urban-meal-delivery/tests/forecasts/timify/test_make_time_series.py
Alexander Hess af82951485
Add OrderHistory.choose_tactical_model()
- the method implements a heuristic from the first research paper
  that chooses the most promising forecasting `*Model` based on
  the average daily demand in a `Pixel` for a given `train_horizon`
- adjust the test scenario => `LONG_TRAIN_HORIZON` becomes `8`
  as that is part of the rule implemented in the heuristic
2021-02-02 11:29:27 +01:00

399 lines
14 KiB
Python

"""Test the code generating time series with the order totals.
Unless otherwise noted, each `time_step` is 60 minutes long implying
12 time steps per day (i.e., we use `LONG_TIME_STEP` by default).
"""
import datetime
import pandas as pd
import pytest
from tests import config as test_config
from urban_meal_delivery import config
@pytest.fixture
def good_predict_at():
"""A `predict_at` within `START`-`END` and ...
... a long enough history so that either `SHORT_TRAIN_HORIZON`
or `LONG_TRAIN_HORIZON` works.
"""
return datetime.datetime(
test_config.END.year,
test_config.END.month,
test_config.END.day,
test_config.NOON,
0,
)
@pytest.fixture
def bad_predict_at():
"""A `predict_at` within `START`-`END` but ...
... not a long enough history so that both `SHORT_TRAIN_HORIZON`
and `LONG_TRAIN_HORIZON` do not work.
"""
predict_day = test_config.END - datetime.timedelta(weeks=6, days=1)
return datetime.datetime(
predict_day.year, predict_day.month, predict_day.day, test_config.NOON, 0,
)
class TestMakeHorizontalTimeSeries:
"""Test the `OrderHistory.make_horizontal_ts()` method."""
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
def test_wrong_pixel(self, order_history, good_predict_at, train_horizon):
"""A `pixel_id` that is not in the `grid`."""
with pytest.raises(LookupError):
order_history.make_horizontal_ts(
pixel_id=999_999,
predict_at=good_predict_at,
train_horizon=train_horizon,
)
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
def test_time_series_are_series(
self, order_history, good_pixel_id, good_predict_at, train_horizon,
):
"""The time series come as a `pd.Series`."""
result = order_history.make_horizontal_ts(
pixel_id=good_pixel_id,
predict_at=good_predict_at,
train_horizon=train_horizon,
)
training_ts, _, actuals_ts = result
assert isinstance(training_ts, pd.Series)
assert training_ts.name == 'n_orders'
assert isinstance(actuals_ts, pd.Series)
assert actuals_ts.name == 'n_orders'
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
def test_time_series_have_correct_length(
self, order_history, good_pixel_id, good_predict_at, train_horizon,
):
"""The length of a training time series must be a multiple of `7` ...
... whereas the time series with the actual order counts has only `1` value.
"""
result = order_history.make_horizontal_ts(
pixel_id=good_pixel_id,
predict_at=good_predict_at,
train_horizon=train_horizon,
)
training_ts, _, actuals_ts = result
assert len(training_ts) == 7 * train_horizon
assert len(actuals_ts) == 1
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
def test_frequency_is_number_of_weekdays(
self, order_history, good_pixel_id, good_predict_at, train_horizon,
):
"""The `frequency` must be `7`."""
result = order_history.make_horizontal_ts(
pixel_id=good_pixel_id,
predict_at=good_predict_at,
train_horizon=train_horizon,
)
_, frequency, _ = result # noqa:WPS434
assert frequency == 7
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
def test_no_long_enough_history1(
self, order_history, good_pixel_id, bad_predict_at, train_horizon,
):
"""If the `predict_at` day is too early in the `START`-`END` horizon ...
... the history of order totals is not long enough.
"""
with pytest.raises(RuntimeError):
order_history.make_horizontal_ts(
pixel_id=good_pixel_id,
predict_at=bad_predict_at,
train_horizon=train_horizon,
)
def test_no_long_enough_history2(
self, order_history, good_pixel_id, good_predict_at,
):
"""If the `train_horizon` is longer than the `START`-`END` horizon ...
