urban-meal-delivery/tests/forecasts/test_models.py
Alexander Hess 67cd58cf16
Add urban_meal_delivery.forecasts.models sub-package
- `*Model`s use the `methods.*.predict()` functions to predict demand
  given an order time series generated by `timify.OrderHistory`
- `models.base.ForecastingModelABC` unifies how all `*Model`s work
  and implements a caching strategy
- implement three `*Model`s for tactical forecasting, based on the
  hets, varima, and rtarima models described in the first research paper
- add overall documentation for `urban_meal_delivery.forecasts` package
- move the fixtures in `tests.forecasts.timify.conftest` to
  `tests.forecasts.conftest` and adjust the horizon of the test horizon
  from two to three weeks
2021-02-01 20:39:52 +01:00

181 lines
5.6 KiB
Python

"""Tests for the `urban_meal_delivery.forecasts.models` sub-package."""
import datetime as dt
import pandas as pd
import pytest
from tests import config as test_config
from urban_meal_delivery import db
from urban_meal_delivery.forecasts import models
MODELS = (
models.HorizontalETSModel,
models.RealtimeARIMAModel,
models.VerticalARIMAModel,
)
@pytest.mark.parametrize('model_cls', MODELS)
class TestGenericForecastingModelProperties:
"""Test everything all concrete `*Model`s have in common.
The test cases here replace testing the `ForecastingModelABC` class on its own.
As uncertainty is in the nature of forecasting, we do not test the individual
point forecasts or confidence intervals themselves. Instead, we confirm
that all the `*Model`s adhere to the `ForecastingModelABC` generically.
So, these test cases are more like integration tests conceptually.
Also, note that some `methods.*.predict()` functions use R behind the scenes.
""" # noqa:RST215
def test_create_model(self, model_cls, order_history):
"""Test instantiation of a new and concrete `*Model` object."""
model = model_cls(order_history=order_history)
assert model is not None
def test_model_has_a_name(self, model_cls, order_history):
"""Access the `*Model.name` property."""
model = model_cls(order_history=order_history)
result = model.name
assert isinstance(result, str)
unique_model_names = set()
def test_each_model_has_a_unique_name(self, model_cls, order_history):
"""The `*Model.name` values must be unique across all `*Model`s.
Important: this test case has a side effect that is visible
across the different parametrized versions of this case!
""" # noqa:RST215
model = model_cls(order_history=order_history)
assert model.name not in self.unique_model_names
self.unique_model_names.add(model.name)
@pytest.fixture
def predict_at(self) -> dt.datetime:
"""`NOON` on the day to be predicted."""
return dt.datetime(
test_config.END.year,
test_config.END.month,
test_config.END.day,
test_config.NOON,
)
@pytest.mark.r
def test_make_prediction_structure(
self, model_cls, order_history, pixel, predict_at,
):
"""`*Model.predict()` returns a `pd.DataFrame` ...
... with known columns.
""" # noqa:RST215
model = model_cls(order_history=order_history)
result = model.predict(
pixel=pixel,
predict_at=predict_at,
train_horizon=test_config.LONG_TRAIN_HORIZON,
)
assert isinstance(result, pd.DataFrame)
assert list(result.columns) == [
'actual',
'prediction',
'low80',
'high80',
'low95',
'high95',
]
@pytest.mark.r
def test_make_prediction_for_given_time_step(
self, model_cls, order_history, pixel, predict_at,
):
"""`*Model.predict()` returns a row for ...
... the time step starting at `predict_at`.
""" # noqa:RST215
model = model_cls(order_history=order_history)
result = model.predict(
pixel=pixel,
predict_at=predict_at,
train_horizon=test_config.LONG_TRAIN_HORIZON,
)
assert predict_at in result.index
@pytest.mark.r
def test_make_prediction_contains_actual_values(
self, model_cls, order_history, pixel, predict_at,
):
"""`*Model.predict()` returns a `pd.DataFrame` ...
... where the "actual" and "prediction" columns must not be empty.
""" # noqa:RST215
model = model_cls(order_history=order_history)
result = model.predict(
pixel=pixel,
predict_at=predict_at,
train_horizon=test_config.LONG_TRAIN_HORIZON,
)
assert not result['actual'].isnull().any()
assert not result['prediction'].isnull().any()
@pytest.mark.db
@pytest.mark.r
def test_make_forecast( # noqa:WPS211
self, db_session, model_cls, order_history, pixel, predict_at,
):
"""`*Model.make_forecast()` returns a `Forecast` object.""" # noqa:RST215
model = model_cls(order_history=order_history)
result = model.make_forecast(
pixel=pixel,
predict_at=predict_at,
train_horizon=test_config.LONG_TRAIN_HORIZON,
)
assert isinstance(result, db.Forecast)
assert result.pixel == pixel
assert result.start_at == predict_at
assert result.training_horizon == test_config.LONG_TRAIN_HORIZON
@pytest.mark.db
@pytest.mark.r
def test_make_forecast_is_cached( # noqa:WPS211
self, db_session, model_cls, order_history, pixel, predict_at,
):
"""`*Model.make_forecast()` caches the `Forecast` object.""" # noqa:RST215
model = model_cls(order_history=order_history)
assert db_session.query(db.Forecast).count() == 0
result1 = model.make_forecast(
pixel=pixel,
predict_at=predict_at,
train_horizon=test_config.LONG_TRAIN_HORIZON,
)
n_cached_forecasts = db_session.query(db.Forecast).count()
assert n_cached_forecasts >= 1
result2 = model.make_forecast(
pixel=pixel,
predict_at=predict_at,
train_horizon=test_config.LONG_TRAIN_HORIZON,
)
assert n_cached_forecasts == db_session.query(db.Forecast).count()
assert result1 == result2