
18. Juli 2022

Textual Analysis

Chapter 4: Programming in Python

Prof. Dr. Alexander Hillert

July 18, 20, and 22, 2022

WHU – Otto Beisheim School of Management

18. Juli 2022 Alexander Hillert, Textual Analysis

• Part 1: Getting familiar with Python

• Part 2: Preparing documents for textual analysis

• Part 3: Textual analysis (tone)

• Part 4: Readability, language complexity, and textual similarity

• Part 5: Machine learning

Agenda

2

18. Juli 2022 Alexander Hillert, Textual Analysis

Agenda of part I
• “Problem 0”: if you have not installed Python on your computer yet, read the document

“Getting_started_Python.pdf”. It shows how to install Python and how to start/use

“Spyder”.

• Problem 1: basic Python commands for working with text data.

• Problem 2: identifying and downloading data from the SEC’s EDGAR system.

o Task 1: identify the files of interest from the aggregate file list.

o Task 2: download all files of interest.

Part I – Programming Problems

3

18. Juli 2022 Alexander Hillert, Textual Analysis

Variable types
1. Integer / float = (whole) number

o Relevant for us: number/percentage of X words, iterate over Y documents.

2. String = text

o Can be entire document but also just a single word.

o Relevant for us: text is main variable of interest.

Relevant Variable Types in Python (1)

4

18. Juli 2022 Alexander Hillert, Textual Analysis

Variable types - continued
3. List = collection of variables

o Different variable types can be combined.

o 1st element: integer (1), 2nd element: string (“hello”), 3rd element: float (-0.456), 4th element:

string (“This is some text”).

o Relevant for us: split a text into parts (paragraphs, sentences, words).

Example: string_variable_1 split into words.

o List elements can be called by putting [X] after the name of the list.

Caution: element count starts at 0.

Relevant Variable Types in Python (2)

5

Generate and replace variables
Syntax: Variable name = value

Examples:
1. i=4

2. text=“hello”

3. list_var=[1,”hello”,”some text”, -1.234]

There is no “generate” or “replace” command as in Stata.

18. Juli 2022 Alexander Hillert, Textual Analysis

Problem 1
• covers basic commands that we will need in our textual analyses.

• consists of eight tasks that are explained on the subsequent slides.

➢ Please open 'Spyder' and start working on the tasks.

➢ You can use the 'Problem_1_form.py' (“Programming” → “Programming Problems –

Template”) and add your programming code to the template.
To open the template, click on “File” → “Open”

and then select the file

Problem 1: Introduction to Python (1)

6

→ it will show up in your editor.

18. Juli 2022 Alexander Hillert, Textual Analysis

• Open files

o input_file = open('path/filename', 'r')

Example

input_file=open('C:/PhD Course on Textual Analysis/document.txt','r')

o 'r' means read; 'w' means write.

o In the write mode, Python will create the file automatically if it does not exist.

o Open() just creates a reference to the file but is not the content of the file.

• Read content of a file

o input_text = input_file.read()

→ input_text will be a string variable

• Display text: print('Good morning'), print(input_text)

• Task 1: open the file 'Fun_with_Python.txt' in Spyder and print its content.

Problem 1: Introduction to Python (2)

7

• Python commands are italicized.

• When you copy commands from the slides make sure

that the quotes ' are copied correctly (not ‘ or ’).

• Python accepts both single quotes ' and double quotes ''.

'input_file' and 'input_text' are variable names.

You can use whatever names you like.

18. Juli 2022 Alexander Hillert, Textual Analysis

• Write content to a file

o output_file = open('path/filename', 'w')

o output_file.write('Text')

• Task 2: Write the text of 'Fun_with_Python.txt' to a new text file with the name

'More_fun_with_Python.txt'.

• At the end of your program code, you should close all files.

o This is particularly important when you write something in a file.

If you do not close the file, the content will not be saved on the hard drive.

o Example:

output_file.close()

Problem 1: Introduction to Python (3)

8

18. Juli 2022 Alexander Hillert, Textual Analysis

• Loops

o While loop

i = 1

while i<10:

some command(s)

i = i +1

o For loop

for i in range(2,10):

some command(s)

o In for loops, the upper bound is not included → the example above starts at 2 and ends at 9.

• Task 3: Write a loop that prints some text ten times.

Problem 1: Introduction to Python (4)

9

• When using while loops remember to increase

the counter in each iteration (i = i +1)!

• In for loops, Pythons does that automatically.

18. Juli 2022 Alexander Hillert, Textual Analysis

• How to split text in single lines?

o input_text_line = input_text.split('\n')

o Example:

− line_of_text = input_text.split('\n')

− print(line_of_text[0])

• How many lines of text are there?

o length=len(input_text_line)

o Example: print('There are :'+str(length)+' lines of text')

• Task 4: Print the text of the “Fun_with_Python” file line by line!
More specifically, the line should read 'Line i: TEXT', where i is the number of the line and TEXT

is the text from the “Fun_with_Python” file.

For example, 'Line 4: See slide 7 for help.'

Problem 1: Introduction to Python (5)

10

• The split commands transforms a string variable (text)

to a list of individual elements.

• One can access the individual elements by the

element ID ranging from 0 to N-1.

• The element ID has to be put in brackets, e.g. list[4].

• The ID starts at 0, i.e. the first element of a list is list[0].

• Python cannot combine text (strings) and numerical

values (integers) → you need to convert numbers to

text first using 'str(numerical_variable)'.

18. Juli 2022 Alexander Hillert, Textual Analysis

• Count how often a word appears in a text

o text = 'This is some example of some text'

o text.count('some')

→ result: 2

• Task 5: Count how often the word ‘good' appears in the document 'Fun_with_Python.txt'!

Problem 1: Introduction to Python (6)

11

18. Juli 2022 Alexander Hillert, Textual Analysis

• If condition

o if variable == value:

some command(s)

o Example:

i = 2

if i>=1:

print('variable i larger or equal one')

• Task 6a: Now, print only the lines that contain the word ‘good'!

o Hint: combine the line-by-line printing from Task 4 with the command “.count()” from Task 5 and

the if condition from this slide.

• Task 6b: Look at the output of Task 6a. Is there a problem?

Problem 1: Introduction to Python (7)

12

• The commands in the if conditions must be indented

(i.e., put a tab before the command).

• There is no closing statement like 'end if' → indents

indicate which commands are grouped together.