... the history of order totals can never be long enough.
"""
with pytest.raises(RuntimeError):
order_history.make_horizontal_ts(
pixel_id=good_pixel_id, predict_at=good_predict_at, train_horizon=999,
)
class TestMakeVerticalTimeSeries:
"""Test the `OrderHistory.make_vertical_ts()` method."""
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
def test_wrong_pixel(self, order_history, good_predict_at, train_horizon):
"""A `pixel_id` that is not in the `grid`."""
with pytest.raises(LookupError):
order_history.make_vertical_ts(
pixel_id=999_999,
predict_day=good_predict_at.date(),
train_horizon=train_horizon,
)
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
def test_time_series_are_series(
self, order_history, good_pixel_id, good_predict_at, train_horizon,
):
"""The time series come as `pd.Series`."""
result = order_history.make_vertical_ts(
pixel_id=good_pixel_id,
predict_day=good_predict_at.date(),
train_horizon=train_horizon,
)
training_ts, _, actuals_ts = result
assert isinstance(training_ts, pd.Series)
assert training_ts.name == 'n_orders'
assert isinstance(actuals_ts, pd.Series)
assert actuals_ts.name == 'n_orders'
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
def test_time_series_have_correct_length(
self, order_history, good_pixel_id, good_predict_at, train_horizon,
):
"""The length of a training time series is the product of the ...
... weekly time steps (i.e., product of `7` and the number of daily time steps)
and the `train_horizon` in weeks.
The time series with the actual order counts always holds one observation
per time step of a day.
"""
result = order_history.make_vertical_ts(
pixel_id=good_pixel_id,
predict_day=good_predict_at.date(),
train_horizon=train_horizon,
)
training_ts, _, actuals_ts = result
n_daily_time_steps = (
60
* (config.SERVICE_END - config.SERVICE_START)
// test_config.LONG_TIME_STEP
)
assert len(training_ts) == 7 * n_daily_time_steps * train_horizon
assert len(actuals_ts) == n_daily_time_steps
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
def test_frequency_is_number_number_of_weekly_time_steps(
self, order_history, good_pixel_id, good_predict_at, train_horizon,
):
"""The `frequency` is the number of weekly time steps."""
result = order_history.make_vertical_ts(
pixel_id=good_pixel_id,
predict_day=good_predict_at.date(),
train_horizon=train_horizon,
)
_, frequency, _ = result # noqa:WPS434
n_daily_time_steps = (
60
* (config.SERVICE_END - config.SERVICE_START)
// test_config.LONG_TIME_STEP
)
assert frequency == 7 * n_daily_time_steps
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
def test_no_long_enough_history1(
self, order_history, good_pixel_id, bad_predict_at, train_horizon,
):
"""If the `predict_at` day is too early in the `START`-`END` horizon ...
... the history of order totals is not long enough.
"""
with pytest.raises(RuntimeError):
order_history.make_vertical_ts(
pixel_id=good_pixel_id,
predict_day=bad_predict_at.date(),
train_horizon=train_horizon,
)
def test_no_long_enough_history2(
self, order_history, good_pixel_id, good_predict_at,
):
"""If the `train_horizon` is longer than the `START`-`END` horizon ...
... the history of order totals can never be long enough.
"""
with pytest.raises(RuntimeError):
order_history.make_vertical_ts(
pixel_id=good_pixel_id,
predict_day=good_predict_at.date(),
train_horizon=999,
)
class TestMakeRealTimeTimeSeries:
"""Test the `OrderHistory.make_realtime_ts()` method."""
