Alexander Hess
3f5b4a50bb
- we use that shorter name in `urban_meal_delivery.forecasts.*` and want to be consistent in the ORM layer as well
172 lines
5.3 KiB
Python
172 lines
5.3 KiB
Python
"""Tests for the `urban_meal_delivery.forecasts.models` sub-package."""
|
|
|
|
|
|
import pandas as pd
|
|
import pytest
|
|
|
|
from tests import config as test_config
|
|
from urban_meal_delivery import db
|
|
from urban_meal_delivery.forecasts import models
|
|
|
|
|
|
MODELS = (
|
|
models.HorizontalETSModel,
|
|
models.HorizontalSMAModel,
|
|
models.RealtimeARIMAModel,
|
|
models.VerticalARIMAModel,
|
|
models.TrivialModel,
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize('model_cls', MODELS)
|
|
class TestGenericForecastingModelProperties:
|
|
"""Test everything all concrete `*Model`s have in common.
|
|
|
|
The test cases here replace testing the `ForecastingModelABC` class on its own.
|
|
|
|
As uncertainty is in the nature of forecasting, we do not test the individual
|
|
point forecasts or confidence intervals themselves. Instead, we confirm
|
|
that all the `*Model`s adhere to the `ForecastingModelABC` generically.
|
|
So, these test cases are more like integration tests conceptually.
|
|
|
|
Also, note that some `methods.*.predict()` functions use R behind the scenes.
|
|
""" # noqa:RST215
|
|
|
|
def test_create_model(self, model_cls, order_history):
|
|
"""Test instantiation of a new and concrete `*Model` object."""
|
|
model = model_cls(order_history=order_history)
|
|
|
|
assert model is not None
|
|
|
|
def test_model_has_a_name(self, model_cls, order_history):
|
|
"""Access the `*Model.name` property."""
|
|
model = model_cls(order_history=order_history)
|
|
|
|
result = model.name
|
|
|
|
assert isinstance(result, str)
|
|
|
|
unique_model_names = set()
|
|
|
|
def test_each_model_has_a_unique_name(self, model_cls, order_history):
|
|
"""The `*Model.name` values must be unique across all `*Model`s.
|
|
|
|
Important: this test case has a side effect that is visible
|
|
across the different parametrized versions of this case!
|
|
""" # noqa:RST215
|
|
model = model_cls(order_history=order_history)
|
|
|
|
assert model.name not in self.unique_model_names
|
|
|
|
self.unique_model_names.add(model.name)
|
|
|
|
@pytest.mark.r
|
|
def test_make_prediction_structure(
|
|
self, model_cls, order_history, pixel, predict_at,
|
|
):
|
|
"""`*Model.predict()` returns a `pd.DataFrame` ...
|
|
|
|
... with known columns.
|
|
""" # noqa:RST215
|
|
model = model_cls(order_history=order_history)
|
|
|
|
result = model.predict(
|
|
pixel=pixel,
|
|
predict_at=predict_at,
|
|
train_horizon=test_config.LONG_TRAIN_HORIZON,
|
|
)
|
|
|
|
assert isinstance(result, pd.DataFrame)
|
|
assert list(result.columns) == [
|
|
'actual',
|
|
'prediction',
|
|
'low80',
|
|
'high80',
|
|
'low95',
|
|
'high95',
|
|
]
|
|
|
|
@pytest.mark.r
|
|
def test_make_prediction_for_given_time_step(
|
|
self, model_cls, order_history, pixel, predict_at,
|
|
):
|
|
"""`*Model.predict()` returns a row for ...
|
|
|
|
... the time step starting at `predict_at`.
|
|
""" # noqa:RST215
|
|
model = model_cls(order_history=order_history)
|
|
|
|
result = model.predict(
|
|
pixel=pixel,
|
|
predict_at=predict_at,
|
|
train_horizon=test_config.LONG_TRAIN_HORIZON,
|
|
)
|
|
|
|
assert predict_at in result.index
|
|
|
|
@pytest.mark.r
|
|
def test_make_prediction_contains_actual_values(
|
|
self, model_cls, order_history, pixel, predict_at,
|
|
):
|
|
"""`*Model.predict()` returns a `pd.DataFrame` ...
|
|
|
|
... where the "actual" and "prediction" columns must not be empty.
|
|
""" # noqa:RST215
|
|
model = model_cls(order_history=order_history)
|
|
|
|
result = model.predict(
|
|
pixel=pixel,
|
|
predict_at=predict_at,
|
|
train_horizon=test_config.LONG_TRAIN_HORIZON,
|
|
)
|
|
|
|
assert not result['actual'].isnull().any()
|
|
assert not result['prediction'].isnull().any()
|
|
|
|
@pytest.mark.db
|
|
@pytest.mark.r
|
|
def test_make_forecast( # noqa:WPS211
|
|
self, db_session, model_cls, order_history, pixel, predict_at,
|
|
):
|
|
"""`*Model.make_forecast()` returns a `Forecast` object.""" # noqa:RST215
|
|
model = model_cls(order_history=order_history)
|
|
|
|
result = model.make_forecast(
|
|
pixel=pixel,
|
|
predict_at=predict_at,
|
|
train_horizon=test_config.LONG_TRAIN_HORIZON,
|
|
)
|
|
|
|
assert isinstance(result, db.Forecast)
|
|
assert result.pixel == pixel
|
|
assert result.start_at == predict_at
|
|
assert result.train_horizon == test_config.LONG_TRAIN_HORIZON
|
|
|
|
@pytest.mark.db
|
|
@pytest.mark.r
|
|
def test_make_forecast_is_cached( # noqa:WPS211
|
|
self, db_session, model_cls, order_history, pixel, predict_at,
|
|
):
|
|
"""`*Model.make_forecast()` caches the `Forecast` object.""" # noqa:RST215
|
|
model = model_cls(order_history=order_history)
|
|
|
|
assert db_session.query(db.Forecast).count() == 0
|
|
|
|
result1 = model.make_forecast(
|
|
pixel=pixel,
|
|
predict_at=predict_at,
|
|
train_horizon=test_config.LONG_TRAIN_HORIZON,
|
|
)
|
|
|
|
n_cached_forecasts = db_session.query(db.Forecast).count()
|
|
assert n_cached_forecasts >= 1
|
|
|
|
result2 = model.make_forecast(
|
|
pixel=pixel,
|
|
predict_at=predict_at,
|
|
train_horizon=test_config.LONG_TRAIN_HORIZON,
|
|
)
|
|
|
|
assert n_cached_forecasts == db_session.query(db.Forecast).count()
|
|
|
|
assert result1 == result2
|