Remove dots in sub-sub-sections
This commit is contained in:
parent
7797cad058
commit
f8321bf835
11 changed files with 11 additions and 11 deletions
|
@ -1,4 +1,4 @@
|
|||
\subsubsection{Na\"{i}ve Methods, Moving Averages, and Exponential Smoothing.}
|
||||
\subsubsection{Na\"{i}ve Methods, Moving Averages, and Exponential Smoothing}
|
||||
\label{ets}
|
||||
|
||||
Simple forecasting methods are often employed as a benchmark for more
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
\subsubsection{Autoregressive Integrated Moving Averages.}
|
||||
\subsubsection{Autoregressive Integrated Moving Averages}
|
||||
\label{arima}
|
||||
|
||||
\cite{box1962}, \cite{box1968}, and more papers by the same authors in the
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
\subsubsection{Seasonal and Trend Decomposition using Loess.}
|
||||
\subsubsection{Seasonal and Trend Decomposition using Loess}
|
||||
\label{stl}
|
||||
|
||||
A time series $y_t$ may exhibit different types of patterns; to fully capture
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
\subsubsection{Supervised Learning.}
|
||||
\subsubsection{Supervised Learning}
|
||||
\label{learning}
|
||||
|
||||
A conceptual difference between classical and ML methods is the format
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
\subsubsection{Cross-Validation.}
|
||||
\subsubsection{Cross-Validation}
|
||||
\label{cv}
|
||||
|
||||
Because ML models are trained by minimizing a loss function $L$, the
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
\subsubsection{Random Forest Regression.}
|
||||
\subsubsection{Random Forest Regression}
|
||||
\label{rf}
|
||||
|
||||
\cite{breiman1984} introduce the classification and regression tree
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
\subsubsection{Support Vector Regression.}
|
||||
\subsubsection{Support Vector Regression}
|
||||
\label{svm}
|
||||
|
||||
\cite{vapnik1963} and \cite{vapnik1964} introduce the so-called support vector
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
\subsubsection{Horizontal and Whole-day-ahead Forecasts.}
|
||||
\subsubsection{Horizontal and Whole-day-ahead Forecasts}
|
||||
\label{hori}
|
||||
|
||||
The upper-left in Figure \ref{f:inputs} illustrates the simplest way to
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
\subsubsection{Vertical and Whole-day-ahead Forecasts without Retraining.}
|
||||
\subsubsection{Vertical and Whole-day-ahead Forecasts without Retraining}
|
||||
\label{vert}
|
||||
|
||||
The upper-right in Figure \ref{f:inputs} shows an alternative way to
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
\subsubsection{Vertical and Real-time Forecasts with Retraining.}
|
||||
\subsubsection{Vertical and Real-time Forecasts with Retraining}
|
||||
\label{rt}
|
||||
|
||||
The lower-left in Figure \ref{f:inputs} shows how models trained on vertical
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
\subsubsection{Vertical and Real-time Forecasts without Retraining.}
|
||||
\subsubsection{Vertical and Real-time Forecasts without Retraining}
|
||||
\label{ml_models}
|
||||
|
||||
The lower-right in Figure \ref{f:inputs} shows how ML models take
|
||||
|
|
Loading…
Reference in a new issue