ts( pixel_id=999_999, predict_at=good_predict_at, train_horizon=train_horizon, ) @pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS) def test_time_series_are_series( self, order_history, good_pixel_id, good_predict_at, train_horizon, ): """The time series come as a `pd.Series`.""" result = order_history.make_horizontal_ts( pixel_id=good_pixel_id, predict_at=good_predict_at, train_horizon=train_horizon, ) training_ts, _, actuals_ts = result assert isinstance(training_ts, pd.Series) assert training_ts.name == 'n_orders' assert isinstance(actuals_ts, pd.Series) assert actuals_ts.name == 'n_orders' @pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS) def test_time_series_have_correct_length( self, order_history, good_pixel_id, good_predict_at, train_horizon, ): """The length of a training time series must be a multiple of `7` ... ... whereas the time series with the actual order counts has only `1` value. """ result = order_history.make_horizontal_ts( pixel_id=good_pixel_id, predict_at=good_predict_at, train_horizon=train_horizon, ) training_ts, _, actuals_ts = result assert len(training_ts) == 7 * train_horizon assert len(actuals_ts) == 1 @pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS) def test_frequency_is_number_of_weekdays( self, order_history, good_pixel_id, good_predict_at, train_horizon, ): """The `frequency` must be `7`.""" result = order_history.make_horizontal_ts( pixel_id=good_pixel_id, predict_at=good_predict_at, train_horizon=train_horizon, ) _, frequency, _ = result # noqa:WPS434 assert frequency == 7 @pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS) def test_no_long_enough_history1( self, order_history, good_pixel_id, bad_predict_at, train_horizon, ): """If the `predict_at` day is too early in the `START`-`END` horizon ... ... the history of order totals is not long enough. """ with pytest.raises(RuntimeError): order_history.make_horizontal_ts( pixel_id=good_pixel_id, predict_at=bad_predict_at, train_horizon=train_horizon, ) def test_no_long_enough_history2( self, order_history, good_pixel_id, good_predict_at, ): """If the `train_horizon` is longer than the `START`-`END` horizon ... ... the history of order totals can never be long enough. """ with pytest.raises(RuntimeError): order_history.make_horizontal_ts( pixel_id=good_pixel_id, predict_at=good_predict_at, train_horizon=999, ) class TestMakeVerticalTimeSeries: """Test the `OrderHistory.make_vertical_ts()` method.""" @pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS) def test_wrong_pixel(self, order_history, good_predict_at, train_horizon): """A `pixel_id` that is not in the `grid`.""" with pytest.raises(LookupError): order_history.make_vertical_ts( pixel_id=999_999, predict_day=good_predict_at.date(), train_horizon=train_horizon, ) @pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS) def test_time_series_are_series( self, order_history, good_pixel_id, good_predict_at, train_horizon, ): """The time series come as `pd.Series`.""" result = order_history.make_vertical_ts( pixel_id=good_pixel_id, predict_day=good_predict_at.date(), train_horizon=train_horizon, ) training_ts, _, actuals_ts = result assert isinstance(training_ts, pd.Series) assert training_ts.name == 'n_orders' assert isinstance(actuals_ts, pd.Series) assert actuals_ts.name == 'n_orders' @pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS) def test_time_series_have_correct_length( self, order_history, good_pixel_id, good_predict_at, train_horizon, ): """The length of a training time series is the product of the ... ... weekly time steps (i.e., product of `7` and the number of daily time steps) and the `train_horizon` in weeks. The time series with the actual order counts always holds one observation per time step of a day. """ result = order_history.make_vertical_ts( pixel_id=good_pixel_id, predict_day=good_predict_at.date(), train_horizon=train_horizon, ) training_ts, _, actuals_ts = result n_daily_time_steps = ( 60 * (config.SERVICE_END - config.SERVICE_START) // test_config.LONG_TIME_STEP ) assert len(training_ts) == 7 * n_daily_time_steps * train_horizon assert len(actuals_ts) == n_daily_time_steps @pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS) def test_frequency_is_number_number_of_weekly_time_steps( self, order_history, good_pixel_id, good_predict_at, train_horizon, ): """The `frequency` is the number of weekly time steps.""" result = order_history.make_vertical_ts( pixel_id=good_pixel_id, predict_day=good_predict_at.date(), train_horizon=train_horizon, ) _, frequency, _ = result # noqa:WPS434 n_daily_time_steps = ( 60 * (config.SERVICE_END - config.SERVICE_START) // test_config.LONG_TIME_STEP ) assert frequency == 7 * n_daily_time_steps @pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS) def test_no_long_enough_history1( self, order_history, good_pixel_id, bad_predict_at, train_horizon, ): """If the `predict_at` day is too early in the `START`-`END` horizon ... ... the history of order totals is not long enough. """ with pytest.raises(RuntimeError): order_history.make_vertical_ts( pixel_id=good_pixel_id, predict_day=bad_predict_at.date(), train_horizon=train_horizon, ) def test_no_long_enough_history2( self, order_history, good_pixel_id, good_predict_at, ): """If the `train_horizon` is longer than the `START`-`END` horizon ... ... the history of order totals can never be long enough. """ with pytest.raises(RuntimeError): order_history.make_vertical_ts( pixel_id=good_pixel_id, predict_day=good_predict_at.date(), train_horizon=999, ) class TestMakeRealTimeTimeSeries: """Test the `OrderHistory.make_realtime_ts()` method.""" @pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS) def test_wrong_pixel(self, order_history, good_predict_at, train_horizon): """A `pixel_id` that is not in the `grid`.""" with pytest.raises(LookupError): order_history.make_realtime_ts( pixel_id=999_999, predict_at=good_predict_at, train_horizon=train_horizon, ) @pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS) def test_time_series_are_series( self, order_history, good_pixel_id, good_predict_at, train_horizon, ): """The time series come as `pd.Series`.""" result = order_history.make_realtime_ts( pixel_id=good_pixel_id, predict_at=good_predict_at, train_horizon=train_horizon, ) training_ts, _, actuals_ts = result assert isinstance(training_ts, pd.Series) assert training_ts.name == 'n_orders' assert isinstance(actuals_ts, pd.Series) assert actuals_ts.name == 'n_orders' @pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS) def test_time_series_have_correct_length1( self, order_history, good_pixel_id, good_predict_at, train_horizon, ): """The length of a training time series is the product of the ... ... weekly time steps (i.e., product of `7` and the number of daily time steps) and the `train_horizon` in weeks; however, this assertion only holds if we predict the first `time_step` of the day. The time series with the actual order counts always holds `1` value. """ predict_at = datetime.datetime( good_predict_at.year, good_predict_at.month, good_predict_at.day, config.SERVICE_START, 0, ) result = order_history.make_realtime_ts( pixel_id=good_pixel_id, predict_at=predict_at, train_horizon=train_horizon, ) training_ts, _, actuals_ts = result n_daily_time_steps = ( 60 * (config.SERVICE_END - config.SERVICE_START) // test_config.LONG_TIME_STEP ) assert len(training_ts) == 7 * n_daily_time_steps * train_horizon assert len(actuals_ts) == 1 @pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS) def test_time_series_have_correct_length2( self, order_history, good_pixel_id, good_predict_at, train_horizon, ): """The length of a training time series is the product of the ... ... weekly time steps (i.e., product of `7` and the number of daily time steps) and the `train_horizon` in weeks; however, this assertion only holds if we predict the first `time_step` of the day. Predicting any other `time_step` means that the training time series becomes longer by the number of time steps before the one being predicted. The time series with the actual order counts always holds `1` value. """ assert good_predict_at.hour == test_config.NOON result = order_history.make_realtime_ts( pixel_id=good_pixel_id, predict_at=good_predict_at, train_horizon=train_horizon, ) training_ts, _, actuals_ts = result n_daily_time_steps = ( 60 * (config.SERVICE_END - config.SERVICE_START) // test_config.LONG_TIME_STEP ) n_time_steps_before = ( 60 * (test_config.NOON - config.SERVICE_START) // test_config.LONG_TIME_STEP ) assert ( len(training_ts) == 7 * n_daily_time_steps * train_horizon + n_time_steps_before ) assert len(actuals_ts) == 1 @pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS) def test_frequency_is_number_number_of_weekly_time_steps( self, order_history, good_pixel_id, good_predict_at, train_horizon, ): """The `frequency` is the number of weekly time steps.""" result = order_history.make_realtime_ts( pixel_id=good_pixel_id, predict_at=good_predict_at, train_horizon=train_horizon, ) _, frequency, _ = result # noqa:WPS434 n_daily_time_steps = ( 60 * (config.SERVICE_END - config.SERVICE_START) // test_config.LONG_TIME_STEP ) assert frequency == 7 * n_daily_time_steps @pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS) def test_no_long_enough_history1( self, order_history, good_pixel_id, bad_predict_at, train_horizon, ): """If the `predict_at` day is too early in the `START`-`END` horizon ... ... the history of order totals is not long enough. """ with pytest.raises(RuntimeError): order_history.make_realtime_ts( pixel_id=good_pixel_id, predict_at=bad_predict_at, train_horizon=train_horizon, ) def test_no_long_enough_history2( self, order_history, good_pixel_id, good_predict_at, ): """If the `train_horizon` is longer than the `START`-`END` horizon ... ... the history of order totals can never be long enough. """ with pytest.raises(RuntimeError): order_history.make_realtime_ts( pixel_id=good_pixel_id, predict_at=good_predict_at, train_horizon=999, )