urban-meal-delivery/tests/forecasts/methods/test_decomposition.py
Alexander Hess b8952213d8
Add extrapolate_season.predict() function
- the function implements a forecasting "method" similar to the
  seasonal naive method
  => instead of simply taking the last observation given a seasonal lag,
     it linearly extrapolates all observations of the same seasonal lag
     from the past into the future; conceptually, it is like the
     seasonal naive method with built-in smoothing
- the function is tested just like the `arima.predict()` and
  `ets.predict()` functions
  + rename the `tests.forecasts.methods.test_ts_methods` module
    into `tests.forecasts.methods.test_predictions`
- re-organize some constants in the `tests` package
- streamline some docstrings
2021-02-01 11:32:10 +01:00

243 lines
8 KiB
Python

"""Test the `stl()` function."""
import math
import pandas as pd
import pytest
from tests import config as test_config
from urban_meal_delivery.forecasts.methods import decomposition
# The "periodic" `ns` suggested for the STL method.
NS = 999
class TestInvalidArguments:
"""Test `stl()` with invalid arguments."""
def test_no_nans_in_time_series(self, vertical_datetime_index):
"""`stl()` requires a `time_series` without `NaN` values."""
time_series = pd.Series(dtype=float, index=vertical_datetime_index)
with pytest.raises(ValueError, match='`NaN` values'):
decomposition.stl(
time_series, frequency=test_config.VERTICAL_FREQUENCY_LONG, ns=NS,
)
def test_ns_not_odd(self, vertical_no_demand):
"""`ns` must be odd and `>= 7`."""
with pytest.raises(ValueError, match='`ns`'):
decomposition.stl(
vertical_no_demand, frequency=test_config.VERTICAL_FREQUENCY_LONG, ns=8,
)
@pytest.mark.parametrize('ns', [-99, -1, 1, 5])
def test_ns_smaller_than_seven(self, vertical_no_demand, ns):
"""`ns` must be odd and `>= 7`."""
with pytest.raises(ValueError, match='`ns`'):
decomposition.stl(
vertical_no_demand,
frequency=test_config.VERTICAL_FREQUENCY_LONG,
ns=ns,
)
def test_nt_not_odd(self, vertical_no_demand):
"""`nt` must be odd and `>= default_nt`."""
nt = 200
default_nt = math.ceil(
(1.5 * test_config.VERTICAL_FREQUENCY_LONG) / (1 - (1.5 / NS)),
)
assert nt > default_nt # sanity check
with pytest.raises(ValueError, match='`nt`'):
decomposition.stl(
vertical_no_demand,
frequency=test_config.VERTICAL_FREQUENCY_LONG,
ns=NS,
nt=nt,
)
@pytest.mark.parametrize('nt', [-99, -1, 0, 1, 99, 125])
def test_nt_not_at_least_the_default(self, vertical_no_demand, nt):
"""`nt` must be odd and `>= default_nt`."""
# `default_nt` becomes 161.
default_nt = math.ceil(
(1.5 * test_config.VERTICAL_FREQUENCY_LONG) / (1 - (1.5 / NS)),
)
assert nt < default_nt # sanity check
with pytest.raises(ValueError, match='`nt`'):
decomposition.stl(
vertical_no_demand,
frequency=test_config.VERTICAL_FREQUENCY_LONG,
ns=NS,
nt=nt,
)
def test_nl_not_odd(self, vertical_no_demand):
"""`nl` must be odd and `>= frequency`."""
nl = 200
assert nl > test_config.VERTICAL_FREQUENCY_LONG # sanity check
with pytest.raises(ValueError, match='`nl`'):
decomposition.stl(
vertical_no_demand,
frequency=test_config.VERTICAL_FREQUENCY_LONG,
ns=NS,
nl=nl,
)
def test_nl_at_least_the_frequency(self, vertical_no_demand):
"""`nl` must be odd and `>= frequency`."""
nl = 77
assert nl < test_config.VERTICAL_FREQUENCY_LONG # sanity check
with pytest.raises(ValueError, match='`nl`'):
decomposition.stl(
vertical_no_demand,
frequency=test_config.VERTICAL_FREQUENCY_LONG,
ns=NS,
nl=nl,
)
def test_ds_not_zero_or_one(self, vertical_no_demand):
"""`ds` must be `0` or `1`."""