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
def test_wrong_pixel(self, order_history, good_predict_at, train_horizon):
"""A `pixel_id` that is not in the `grid`."""
with pytest.raises(LookupError):
order_history.make_realtime_ts(
pixel_id=999_999,
predict_at=good_predict_at,
train_horizon=train_horizon,
)
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
def test_time_series_are_series(
self, order_history, good_pixel_id, good_predict_at, train_horizon,
):
"""The time series come as `pd.Series`."""
result = order_history.make_realtime_ts(
pixel_id=good_pixel_id,
predict_at=good_predict_at,
train_horizon=train_horizon,
)
training_ts, _, actuals_ts = result
assert isinstance(training_ts, pd.Series)
assert training_ts.name == 'n_orders'
assert isinstance(actuals_ts, pd.Series)
assert actuals_ts.name == 'n_orders'
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
def test_time_series_have_correct_length1(
self, order_history, good_pixel_id, good_predict_at, train_horizon,
):
"""The length of a training time series is the product of the ...
... weekly time steps (i.e., product of `7` and the number of daily time steps)
and the `train_horizon` in weeks; however, this assertion only holds if
we predict the first `time_step` of the day.
The time series with the actual order counts always holds `1` value.
"""
predict_at = datetime.datetime(
good_predict_at.year,
good_predict_at.month,
good_predict_at.day,
config.SERVICE_START,
0,
)
result = order_history.make_realtime_ts(
pixel_id=good_pixel_id, predict_at=predict_at, train_horizon=train_horizon,
)
training_ts, _, actuals_ts = result
n_daily_time_steps = (
60
* (config.SERVICE_END - config.SERVICE_START)
// test_config.LONG_TIME_STEP
)
assert len(training_ts) == 7 * n_daily_time_steps * train_horizon
assert len(actuals_ts) == 1
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
def test_time_series_have_correct_length2(
self, order_history, good_pixel_id, good_predict_at, train_horizon,
):
"""The length of a training time series is the product of the ...
... weekly time steps (i.e., product of `7` and the number of daily time steps)
and the `train_horizon` in weeks; however, this assertion only holds if
we predict the first `time_step` of the day. Predicting any other `time_step`
means that the training time series becomes longer by the number of time steps
before the one being predicted.
The time series with the actual order counts always holds `1` value.
"""
assert good_predict_at.hour == test_config.NOON
result = order_history.make_realtime_ts(
pixel_id=good_pixel_id,
predict_at=good_predict_at,
train_horizon=train_horizon,
)
training_ts, _, actuals_ts = result
n_daily_time_steps = (
60
* (config.SERVICE_END - config.SERVICE_START)
// test_config.LONG_TIME_STEP
)
n_time_steps_before = (
60 * (test_config.NOON - config.SERVICE_START) // test_config.LONG_TIME_STEP
)
assert (
len(training_ts)
== 7 * n_daily_time_steps * train_horizon + n_time_steps_before
)
assert len(actuals_ts) == 1
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
def test_frequency_is_number_number_of_weekly_time_steps(
self, order_history, good_pixel_id, good_predict_at, train_horizon,
):
"""The `frequency` is the number of weekly time steps."""
result = order_history.make_realtime_ts(
pixel_id=good_pixel_id,
predict_at=good_predict_at,
train_horizon=train_horizon,
)
_, frequency, _ = result # noqa:WPS434
n_daily_time_steps = (
60
* (config.SERVICE_END - config.SERVICE_START)
// test_config.LONG_TIME_STEP
)
assert frequency == 7 * n_daily_time_steps
@pytest.mark.parametrize('train_horizon', test_config.TRAIN_HORIZONS)
def test_no_long_enough_history1(
self, order_history, good_pixel_id, bad_predict_at, train_horizon,
):
"""If the `predict_at` day is too early in the `START`-`END` horizon ...
... the history of order totals is not long enough.
"""
with pytest.raises(RuntimeError):
order_history.make_realtime_ts(
pixel_id=good_pixel_id,
predict_at=bad_predict_at,
train_horizon=train_horizon,
)
def test_no_long_enough_history2(
self, order_history, good_pixel_id, good_predict_at,
):
"""If the `train_horizon` is longer than the `START`-`END` horizon ...
... the history of order totals can never be long enough.
"""
with pytest.raises(RuntimeError):
order_history.make_realtime_ts(
pixel_id=good_pixel_id, predict_at=good_predict_at, train_horizon=999,
)