18. Juli 2022 Alexander Hillert, Textual Analysis

• Task 6b solution:

o The problem is that the command “.count()” considers all potential matches, including matches

within another word.

o Example: "The factory produces many goods.".count("good")→ result: 1 match

“good” is part of “goods”.

o Going back to Task 5 (count how often “good” is found) shows a massive overcounting:

1. Count how often the word 'good' appears in this text. ✓

2. Now, print only the lines that contain the word 'good'. ✓

3. Replace the word 'good' by 'excellent' and […] ✓

4. The factory produces many goods. 

5. Due to supply shortages the cost of goods sold […] 

6. This is not good news! ✓

→ Only 4 out of the 6 matches are correct.

Problem 1: Introduction to Python (8)

13

18. Juli 2022 Alexander Hillert, Textual Analysis

• Task 6b solution - continued:

o How to get an accurate count?

o Adding leading and trailing whitespaces can help.

→ input_text.count(' good ')→ Result: 1

o Problem: the other three matches are enclosed by quotes, e.g., “Count how often the word

'good' appears in this text.” → whitespaces do not match.

o There can be further problems like the word of interest being followed by symbols (“good,” or

“good!”).

o Conclusion: We need a more general solution that takes all potential word boundaries

(including “ “, “.”, “!”, and “,”) into account.

→ Regular expressions (Problem 3) allow to search for word boundaries.

Problem 1: Introduction to Python (9)

14

18. Juli 2022 Alexander Hillert, Textual Analysis

• Count how often a word appears at a specific position.

o text = 'This is some example, some text'

o text.startswith('some')

o text.endswith('some')

• Task 7: Next, print only the lines that start with the word ‘This‘.

Does it make a difference whether you search for “This” or “this”?

• Note that “.startwith()” and “.endswith()” are subject to the same problem as “.count()”.

• In this specific example “.startswith(“This”)” it is less likely to result in mismatches, as there are

few words other than “This” that start with “This”.

Problem 1: Introduction to Python (10)

15

18. Juli 2022 Alexander Hillert, Textual Analysis

• How to replace text?

o text = 'The company sells some products.'

o new_text = text.replace('some', 'any')

o print(new_text)

→ 'The company sells any products.'

• Task 8a: Replace the word ‘good' by ‘excellent' and display the new text.

• Task 8b: Look at the new text. Is there a problem with the “.replace()” command?

Problem 1: Introduction to Python (11)

16

18. Juli 2022 Alexander Hillert, Textual Analysis

• Task 8b solution:

o Yes, there is the familiar problem that matching text parts are changed no matter

whether they are actual words or parts of words.

o Examples:

1. The factory produces many goods. → The factory produces many excellents.

2. Due to supply shortages the cost of goods sold […] → Due to supply shortages the cost of

excellents sold […]

o We could try to fix this problem by requiring the word that should be replace to be

enclosed by whitespaces. However, there are many word boundaries (incl. “ “, “,”, “.”).

o Conclusion: We need a more general solution that takes all potential word

boundaries (including “ “, “.”, “!”, and “,”) into account.

→ Regular expressions (Problem 3) allow to replace words enclosed by word

boundaries.

Problem 1: Introduction to Python (12)

17

18. Juli 2022 Alexander Hillert, Textual Analysis

• How to delete variables?

o A single variable: del variable_name

o All variables: %reset

This command must be executed in the command window.

• Hint: Work with the Editor and not with the Python Console

o You can save your code and modify it later if necessary.

o To insert comments use:

− #, .e.g., “# This line is a comment and not program code”, or

− ''' (three single quotes) before the lines that should not be executed and ''' after the lines, e.g.,
'''

comment line 1

comment line 2

comment line 3

'''

Problem 1: Introduction to Python (13)

18

18. Juli 2022 Alexander Hillert, Textual Analysis

Problem 2
• Scenario:

o Assume you want to obtain the 10-K filings that have been filed with the SEC between March

10 and March 20, 1998.

o Task 1: How do you identify them?

o Task 2: How do you download them automatically?

o We will split this Problem in two parts. The first part (task 1) deals with the identification of the

filings while the second part (task 2) covers the download.

o For the second part, there are some additional commands you must learn.

Problem 2: how to find and download SEC filings?

19

As in Problem 1, you find two code templates on Moodle. The templates show

the basic program structure, and your task is to fill in the missing commands.

“Problem_2_SEC_Filings_Part1_Identification_form.py” and

“Problem_2_SEC_Filings_Part2_Download_form.py”.

18. Juli 2022 Alexander Hillert, Textual Analysis

Your task in this problem:

• In our data folder, you find the file “formidx_1998Q1.txt”. It is a copy from the “form.idx” available

at https://www.sec.gov/Archives/edgar/full-index/1998/QTR1/. This file contains a list of all

documents that have been filed with the SEC in the first quarter of 1998.

• In the first step, you should identify all filings that match the conditions mentioned on the

previous slide.

Please write a program that copies the information of these filings to a new csv file.

o Column 1: Form type

o Column 2: Company name

o Column 3: CIK

o Column 4: Filing date

o Column 5: Link to the complete submission file

Problem 2: instructions (1)

20

https://www.sec.gov/Archives/edgar/full-index/1998/QTR1/

18. Juli 2022 Alexander Hillert, Textual Analysis

Hints for this problem

Program structure

• Open the txt file with all filings.

• Create the new csv file and write the variable names in the first line.

• Go over the txt file line by line (→ use a loop) and check whether the selection criteria are

satisfied.

o If so, copy the line to the csv file and go to the next line.

o If not, go to the next line directly.

o How can you identify the different information items? → see next slide

• Close the files.

Problem 2: hints for task 1 (1)

21

18. Juli 2022 Alexander Hillert, Textual Analysis

Hints for this problem

• How can you identify the different information items?

The list of filings, form.idx, from the SEC has a fixed column width for each variable.

o Filing type: position 1 to 12

o Company name: position 13 to 74

o CIK: position 75 to 86

o Filing date: position 87 to 98

o Link: position 99 to end of line

• Python command for substrings

o text='This is some text '

o print(text[5:7])

o print(text[:5])

o print(text[9:])

Problem 2: hints for task 1 (2)

22

• The information on the position/length of the columns is

based on “human counting”, i.e., the first character in a line is

position 1.

• Python, however, starts counting at 0. → the first character

is element 0!

• Remember that Python does not include the upper bound in

intervals. E.g., text[2:4] gives you the third and fourth

character using “human counting” and elements 2 and 3 in

Python counting.

18. Juli 2022 Alexander Hillert, Textual Analysis

New commands to download files:

• There are several packages to download files.

• We use the package urllib.request.

o import urllib.request

o The command to download a file is urllib.request.urlretrieve(URL, folder_filename)

o URL should contain the url, the internet address, of the file you want to download.

o folder_filename is a string with the folder and filename

o Try the following command:

− url='http://www.sec.gov/Archives/edgar/data/933136/0000891020-98-000348.txt'

− folder_filename='C:/Courses/Textual Analysis/Washington_Mutual_10-K.txt'

Choose some folder where you have writing permission.

− urllib.request.urlretrieve(url, folder_filename)

Problem 2: new commands for task 2

23

http://www.sec.gov/Archives/edgar/data/933136/0000891020-98-000348.txt

18. Juli 2022 Alexander Hillert, Textual Analysis

Your task in this problem:

• In the second step, you should download the first 20 filings you have identified in first part of the

Problem. (We download only the first 20 filings to save time.)

o Create a new folder with the name “SEC Filings” in which you save the 10-K filings.

− To create a folder:

import os

os.makedirs(folder), exist_ok=True)

E.g.: os.makedirs('C:/Courses/Textual Analysis/Problems/Task2')

o To be able to uniquely identify files, use a combination of CIK and the last part of the link (the

part after the last /) as file name, e.g., 933136_0000891020-98-000348.txt.

o You have to put 'http://www.sec.gov/Archives/' before the link (last column in the csv file)

otherwise the url is incomplete.

Problem 2: instructions (2)

24

18. Juli 2022 Alexander Hillert, Textual Analysis

Hints for this problem:

Program structure

• Open the csv file from part one of the problem.

• Go over the csv file line by line (→ use a loop).

• Extract the CIK and link (→ last part of link → filename).

• Download the 10-K filings.

• Close the csv file.

Problem 2: hints for task 2

25

18. Juli 2022 Alexander Hillert, Textual Analysis

• Part 1: Getting familiar with Python

• Part 2: Preparing documents for textual analysis

• Part 3: Textual analysis (tone)

• Part 4: Readability, language complexity, and textual similarity

• Part 5: Machine learning

Agenda

26

18. Juli 2022 Alexander Hillert, Textual Analysis

Motivation

• In the first part, we have learnt

o The basic Python commands for handling text data.

o How to identify SEC filings in EDGAR.

o How to obtain filings from EDGAR.

• In this part, we will learn how to edit filings such that we can perform a textual analysis.

• What do we need to do before performing the textual analysis, i.e., the counting of sentiment words?

→ Look at the following example: 10-K of ABT Building Products Corp from March 20, 1998 (the first file in the

output list from the previous Problem; filename “0000950130-98-001359.txt”)

→For a better formatted version, access the file at http://www.sec.gov/Archives/edgar/data/902476/0000950130-

98-001359-index.html.

→As a second, more recent example, consider Microsoft Corp.’s 10-Q filing from April 26, 2018.

→Full submission file: https://www.sec.gov/Archives/edgar/data/789019/000156459018009307/0001564590-18-009307.txt

→Main document: https://www.sec.gov/Archives/edgar/data/789019/000156459018009307/msft-10q_20180331.htm

Introduction to Part 2 (1)

27

http://www.sec.gov/Archives/edgar/data/902476/0000950130-98-001359-index.html
https://www.sec.gov/Archives/edgar/data/789019/000156459018009307/0001564590-18-009307.txt
https://www.sec.gov/Archives/edgar/data/789019/000156459018009307/msft-10q_20180331.htm

18. Juli 2022 Alexander Hillert, Textual Analysis

Editing operations

• Identify and extract the relevant part of the complete submission file.

• Remove tables.

• Delete html code, in particular for the more recent filings.

• Remove the document header, legal disclosures, etc.

How to implement the editing? → Regular expressions

• are a powerful tool that will help us in performing the steps described above.

• are related to the commands “count()”, “replace()”, and “startswith()” from the first part. However, they

are more powerful, as they allow to search for general text patterns. For example:

o All words written in upper case

o All words with five characters

o Numbers

Introduction to Part 2 (2)

28

18. Juli 2022 Alexander Hillert, Textual Analysis

Programming Problems in Part 2

• Problem 3: Work through the introduction to regular expressions.

• Problem 4: Application of regular expressions on a stylized file.

• Problem 5: Preparing an exemplary SEC filing for textual analysis.

• Problem 6: Preparing a set of SEC filings for textual analysis.

→Before we turn to Problem 3, we need to discuss encoding of text files.

Overview of Problems in Part 2: Preparing documents for textual analysis

29

18. Juli 2022 Alexander Hillert, Textual Analysis

Encoding of SEC filings

• Having obtained the SEC filings, the first step is to open the file. Even though opening a file

sounds easy, one can make errors at this stage already due to an incorrect encoding format.

o There are different encoding formats, e.g., ASCII, UTF-8.

o Using an incorrect encoding format, results in incorrectly displayed text characters.

→When working with text files, you should make sure that you use the correct format.

• The SEC requires filings to be encoded in ASCII (American Standard Code for Information

Interchange) format.

• The SEC’s guideline for filers is available at: https://www.sec.gov/info/edgar/quick-

reference/create-ascii-files.pdf.

• The first 128 characters of Unicode correspond one-to-one with ASCII → ASCII text will be

correctly encoded by UTF-8 (Unicode).

Encoding of SEC filings

30

https://www.sec.gov/info/edgar/quick-reference/create-ascii-files.pdf

18. Juli 2022 Alexander Hillert, Textual Analysis

Encoding in Python

• In Python you can specify how files should be encoded when opening files:

open(file, mode=, encoding='X', errors='Y')

o The default encoding depends on your machine’s environment:

import locale

locale.getpreferredencoding()

→ It is better to specify the encoding explicitly.

o Encoding: X can be

− 'utf-8': all languages; should include all symbols

− 'ascii': English language; does not include special characters é, ï, ô, etc.

− 'cp1252': Western Europe

o See https://docs.python.org/3/library/codecs.html#module-codecs for details.

→ Recommendation: in general, use utf-8; for SEC filings, ascii also okay.

Encoding in Python (1)

31

https://docs.python.org/3/library/codecs.html#module-codecs

18. Juli 2022 Alexander Hillert, Textual Analysis

Encoding in Python - continued

• open(file, mode=, encoding='X', errors='Y')

error handling: Y can be

o 'strict' raises an error.

The default (not selecting an option) has the same effect.

o 'ignore' ignores errors. Can lead to data loss.

o 'replace' causes a replacement marker (such as '?') to be inserted where there is malformed data.

o There are further options (see https://docs.python.org/3/library/functions.html#open)

Encoding in Python (2)

32

https://docs.python.org/3/library/functions.html#open

18. Juli 2022 Alexander Hillert, Textual Analysis

Problem 3: introduction to regular expressions

• In our course folder, there is a detailed introduction to regular expression:

“Introduction_Regular_Expressions.py”.
The accompanying txt file (“Text_Introduction_Regular_Expressions.txt”) is in the “Data” folder.

• This code presents popular regular expression commands and illustrates how the commands

work using examples.

• Regular expressions (regex) are not only an essential tool for textual analysis but also for

collecting unstructured data. For example, assume that you want to identify the year of birth, the

university education, and/or previous employers of executives from their bios. Regex will be very

helpful in this task and save you from collecting data manually.

• Your task in Problem 3: work thoroughly through the code of the regex introduction and learn

what the commands are doing.

Problem 3 – Introduction to regular expressions

33

18. Juli 2022 Alexander Hillert, Textual Analysis

Problem 4

• Look at the file “Exercise_4_Application_Regular_Expressions.txt”, which contains text structured in a

similar way as SEC filings.

• Please complete following tasks:

In the end, you should have a new document that only contains the relevant (main) text.

• Task 1: Delete the tables from the file.

Hints:

o identify the position of the start and of the end of each table and remove the text in between.

o Commands:

match=re.search(…)→ match.start() and match.end()

and new_text=text[:begin_table]+text[end_table:]

• Task 2: Delete the exhibit from the file.

Hint: you can proceed as in task 1. You do not need to delete the <DOCUMENT> in the line before <TYPE>

because we will delete all (remaining) html code in task 3 anyway.

Problem 4 – Application of regular expressions (1)

34

The programming template for this problem is

“Problem_4_Application_Regular_Expressions_form.py”.

18. Juli 2022 Alexander Hillert, Textual Analysis

Problem 4 - continued

• Task 3: Delete the remaining html code.

Hint: html code starts with < and ends with >. Use re.sub() to identify and delete html code.

• Task 4: Delete numbers.

• Task 5: Delete symbols.

Hints:

o re.sub() is helpful here.

o some symbols have special meanings in regular expressions. You have to put the backslash

before the symbol to escape its special meaning.

• Task 6: Write the (remaining) main text to a new file.

Problem 4 – Application of regular expressions (2)

35

The programming template for this problem is

“Problem_4_Application_Regular_Expressions_form.py”.

18. Juli 2022 Alexander Hillert, Textual Analysis

Professional package to remove html code

• There are cases in which a simple command like re.sub(‘<[^>]{1,}>’, ‘’, text) does not properly

remove html code.

• The Python tool “Beautiful Soup” handles html documents very well → use it.

• If you use Anaconda/Spyder the “Beautiful Soup” package should be pre-installed.

You can skip the subsequent slide and only need to import the package at the beginning of your

code.

Removing html code (1)

36

18. Juli 2022 Alexander Hillert, Textual Analysis

Installation of “Beautiful Soup” (if not pre-installed)

Alternative 1:

• Open the command prompt (admin mode) and type “pip install beautifulsoup”

Alternative 2:

1. Download the package from https://www.crummy.com/software/BeautifulSoup/#Download.

(Most recent version may no longer be version 4.7.1.)

2. Unzip the installation file

I. Unzip the downloaded file “beautifulsoup4-4.7.1.tar.gz”.

II. Go to the (in I. created) folder “beautifulsoup4-4.7.1.tar” and open the subfolder “dist” and unzip the

file “beautifulsoup4-4.7.1.tar”

3. Go to the sub folder “beautifulsoup4-4.7.1.tar\dist\beautifulsoup4-4.7.1\” (in this subfolder there should be

the file “setup.py”) and press the shift key and do a right mouse click. Select “open command window

here” (“Eingabeaufforderung hier öffnen”)

4. Type “setup.py install”

5. If everything went smoothly the command prompt will display that the installation was successful.

Removing html code (2)

37

https://www.crummy.com/software/BeautifulSoup/#Download

18. Juli 2022 Alexander Hillert, Textual Analysis

How to use Beautiful Soup in Python?
• Import the module at the beginning of your code „from bs4 import BeautifulSoup“

• Open the „input_text“ that contains html code: html_text=BeautifulSoup(input_text, 'html.parser')

• And have Beautiful Soup delete the html code: text_without_html=html_text.get_text()

Problem 4 – alternative Task 3

• Repeat task 3 (“Delete the remaining html code”) using Beautiful Soup.

Removing html code (3)

38

18. Juli 2022 Alexander Hillert, Textual Analysis

Problem 5

Edit the 10-K of ABT Building Products Corp from March 20, 1998 (the first file in the output list

from Problem 2; filename “0000950130-98-001359.txt”) in a way that we could run a sentiment

analysis afterwards. In the end, you should have a new txt-file with the main text.

• Major tasks: delete

o the document header, i.e., all uninformative text at the beginning of the 10-K

o the tables → copy your command(s) from Problem 4

o the exhibits → copy your command(s) from Problem 4

o the html code → copy your command(s) from Problem 4

• Further tasks: delete

o numbers→ copy your command(s) from Problem 4

o symbols→ copy your command(s) from Problem 4

o single character words

Problem 5 – Prepare a 10-K filing for textual analysis

39

The programming template for this problem is

“Problem_5_Clean_SEC_Filing_form.py”.

18. Juli 2022 Alexander Hillert, Textual Analysis

Problem 6 – Additional Problem:

• Prepare the 200 10-Ks from the file “10-K_Sample_2011Q1_Input.csv” for a tone analysis.

You have to repeat the tasks from the previous problem in a loop.

• The files are available as zip file “10-K_Sample.zip” in our course folder.

• In the end, you should have 200 new “clean” files. Save these files using the old filename

and add “_clean”, e.g., “54681_0000054681-11-000009_clean.txt”

• Hints:

o The program is very similar to the one from the previous problem.

o However, you need a loop to go over all 200 10-K filings.

o In case of encoding errors, use the errors=“ignore” option in the open() command.

Problem 6 – Prepare a set of 10-K filings for textual analysis

40

As Problem 6 is very similar to P5 and to save time, we

will not discuss it in class. You find the solution on Moodle.

18. Juli 2022 Alexander Hillert, Textual Analysis

Text editors - Software recommendation
• When editing texts (e.g., removing disclaimers, tables, numbers) we may want to quickly

compare the original and edited text to identify the changes.

• Notepad++ is a good choice.

o Available for free at https://notepad-plus-plus.org/.

o Very handy “Compare” plugin.

Helpful program for editing texts (1)

41

https://notepad-plus-plus.org/

18. Juli 2022 Alexander Hillert, Textual Analysis

Compare plugin in Notepad++

Helpful program for editing texts (2)

42

18. Juli 2022 Alexander Hillert, Textual Analysis

To get texts that can be used in the later problems (e.g., determining the words per

sentence (WPS), measuring textual similarity), we have to do further editing steps.

• When computing WPS, we split the text into sentences.

→ split by “.”, “?”, and “!”.

o Delete dots in abbreviations: Inc., Corp., Mr., Ms., St. [WPS biased downwards]

o Delete URLs: www.someadress.com [WPS biased downwards]

o Delete file names: document.pdf or picture.jpg [WPS biased downwards]

o Delete enumerations [WPS biased upwards]

They can be identified by lines without a symbol indicating the end of sentence (“.”, “?”, and

“!”)

o Delete disclaimers and text parts that are mandated by the SEC [WPS biased upwards].

They can be identified by sentences in UPPER CASE LETTERS.

→ There are more procedures you can (and should) implement in your research project.

Importance of proper document editing (1)

43

http://www.someadress.com/

18. Juli 2022 Alexander Hillert, Textual Analysis

Illustration of “sloppy” and “thorough” editing

Importance of proper document editing (2)

44

18. Juli 2022 Alexander Hillert, Textual Analysis

• Part 1: Getting familiar with Python

• Part 2: Preparing documents for textual analysis

• Part 3: Textual analysis (tone)

• Part 4: Readability, language complexity, and textual similarity

• Part 5: Machine learning

Agenda

45

18. Juli 2022 Alexander Hillert, Textual Analysis

Programming problems in Part 3
• Problem 7: Determine the negativity of the edited 10-K filings from Problem 6. Negativity is measured

by the percentage of negative words.

• Problem 8: Determine the positivity of the edited 10-K filings from Problem 6. Positivity is measured by

percentage of positive words controlling for negations.

• As we deal with business/finance texts, we will use the dictionaries of Loughran and McDonald (2011).

• To get comparable results, please use the edited 10-K filings from the zip file “10-K_Sample_clean.zip”.

These files have been created by the solution to Problem 6.

Overview of Problems in Part 3: Textual Analysis – Computing Tone

46

18. Juli 2022 Alexander Hillert, Textual Analysis

Problem 7: determine the negativity of annual reports
• Compute the percentage of negative words according to the Loughran and McDonald

(2011) dictionary of negative words for the 10-K filings from Problem 6.

• Your program should create a csv file that contains the CIK (column 1), the filename

(column 2), the total number of words (column 3), the number of negative words (column

4) and the percentage of negative words (column 5).

• The file “LMD_Neg.txt” contains the list of negative words according to the Loughran

and McDonald (2011) dictionary. Each line contains exactly one word.

→ See the next slide for hints.

Problem 7 – Determine the negativity of 10-Ks

47

The programming template for this problem is

“Problem_7_Tone_Analysis_form.py”.

18. Juli 2022 Alexander Hillert, Textual Analysis

Problem 7: determine the negativity of annual reports - continued
• Hints:

o You need two loops. The first (outer) loop iterates the list of the 200 10-Ks, while the second

(inner) loop iterates the 2,239 negative words in the LMD dictionary.

o You can split the text into single words by using the ".split()" or "re.split()" command. In

regular expressions, "\W" refers to a word boundary.

o The ".count()" command is helpful as well.
Compare the result of the following two count commands:

text='poor poorer poorest'

1. text.count('poor')

2. list_of_words=re.split('\W',text)

list_of_words.count('poor')

o There are several ways of how to program a word count.

Problem 7 – Determine the negativity of 10-Ks

48

The programming template for this problem is

“Problem_7_Tone_Analysis_form.py”.

18. Juli 2022 Alexander Hillert, Textual Analysis

Validation of results
• Can we validate our programming results?

o Loughran and McDonald provide a file with information on all 10-K filings from 1994 to 2014.

o The file is named “LoughranMcDonald_10X_2014.xlsx” and can be downloaded from

http://www3.nd.edu/~mcdonald/Word_Lists.html. → Compare our results to LMD

• Correlations

o number of words: 0.7845

o number of negative words: 0.8185

o negativity: 0.9183

o Not bad. Where does the difference come from?

→ Most likely from editing the documents.

Problem 7 – Validation of results (1)

49

Length according to our computations:

Mean: 29,134 words; Min: 2684; Max: 93,369.

Length according to LMD’s file:

Mean: 30,950 words; Min: 791; Max: 188,781.

Negativity according to our computations:

Mean: 1.64%; Min: 0.45%; Max: 3.30%.

Negativity according to LMD’s file:

Mean: 1.69%; Min: 0.55%; Max: 3.52%.

http://www3.nd.edu/~mcdonald/Word_Lists.html

18. Juli 2022 Alexander Hillert, Textual Analysis

Validation of results - continued
• There are also commercial textual analysis programs. For example, Linguistic Inquiry

and Word Count (LIWC).

o http://www.liwc.net/

o The program performs a dictionary-based word count analysis.

However, it is less powerful than self-made Python program.

− does not account for negations when measuring positive tone.

− cannot search for terms that consist of multiple words, e.g., “bank run”.

o However, we can use it as a benchmark for our self-programmed Python program.

Problem 7 – Validation of results (2)

50

http://www.liwc.net/

18. Juli 2022 Alexander Hillert, Textual Analysis

Problem 8: determine the positivity of annual reports
• Determine the percentage of non-negated positive words according to the Loughran and

McDonald (2011) dictionary for 10-K filings from Problem 6.

• Use Loughran and McDonald’s (2011) procedure to control for negations.
“We account for simple negation only for Fin-Pos words. Simple negation is taken to be

observations of one of six words (no, not, none, neither, never, nobody) occurring within three

words preceding a positive word.” Loughran and McDonald (2011), p. 44.

• Create a csv file that contains the CIK (column 1), the filename (column 2), the total

number of words (column 3), the number of positive words (column 4), and the number

of non-negated positive words (column 5).

• The file “LMD_Pos.txt” contains the list of positive words according to the Loughran and

McDonald (2011) dictionary. Each line contains exactly one word.

→ See the next slide for hints.

Problem 8 – Determine the positivity of 10-Ks

51

18. Juli 2022 Alexander Hillert, Textual Analysis

Problem 8: determine the positivity of annual reports - continued
• Hints:

o The program structure is very similar to the one of Problem 7 (two loops).

o However, to determine the non-negated number of negative words, you need to take

into account the three words before a positive word. Identify the position of the

positive words (e.g., the 241st word of the document) and check whether the previous

three words are negations (e.g., the words at positions 238 to 240).

Problem 8 – Determine the positivity of 10-Ks

52

The programming template for this problem is

“Problem_8_Tone_Analysis_Positive_Words_form.py”.