with pytest.raises(ValueError, match='`ds`'):
decomposition.stl(
vertical_no_demand,
frequency=test_config.VERTICAL_FREQUENCY_LONG,
ns=NS,
ds=2,
)
def test_dt_not_zero_or_one(self, vertical_no_demand):
"""`dt` must be `0` or `1`."""
with pytest.raises(ValueError, match='`dt`'):
decomposition.stl(
vertical_no_demand,
frequency=test_config.VERTICAL_FREQUENCY_LONG,
ns=NS,
dt=2,
)
def test_dl_not_zero_or_one(self, vertical_no_demand):
"""`dl` must be `0` or `1`."""
with pytest.raises(ValueError, match='`dl`'):
decomposition.stl(
vertical_no_demand,
frequency=test_config.VERTICAL_FREQUENCY_LONG,
ns=NS,
dl=2,
)
@pytest.mark.parametrize('js', [-1, 0])
def test_js_not_positive(self, vertical_no_demand, js):
"""`js` must be positive."""
with pytest.raises(ValueError, match='`js`'):
decomposition.stl(
vertical_no_demand,
frequency=test_config.VERTICAL_FREQUENCY_LONG,
ns=NS,
js=js,
)
@pytest.mark.parametrize('jt', [-1, 0])
def test_jt_not_positive(self, vertical_no_demand, jt):
"""`jt` must be positive."""
with pytest.raises(ValueError, match='`jt`'):
decomposition.stl(
vertical_no_demand,
frequency=test_config.VERTICAL_FREQUENCY_LONG,
ns=NS,
jt=jt,
)
@pytest.mark.parametrize('jl', [-1, 0])
def test_jl_not_positive(self, vertical_no_demand, jl):
"""`jl` must be positive."""
with pytest.raises(ValueError, match='`jl`'):
decomposition.stl(
vertical_no_demand,
frequency=test_config.VERTICAL_FREQUENCY_LONG,
ns=NS,
jl=jl,
)
@pytest.mark.parametrize('ni', [-1, 0])
def test_ni_not_positive(self, vertical_no_demand, ni):
"""`ni` must be positive."""
with pytest.raises(ValueError, match='`ni`'):
decomposition.stl(
vertical_no_demand,
frequency=test_config.VERTICAL_FREQUENCY_LONG,
ns=NS,
ni=ni,
)
def test_no_not_non_negative(self, vertical_no_demand):
"""`no` must be non-negative."""
with pytest.raises(ValueError, match='`no`'):
decomposition.stl(
vertical_no_demand,
frequency=test_config.VERTICAL_FREQUENCY_LONG,
ns=NS,
no=-1,
)
@pytest.mark.r
class TestValidArguments:
"""Test `stl()` with valid arguments."""
def test_structure_of_returned_dataframe(self, vertical_no_demand):
"""`stl()` returns a `pd.DataFrame` with three columns."""
result = decomposition.stl(
vertical_no_demand, frequency=test_config.VERTICAL_FREQUENCY_LONG, ns=NS,
)
assert isinstance(result, pd.DataFrame)
assert list(result.columns) == ['seasonal', 'trend', 'residual']
# Run the `stl()` function with all possible combinations of arguments,
# including default ones and explicitly set non-default ones.
@pytest.mark.parametrize('nt', [None, 163])
@pytest.mark.parametrize('nl', [None, 777])
@pytest.mark.parametrize('ds', [0, 1])
@pytest.mark.parametrize('dt', [0, 1])
@pytest.mark.parametrize('dl', [0, 1])
@pytest.mark.parametrize('js', [None, 1])
@pytest.mark.parametrize('jt', [None, 1])
@pytest.mark.parametrize('jl', [None, 1])
@pytest.mark.parametrize('ni', [2, 3])
@pytest.mark.parametrize('no', [0, 1])
def test_decompose_time_series_with_no_demand( # noqa:WPS211,WPS216
self, vertical_no_demand, nt, nl, ds, dt, dl, js, jt, jl, ni, no, # noqa:WPS110
):
"""Decomposing a time series with no demand ...
... returns a `pd.DataFrame` with three columns holding only `0.0` values.
"""
decomposed = decomposition.stl(
vertical_no_demand,
frequency=test_config.VERTICAL_FREQUENCY_LONG,
ns=NS,
nt=nt,
nl=nl,
ds=ds,
dt=dt,
dl=dl,
js=js,
jt=jt,
jl=jl,
ni=ni,
no=no, # noqa:WPS110
)
result = decomposed.sum().sum()
assert result == 0