urban-meal-delivery/tests/forecasts
Alexander Hess af82951485
Add OrderHistory.choose_tactical_model()
- the method implements a heuristic from the first research paper
  that chooses the most promising forecasting `*Model` based on
  the average daily demand in a `Pixel` for a given `train_horizon`
- adjust the test scenario => `LONG_TRAIN_HORIZON` becomes `8`
  as that is part of the rule implemented in the heuristic
2021-02-02 11:29:27 +01:00
..
methods Add extrapolate_season.predict() function 2021-02-01 11:32:10 +01:00
timify Add OrderHistory.choose_tactical_model() 2021-02-02 11:29:27 +01:00
__init__.py Add extrapolate_season.predict() function 2021-02-01 11:32:10 +01:00
conftest.py Add OrderHistory.avg_daily_demand() 2021-02-01 21:50:42 +01:00
test_models.py Add OrderHistory.avg_daily_demand() 2021-02-01 21:50:42 +01:00