18. Juli 2022 Alexander Hillert, Textual Analysis

• Part 1: Getting familiar with Python

• Part 2: Preparing documents for textual analysis

• Part 3: Textual analysis (tone)

• Part 4: Readability, language complexity, and textual similarity

• Part 5: Machine learning

Agenda

53

18. Juli 2022 Alexander Hillert, Textual Analysis

Text characteristics other than positivity and negativity
• Other word lists

• Document complexity

• Textual similarity

Programming problems in Part 4

• Problem 9: Calculate the average words per sentence (WPS).

• Problem 10: Compute the fraction of complex words.

• Problem 11: Determine the gross and net file size.

• Problem 12: Identify the most frequent words in a text.

• Problem 13: Word Stemming.

• Problem 14: Jaccard Similarity.

Overview of Part 4: Readability, language complexity, and textual similarity

54

18. Juli 2022 Alexander Hillert, Textual Analysis

Problem 9: determine average number of words per sentence

• A common and appropriate measure of complexity is the average number of words per

sentence (WPS). Determine the average WPS for 10-K filings from Problem 6.

• Create a csv file that contains the CIK (column 1), the filename (column 2), the total

number of words (column 3), the number of sentences (column 4), and the average

WPS (column 5).

• Hints:

o You can use the same procedure as in Problem 7 and 8 to determine the number of words.

o To determine the number of sentences, you can split the document by symbols indicating the

end of a sentence, e.g., full stop, exclamation mark, and question mark.

Readability – Measured by Words Per Sentence

55

The programming template for this problem is

“Problem_9_Words_per_Sentence_form.py”.

18. Juli 2022 Alexander Hillert, Textual Analysis

Sentence identification

• Are there Python packages that do the work for us? Maybe they also do a better job?!

o Most popular package is NLTK (Natural Language Tool Kit), which we will discuss

later in the course.

o NLTK includes a sentence tokenizer.

o Syntax

− from nltk.tokenize import sent_tokenize

− list_of_sentences=sent_tokenize(text)

o Let’s assess NLTK’s performance by looking at some examples.

How to identify sentences correctly? (1)

56

18. Juli 2022 Alexander Hillert, Textual Analysis

Sentence identification - continued

• Example 1:
o “The S&P 500 rose 43.44 points to 4,159.12. The Dow Jones industrial average added 188.11 points,

or 0.6 percent, to 34,084.15. The tech-heavy Nasdaq fared better than the rest of the market, climbing

236 points, or 1.8 percent, to 13,535.74.”

o Result:

1. The S&P 500 rose 43.44 points to 4,159.12. ✓

2. The Dow Jones industrial average added 188.11 points, or 0.6 percent, to 34,084.15. ✓

3. The tech-heavy Nasdaq fared better than the rest of the market, climbing 236 points, or 1.8 percent,

to 13,535.74. ✓

→ Good job.

o Repeat the analysis with the text being lower case and there is NO split→ NLTK considers

the text to be a single sentence. Poor job!

How to identify sentences correctly? (2)

57

You find this example in “NLTK_Sentence_Tokenizer.py”.

18. Juli 2022 Alexander Hillert, Textual Analysis

Sentence identification - continued

• Example 2:
o “On Sept. 16, 2020, the U.S. president appointed John D. Smith as head of the F. B. I. While Jane C.

Taylor became the president of the S. E. C. On Jan. 5, 2020, J. C. Penny filed for bankruptcy. Michael T.

Brown - reporting from Washington D.C.”

o Result:

1. On Sept. 16, 2020, the U.S. president appointed John D. Smith as head of the F. B. I. ✓

2. While Jane C. Taylor became the president of the S. E. C. On Jan. 5, 2020, J. C. Penny filed for

bankruptcy. 

3. Michael T. Brown - reporting from Washington D.C. ✓

→Okay performance.

→Performance depends on specific abbreviations (FBI vs. SEC).

o Repeat the analysis with the text being lower case and there is just ONE split (sentences 1 and

2 from above are not identified) → NLTK considers the text to be a two sentence. Poor job.

How to identify sentences correctly? (3)

58

You find this example in “NLTK_Sentence_Tokenizer.py”.

18. Juli 2022 Alexander Hillert, Textual Analysis

Sentence identification - continued

• When you apply the NLTK tokenizer to the 10-Ks from Problem 9, the average WPS is

41.85 vs. 31.67 (our approach).

• Key problem: missing splits when there are no whitespaces!
o “This Annual Report contains forwardlooking statements as that term is defined in the federal securities

laws.The Company wishes to insure that […] may not occur.Generally, these statements relate to business

plans or strategies”

o Where does this come from?

− “in the federal securities laws. The Company wishes to insure”

− “may not occur. Generally, these statements”

see https://www.sec.gov/Archives/edgar/data/719494/000114420411018856/0001144204-11-018856.txt

→It is the initial filings!

o “ ” is html code for “non-breaking space” → html code is deleted by BeautifulSoup→

NLTK tokenizer does not identify end of sentence, but our approach does!

How to identify sentences correctly? (4)

59

https://www.sec.gov/Archives/edgar/data/719494/000114420411018856/0001144204-11-018856.txt

18. Juli 2022 Alexander Hillert, Textual Analysis

Sentence identification - continued

• Conclusion: extensive text editing is required!

o Keeping upper- and lower-case letters may be helpful.

o Remove numbers (incl. dots, commas).

o Delete abbreviations (e.g., middle names, U.S.A., Mr., Dr., Jan., Feb.).

o The documents we work with have been edited to some extent (see my solution to

problem 6). In a research project, you should do more.

o Always manually check your results!

• Bill McDonald’s view: “Textual analysis is not like inverting a matrix, where a routine developed in

another context will still provide exactly the same result. For example, using NLTK to produce an

average-words-per-sentence measure for 10-Ks is very simple but produces disastrous results.”
https://sraf.nd.edu/textual-analysis/for-beginners/

How to identify sentences correctly? (5)

60

https://sraf.nd.edu/textual-analysis/for-beginners/

18. Juli 2022 Alexander Hillert, Textual Analysis

Problem 10: determine the fraction of complex words for 10-K filings from Problem 6

• A complex words is a word with more than two syllables.

• Loughran and McDonald provide the number of syllables for all words that appear in at least one

SEC filing in their master dictionary which is available at

http://www3.nd.edu/~mcdonald/Word_Lists.html. The file

(“LoughranMcDonald_MasterDictionary_2014.xlsx”) is available in our course folder.

• Create a csv file that contains the CIK (column 1), the filename (column 2), the total number of

words (column 3), and the number of complex words (column 4).

• The file “Complex_Words.txt” (also available in our course folder) contains the list of words with

more than two syllables according to the master dictionary. Each line contains exactly one word.

• Hints:

o The programming is very similar to Problem 7 → use the solution to Problem 7 as starting point.

o Since there are many complex words (47,155), the execution of the program will take more time.

