Rename Forecast.training_horizon into .train_horizon
- we use that shorter name in `urban_meal_delivery.forecasts.*` and want to be consistent in the ORM layer as well
This commit is contained in:
parent
6fd16f2a6c
commit
3f5b4a50bb
5 changed files with 63 additions and 15 deletions
|
|
@ -27,7 +27,7 @@ class Forecast(meta.Base):
|
|||
pixel_id = sa.Column(sa.Integer, nullable=False, index=True)
|
||||
start_at = sa.Column(sa.DateTime, nullable=False)
|
||||
time_step = sa.Column(sa.SmallInteger, nullable=False)
|
||||
training_horizon = sa.Column(sa.SmallInteger, nullable=False)
|
||||
train_horizon = sa.Column(sa.SmallInteger, nullable=False)
|
||||
model = sa.Column(sa.Unicode(length=20), nullable=False)
|
||||
# We also store the actual order counts for convenient retrieval.
|
||||
# A `UniqueConstraint` below ensures that redundant values that
|
||||
|
|
@ -71,7 +71,7 @@ class Forecast(meta.Base):
|
|||
),
|
||||
sa.CheckConstraint('time_step > 0', name='time_step_must_be_positive'),
|
||||
sa.CheckConstraint(
|
||||
'training_horizon > 0', name='training_horizon_must_be_positive',
|
||||
'train_horizon > 0', name='training_horizon_must_be_positive',
|
||||
),
|
||||
sa.CheckConstraint('actual >= 0', name='actuals_must_be_non_negative'),
|
||||
sa.CheckConstraint(
|
||||
|
|
@ -124,7 +124,7 @@ class Forecast(meta.Base):
|
|||
),
|
||||
# There can be only one prediction per forecasting setting.
|
||||
sa.UniqueConstraint(
|
||||
'pixel_id', 'start_at', 'time_step', 'training_horizon', 'model',
|
||||
'pixel_id', 'start_at', 'time_step', 'train_horizon', 'model',
|
||||
),
|
||||
)
|
||||
|
||||
|
|
@ -146,7 +146,7 @@ class Forecast(meta.Base):
|
|||
cls,
|
||||
pixel: db.Pixel,
|
||||
time_step: int,
|
||||
training_horizon: int,
|
||||
train_horizon: int,
|
||||
model: str,
|
||||
data: pd.Dataframe,
|
||||
) -> List[db.Forecast]:
|
||||
|
|
@ -166,7 +166,7 @@ class Forecast(meta.Base):
|
|||
Args:
|
||||
pixel: in which the forecast is made
|
||||
time_step: length of one time step in minutes
|
||||
training_horizon: length of the training horizon in weeks
|
||||
train_horizon: length of the training horizon in weeks
|
||||
model: name of the forecasting model
|
||||
data: a `pd.Dataframe` as described above (i.e.,
|
||||
with the six columns holding `float`s)
|
||||
|
|
@ -214,7 +214,7 @@ class Forecast(meta.Base):
|
|||
pixel=pixel,
|
||||
start_at=start_at,
|
||||
time_step=time_step,
|
||||
training_horizon=training_horizon,
|
||||
train_horizon=train_horizon,
|
||||
model=model,
|
||||
actual=actual,
|
||||
prediction=prediction,
|
||||
|
|
|
|||
|
|
@ -79,7 +79,7 @@ class ForecastingModelABC(abc.ABC):
|
|||
.filter_by(pixel=pixel)
|
||||
.filter_by(start_at=predict_at)
|
||||
.filter_by(time_step=self._order_history.time_step)
|
||||
.filter_by(training_horizon=train_horizon)
|
||||
.filter_by(train_horizon=train_horizon)
|
||||
.filter_by(model=self.name)
|
||||
.first()
|
||||
) :
|
||||
|
|
@ -94,7 +94,7 @@ class ForecastingModelABC(abc.ABC):
|
|||
forecasts = db.Forecast.from_dataframe(
|
||||
pixel=pixel,
|
||||
time_step=self._order_history.time_step,
|
||||
training_horizon=train_horizon,
|
||||
train_horizon=train_horizon,
|
||||
model=self.name,
|
||||
data=predictions,
|
||||
)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue