"The questions below assume that you have read [Chapter 5 <img height=\"12\" style=\"display: inline-block\" src=\"static/link_to_nb.png\">](https://nbviewer.jupyter.org/github/webartifex/intro-to-python/blob/master/05_numbers_00_content.ipynb) in the book.\n",
"**Q3**: Colors are commonly expressed in the **hexadecimal system** in websites (cf., the [HTML <img height=\"12\" style=\"display: inline-block\" src=\"static/link_to_wiki.png\">](https://en.wikipedia.org/wiki/HTML) and [CSS <img height=\"12\" style=\"display: inline-block\" src=\"static/link_to_wiki.png\">](https://en.wikipedia.org/wiki/Cascading_Style_Sheets) formats).\n",
"For example, $#000000$, $#ff9900$, and $#ffffff$ turn out to be black, orange, and white. The six digits are read in *pairs of two* from left to right, and the *three pairs* correspond to the proportions of red, green, and blue mixed together. They reach from $0_{16} = 0_{10}$ for $0$% to $\\text{ff}_{16} = 255_{10}$ for $100$% (cf., this [article <img height=\"12\" style=\"display: inline-block\" src=\"static/link_to_wiki.png\">](https://en.wikipedia.org/wiki/RGB_color_model) for an in-depth discussion).\n",
"In percent, what are the proportions of red, green, and blue that make up orange? Calculate the three percentages separately! How many **bytes** are needed to encode a color? How many **bits** are that?"
"**Q7**: What data type, built-in or from the [standard library <img height=\"12\" style=\"display: inline-block\" src=\"static/link_to_py.png\">](https://docs.python.org/3/library/index.html), is best suited to represent the [transcendental numbers <img height=\"12\" style=\"display: inline-block\" src=\"static/link_to_wiki.png\">](https://en.wikipedia.org/wiki/Transcendental_number) $\\pi$ and $\\text{e}$?"
"**Q9**: The precision of `int` objects depends on how we choose to represent them in memory. For example, using a **hexadecimal representation** gives us $16^8$ digits whereas with a **binary representation** an `int` object can have *at most* $2^8$ digits."
"**Q10**: With the built-in [round() <img height=\"12\" style=\"display: inline-block\" src=\"static/link_to_py.png\">](https://docs.python.org/3/library/functions.html#round) function, we obtain a *precise* representation for any `float` object if we can live with *less than* $15$ digits of precision."
"**Q11**: As most currencies operate with $2$ or $3$ decimals (e.g., EUR $9.99$), the `float` type's limitation of *at most* $15$ digits is *not* a problem in practice."
"**Q12**: The [IEEE 754 <img height=\"12\" style=\"display: inline-block\" src=\"static/link_to_wiki.png\">](https://en.wikipedia.org/wiki/IEEE_754) standard's **special values** provide no benefit in practice as we could always use a **[sentinel <img height=\"12\" style=\"display: inline-block\" src=\"static/link_to_wiki.png\">](https://en.wikipedia.org/wiki/Sentinel_value)** value (i.e., a \"dummy\"). For example, instead of `nan`, we can always use `0` to indicate a *missing* value."
"**Q15**: From a practitioner's point of view, the built-in [format() <img height=\"12\" style=\"display: inline-block\" src=\"static/link_to_py.png\">](https://docs.python.org/3/library/functions.html#format) function does the *same* as the built-in [round() <img height=\"12\" style=\"display: inline-block\" src=\"static/link_to_py.png\">](https://docs.python.org/3/library/functions.html#round) function."
"**Q16**: The `Decimal` type from the [decimal <img height=\"12\" style=\"display: inline-block\" src=\"static/link_to_py.png\">](https://docs.python.org/3/library/decimal.html) module in the [standard library <img height=\"12\" style=\"display: inline-block\" src=\"static/link_to_py.png\">](https://docs.python.org/3/library/index.html) allows us to model the set of the real numbers $\\mathbb{R}$ *precisely*."
"**Q17**: The `Fraction` type from the [fractions <img height=\"12\" style=\"display: inline-block\" src=\"static/link_to_py.png\">](https://docs.python.org/3/library/fractions.html) module in the [standard library <img height=\"12\" style=\"display: inline-block\" src=\"static/link_to_py.png\">](https://docs.python.org/3/library/index.html) allows us to model the set of the rational numbers $\\mathbb{Q}$ *precisely*."