Problem 10 – Determine the fraction of complex words of 10-Ks

61

http://www3.nd.edu/~mcdonald/Word_Lists.html

18. Juli 2022 Alexander Hillert, Textual Analysis

Problem 11: determine the file size for 10-K filings from Problem 6

• Create a csv file that contains the CIK (column 1), the filename (column 2), the file size

of the complete submission file (column 3), and the file size of the main text

(“_cleaned.txt”) (column 4).

• Hints:

o The command os.path.getsize() is helpful here.

o Before you can use the previous command, you must import the “os” module.

Problem 11 – Determine the file size of 10-Ks

62

The programming template for this problem is

“Problem_11_determine_file_size_form.py”.

18. Juli 2022 Alexander Hillert, Textual Analysis

Further data editing operations
• Motivation:

o It is important to know which words drive results (see Loughran and McDonald (2011)).

→ how to get a list of the most frequent words?

→ Problem 12: working with counter objects.

o For textual similarity, additional editing steps may improve accuracy.

− Some words (e.g., “the”, “a”, “and”) are omnipresent → might be better to drop them.

− Using inflections may not be helpful:

“According to its report, X lost $10 million.” vs. “X reports a loss of $10 million.”

After Problem 12, we will look at Python’s Natural Language Toolkit (NLTK).

NLTK helps to:

• drop stop words.

• reduce words to their stem.

Further text editing

63

18. Juli 2022 Alexander Hillert, Textual Analysis

Problem 12: identify the most frequent words in a text

In our course folder, you find the file “10-Ks_Textual_Similarity.zip”. The file contains the 10-Ks (full

submission files) of Microsoft, Coca Cola, and 3M.

The file names are “cik_link_adj.txt” where link_adj is the part of the link after the last slash /.

All files are listed in the file “list_10-K_filings_textual_similarity.csv”.

Your task:

• Create a list of the 100 most frequently used words in this text corpus.

The output should be a table (e.g., csv file) with the words and their absolute frequencies.

Are the top 100 words plausible?

• Optional extra task: create a list of the top 100 bigrams and their frequencies.

• To save time, you do not need to program the editing of the 10-Ks. The second zip file “10-

Ks_Textual_Similarity_edited.zip” contains the edited files. The editing is very similar to the one in

Problem 6.

Problem 12

64

The programming template for this problem is

“Problem_12_Most_Frequent_Words_form”.

18. Juli 2022 Alexander Hillert, Textual Analysis

Problem 12 - continued

Container datatypes

• Python has several container datatypes.

• You already know lists, which are one of the container datatypes.

• Here, you need counters, which are a special version of dictionaries (another container datatype)

• For more information on the different container datatypes see

https://docs.python.org/3/library/collections.html#collections.Counter

• Before trying to solve Problem 12, go over my introduction on datatypes.

o The file (Introduction_Container_Datatypes.py) is available in our course folder.

o The first part is just a recap of lists.

o The second part covers counters.

Problem 12 – Hints

65

The programming template for this problem is

“Problem_12_Most_Frequent_Words_form.py”.

https://docs.python.org/3/library/collections.html#collections.Counter

18. Juli 2022 Alexander Hillert, Textual Analysis

Python’s Natural Language ToolKit
• NLTK can split texts in sentences and/or words (“tokenization”), delete commonly used words from

text (“stop words”), and much more.

• We will discuss tokenization, stop words, and stemming on the subsequent slides.

→ There is also a short introduction (“NLKT_introduction.py”) available in our course folder.

• Before you can use these tools, you need to download the NLTK components.

o Alternative 1:

import nltk

nltk.download(component_name) → e.g., nltk.download('punkt')

o Alternative 2:

import nltk

nltk.download() → a new window opens

Introduction to NLTK (1)

66

18. Juli 2022 Alexander Hillert, Textual Analysis

Downloading NLTK components – continued

• Select the components you need and click on “download”.

Introduction to NLTK (2)

67

18. Juli 2022 Alexander Hillert, Textual Analysis

What does tokenize mean?
• Tokenize = split a text into groups.

• Common groups

o Sentences (see Problem 9)

from nltk.tokenize import sent_tokenize

test_text=“Sentence one. Sentence two? This is sentence three!”

sentence_list=sent_tokenize(test_text)

o Words

from nltk.tokenize import word_tokenize

test_text=“This is a sentence with a lot of different words and 2 numbers.”

sentence_list=sent_tokenize(test_text)

• The nltk.tokenize is based on a combination of several regular expressions.

→ similar to what we have developed. It is more advanced, but not necessarily better (see

Problem 9)

Tokenization with NLTK

68

18. Juli 2022 Alexander Hillert, Textual Analysis

Performance of NLTK word tokenizer
• Example

o “The covid pandemic resulted in a severe recession, which - according to most economists -

was the worst recession since the Great Depression.“

o Word length according to NLTK: 25

o Actual length (and length according to our approach using re.split(“\W{1,}”)): 21

• What is the problem?

→NLTK includes symbols: “,”, “-” (2 times), and “.”

→Word count overstated!

• Conclusion:

o Use our re.split(“\W{1,}”) approach.

o NLTK word tokenizer only helpful if you want to keep symbols.

NLTK word tokenizer

69

18. Juli 2022 Alexander Hillert, Textual Analysis

What are stop words?
• Words with

1. a very high frequency and that are usually uninformative like “and”, “the”, “or”, etc.

2. ambiguous meaning, e.g., words that often express irony and/or sarcasm.

→ Hard to identify. For company filings irony is not an issue, but analysts’ questions in a

conference may be ironic or sarcastic.

• Remember: if stops words are equally distributed across documents, they will not bias

sentiment scores.

• NLTK has a list of stop words.

from nltk.corpus import stopwords

stop_words = set(stopwords.words("english"))

print(stop_words)

• See the NLTK introduction for how to remove stop words from texts.

Stop words with NLTK

70

18. Juli 2022 Alexander Hillert, Textual Analysis

What does stemming mean?
• Reducing inflected words to their word stem/root.

• The most common stemming algorithm for English is the Porter algorithm.

• NLTK syntax

from nltk.stem import PorterStemmer

example_words=["play", "player", "players", "played", "playing"]

for word in example_words:

print(PorterStemmer().stem(word))

• It is not clear whether stemming is the best approach. For instance, Loughran and McDonald

(2011) argue against stemming.

Stemming with NLTK

71

18. Juli 2022 Alexander Hillert, Textual Analysis

NLTK
• Python’s NLTK can do much more than the three tasks from the previous slides.

• NLTK does not only work for English but also for other languages. However, the English

toolkit is the most powerful.

• To get a detailed introduction, I recommend the learning videos by “sentdex”. It is a

series of 21 videos covering different topics/NLTK modules. The link is:
https://www.youtube.com/watch?v=FLZvOKSCkxY&list=PLQVvvaa0QuDf2JswnfiGkliBInZnIC4HL

• Further references:
o https://pythonprogramming.net/stemming-nltk-tutorial/

o https://pythonspot.com/en/nltk-stemming/

o http://www.nltk.org/

Further information on NLTK

72

https://www.youtube.com/watch?v=FLZvOKSCkxY&list=PLQVvvaa0QuDf2JswnfiGkliBInZnIC4HL
https://pythonprogramming.net/stemming-nltk-tutorial/
https://pythonspot.com/en/nltk-stemming/
http://www.nltk.org/

18. Juli 2022 Alexander Hillert, Textual Analysis

Problem 13: Word Stemming

• Take the edited files from the zip file “10-Ks_Textual_Similarity_edited.zip” and

transform the text to word stems.

• Save the stemmed filings as new files, e.g., “…_stemmed.txt”

• Slide 71 provides information on how to use NLTK’s word stemming tool

Problem 13

73

The programming template for this problem

is “Problem_13_Stemming_form.py”.

18. Juli 2022 Alexander Hillert, Textual Analysis

Problem 14: Jaccard Similarity

Compute the Jaccard similarity of a firm’s 10-K to the firm’s 10-K from the previous year.

Use different versions of the 10-K filings:

1. the edited files from the zip file “10-Ks_Textual_Similarity_edited.zip”.

2. the files from 1. but delete stop words.

a. define your own list of stop words based on the 100 most frequently used words.

Select only the words that you consider uninformative.

b. use the stop word list from Python’s NLTK package (see slide 70).

3. the files from Problem 13, i.e., the stemmed version (“…_stemmed.txt”).

4. the files from 3. but remove stop words.

→Are the results similar? Does the data editing matter?

See the next slides for additional information.

Problem 14 (1)

74

The programming template for this problem is

“Problem_14_Jaccard_Similarity_form.py”.

18. Juli 2022 Alexander Hillert, Textual Analysis

Problem 14 – continued

• Recap of the Jaccard similarity measure: 𝐽 𝐴, 𝐵 =
𝐴∩𝐵

𝐴∪𝐵

• Example:

o A: “This is the first text of the Jaccard example.”

o B: “This sentence represents the second Jaccard example.”

→ 𝐴 ∩ 𝐵 = 4 and 𝐴 ∪ 𝐵 =11 → Jaccard similarity = 4 / 11=0.3636

• Stop words and stemming in Tetlock (2011)

o “Before identifying unique words and bigrams, I exclude a standard list of 119 extremely common

words such as “into,” “so,” and “that”; 42 common numbers (0 through 9 and 1978 through 2009); and

27 terms that are ubiquitous in financial news stories, such as “Dow Jones,” “New York,” and

“newswire.”” Footnote 2

o “I also use a standard word-stemming algorithm to equate all similar forms of a word—e.g., “changing”

and “changed” are both derivatives of “change.”” Footnote 2

Problem 14 (2)

75

18. Juli 2022 Alexander Hillert, Textual Analysis

Summary stats

Correlations

→ Removing stop words does hardly affect Jaccard similarity. Stemming has a small effect.

Summary statistics and correlations of Jaccard similarity

76

1. Removing stops words →

decline in similarity.

2. Stemming words → increase

in similarity.

18. Juli 2022 Alexander Hillert, Textual Analysis

• Part 1: Getting familiar with Python

• Part 2: Preparing documents for textual analysis

• Part 3: Textual analysis (tone)

• Part 4: Readability, language complexity, and textual similarity

• Part 5: Machine learning

Agenda

77

18. Juli 2022 Alexander Hillert, Textual Analysis

Programming problems in Part 5: Machine learning
• Problem 15: Naïve Bayes using NLTK movie review corpus.

• Problem 16: Introduction to linear models using SciKitLearn package.

• Problem 17: Application of Ridge and LASSO to text data.

Overview of Part 5: Machine learning

78

18. Juli 2022 Alexander Hillert, Textual Analysis

Problem 15 - Naïve Bayes with NLTK

• In our course folder, you find the script “NLTK_Sentiment_Analysis.py”. This script uses the “Movie

Review” corpus from NLTK. The corpus contains 2,000 movie reviews. The first 1,000 reviews are

negative and the second 1,000 are positive.

• Tasks:

1. Go over the script and see what the commands do.

2. The script uses 1,900 reviews as the training set and 100 as the testing set. What changes if you

use 1,000 reviews as training and the other 1,000 as testing set?

3. The script uses only the 3,000 most frequently occurring words for the classification. What happens

if you use 5,000 words?

4. What happens if you use the 3,000 most frequent words but exclude the 200 most frequent words?

Naïve Bayes – Problem 15

79

18. Juli 2022 Alexander Hillert, Textual Analysis

Problem 16 – Introduction to linear models with SciKitLearn

In our course folder (introductions → SciKitLearn), you find the script “Introduction_SciKitLearn.py”. This

script comprises 10 parts that guide you through different linear models.

The introduction starts with a standard OLS regression using a toy data set and, in the second step, a

larger data set. It also shows you how to standardize variables. Next, it introduces you to the syntax of

Ridge regressions and explains how to perform cross-validation. Last, it repeats the parts on Ridge

regressions for LASSO regressions.

The accompanying data set is “regression_data_scikit.csv”. You find it in the same folder.

Task: go over this introduction and learn how to use Ridge and LASSO!

Introduction to Linear Models – Problem 16

80

18. Juli 2022 Alexander Hillert, Textual Analysis

Problem 17 – Application of Ridge and LASSO to text data

In this problem, we will apply Ridge and LASSO regressions to text data. As text corpus, we will use all

form 10-K filings from 2007 and 2008 that can be matched with CRSP (stock market data). Using these

filings, we will analyze the relation between the filing CARs (abnormal return from day t [filing day] to day

t+3 as in Loughran and McDonald (2011)) and the frequencies of the words in the 10-Ks. More specifically,

we will regress the CARs on the (relative) frequency of all words that are found in at least one form 10-K

filing. Thus, we have a high-dimensionality problem (n is about 8,500 filings, k is about 40,000 unique

words).

Tasks:

- Train and tune a Ridge/LASSO model on the CARs and texts of the filings from 2007.

- Test the model out-of-sample for 2008. What is the R2? What is the MSE?

- Compare the coefficients between Ridge and LASSO.

Application of Ridge and LASSO to text data – Problem 17

81

The programming template for this problem is

“Problem_17_Ridge_LASSO_text_data_form.py”.

